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Abstract
Weak gravitational lensing of background galaxies provides a direct probe of the

projected matter distribution in and around galaxy clusters. Here, we present a self-

contained pedagogical review of cluster–galaxy weak lensing, covering a range of

topics relevant to its cosmological and astrophysical applications. We begin by

reviewing the theoretical foundations of gravitational lensing from first principles,

with a special attention to the basics and advanced techniques of weak gravitational

lensing. We summarize and discuss key findings from recent cluster–galaxy weak-

lensing studies on both observational and theoretical grounds, with a focus on

cluster mass profiles, the concentration–mass relation, the splashback radius, and

implications from extensive mass-calibration efforts for cluster cosmology.
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1 Introduction

The propagation of light rays from a distant source to the observer is governed by

the gravitational field of local inhomogeneities, as well as by the global geometry of

the universe (Schneider et al. 1992). Hence, the images of background sources carry

the imprint of gravitational lensing by intervening cosmic structures. Observations

of gravitational lensing phenomena can thus be used to study the mass distribution

of cosmic objects dominated by dark matter and to test models of cosmic structure

formation (Blandford and Narayan 1992).

Galaxy clusters represent the largest class of self-gravitating systems formed in the

universe, with typical masses of M� 1014�15h�1M�. In the context of the standard

structure formation scenario, cluster halos correspond to rare massive local peaks in the

primordial density perturbations (e.g., Tinker et al. 2010). Galaxy clusters act as

powerful cosmic lenses, producing a variety of detectable lensing effects from strong to

weak lensing (Kneib and Natarajan 2011), including deflection, shearing, and

magnifying of the images of background sources (e.g., Umetsu et al. 2016). The

critical advantage of cluster gravitational lensing is its ability to study the mass

distribution of individual and ensemble systems independent of assumptions about their

physical and dynamical state (e.g., Clowe et al. 2006).

Weak gravitational lensing is responsible for the weak shape distortion, or shear,

and magnification of the images of background sources due to the gravitational field

of intervening massive objects and large-scale structure (Bartelmann et al. 2001;

Schneider 2005; Umetsu 2010; Hoekstra 2013; Mandelbaum 2018). Weak shear
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lensing by galaxy clusters gives rise to levels of up to a few 10% of elliptical

distortions in images of background sources. Thus, the weak shear lensing signal, as

measured from small but coherent image distortions in galaxy shapes, can provide a

direct measure of the projected mass distribution of galaxy clusters (e.g., Kaiser and

Squires 1993; Fahlman et al. 1994; Okabe and Umetsu 2008). On the other hand,

lensing magnification can influence the observed surface number density of

background galaxies seen behind clusters, by enhancing their apparent fluxes and

expanding the area of sky (e.g., Broadhurst et al. 1995, 2005b; Taylor et al. 1998;

Umetsu et al. 2011b; Chiu et al. 2020). The former effect increases the source

counts above the limiting flux, whereas the latter reduces the effective observing

area in the source plane, thus decreasing the observed number of sources per unit

solid angle. The net effect, known as magnification bias, depends on the intrinsic

faint-end slope of the source luminosity function.

In this paper, we present a self-contained pedagogical review of weak

gravitational lensing of background galaxies by galaxy clusters (cluster–galaxy

weak lensing), highlighting recent advances in our theoretical and observational

understanding of the mass distribution in galaxy clusters. We shall begin by

reviewing the theoretical foundations of gravitational lensing (Sect. 2), with special

attention to the basics and advanced techniques of cluster–galaxy weak lensing

(Sects. 3, 4, and 5). Then, we highlight and discuss key findings from recent cluster–

galaxy weak-lensing studies (Sects. 6), with a focus on cluster mass distributions

(Sect. 6.1), the concentration–mass relation (Sect. 6.2), the splashback radius

(Sect. 6.3), and implications from extensive mass-calibration efforts for cluster

cosmology (Sect. 6.4). Finally, conclusions are given in Sect. 7.

There have been a number of reviews of relevant subjects (e.g., Blandford and

Narayan 1992; Narayan and Bartelmann 1996; Mellier 1999; Hattori et al. 1999;

Umetsu et al. 1999; Van Waerbeke and Mellier 2003; Schneider 2005; Kneib and

Natarajan 2011; Hoekstra 2013; Futamase 2015; Mandelbaum 2018). For general

treatments of gravitational lensing, we refer the reader to Schneider et al. (1992).

For a general review of weak gravitational lensing, see Bartelmann and Schneider

(2001) and Schneider (2005). For a comprehensive review of cluster lensing, see

Kneib and Natarajan (2011). For a pedagogical review on strong lensing in galaxy

clusters, see Hattori et al. (1999a).

Throughout this paper, we denote the present-day density parameters of matter,

radiation, and K (a cosmological constant) in critical units as Xm;Xr, and XK,

respectively (see, e.g., Komatsu et al. 2009). Unless otherwise noted, we assume a

concordance K cold dark matter (KCDM) cosmology with Xm ¼ 0:3, XK ¼ 0:7, and

a Hubble constant of H0 ¼ 100 km s�1 Mpc�1 with h ¼ 0:7. We denote the mean

matter density of the universe at a particular redshift z as qðzÞ and the critical

density as qcðzÞ. The present-day value of the critical density is

qc;0 ¼ 3H2
0=ð8pGÞ � 1:88 � 10�29h2 g cm�3 � 2:78 � 1011h2M� Mpc�3, with G

the gravitational constant. We use the standard notation MDc
or MDm

to denote

the mass enclosed within a sphere of radius rDc
or rDm

, within which the mean

overdensity equals Dc � qcðzÞ or Dm � qðzÞ at a particular redshift z. That is, MDc
¼

ð4p=3ÞDcqcðzÞr3
Dc

and MDm
¼ ð4p=3ÞDmqðzÞr3

Dm
. We generally denote three-
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dimensional radial distances as r and reserve the symbol R for projected radial

distances. Unless otherwise noted, we use projected densities (e.g., RðRÞ) and

distances (e.g., R) both defined in physical (not comoving) units. All quoted errors

are 1r confidence levels (CL) unless otherwise stated.

