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Abstract The constitutive equations of chemically and physically ageing rubber in the audible frequency range
aremodelled as a function of ageing temperature, ageing time, actual temperature, time and frequency. The con-
stitutive equations are derived by assuming nearly incompressible material with elastic spherical response and
viscoelastic deviatoric response, usingMittag-Leffler relaxation function of fractional derivative type, themain
advantage being the minimum material parameters needed to successfully fit experimental data over a broad
frequency range. The material is furthermore assumed essentially entropic and thermo-mechanically simple
while using a modified William–Landel–Ferry shift function to take into account temperature dependence and
physical ageing, with fractional free volume evolution modelled by a nonlinear, fractional differential equation
with relaxation time identical to that of the stress response and related to the fractional free volume by Doolit-
tle equation. Physical ageing is a reversible ageing process, including trapping and freeing of polymer chain
ends, polymer chain reorganizations and free volume changes. In contrast, chemical ageing is an irreversible
process, mainly attributed to oxygen reaction with polymer network either damaging the network by scission
or reformation of new polymer links. The chemical ageing is modelled by inner variables that are determined
by inner fractional evolution equations. Finally, the model parameters are fitted to measurements results of
natural rubber over a broad audible frequency range, and various parameter studies are performed including
comparison with results obtained by ordinary, non-fractional ageing evolution differential equations.

Keywords Chemically and physically ageing · Mittag-Leffler function · William–Landel–Ferry function ·
Fractional differential equation · Doolittle equation · Fractional free volume

1 Introduction

Rubber components such as sealing, damper and vibration isolator are frequently used for a long time under
harsh environmental conditions including oxygen, water, ozone, oil, contaminants and radioactive radiation
exposures, usually at various temperatures. Theirmechanical properties are commonlymodelled as if theywere
at their virgin state, disregarding any ageing. However, a lot of rubber components in technical applications
show ageing which is mainly attributed to exposure of oxygen from the ambient environment. That rubber
components are aged is not new knowledge; ageing of rubber and other polymers has been known for a long
time [34,35]. However, the development of physically motivated ageing models has radically been intensified
recently [5,6,16,18–21,27,28,30,31,33]. There are mainly two kinds of ageing: physical and chemical ageing.
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In general, physical ageing of rubber is a process where the molecular structure, initially brought out of
thermodynamical equilibrium, spontaneously advances to regenerate its thermodynamical equilibriumstate [6].
Physically, themolecular structure processes include volume alterations, trapping and freeing of polymer chain
ends and other polymer chain reorganizations. Suitable thermodynamic variables to describe the processes
include free volume and enthalpy [6,33]. The advantage of enthalpy is its ability to mutually include volume-
preserving and non-preserving configurational molecular alterations [33]. There are various definitions of
free volume of molecular structure of which the excess volume compared to that found in the crystalline
state of the same rubber is the most suitable since it does not contain the concept of atom volume being
physically difficult to define [33]. Free volume brought out of thermodynamical equilibrium by a sudden
temperature alteration spontaneously advances to regenerate its thermodynamical equilibrium free volume
state. This process is present throughout the temperature range including glassy, transition and rubbery regions.
However, the process is fast in the rubbery region due to the short relaxation times of the configurational
molecular processes involved, resulting in a fast free volume equilibrium state completion. On the contrary,
the process is significantly slower in the transition and glassy regions due to longer relaxation times of the
configurational molecular processes involved, resulting in a slow free volume equilibrium state completion.
Moreover, the complexity of the molecular structure including the covalent cross-bonds and van der Waals
bonds further delays the completion of the free volume equilibrium state [33]. Furthermore, the free volume
deviation from its equilibrium state is frequently significantly larger than the spontaneous fluctuations of
the molecular structure resulting in a further increase of the time to reach free volume equilibrium state in
the transition and glassy regions [6]. The physical ageing time is the time to reach free volume equilibrium
and depends on the temperature, its history, including other thermodynamical histories, and the molecular
structure. The physical ageing process is the process to attain thermodynamical equilibrium, and since several
mechanical, electrical and calorimetric properties depend on the free volume, those will also alter during
the course of physical ageing. The memory of physical ageing is possible to erase by thermal rejuvenation
whereby the rubber sample is typically heated well above the glass transition temperature for a sufficiently
extended time [33]. There are several models developed for physical ageing of which the simplest relies
on a linear differential equation describing the evolution of the free volume resulting in an exponential free
volume decay and rises with time, depending on the history, while using a simple one-parameter relaxation
time. A more elaborated model, known as Kohlrausch–Williams–Watts (KWW) function [25,38], applies an
additional stretching parameter to account for the non-symmetric evolution of free volume observed between
a jump-down and jump-up of the temperature history [3]. Furthermore, the relaxation time is possible to
extend from a simple one-parameter into an exponential function depending on temperature, on a parameter
specifying the departure of the system from its equilibrium state, on thermal expansion coefficient and on
a nonlinear parameter specifying the relative contribution from temperature and structure on the relaxation
time resulting in a model known as Kovacs–Aklonis–Hutchinson–Ramos (KAHR) model [26]. An analogue
model, known as Tool–Narayanaswamy–Moynihan (TNM) model [29,32,36], applies a further parameter to
the relaxation time dependence named as fictive temperature, being the minimum temperature for an aged
rubber where a full free volume recovery is possible, instead of a parameter describing the departure of the
system from the equilibrium as in theKAHR-model. Greiner and Schwarzl [13] applyDoolittle equation [8,10]
showing an reversed exponential free volume dependence of the relaxation time of the free volume differential
evolution equation, thus resulting in a nonlinear free volume differential evolution equation. However, the
free volume evolution differential equations mentioned are all based on integer differential operators, while
constitutive equations relating stress and strain that successfully fit measurement results of rubber frequently
contain fractional differential operators; see for example Bagley and Torvik [1,2] and Kari et al. [22]. In
this paper, a novel free volume evolution fractional differential equation is developed that is connected to
the previously developed constitutive equations while using an identical equilibrium relaxation time since the
physical origin for the free volume evolution and that of stress and strain response of the molecular structure
is similar.

Chemical ageing by oxygen is generally an irreversible diffusion and reaction-driven process where the
molecular network is permanently altered by link degeneration and reformation in contrast to physical ageing
being a reversible process. Generally, chemical ageing is a slower process than the corresponding physical
ageing since the operating temperature range for rubber is typically well above the glass transition temperature
showing a fast physical ageing. The most common chemical ageing process is attributed to exposure of oxygen
from outside resulting in diffusion and eventually oxygen reaction either damaging the network by scission or
reforming new links. The chemical ageing properties are then reflected by altered stress–strain properties of the
rubber. The chemical ageing is frequently modelled bymolecular dynamics [5] and internal inner variables that
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are determined by inner differential evolution equations [18–21,27,30], recently extended into their nonlinear
counterpart [16]. In this paper, novel inner differential evolution equations are developed for the inner variables
while containing fractional differential operators in order to allow for a wider spectrum of relaxation times
found in real molecular networks, thus giving a richer structure to the model.

