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Abstract We examine the transition region between two solids which state differs from the state of contacting
media. Small thickness of the intermediate region allows us to reduce a three-dimensional problem to a two-
dimensional one for a median surface endowed with equivalent physical properties. In the present paper,
we consider the generalized boundary conditions of nonperfect thermal contact for the time-fractional heat
conduction equation with the Caputo derivative and solve the problem for a composite medium consisting of
two semi-infinite regions. Numerical results are illustrated graphically.
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1 Introduction

Near the interface between two solids, there arises a transition region which state differs from the state of
contacting media owing to different conditions of material–particle interaction. The transition region has its
own physical, mechanical and chemical properties, and processes occurring in it differ from those in the
bulk. Small thickness of the intermediate region between two solids allows us to reduce a three-dimensional
problem to a two-dimensional one for median surface endowed with equivalent physical properties. There are
several approaches to reducing three-dimensional equations to the corresponding two-dimensional equations
for the median surface. For example, introducing the mixed coordinate system (ξ, η, z), where ξ and η are
the curvilinear coordinates in the median surface and z is the normal coordinate, the linear or polynomial
dependence of the considered functions on the normal coordinate can be assumed. This assumption is often
used in the theory of elastic shells [1–8]. Similar models were elaborated taking into account elastic and
elasto-plastic properties of interfaces considered as two-dimensional zero thickness objects (see, for example,
[9–15] and references therein).

For the classical heat conduction equation, which is based on the conventional Fourier law, the reduction
of the three-dimensional problem to the simplified two-dimensional one was proposed by Marguerre [16,17]
and later on developed by many authors (see [18–25], among others). In this case, the assumption on linear
or polynomial dependence of temperature on the normal coordinate or more general operator method was
used. It should be emphasized that numerical modeling of heat conduction in composites with thin interfaces
is still a difficult numerical task, and different models of interface as infinitesimal layer described by specific
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transmission conditions including nonlinear effects [26,27] and thin interfaces with large curvature [28–30]
still attract the attention of researchers.

Many experimental and theoretical studies testify that inmedia with complex internal structure the classical
Fourier law and the conventional heat conduction equation are no longer sufficiently accurate. This results
in formulation of nonclassical theories, in which the standard Fourier law and the parabolic heat conduction
equation are replaced by more general equations. For example, the wave equation [31,32] and the telegraph
equation [33,34] for temperature were used, the time-nonlocal [35,36] and space-nonlocal [37,38] generaliza-
tions of the Fourier law were studied, and the time-fractional and space-fractional generalizations of the heat
conduction equation were investigated. The interested reader is referred to the books [39,40] and references
therein.

For time-fractional heat conduction, the reduction of the three-dimensional equation to the two-dimensional
one was carried out in [40–43]. In the present paper, we consider the generalized boundary conditions of
nonperfect thermal contact for the time-fractional heat conduction equation with the Caputo derivative and
solve the problem for a composite medium consisting of two semi-infinite regions. Numerical results are
illustrated graphically.

2 Time-fractional heat conduction equation

The standard Fourier law

q = −k grad T (1)

states the linear dependence between the heat flux vectorq and the temperature gradientwith the proportionality
coefficient k being the thermal conductivity of a body.

In combination with the law of conservation of energy

C
∂T

∂t
= −divq, (2)

where C is the heat capacity, the Fourier law (1) results in the parabolic heat conduction equation

C
∂T

∂t
= kΔ T . (3)

Fractional calculus (the theory of integrals and derivatives of non-integer order) has many applications in
physics, geophysics, rheology, mechanics, engineering, bioengineering, etc. [44–52].

