Skip to main content
Log in

Non-equilibrium thermodynamics and stochasticity: a phenomenological look on Jarzynski’s equality

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The theory of phenomenological non-equilibrium thermodynamics is extended by including stochastic processes in order to account for recently derived thermodynamical relations such as the Jarzynski’s equality. Four phenomenological axioms are postulated resulting in a phenomenological interpretation of Jarzynski’s equality. In particular, considering the class of Jarzynski processes Jarzynski’s equality follows from the axiom that the statistical average of the exponential work is protocol independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muschik, W.: Survey of some branches of thermodynamics. J. Non-Equilib. Thermodyn. 33, 165–198 (2008)

    ADS  MATH  Google Scholar 

  2. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012). (sect.3.2.1)

    Article  ADS  Google Scholar 

  3. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Article  ADS  Google Scholar 

  4. Schottky, W., Ulich, H., Wagner, C.: Thermodynamik. Springer, Berlin (1929), Reprint, Springer, Berlin (1973), Erster Teil §1

  5. Muschik, W.: Empirical Foundation and Axiomatic Treatment of Non-equilibrium Temperature. Arch. Rational Mech. Anal. 66, 379–401 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  6. Muschik, W., Brunk, G.: A concept of non-equilbrium temperature. Int. J. Eng. Sci. 15, 377–389 (1977)

    Article  MathSciNet  Google Scholar 

  7. Muschik, W.: Contact quantities and non-equilibrium entropy of discrete systems. J. Non-Equilib. Thermodyn. 34, 75–92 (2009)

    Article  ADS  MATH  Google Scholar 

  8. Jarzynski, C.: Equilibrium free-energy differences from nonequilibrium measurements: a master-equation approach. Phys. Rev. E 56, 5018 (1997)

    Article  ADS  Google Scholar 

  9. Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481–1487 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721 (1999)

    Article  ADS  Google Scholar 

  11. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361 (2000)

    Article  ADS  Google Scholar 

  12. Jarzynski, C.: Nonequilibrium work theorem for a system strongly coupled to a thermal environment. J. Stat. Mech. 2004(9), 09005 (2004)

    Article  MATH  Google Scholar 

  13. Tasaki, H.: Jarzynski Relations for Quantum Systems and Some Applications. (2000). arXiv: cond-mat/0009244

  14. Mukamel, S.: Quantum extension of the Jarzynski relation: analogy with stochastic dephasing. Phys. Rev. Lett. 90, 170604 (2003)

    Article  ADS  Google Scholar 

  15. Campisi, M., Talkner, P., Hänggi, P.: Fluctuation theorem for arbitrary open quantum systems. Phys. Rev. Lett. 102, 210401 (2009)

    Article  ADS  MATH  Google Scholar 

  16. Trepagnier, E.H., Jarzynski, C., Ritort, F., Crooks, G.E., Bustamante, C., Liphardt, J.: Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Natl. Acad. Sci. 101, 15038–15041 (2004)

    Article  ADS  Google Scholar 

  17. Collin, D., Ritort, F., Jarzynski, C., Smith, S.B., Tinoco, I., Bustamante, C.: Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 437, 231–234 (2005)

    Article  ADS  Google Scholar 

  18. Bustamante, C., Liphardt, J., Ritort, F.: The nonequilibrium thermodynamics of small systems. Phys. Today 58, 43–48 (2005)

    Article  Google Scholar 

  19. Jarzynski, C.: Equalities and inequalities: irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Condens. Matter Phys. 2, 329–351 (2011)

    Article  ADS  Google Scholar 

  20. Muschik, W.: Aspects of non-equilibrium thermodynamics. In: Six Lectures on Fundamentals and Methods. World Scientific, Singapore (1990) (sect. 1.2)

  21. Muschik, W.: Fundamentals of non-equilibrium thermodynamics. In: Muschik, W. (ed.) Non-equilibrium Thermodynamics with Application to Solids. CISM Courses and Lectures No. 336, pp. 1–63. Springer, Wien (1993) (sect. 3.2)

  22. Muschik, W., Berezovski, A.: Non-equilibrium contact quantities and compound defiency at interfaces between discrete systems. Proc. Estonian Acad. Sci. Phys. Math. 56, 133–145 (2007)

    MathSciNet  MATH  Google Scholar 

  23. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. North-Holland, Leyden (1963). (sect. III.1)

    MATH  Google Scholar 

  24. Gaveau, B., Schulman, L.S.: A general framework for non-equilibrium phenomena: the master equation and its formal consequences. Phys. Lett. A 229, 347–353 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Crooks, G.E.: Beyond Boltzmann–Gibbs statistics: maximum entropy hyperensembles out of equilibrium. Phys. Rev. E 75, 041119 (2007)

    Article  ADS  Google Scholar 

  26. Esposito, M., Van den Broeck, C.: Second law and Landauer principle far from equilibrium. Europhys. Lett. 95, 40004 (2011)

    Article  ADS  Google Scholar 

  27. Ostoja-Starzewski, M.: Second law violations, continuum mechanics, and permeability. Contin. Mech. Thermodyn. 26, 489–501 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jarzynski, C.: Rare events and the convergence of exponentially averaged work values. Phys. Rev. E 73, 046105 (2006)

    Article  ADS  Google Scholar 

  29. Halpern, N.Y., Jarzynski, C.: How Many Trials Should You Expect to Perform to Estimate a Free-energy Difference? arXiv:1601.02637 (2016)

  30. Muschik, W.: Existence of non-negative entropy production. In: Spencer A.J.M. (ed.) Continuum Models of Discrete Systems, Procedings of the 5th International Symposium, Nottingham 14–20 July 1985, pp. 39–45 A.A. Balkema, Rotterdam (1987)

  31. Muschik, W.: Fundamentals of dissipation inequalities, I. Discrete Syst. J. Non-Equilib. Thermodyn. 4, 277–294 (1979)

    ADS  Google Scholar 

  32. Muschik, W.: Skizze der thermodynamischen theorien irreversibler prozesse. In: Reif, F. (ed.) Statistische Physik und Theorie der Wärme, pp. 709–741. de Gruyter, Berlin (1985)

    Google Scholar 

  33. Ford, I.: Statistical Physics: An Entropic Approach. Wiley, New York (2013). (sect. 17,2)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Muschik.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muschik, W. Non-equilibrium thermodynamics and stochasticity: a phenomenological look on Jarzynski’s equality. Continuum Mech. Thermodyn. 28, 1887–1903 (2016). https://doi.org/10.1007/s00161-016-0517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0517-y

Keywords

Navigation