The developed physical and chemical ageing models are implemented into constitutive stress and strain
relations for rubber in the audible frequency range, and various parameter studies are performed including
comparison with results obtained by ordinary, non-fractional ageing evolution differential equations. The
developed models can be used to describe dynamic stiffness of ageing rubber vibration isolators in the audible
frequency range. This is performed in part 2 of this paper [23].

2 Constitutive preliminaries

The rubber is assumed isotropic and nearly incompressible while obeying the principle of fading memory [9,
37]. The analysis is confined to infinitesimal strain and pre-strain, usually being the condition for structure-
borne sound applications, where Fletcher–Gent [11] effect is negligible. A convolution integral, expressed as
a constitutive relaxation relation at natural time t and temperature T while being physically aged a time tph at
temperature T and chemically aged a time tch at temperature Tch,1 is additively decomposed into a spherical
part

tr [σ ] = 3aμ∞
(
T, tph, Tch, tch

)
div [u] (1)

and a deviatoric part

dev [σ ] = 2μ∞
(
T, tph, Tch, tch

)
{
dev [∇ u] +

∫ t

−∞
μ1
(
T, tph; t − s

) ∂ dev [∇ u(s)]

∂s
d s

}
, (2)

where σ is stress, u is displacement, the nearly incompressibility material constant a � 1, μ∞ is equilibrium
elastic modulus, the relaxation function μ1 obeys limt→∞ μ1(t) = 0, ∇ is covariant derivative, the operators
tr, div and dev are trace, divergence and deviator, respectively, defined as

tr [ · ] = i ::: [ · ], (3)

div [ · ] = i ::: ∇ [ · ] (4)

and
dev [ · ] = (1 − i ⊗ i/3) ::: [ · ], (5)

where ::: denotes double contraction, i is second-order unit tensor, 1 = (i � i + i � i)/2 is fourth-order unit
tensor, and the tensor products ⊗, � and � are defined through (a ⊗ b) ::: c = (b ::: c)a, (a � b) ::: c = acbT

and (a � b) ::: c = acTbT, where a, b and c are arbitrary second-order tensors and T denotes transpose. The
rubber is essentially considered entropically elastic

μ∞
(
T, tph, Tch, tch

) = TρT

T0
∞

ρT0

μ∞ (Tch, tch), (6)

where ρT = ρT (tph) is actual density at temperature T and
∞

ρT0 = limtph→∞ ρT0 is thermodynamical equilib-
rium density at reference temperature T0. Furthermore, the rubber is assumed essentially thermo-mechanically
simple with a kernel of fractional standard linear solid [24]

μ1
(
T, tph; t

) = �Eα

(
−�

[
t

μνXphXT

]α)
h(t), (7)

1 Although physical and chemical ageing processes progress simultaneously, they are here treated separately for clarity and
greater flexibility, for example, in order to allow for separate study of accelerated chemical ageing by heating at an elevated
temperature Tch without simultaneously taking into account physical ageing at the same temperature. Furthermore, the physical
ageing temperature is identical to that of temperature T in the stress and strain relation since the origin of physical ageing is
similar to that of stress and strain response of the molecular structure. In fact, a specification of Tph is readily attained, if needed,
merely by a substitution T ←� Tph.
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showing a vanishing limes as t → ∞, where the non-dimensional relaxation intensity � � 1, μν and
0 < α ≤ 1 are material constants, h is Heaviside step function, the Mittag-Leffler function reads

Eα(x) =
∞∑

n=0

xn

Γ (1 + αn)
, (8)

Γ (z) = ∫∞
0 sz−1e−s d s, z > 0, is Gamma function, and the William–Landel–Ferry (WLF) shift function

reads

XT = 10
− A1�T

A2+�T , (9)

using the method of reduced variables, where A1 and A2 are material constants,�T = T −T0 and the physical
ageing shift function Xph > 0 is to be defined later while obeying Xph = 1 at the thermodynamical equilibrium
state. The derived constitutive equations follow standard derivation, however, extended with physical and
chemical ageing compared to those previously developed models, such as Kari et al. [22], the extension being
the study focus of this paper.

Temporal Fourier transformations [̃ · ] = ∫∞
−∞[ · ] exp(−iωt) d t , where i is imaginary unit, ω is angular

frequency, of the constitutive Eqs. (1) and (2) with (6),(7) and (8) result in

tr [̃σ ] = 3a

{
1 + �T

T

}
ρT
∞

ρT0

μ∞ (Tch, tch) div [̃u] (10)

and

dev [̃σ ] = 2

{
1 + �T

T0

}
ρT
∞

ρT0

μ∞ (Tch, tch)

{

1 + � (
iμνXphXTω

)α

� + (
iμνXphXTω

)α

}

dev [∇ ũ] , (11)

where (iXphXTω)α
def= (iXphXTω + 0+)α = |XphXTω|α exp[sign(ω)iπα/2]. Consequently, the rubber is

displaying an admissible behaviour with a finite instantaneous shear modulus

lim
ω→∞ μ̂ (Tch, tch; ω) =

{
1 + �T

T0

}
ρT
∞

ρT0

(1 + �) μ∞ (Tch, tch) , (12)

where shear modulus μ̂(Tch, tch;ω) is defined via dev[̃σ ] = 2μ̂(Tch, tch;ω) dev[∇ ũ].
The constitutive relaxation relation for ordinary standard linear solid is obtained by letting α → 1 resulting

in

dev [σ ] = 2

{
1 + �T

T0

}
ρT
∞

ρT0

μ∞ (Tch, tch)

{
dev [∇ u] + �

∫ t

−∞
e
− t−s

τT
∂ dev [∇ u(s)]

∂s
d s

}
, (13)

for the deviatoric part, while the corresponding spherical part remains the same and where the relaxation time
is

τT = μνXphXT

� . (14)

In the frequency domain

dev [̃σ ] = 2

{
1 + �T

T0

}
ρT
∞

ρT0

μ∞ (Tch, tch)

{
1 + �iμνXphXTω

� + iμνXphXTω

}
dev [∇ ũ] , (15)

with identical instantaneous shear modulus (12) as for its fractional counterpart.
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2.1 Relaxation spectrum

To further investigate the relaxation function (7), its relaxation spectrum γT is now considered, being defined
through