The time-nonlocal dependence between the heat flux vector and the temperature gradient with the “long-
tail” power kernel K (t − τ) [53–56]

q(t) = − k

Γ (α)

d

dt

∫ t

0
(t − τ)α−1grad T (τ ) dτ, 0 < α ≤ 1, (4)

q(t) = − k

Γ (α − 1)

∫ t

0
(t − τ)α−2grad T (τ ) dτ, 1 < α ≤ 2, (5)

where Γ (α) is the gamma function, can be interpreted in terms of fractional integrals and derivatives

q(t) = −kD1−α
RL grad T (t), 0 < α ≤ 1, (6)

q(t) = −k I α−1grad T (t), 1 < α ≤ 2, (7)

and results in the time-fractional heat conduction equation with the Caputo fractional derivative

C
∂αT

∂tα
= k ΔT, 0 < α ≤ 2. (8)

The details of deriving the time-fractional heat conduction Eq. (8) from the constitutive Eqs. (6), (7) and the
law of conservation of energy (3) can be found in [56].
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Here,

I α f (t) = 1

Γ (α)

∫ t

0
(t − τ)α−1 f (τ ) dτ, α > 0, (9)

is the Riemann–Liouville fractional integral,

Dα
RL f (t) = dn

dtn

[
1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 f (τ ) dτ

]
, n − 1 < α < n, (10)

is the Riemann–Liouville fractional derivative, and

dα f (t)

dtα
= 1

Γ (n − α)

∫ t

0
(t − τ)n−α−1 d

n f (τ )

dτ n
dτ, n − 1 < α < n , (11)

denotes the Caputo fractional derivative [57–59].
Recall the Laplace transform rules for fractional integrals and derivatives

L {
I α f (t)

} = 1

sα
f ∗(s), α > 0, (12)

L {
Dα
RL f (t)

} = sα f ∗(s) −
n−1∑
k=0

dk

dtk
I n−α f (0+) sn−1−k, n − 1 < α < n, (13)

L
{
dα f (t)

dtα

}
= sα f ∗(s) −

n−1∑
k=0

f (k)(0+)sα−1−k, n − 1 < α < n. (14)

Here the asterisk denotes the transform, s is the Laplace transform variable.
Starting from the pioneering papers [60–62], the time-fractional heat conduction (diffusion) Eq. (8) has

attracted considerable attention of researchers. The book [39] presents a picture of the state of the art of
investigations in this area.

It should be emphasized that due to the generalized constitutive equations for the heat flux (6) and (7)
the corresponding boundary conditions for the time-fractional heat conduction Eq. (8) differ from those for
the standard heat conduction equation. Different kinds of boundary conditions for Eq. (8) were analyzed in
[39,40,63,64].

The Dirichlet boundary condition specifies the temperature over the surface of the body

T
∣∣∣
S

= g(xS, t). (15)

The physical Neumann boundary condition prescribes the boundary value of the heat flux

D1−α
RL

∂T

∂n

∣∣∣∣
S

= g(xS, t), 0 < α ≤ 1, (16)

I α−1 ∂T

∂n

∣∣∣∣
S

= g(xS, t), 1 < α ≤ 2, (17)

where ∂/∂n denotes differentiation along the outward-drawn normal at the boundary surface S.
The convective heat exchange between a body and the environment is described by the boundary condition

(
HT + kD1−α

RL
∂T

∂n

) ∣∣∣∣
S

= g(xS, t), 0 < α ≤ 1, (18)

(
HT + k I α−1 ∂T

∂n

) ∣∣∣∣
S

= g(xS, t), 1 < α ≤ 2, (19)

where H is the convective heat transfer coefficient.
Let heat conduction in two solids be described by the heat conduction Eq. (8) with the time-fractional

derivative of the order α and β, respectively. If the surfaces of these two solids are in perfect thermal contact,
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the temperatures on the contact surface and the heat fluxes through the contact surface are the same for both
solids, and we obtain the corresponding boundary conditions:

T1
∣∣∣
S

= T2
∣∣∣
S
, (20)

k1D
1−α
RL

∂T1
∂n

∣∣∣∣
S

= k2D
1−β
RL

∂T2
∂n

∣∣∣∣
S

, 0 < α ≤ 2, 0 < β ≤ 2, (21)

where subscripts 1 and 2 refer to solids 1 and 2, respectively, and n is the common normal at the contact surface.
For the sake of brevity, in (21) D−α

RL f (t)with α > 0 is understood as the Riemann–Liouville fractional integral
I α f (t) (see [46,58]).