μ1
(
T, tph; t

) =
∫ ∞

τ=0−
γT (tph; τ) e−t/τ d

{
loge(τ )

}
h(t), (16)

where τ is relaxation time. Spectrum is studied in numerous fields including visco-elasticity, crack growth,
molecular dynamics and their relation to macroscopic properties. It may be interpretable as the characteristic
molecular time response range, being extremely broad while making a logarithmic time scale loge(τ ) suitable.
The relaxation spectrum (16) is possible to rewrite as

μ1
(
T, tph; t

) =
∫ ∞

0−

γT (tph; τ)

τ
e−t/τ d τ h(t), (17)

where the relaxation spectrum γT is obtained from the shear modulus μ̂T [14] as

γT (tph; τ) = 1

πμ∞
(
T, tph, Tch, tch

)

{
lim

ε→0+ μ̆T

(
−1

τ
+ iε

)}
, (18)

where 
 denotes imaginary part, with μ̆T (iω) ≡ μ̂T (ω) resulting in

γT (tph; τ) = 1

π

�(τ/τT )α sin πα

(τ/τT )2α + 2(τ/τT )α cosπα + 1
, (19)

while using (11) with a normalizing relaxation time τT ≡ XphXTμν/�1/α . Clearly, the spectrum is continuous
while displaying a maximum of γTmax = tan(πα/2)�/2π at τ = τT . Obviously, the maximum value of
relaxation spectrum for γT is independent of temperature, including the shift factors Xph and XT , while its
relaxation time locus is temperature dependent on those shift factors. Consequently, the normalizing relaxation
time above is equivalent to the locus of maximum relaxation time and may therefore serve as the generalized
relaxation time of the fractional derivative constitutive model presented in this paper for the deviatoric stress
response. Finally, the relaxation spectrum for an ordinary standard linear solid α → 1 is

γT (T, tph; τ) = �δ (τ − τT ) τ, (20)

where δ is Dirac delta function and relaxation time τT is given by (14). Clearly, the relaxation spectrum is
singular and non-continuous, thus resulting in a single relaxation time for an ordinary standard linear solid.

3 Physical ageing

The novel free volume evolution fractional differential equation for tph ≥ 0 developed in this paper reads

τα
T Dα [ fT ] = ∞

fT − fT , (21)

where fT is actual fractional free volume at temperature T ,

fT = vT − cry
vT

∞
vT

, (22)

vT is actual specific volume at temperature T ,
cry
vT is specific volume at crystalline state and temperature T ,

∞
vT = limtph→∞ vT is specific volume at the thermodynamical equilibrium state and temperature T ,

∞
fT =

limtph→∞ fT is fractional free volume at the thermodynamical equilibrium state and temperature T ,

∞
fT =

∞
vT − cry

vT
∞
vT

, (23)
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Dα [ fT ] = 1

Γ (1 − α)

∫ tph

0

1
(
tph − s

)α
d [ fT ]

d s
d s (24)

is the Caputo fractional derivative of fT and order 0 < α < 1 [7] with respect to physical ageing time tph, and
τT is the actual relaxation time at temperature T , conveniently reading

τT = μνXphXT

� 1
α

, (25)

since the physical origin for the free volume evolution and that of stress and strain response of the molecular
structure is similar and the generalized relaxation time for the latter may be interpreted as (25); see Sect. 2.1.
Apparently, the fractional free volume evolution differential equation is a fractional derivative extension of the
evolution equation given by Greiner and Schwarzl [13] using ordinary derivative. The reason for using Caputo
fractional derivative instead of other fractional time derivative definition such as that of Riemann–Liouville
is its ability to use ordinary, integer order instead of fractional order initial value condition, a useful property
while studying fractional order differential equations.

The physical ageing shift factor Xph is still unspecified and is considered next. To this end, the general
derivation by Greiner and Schwarzl [13] to relate actual relaxation time τT at temperature T to any relaxation
time, including its thermodynamic equilibrium value

∞
τT = limtph→∞ τT at the same temperature, is followed.

First, the relaxation time is assumed to follow the Doolittle equation [8,10]

τT = A310
A4
fT , (26)

where A3 and A4 are material constants. In passing, it is noted that the relaxation time is depending on
the fractional free volume, thus making the free volume evolution fractional differential Eq. (21) nonlinear.
Next, the assumption made by Gibbs and DiMarzio [12] that the fractional free volume at thermodynamical
equilibrium state is linearly dependent on absolute temperature within a broad temperature range including
the rubbery region and a broad part of the transition region, is stated

∞
fT ≈ ∞

fT0 + �β�T, (27)

where the fractional free volume thermal expansion coefficient

�β ≈ βrubber − βcrystal, (28)

βrubber and βcrystal are the thermal volume expansion coefficient of rubber at the rubbery and crystalline state,
respectively. Furthermore, it is assumed that the relaxation time for the previously derived constitutive equations
relating stress and strain follows the Doolittle Eq. (26) and that the temperature shift factor is derived at the
thermodynamical equilibrium state

XT =
∞
τT
∞
τT0

, (29)

giving

log10 [XT ] = A4

⎧
⎨

⎩
1
∞
fT

− 1
∞
fT0

⎫
⎬

⎭
, (30)

and using (27)

log10 [XT ] = −
A4∞
fT0

�T

∞
fT0
�β

+ �T

, (31)

where the material constants in (9) are readily identified as

A1 = A4
∞
fT0

(32)
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and

A2 =
∞
fT0
�β

. (33)

Hence, the temperature shift factor (WLF) is established relating the thermodynamic equilibrium state at
temperature T to T0, which was already shown by Greiner and Schwarzl [13], Kovacs et al. [26] among others
and is shown here for completeness. Next, the physical ageing factor is derived relating the actual state at
temperature T to its corresponding thermodynamic equilibrium state at the same temperature

Xph = τT
∞
τT

. (34)

This is rewritten, using Doolittle equation (26), (27), identities (32) and (33), into

log10
[
Xph

] = A1A2

{
�β

fT
− 1

A2 + �T

}
. (35)

The thermodynamic shift from thermodynamic equilibrium state at reference temperature T0 into actual ther-
modynamic state at reference temperature T0 is achieved by multiplying the shift factors into

XphXT = τT
∞
τT

∞
τT
∞
τT0

= τT
∞
τT0

, (36)

reading

log10
[
XphXT

] = A1

{
A2�β

fT
− 1

}
, (37)

using (35) and (9), where the evolution of fractional free volume is given by (21). Clearly, the physical ageing
contribution to the relaxation function of the constitutive stress and strain relations is nowdetermined.However,
there is also a physical ageing affected factor in the constitutive stress and strain relations ρT /

∞
ρT0 that relates

the actual density to its thermodynamical equilibrium value at the reference temperature T0. This factor is
considered next.

This factor is possible to multiplicatively split into two factors

ρT
∞

ρT0

= ρT
∞
ρT

∞
ρT
∞

ρT0

, (38)

where ∞
ρT
∞

ρT0

≈ 1 − βrubber�T , (39)

within the considered temperature range including rubbery and transition regions, and

ρT
∞
ρT

=
∞
vT

vT
=
[

vT − cry
vT

∞
vT

+
cry
vT
∞
vT

]−1

=
[
1 + fT − ∞

fT

]−1

, (40)

using (22) and (23), giving
ρT
∞

ρT0

= 1 − βrubber�T

1 + fT − �β[A2 + �T ] , (41)

using (27) and (33), where the evolution of fractional free volume is given by (21).

4 Chemical ageing

Chemical ageing is most important for rubber since the operating temperature range is typically well above
the glass transition temperature showing a fast, almost non-perceptible, physical ageing.
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4.1 Network link scission

The novel network link scission inner variable fractional differential evolution equation for tch ≥ 0 developed
in this paper reads

τ
αsci
sci Dαsci [qsci] = 1 − qsci, (42)

with initial condition qsci(0) = 0 while obeying 0 ≤ qsci ≤ 1 and d qsci/ d tch ≥ 0 and used in

μ∞ (Tch, tch) = (1 − qsci) μ∞ 0, (43)

where Dαsci is Caputo fractional derivative of order 0 < αsci < 1 (24) with respect to chemical ageing time
tch and μ∞ 0 is equilibrium elastic modulus at reference temperature T0 and at no chemical ageing; tch = 0.
The scission process is displaying an Arrhenius temperature dependence resulting in a network link scission
relaxation time

τsci = τsci 0e
Esci
R

(
1

Tch
− 1

T0

)

, (44)

where τsci 0 is network link scission relaxation time at reference temperature T0, Esci is network link scission
activation energy per mole, and R = 8.314 J/molK is the universal molar gas constant. The solution to (42) is

qsci = 1 − Eαsci

(
−
{
tch
τsci

}αsci
)

, (45)

as shownby, for example, Ishteva [17]. The developed network link scission inner variable fractional differential
evolution equation is an extension of standard ordinary differential evolution equations [18–21,27,30] in order
to allow for a wider spectrum of relaxation times found in real molecular network link scission processes, thus
giving a richer structure to the model. In fact, the ordinary solution is redeemed while αsci → 1 resulting in

qsci = 1 − e
− tch

τsci . (46)

4.2 Network link reformation

The novel network link reformation inner variable fractional differential evolution equation for tch ≥ 0 devel-
oped in this paper reads

τ
αref
ref Dαref [qref ] = 1 − qref , (47)

with initial condition qref(0) = 0 while obeying 0 ≤ qref ≤ 1 and d qref/ d tch ≥ 0 and used in

μ∞ (Tch, tch) = (1 − qsci + qref q̂ref) μ∞ 0, (48)

including both network link scission and reformation, where q̂ref ≥ 0 is maximum network link reformation
possible, typically q̂ref = O(1), O denotes order (capital ordo), and Dαref is Caputo fractional derivative of
order 0 < αref < 1 with respect to chemical ageing time tch. Likewise, the reformation process is displaying
an Arrhenius temperature dependence resulting in a network link reformation relaxation time

τref = τref 0e
Eref
R

(
1

Tch
− 1

T0

)

, (49)

where τref 0 is network link reformation relaxation time at reference temperature T0 and Eref is network link
reformation activation energy per mole. The solution to (47) is

qref = 1 − Eαref

(
−
{
tch
τref

}αref
)

. (50)

The developed network link reformation inner variable fractional differential evolution equation is, like for the
previous scission modelling, an extension of standard ordinary differential evolution equations [18–21,27,30]
in order to allow for a wider spectrum of relaxation times found in real molecular network link reformation
processes. Likewise, the ordinary solution is recovered while αref → 1 resulting in

qref = 1 − e
− tch

τref . (51)
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Finally, the total evolution of equilibrium elastic modulus including both network link scission and reformation
is

μ∞ (Tch, tch) =
{
Eαsci

(
−
{
tch
τsci

}αsci
)

+
[
1 − Eαref

(
−
{
tch
τref

}αref
)]

q̂ref

}
μ∞ 0 , (52)

reducing into its ordinary counterpart while αsci → 1 and αref → 1

μ∞ (Tch, tch) =
(
e
− tch

τsci +
[
1 − e

− tch
τref

]
q̂ref

)
μ∞ 0. (53)

5 Resulting constitutive relations including physical and chemical ageing

The resulting spherical part of the constitutive relaxation relation, physically and chemically aged a time tph
and tch at temperature T and Tch, respectively, is

tr [σ ] = 3a

{
1 + �T

T0

}
1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]
×
{
Eαsci

(
−
{
tch
τsci

}αsci
)

+
[
1 − Eαref

(
−
{
tch
τref

}αref
)]

q̂ref

}
μ∞ 0

× div [u] , (54)

while its deviatoric part is

dev [σ ] = 2

{
1 + �T

T0

}
1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]
×
{
Eαsci

(
−
{
tch
τsci

}αsci
)

+
[
1 − Eαref

(
−
{
tch
τref

}αref
)]

q̂ref

}
μ∞ 0

×
{

dev [∇ u] + �
∫ t

−∞
Eα

(

−�
{

t − s

μνXph
(
fT (tph)

)
XT

}α)
∂ dev [∇ u(s)]

∂s
d s

}

, (55)

where fT (tph), τsci, τref and Xph( fT (tph))XT are given by (21), (44), (49) and (37), respectively. Temporal
Fourier transformations of (54) and (55) result in constitutive equations in frequency domain where bulk
modulus

κ̂(ω) = a

{
1 + �T

T0

}
1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]
×
{
Eαsci

(
−
{
tch
τsci

}αsci
)

+
[
1 − Eαref

(
−
{
tch
τref

}αref
)]

q̂ref

}
μ∞ 0 (56)

and shear modulus

μ̂(ω) =
{
1 + �T

T0

}
1 − βrubber�T

1 + fT (tph) − �β[A2 + �T ]
×
{
Eαsci

(
−
{
tch
τsci

}αsci
)

+
[
1 − Eαref

(
−
{
tch
τref

}αref
)]

q̂ref

}

×
{

1 + � [
iμνXph

(
fT (tph)

)
XTω

]α

� + [
iμνXph

(
fT (tph)

)
XTω

]α

}

μ∞ 0 , (57)

treating physical and chemical time independent from time involved in the temporal Fourier transformation.