3 The boundary conditions of nonperfect thermal contact

Consider a composite solid consisting of three domains: the domain 1, the domain 2, and the intermediate
domain marked by the index 0. Heat conduction in each domain is described by the time-fractional heat
conduction equation:

C1
∂ αT1
∂tα

= k1Δ T1 in the domain 1, (22)

C2
∂ βT2
∂tβ

= k2Δ T2 in the domain 2, (23)

C0
∂ γ T1
∂tγ

= k0Δ T0 in the intermediate domain. (24)

At the boundary surfaces S1 and S2 between the solids and intermediate domain, the conditions of perfect
thermal contact are assumed:

T1
∣∣∣
S1

= T0
∣∣∣
S1

, (25)

k1D
1−α
RL

∂T1
∂n

∣∣∣∣
S1

= k0D
1−γ
RL

∂T0
∂n

∣∣∣∣
S1

, 0 < α ≤ 2, 0 < γ ≤ 2, (26)

T2
∣∣∣
S2

= T0
∣∣∣
S2

, (27)

k2D
1−β
RL

∂T2
∂n

∣∣∣∣
S2

= k0D
1−γ
RL

∂T0
∂n

∣∣∣∣
S2

, 0 < β ≤ 2, 0 < γ ≤ 2. (28)

If the thickness of the intermediate layer is small with respect to two other sizes and is constant, the median
surfaceΣ can be introduced (see Fig. 1). In this case, a three-dimensional equation problem in the intermediate
layer can be reduced to a two-dimensional one for the median surface (see Fig. 2). For details, the interested
reader is referred to [40]. As a result, we get the following boundary conditions of nonperfect thermal contact
at the interface:

CΣ

∂γ (T1 + T2)

∂tγ
= kΣ ΔΣ (T1 + T2)

+ 2

(
k1D

γ−α
RL

∂T1
∂z

∣∣∣∣
z=0

− k2D
γ−β
RL

∂T2
∂z

∣∣∣∣
z=0

)
, (29)

CΣ

∂γ (T1 − T2)

∂tγ
= kΣ ΔΣ (T1 − T2)

+ 6

(
k1D

γ−α
RL

∂T1
∂z

∣∣∣∣
z=0

+ k2D
γ−β
RL

∂T2
∂z

∣∣∣∣
z=0

)
− 12

RΣ

(T1 − T2), (30)
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Fig. 1 Thin intermediate layer between two solids

Fig. 2 A contact surface having its own thermophysical characteristics

where ΔΣ is the surface Laplace operator,

CΣ = 2hC0, kΣ = 2hk0, RΣ = k0
2h

(31)

are the reduced heat capacity, reduced thermal conductivity and reduced thermal resistance of the median
surface, respectively.

In the case of classical heat conduction (α = β = γ = 1), Eqs. (29) and (30) coincide with the boundary
conditions obtained by Podstrigach [22,25].

If the reduced thermal characteristics of the median surface are equal zero

CΣ = 0, kΣ = 0, RΣ = 0, (32)

then the conditions (29) and (30) reduce to the conditions of perfect thermal contact (20) and (21).
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4 Statement and solution of the problem

Consider a composite medium consisting of two semi-infinite regions. Heat conduction in each region in the
case of one spatial coordinate is described by the time-fractional heat conduction equation

∂αT1
∂tα

= a1
∂2T1
∂x2

, x > 0, 0 < α ≤ 2, (33)

∂βT2
∂tβ

= a2
∂2T2
∂x2

, x < 0, 0 < β ≤ 2, (34)

where ai = ki/Ci , i = 1, 2, are the thermal diffusivity coefficients, under the initial conditions

t = 0 : T1 = f1(x), x > 0, 0 < α ≤ 2, (35)

t = 0 : ∂T1
∂t

= F1(x), x > 0, 1 < α ≤ 2, (36)

t = 0 : T2 = f2(x), x < 0, 0 < β ≤ 2, (37)

t = 0 : ∂T2
∂t

= F2(x), x < 0, 1 < β ≤ 2, (38)

and the boundary conditions of nonperfect thermal contact

x = 0 : CΣ

∂γ (T1 + T2)