6 Results and discussion

The results are calculated and presented by means of MATLAB�.
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Table 1 Equilibrium rubber material properties versus temperature at Xph = 1

Temperature T Equilibrium density
∞
ρT from Eq. (39)

Equilibrium relax-
ation time

∞
τT from

Eq. (25)

Equilibrium fractional

free volume
∞
fT from

(27) and (33)

WLF constants

A1 A2
K C◦ kg/m3 s – – K

213 −60 1.04 × 103 1.86 × 10+1 2.93 × 10−2 7.679 151.6
248 −25 1.02 × 103 2.47 × 10−6 4.47 × 10−2 5.940 151.6
273 0 1.00 × 103 4.39 × 10−8 5.57 × 10−2 5.940 151.6
298 25 9.84 × 102 2.95 × 10−9 6.67 × 10−2 5.940 151.6
333 60 9.61 × 102 2.27 × 10−10 8.21 × 10−2 5.940 151.6

6.1 Material

The material applied in this study is unfilled sulphur cured standard Malaysian natural rubber, identical to that
of Kari et al. [22], where equilibrium density

∞
ρT0 ≈ 984 kg/m3 at reference temperature T0 = 298K andWLF

material constants of (9) are determined to A1 = 5.940 and A2 = 151.6K for T > 243K, while the shift
factor is manually set for T ≤ 243K to, for example, X213K = 109.80, using a dynamic mechanical thermal
analyser and frequency–temperature shifts. Furthermore, the material constants of shear modulus (57) at no
chemical ageing and at thermodynamical equilibrium state (Xph = 1) are optimized, minimizing the relative
least square errors between measurement and modelling results over a broad frequency range, evaluated at
reference temperature T0; reading μ∞0 = 8.25 × 105 N/m2, μν = 1.53 × 10−5 s, α = 0.657 and � = 276,
in addition to the nearly incompressible material constant here set to a = 2.222 × 103. The reader is referred
to Kari et al. [22] regarding details over measurements and optimization performed including rubber material
used.

6.2 Relaxation time, fractional free volume evolution and physical ageing

The volume expansion coefficient is set to βrubber = 6.60 × 10−4 K−1, being identical to that of pure vul-
canized natural rubber, tabulated in Brandrup et al. [4] and used in Kari et al. [22], while the fractional free
volume expansion coefficient is properly approximated [13,18] as �β ≈ [2/3]βrubber = 4.40 × 10−4 K−1.
The resulting equilibrium density, relaxation time and fractional free volume are given in Table 1. Apparently,
the equilibrium density and fractional free volume differ about 8 and 280%, respectively, while the equi-
librium relaxation time is displaying a variation of approximately 11 decades over the studied temperature
range of −60 to +60 ◦C. The WLF material constants A1 and A2, subsequently applied in this paper, are
shown in same Table 1. Clearly, the constants are temperature independent down to −25 ◦C and adjusted at
temperature −60 ◦C, where A1 is attuned to meet the manual fit result of shift function X213 K to follow that
of measurement. This is a plausible adjustment as shift function undergoes a general transformation from
a WLF type of function above transition temperature Tg to an Arrhenius type of function below transition
temperature [33], being approximately Tg ≈ −63 ◦C according to Brandrup et al. [4] for pure vulcanized
natural rubber.

Next, fractional free volume evolution from Eq. (21) is determined for rubber material exposed by a tem-
perature alteration while initially being at thermodynamical equilibrium state, thus constituting a typical tem-
perature history involving physical ageing. Although being practically impossible to achieve, the temperature
alteration is here considered immediate in order to enable a full exploration of physical ageing in all temperature
alterations studied. In particular, the studied temperature histories are T (tph) = T0 + (Tk − T0)h(tph), where
k = 1, 2, 3, 4 and Tk = 213, 248, 273, 333K. To this end, the numerical procedure specified in “Appendix”
is applied.

The resulting evolution of fractional free volume fT for the studied temperature histories is shown in Fig. 1
versus a very broad physical ageing time tph range, starting from 10−14 s which is the same order as the period
time of fastest atom-to-atom oscillations in the molecules to 106 s which is of order of weeks (more precisely,
11 and half days). Clearly, fractional free volume brought out of thermodynamical equilibrium by a sudden
temperature alteration spontaneously advances to regenerate its thermodynamical equilibrium fractional free
volume state, the latter represented by the horizontal lines in Fig. 1. The fractional free volume at physical
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Fig. 1 Evolution of fractional free volume fT versus physical ageing time tph starting at equilibrium fractional free volume
corresponding to temperature+25 ◦C and ending at equilibrium values corresponding to−60,−25,±0 and+60 ◦C, respectively.
Horizontal lines are equilibrium fractional free volume at those temperatures

ageing time 0+ s is still identical to that of equilibrium fractional free volume at 25 ◦C although the temperature
is altered from T0 to Tk , where k = 1, 2, 3, 4. The larger the difference between initial and final temperature
(for Tk < T0), the longer is the ageing time to reach thermodynamical equilibrium fractional free volume state;
more precisely, the physical ageing time to reach within±1% from its equilibrium free volume is 6.26×10−9,
8.72× 10−7, 1.82× 10−4 and 4.71× 103 s for final temperature +60, ±0, −25 and −60 ◦C. On the contrary,
the larger the difference between initial and final temperature (again for Tk < T0), the higher is the absolute
rate value of fractional free volume change at initial physical ageing. The main reason is that the larger the
temperature difference, the larger is the initial out of thermodynamical equilibrium of the system and, thus, the
larger is the molecular system driving force to make it into an equilibrium. From mathematical point of view,
this property is reflected by Eq. (21) where fractional time derivative of fractional free volume is proportional
to the difference between final and initial equilibrium fractional free volume. However, at longer physical
ageing and lower temperatures, the molecular reconfigurations involved are significantly slower due to longer
relaxation times, less free space available and further delays due to the complexity of the molecular structure
including the covalent cross-bonds and van derWaals bonds. This is quite different from the temperature history
with step to T4 = 333K, where the short relaxation time and amply free space available result in a very fast
fractional free volume completion. In passing, it is observed from Fig. 1 that fractional free volume evolution
involves a wide spectrum of time scales due to not only the nonlinear relaxation time dependence on fractional
free volume via Doolittle equation (26), but also as a result of applying Caputo fractional time derivative
in the differential evolution equation causing itself a broad range of time scales. In conclusion, the physical
ageing time to reach sufficiently close to free volume equilibrium is very short, almost non-perceptible for all
temperatures studied expect for the temperature history with step to T1 = 213K, where physical ageing time
is significantly longer and needs in general to be accounted for, while for higher temperatures the fractional
free volume evolution using as a simple step function directly to its equilibrium value is in general sufficient.

The resulting evolution of relaxation time τT for the studied temperature histories is shown in Fig. 2
versus the same broad physical ageing time tph range as for the corresponding evolution of fractional free
volume. Clearly, the relaxation time spans over a very broad scale, thus displaying the strong nonlinearity of
Eq. (21) where a small perturbation in fractional free volume results in a large alteration of relaxation time via
Doolittle equation (26) and where the horizontal lines correspond to thermodynamical equilibrium relaxation
time at each temperature studied. In particular, the covered short relaxation time displayed for temperature
steps studied up to T4 = 333K numerically explains the short, almost non-perceptible physical ageing time
for equilibrium state completion of the fractional free volume evolution previously studied in Fig. 1. Likewise,
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Fig. 2 Evolution of relaxation time τT versus physical ageing time tph starting at equilibrium relaxation time corresponding to
temperature+25 ◦C and ending at equilibrium values corresponding to−60,−25,±0 and+60 ◦C, respectively.Horizontal lines
are equilibrium relaxation time at those temperatures
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Fig. 3 Evolution of relaxation spectrum γ213K versus relaxation time τ at physical ageing time 0+, 10−9, 10−4, 101 and 106 s,
associated with the fractional free volume f213K evolution starting at equilibrium fractional free volume corresponding to
temperature +25 ◦C and ending at equilibrium value at −60 ◦C

the long relaxation time displayed for temperature steps studied down to T1 = 213K numerically explains the
very long physical ageing time for equilibrium state completion of the fractional free volume evolution also
previously studied in Fig. 1.

The resulting evolution of relaxation spectrum γ213K for temperature history with step to T1 = 213K is
shown in Fig. 3 versus relaxation time τ at physical ageing time 0+, 10−9, 10−4, 101 and 106 s. Clearly, the peak
relaxation spectrum of relaxation function μ1 is independent of physical ageing time due to the normalization
performed for μ1 in Eq. (2), with special case of Eq. (16), while its relaxation time locus is strongly dependent
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on physical ageing time, the relaxation time loci being identical to the relaxation time for τ213K curve in Fig. 2
evaluated at same physical ageing times as above. Furthermore, relaxation spectrum at each physical ageing
time shows a broad, continuous spectrum enabling a wider time scale found in real molecular networks to be
taken into account as compared to classical models embodying discrete spectra, thus providing a plausible
explanation of the successful fit of Mittag-Leffler function to measurement results while also explaining the
broader times scales involved in the fractional free volume and relaxation time evolution results using Caputo
fractional time derivatives in the differential evolution equations.

6.3 Numerical procedure and shear modulus evolution

The numerical procedure specified in “Appendix” applies a minimum time step of � t = 10−14 s, while the
maximum relative tolerance error allowed is set to ε = 10−8. Furthermore, the exponential coefficient in
the auxiliary function yT is selected to λ = −1/min[∞

τ 298K,
∞
τ Tk ] for the studied temperature histories with

step from 298K to Tk , where k = 1, 2, 3, 4 and Tk = 213, 248, 273, 333K, where min[∞τ 298K,
∞
τ Tk ] denotes

minimum of
∞
τ 298K and

∞
τ Tk . The minimum time step above is applied over several decades while using the

numerical procedure in “Appendix”. Then the time step is increased by a factor of 10, and the same procedure is
repeated over a broader time span (more decades) while using the already determined values in the preceding
evaluations. By this technique several decades (here from 10−14 to 106 s) are effectively determined. The
resulting evolution of fractional free volume f213K for temperature history with step to T1 = 213K is shown
in Fig. 4 versus physical ageing time tph together with exponential auxiliary function y213K and numerically
determined function g applied in the numerical procedure. Clearly, the exponential auxiliary function satisfies
the same initial value condition as f213K while lim tph→∞ y213K = 0,whereas numerically determined function
satisfies zero initial value condition g(0) = 0 and lim tph→∞ g = f213K, that is, approaching sought function
f213K for increasing physical ageing. In passing, it may be noted that the time span in Fig. 4 where auxiliary
function y213K and function g interchange is relatively short, forcing the time step to be sufficiently short
in order to get numerically stable solution within that time span. A possible improvement of the numerical
procedure is to apply a low α-order Mittag-Leffler function instead of an exponential function to allow for
a smoother and broader time span for interchange of function g and y213K, thus resulting in a more stable
numerical procedure allowing for a longer time step.

The resulting evolution of shear modulus magnitude |μ̂| and loss factor 
μ̂/�μ̂, where � denotes real
part, for temperature history with step to T1 = 213K is shown in Fig. 5 versus the whole audible frequency
range from 20 to 20000Hz at physical ageing time 0+, 10−9, 10−4, 101 and 106 s. Clearly, the shear modulus
for two shortest physical ageing times 0+ and 10−9 s is mainly within the rubber region, displaying a low-level
magnitude plateau in the low frequency range with a gradual increase above approximately 103 Hz, the rise
being slightly more pronounced for the 10−9 s curve. The loss factor increases with frequency in the whole
audible frequency range, the curves mainly being vertically separated; the 10−9 s curve shows the highest loss
factor, while the 0+ s curve the lowest. The high-frequency fragment of the 10−9 and 0+ s curves also enters
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Fig. 4 Evolution of fractional free volume f213K versus physical ageing time tph starting at equilibrium fractional free volume
corresponding to temperature+25 ◦Cand ending at equilibriumvalue corresponding to−60 ◦C togetherwith exponential auxiliary
function y213K and function g, the latter satisfying zero initial value condition
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Fig. 5 Evolution of shear modulus magnitude |μ̂| and loss factor 
μ̂/�μ̂ versus the whole audible frequency range from 20 to
20000Hz, at physical ageing time 0+, 10−9, 10−4, 101 and 106 s, associated with the fractional free volume f213K evolution
starting at equilibrium fractional free volume corresponding to temperature +25 ◦C and ending at equilibrium value at −60 ◦C
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Fig. 6 Evolution of shear modulus ρ-factor (1 − βrubber�T ), f -factor (1 + f213K − �β[A2 + �T ])−1, T -factor (1 + �T/T0)
and total factor (ρ × f × T -factor) versus physical ageing time tph, associated with the fractional free volume f213K evolution
starting at equilibrium fractional free volume corresponding to temperature +25 ◦C and ending at equilibrium value at −60 ◦C.
The reference value 1 (no factor) is also shown

the transition zone, whereas 10−4 s curve lies almost entirely at the high-frequency end of that zone, the latter
displaying a steep magnitude increase of more than 1 decade, while loss factor is showing a maximum of more
than 100% at 20 Hz. Finally, the shear modulus for two longest physical ageing times 101 and 106 s is entirely
within the glassy region, displaying a high-level magnitude plateau, almost overlapping each other, with only a
minor increase with frequency, while the loss factor curves mainly being vertically separated show a decrease
with frequency, down to surprisingly low value of about 0.005% at 20000Hz. In conclusion, the shear modulus
undergoes a large alteration during the course of physical ageing, displaying a maximum magnitude and loss
factor change of more than 2 and 4 decades, respectively, evaluated at a specific frequency.