∂tγ
= 2

(
k1D

γ−α
RL

∂T1
∂x

− k2D
γ−β
RL

∂T2
∂x

)
, (39)

x = 0 : CΣ

∂γ (T1 − T2)

∂tγ
= 6

(
k1D

γ−α
RL

∂T1
∂x

+ k2D
γ−β
RL

∂T2
∂x

)
− 12

RΣ

(T1 − T2). (40)

In the case of one spatial coordinate, the surface Laplace operator ΔΣ equals zero. In what follows we
restrict ourselves to the particular case when α = β = γ , RΣ = 0 and the region x > 0 is at initial uniform
temperature T0 and the region x < 0 is at initial zero temperature, i.e., we have the time-fractional heat
conduction equations

∂αT1(x, t)

∂tα
= a1

∂2T1(x, t)

∂x2
, x > 0, 0 < α ≤ 2, (41)

∂αT2(x, t)

∂tα
= a2

∂2T2(x, t)

∂x2
, x < 0, 0 < α ≤ 2, (42)

under the initial conditions

t = 0 : T1(x, t) = T0, x > 0, 0 < α ≤ 2, (43)

t = 0 : ∂T1(x, t)

∂t
= 0, x > 0, 1 < α ≤ 2, (44)

t = 0 : T2(x, t) = 0, x < 0, 0 < α ≤ 2, (45)

t = 0 : ∂T2(x, t)

∂t
= 0, x < 0, 1 < α ≤ 2, (46)

and under the boundary conditions

x = 0 : T1(x, t) = T2(x, t), (47)

x = 0 : CΣ

∂α [T1(x, t) + T2(x, t)]

∂tα
= 2

[
k1

∂T1(x, t)

∂x
− k2

∂T2(x, t)

∂x

]
. (48)

The conditions at infinity are also assumed

∂T1(x, t)

∂x

∣∣∣∣
x→∞

= 0,
∂T2(x, t)

∂x

∣∣∣∣
x→−∞

= 0. (49)
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The Laplace transform with respect to time t leads to two ordinary differential equations

sαT ∗
1 − sα−1T0 = a1

d2T ∗
1

dx2
, x > 0, (50)

sαT ∗
2 = a2

d2T ∗
2

dx2
, x < 0, (51)

having the solutions satisfying the conditions at infinity (49)

T ∗
1 = 1

s
T0 + B1 exp

(
−

√
sα

a1
x

)
x > 0, (52)

T ∗
2 = B2 exp

(
−

√
sα

a2
|x |

)
, x < 0. (53)

The integration constants B1 and B2 are obtained from the boundary conditions of nonperfect thermal contact
(47) and (48)

B1 = − 1

1 + μ

T0
s

+ 1 − μ

2(1 + μ)
T0

sα/2−1

sα/2 + b
, (54)

B2 = μ

1 + μ

T0
s

+ 1 − μ

2(1 + μ)
T0

sα/2−1

sα/2 + b
, (55)

where

μ = k1
√
a2

k2
√
a1

, b = k1
√
a2 + k2

√
a1

CΣ
√
a1a2

. (56)

Taking into account Eq. (A.3) from appendix A and Eq. (B.3) from Appendix B and the convolution
theorem, we obtain the solution

T1(x, t) = T0 − T0
1 + μ

∫ t

0

(t − τ)α/2−1

τα/2 M

(
α

2
; x√

a1τα/2

)

×
{

1

Γ (α/2)
− 1 − μ

2
Eα/2,α/2

[−b (t − τ)α/2]} dτ, x > 0, (57)

T2(x, t) = T0
1 + μ

∫ t

0

(t − τ)α/2−1

τα/2 M

(
α

2
; |x |√

a2τα/2

)

×
{

μ

Γ (α/2)
+ 1 − μ

2
Eα/2,α/2

[−b (t − τ)α/2]} dτ, x < 0. (58)

For the standard heat conduction equation (α = 1) we get

T1(x, t) = T0 − T0
1 + μ

erfc

(
x

2
√
a1t

)