There is a factor TρT /T0
∞

ρT0 in the shear modulus; see for example Eq. (6). This factor is multiplicatively
split into ρ-factor (1−βrubber�T ), f -factor (1+ f213K−�β[A2+�T ])−1 and T -factor (1+�T/T0), see for
example Eq. (57), and is shown in Fig. 6 for temperature history with step to T1 = 213K versus physical ageing
time tph, together with the total factor (ρ × f ×T -factor) and reference value 1 (no factor). Clearly, the entropy
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associated T -factor has the largest and f -factor the smallest influence on shear modulus magnitude. The

evolution of f -factor starts approximately from (1+ ∞
fT0 − ∞

f 213K)−1 < 1 at tph = 10−14 s, since f213K = ∞
fT0

at tph = 0+, and ends approximately as unity (≈ 1) at tph = 106 s, since limtph→∞ f213K = ∞
f 213K. However,

the total factor (ρ × f × T -factor) in the shear modulus has a smaller influence than the physical ageing shift
factor Xph, as is clearly observed while comparing the results in Fig. 6 with those in Fig. 5.

6.4 Chemical ageing

The material constants applied for chemical ageing are Esci = 1.05× 105Jmol−1, Eref = 7.37× 104Jmol−1,
τsci0 = 8.08 × 108 s and τref0 = 1.00 × 108 s, experimentally determined by Johlitz et al. [21] for filled
natural rubber using classical, differential evolution equations with ordinary derivatives, where the two latter
material constants are here recalculated from other constants used in Johlitz et al. [21]. Moreover, applied
fractional derivative material constants for the novel differential evolution equations developed in this paper
read αsci = 0.5 and αref = 0.5 together with maximum network link reformation possible q̂ref = 0.80 (80%).
Since the physical origin of chemical ageing—here in specific covering oxygen reaction kinetics with polymer
network—is not exactly related to that of stress and strain response of the molecular network, at least not
as much as the latter is related to corresponding physical ageing, the fractional order material constants for
chemical ageing is therefore set to 1/2—acommon fractional derivative order formechanical rubbermodelling.
In passing, it is noted that the total evolution of equilibrium elasticmodulus including both network link scission
and reformation (52) is possible to reformulate [15] as

μ∞ (Tch, tch) =
{
erfcx

(√
tch
τsci

)
+
[
1 − erfcx

(√
tch
τref

)]
q̂ref

}
μ∞ 0 , (58)

for the selected fractional derivative order, where scaled complementary error function

erfcx(z) = 2ez
2

√
π

∫ ∞

z
e−s2 d s = ez

2
[1 − erf(z)] (59)

and error function

erf(z) = 2√
π

∫ z

0
e−s2 d s. (60)

The scaled complementary error function is a numerically stable function reducing possible under- and over-
flow during its numerical estimation. The resulting evolution of stress ratio dev[σ ]ageing/ dev[σ ]no ageing =
tr[σ ]ageing/ tr[σ ]no ageing = μ∞(Tch, tch)/μ∞ 0, see Eq. (58), at applied constant harmonic infinitesimal strain
is shown in Fig. 7 versus a very broad chemical ageing time tch range, starting from 102 s, which is of order of
minutes (more precisely; 1 min 40s), to 1014 s, which is of order of tens of thousands years (more precisely,
31700 years), at −60, −25, ±0, +25 and +60 ◦C for molecular network link scission only, reformation only
and both simultaneously. Clearly, stress ratio is 1 at scission and no chemical ageing. Subsequently, it dimin-
ishes gradually with increased chemical ageing time; the higher the temperature, the faster is the decrease,
where the −60 ◦C curve is displaying a vanishing chemical ageing even after 31,700 years, while the cor-
responding +60 ◦C curve shows already a reduction of stress ratio of about 4% after 3h and drop of 28%
after 11.5 days. All stress ratio curves will eventually diminish to zero although the decrease rate is strongly
dependent on temperature. On the contrary, stress ratio is 0 at reformation and no chemical ageing. Subse-
quently, it grows gradually with increased chemical ageing time; the higher the temperature, the faster is the
increase, where the −60 ◦C curve is displaying only a minor increase of 19% after 31,700 years, while the
corresponding+60 ◦C curve shows already a growth of stress ratio of about 4% after 3h and a rise to 30% after
11.5 days. All stress ratio curves will eventually increase to 80%, being the selected maximum network link
reformation possible, although the growth rate is strongly dependent on temperature. Finally, the stress ratio
at simultaneous scission and reformation is 1 at no chemical ageing. However, the stress ratio curves display
a strong temperature dependence for increased chemical ageing; the −60 and −25 ◦C curves are laying above
1, +60 ◦C curve is almost entirely below 1, while ±0 and +25 ◦C curves are fluctuating around 1 within the
considered chemical time range. In particular, the +25 ◦C curve displays a maximum stress ration at about
108 s (3.17 years) chemical ageing time due to previously increased shear modulus magnitude resulting from
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Fig. 7 Evolution of stress ratio [dev∨ tr]σ(ageing)/[dev∨ tr]σ(no ageing; tch = 0) at applied constant harmonic infinitesimal
strain versus chemical ageing time tch at −60, −25, ±0, +25 and +60 ◦C for molecular network link scission, reformation and
both simultaneously

a prevailing molecular network link reformation before the link scission process starts to dominate. All stress
ratio curves will eventually approach 0.80 although the chemical ageing time required is strongly dependent
on temperature.

The same stress ratio as above versus chemical ageing time tch, at applied harmonic infinitesimal strain, is
shown in Fig. 8 at temperature +25 ◦C, while using fractional time derivatives order of 0.25, 0.50, 0.75 and
1.00 in the inner differential evolution equation for molecular network link scission only, reformation only and
both simultaneously. Apparently, the chemical ageing behaviour is largely similar for the studied derivative
orders. However, the time band displaying the largest chemical ageing variation is strongly dependent on
derivative order; the ordinary, integer derivative order (1.00) shows the shortest, while fractional derivative
order of 0.25 the largest time band, as is clearly visible in the separate scission and reformation curves. In
conclusion, the developed fractional differential equations for chemical ageing allow for a wider range of time
scales most likely found in real oxygen reaction kinetics with polymer network.

Finally, the evolution of shear modulus magnitude |μ̂| and loss factor 
μ̂/�μ̂ versus the whole audible
frequency range from 20 to 20000Hz is shown in Fig. 9 at temperature +25 ◦C and chemical ageing time 0,
106, 108, 1010 and 1012 s, for simultaneous molecular network link scission and reformation. Clearly, shear
modulus is mainly within the rubber region displaying a low-level magnitude plateau and low-level loss factor
in the low frequency range with a gradual increase above approximately 103Hz. The magnitude curve is
vertically shifted at increased chemical ageing; the 106 and 108 s curves are shifted up and 1010 and 1012 s
curves are shifted down with respect to no ageing curve. In particular, the 108 s curve displays the maximum
shear modulus magnitude due to increased shear modulus magnitude resulting from a prevailing molecular
network link reformation before the link scission process starts to dominate, as is clearly seen in Fig. 7. Finally,
the loss factor curve is independent on chemical ageing due to the chemical ageing model applied, operating
equally on elastic �μ̂ and loss part 
μ̂ of the shear modulus μ̂.

7 Conclusion

The developed constitutive models for rubber including physical and chemical ageing while using fractional
differential evolution equations provide a richer model structure, apply a small material parameter number and
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Fig. 8 Evolution of stress ratio [dev∨ tr]σ(ageing)/[dev∨ tr]σ(no ageing; tch = 0) at applied constant harmonic infinitesimal
strain versus chemical ageing time tch at temperature +25 ◦C while using fractional time derivatives order of 0.25, 0.50, 0.75 and
1.00 in the inner differential evolution equation for molecular network link scission, reformation and both simultaneously
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Fig. 9 Evolution of shear modulus magnitude |μ̂| and loss factor 
μ̂/�μ̂ versus the whole audible frequency range from 20 to
20000Hz, at chemical ageing time 0, 106, 108, 1010 and 1012 s, for simultaneous molecular network link scission and reformation
at temperature +25 ◦C
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display a wide spectrum of time scales found in real polymer network. The constitutive models are possible to
use in various applications, for example, to investigate physical ageing under specific temperature histories,
relative contribution from scission and reformation at chemical ageing, the temperature influence on chemical
ageing and to investigate how physical and chemical ageing influence dynamic stiffness of rubber vibration
isolators within the audible frequency range. The latter is considered in part 2 of this paper [23].

Appendix: Numerical procedure to compute f T

The relaxation time at temperature T reads

τT = μν

� 1
α

10
A1

{
A2�β

fT
−1
}

, (61)

using (25) and (37), and (21) becomes

Dα [ fT ] = �
μα

ν

[�β (A2 + �T ) − fT ] 10
−αA1

{
A2�β

fT
−1
}

, (62)

which is a nonlinear fractional differential evolution equation for the fractional free volume fT , with a generally

nonzero initial condition, fT (0) = 0

fT ≥ 0, while requiring a numerical procedure for its solution. To this end,
a special case of a general procedure to solve nonlinear fractional differential equations [40] is applied:

1 Initiating
(a) Transform the differential equation (62) into a differential equation with zero initial value condition:

i Select an exponential auxiliary function yT = 0

fT exp (λ t) that satisfies the same initial condition
as the original function fT and where λ < 0 is an arbitrary constant to be à priori selected

ii Let fT
def= g + yT , where function g satisfies zero initial value condition; g(0) = 0

iii The differential equation (62) transforms into

Dα [g] =

F( fT )
︷ ︸︸ ︷
�
μα

ν

[�β (A2 + �T ) − fT ] 10
−αA1

{
A2�β

fT
−1
}

− λt1−α
0

fT E1,2−α (λt)
︸ ︷︷ ︸

Y (t)

, (63)

where Y (tph) = Dα [yT ] [17] and the generalized, two-parameter Mittag-Leffler function

Eα,β(x) =
∞∑

n=0

xn

Γ (β + αn)
(64)

(b) Let P( fT , tph)
def= F( fT ) − Y (tph), that is, the right-hand side of equation (63)

(c) Set time step-size � t = tph/n resulting in a discrete time set 0 ≤ k� t ≤ tph, where n is total number
of steps and 0 ≤ k ≤ n

(d) Let
(k)

fT
def= fT (k� t),

(k)
g

def= g(k� t),
(k)
yT

def= yT (k� t),
(k)

Y
def= Y (k� t) and

(k)

P
def= P(

(k)

fT , k� t), where
0 ≤ k ≤ n

(e) Set relative tolerance error 0 < ε � 1 and step number k = 0

(f) Compute
(0)

P = F(
0

fT )

(g) Set
(0)

fT = 0

fT , that is, initial value of fT
(g) Set

(0)
g = 0, that is, initial value is zero
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2. Predictor

(a) Compute predictor
(k+1)

P denoted as
(k+1)

P̂ :
if k = 0 then

Compute
(0+1)

P̂ = F(
(1)
yT ) − (1)

Y
else

Compute
(k+1)

P̂ = 2
(k)

P − (k−1)

P , using linear extrapolation
end if

(b) Replace left-hand side of (63) with
(k+1)

P̂

(c) Compute predictor solution
(k+1)

ĝ using Grünwald–Letnikov operator [39] for fractional Caputo deriva-
tive:

(k+1)

ĝ = � tα
(k+1)

P̂ −
k∑

m=0

Ωk+1−m
(m)

g , (65)

where fractional binomial coefficient recursively reads Ω0 = 1 and Ωm = (
1 − 1+α

m

)
Ωm−1

(d) Substitute
(k+1)

f̂T ← �

(k+1)

ĝ + (k+1)
yT

3. Corrector

(a) Compute corrector
(k+1)

P = F(

(k+1)

f̂T ) − (k+1)

Y

(b) Replace left-hand side of (63) with
(k+1)

P

(c) Compute corrector solution
(k+1)
g using

(k+1)
g = � tα

(k+1)

P −
k∑

m=0

Ωk+1−m
(m)

g (66)

(d) Substitute
(k+1)

fT ← �
(k+1)
g + (k+1)

yT

(e) if

∣∣
∣∣
∣

(k+1)
fT −

(k+1)

f̂T
(k+1)
fT

∣∣
∣∣
∣
> ε then

Substitute
(k+1)

f̂T ← �

(k+1)

fT and return to step 3a
else

Substitute
(k+1)

P = F(
(k+1)

fT ) − (k+1)

Y
end if

(f) if k < n then
substitute k ← � k + 1 and return to step 2a

end if
4. Terminate

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.
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