+ (1 − μ)T0
2(1 + μ)

exp

(
bx√
a1

+ b2t

)
erfc

(
x

2
√
a1t

+ b
√
t

)
, x > 0, (59)

T2(x, t) = μT0
1 + μ

erfc

( |x |
2
√
a2t

)

+ (1 − μ)T0
2(1 + μ)

exp

(
b|x |√
a2

+ b2t

)
erfc

( |x |
2
√
a2t

+ b
√
t

)
, x < 0, (60)

where erfc (x) is the complementary error function.
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Fig. 3 Dependence of temperature on distance for α = 0.5 and μ = 2

Another particular case of the solution corresponds to the so-called ballistic heat conduction (α = 2):

T1(x, t) =
⎧⎨
⎩

T0
1 + μ

{
μ + 1 − μ

2
exp

[
−b

(
t − x√

a1

)]}
, 0 ≤ x <

√
a1t,

T0,
√
a1t < x < ∞,

(61)

T2(x, t) =
⎧⎨
⎩

T0
1 + μ

{
μ + 1 − μ

2
exp

[
−b

(
t − |x |√

a2

)]}
, −√

a2t < x ≤ 0,

0, −∞ < x < −√
a2t.

(62)

Figures 3, 4, 5, 6, 7 and 8 show the dependence of temperature on distance for typical values of the orders
of fractional derivatives. In calculations we have used the following nondimensional quantities:

T̄ = T

T0
, b̄ = btα/2, x̄ = x√

a1tα/2 for x > 0, x̄ = x√
a2tα/2 for x < 0. (63)

5 Concluding remarks

We have investigated heat conduction in a composite medium consisting of two regions being in nonperfect
thermal contact, which in the general case is characterized by the reduced heat capacity, reduced thermal
conductivity and reduced thermal resistance.
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Fig. 4 Dependence of temperature on distance for α = 0.5 and μ = 0.5

Fig. 5 Dependence of temperature on distance for α = 1.8 and μ = 2

In the case 0 < α < 1, the time-fractional heat conduction equation interpolates the elliptic Helmholtz
equation (α → 0) and the parabolic heat conduction equation (α = 1). When 1 < α < 2, the time-fractional
heat conduction equation interpolates the standard heat conduction equation (α = 1) and the hyperbolic wave
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Fig. 6 Dependence of temperature on distance for α = 1.8 and μ = 0.5

Fig. 7 Dependence of temperature on distance for α = 2 and μ = 2

equation (α = 2). In the case of ballistic heat conduction (α = 2), there appear the wave fronts (Figs. 7 and
8). The solutions were obtained in terms of integrals with integrands expressed in terms of Mittag–Leffler and
Wright functions; for calculation of these functions we have used algorithms proposed in [65] and [66].
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Fig. 8 Dependence of temperature on distance for α = 2 and μ = 0.5

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

Appendix A: Mittag–Leffler functions

The Mittag–Leffler functions [57–59,67] play the essential role in fractional calculus. The Mittag–Leffler
function in one parameter

Eα(z) =
∞∑
k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C, (A.1)

is a generalization of the exponential function.
The Mittag–Leffler-type function in two parameters α and β is defined by the series representation

Eα,β(z) =
∞∑
k=0

zk

Γ (αk + β)
, α > 0, β > 0, z ∈ C. (A.2)

The following formula for the inverse Laplace transform is fulfilled:

L−1
{

sα−β

sα + b

}
= tβ−1 Eα,β(−btα). (A.3)

Appendix B: Wright function and Mainardi function

The Wright function W (α, β; z) is defined as [58,59]

W (α, β; z) =
∞∑
k=0

zk

k! Γ (αk + β)
, α > −1, z ∈ C. (B.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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The Mainardi function M(α; z) is the particular case of the Wright function

M(α; z) = W (−α, 1 − α;−z)

=
∞∑
k=0

(−1)k zk

k! Γ [−αk + (1 − α)] , 0 < α < 1, z ∈ C.
(B.2)

We use the formula for the inverse Laplace transform

L−1 {
sα−1 exp

(−λsα
)} = 1

tα
M

(
α; λt−α

)
, 0 < α < 1, λ > 0. (B.3)
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