2 Theory of gravitational lensing

The local universe appears to be highly inhomogeneous on a wide range of scales

from stars, galaxies, through galaxy groups and clusters, to forming superclusters,

large-scale filaments, and cosmic voids. The propagation of light from a far-

background source is thus influenced by the gravitational field caused by such local

inhomogeneities along the line of sight. In general, a complete description of the

light propagation in an arbitrary curved spacetime is a complex theoretical problem.

However, a much simpler description is possible under a wide range of

astrophysically relevant circumstances, which is referred to as the gravitational

lensing theory (e.g., Schneider et al. 1992; Bartelmann and Schneider 2001; Kneib

and Natarajan 2011). This section reviews the basics of gravitational lensing theory

to provide a basis and framework for cluster lensing studies, with an emphasis on

weak gravitational lensing.

2.1 Bending of light in an asymptotically flat spacetime

To begin with, let us consider the bending of light in a weak-field regime of an

asymptotically flat spacetime in the framework of general relativity. Specifically, we

assume an isolated and stationary mass distribution (Schneider et al. 1992). Then,

the metric tensor glm (l; m ¼ 0; 1; 2; 3) of the perturbed spacetime can be written as:

ds2 ¼ glmdx
ldxm

¼ �ð1 þ 2UN=c
2Þc2dt2 þ ð1 � 2UN=c

2Þ ðdx1Þ2 þ ðdx2Þ2 þ ðdx3Þ2
h i

;
ð1Þ

where ðxlÞ ¼ ðct; x1; x2; x3Þ are the four spacetime coordinates, UN is the Newtonian

gravitational potential in a weak-field regime jUN=c
2j � 1, and c is the speed of

light in vacuum. We consider the metric given by Eq. (1) to be the sum of a

background metric g
ðbÞ
lm and a small perturbation denoted by hlm, that is, glm ¼

g
ðbÞ
lm þ hlm with jhlmj � 1.

To the first order in UN=c
2, we have g

ðbÞ
lm ¼ glm ¼ diagð�1; 1; 1; 1Þ and

hlm ¼ diagð�2UN;�2UN;�2UN;�2UNÞ=c2, where glm and gðbÞlm are defined by

glqgqm ¼ dlm and gðbÞlqg
ðbÞ
qm ¼ dlm , with dlm the Kronecker delta symbol in four

dimensions. Then, to the first order of h, we have glm ¼ gðbÞlm � hlm, where hlm is

defined by hlm 	 gðbÞlqgðbÞmrhqr ¼ glqgmrhqr.

The propagation of light is described by null geodesic equations:
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kl 	 dxlðkÞ
dk

;

0 ¼ glmk
lkm;

dkl

dk
¼ �Cl

mkk
mkk;

ð2Þ

where kl is the four-momentum, k is the affine parameter, and Cl
mk denotes the Christoffel

symbol, Cl
mq ¼ ð1=2Þglk gkm;q þ gkq;m � gmq;k

� �
, with g

ðbÞ
lm ¼ glm and CðbÞl

mq ¼ 0 in the

background Minkowski spacetime. For a light ray propagating along the x3-direction in

the background metric, the photon four-momentum kðbÞl and the unperturbed orbit xðbÞl

are given by kðbÞl ¼ dxðbÞl=dk ¼ ð1; 0; 0; 1Þ and xðbÞl ¼ ðk; 0; 0; kÞ.
Now, we consider the light ray propagation in a perturbed spacetime. To this end,

we express the perturbed orbit xlðkÞ as a sum of the unperturbed path xðbÞlðkÞ and

the deviation vector dxlðkÞ:

xlðkÞ ¼ xðbÞlðkÞ þ dxlðkÞ: ð3Þ

Without loss of generality, we can take the deflection angle to lie in the x3x1 plane

with x2 ¼ 0, and we denote ðx1; x3Þ ¼ ðx?; xjjÞ. In the weak-field limit of

jUN=c
2j � 1, the impact parameter b of the incoming light ray is much greater than

the Schwarzschild radius of the deflector with mass M, that is, b 
 2GM=c2. Then,

the linearized null geodesic equations are written as1:

klðkÞ ¼ kðbÞlðkÞ þ dklðkÞ;
0 ¼ hlmk

ðbÞlkðbÞm þ 2gðbÞlm k
ðbÞldkm;

dðdklÞ
dk

¼ �2CðbÞl
mk kðbÞmdkk � dCl

mkk
ðbÞmkðbÞk:

ð4Þ

The perturbed Christoffel symbol is dCl
mq ¼ ð1=2Þglk hkm;q þ hkq;m � hmq;k

� �
þ Oðh2Þ.

Choosing the boundary conditions in the in-state (k ! �1) as dklð�1Þ ¼ 0, we

integrate the linearized null geodesic equations (Eq. (4)) to obtain the following

equations for the spatial components in the out-state (k ! þ1):

dk?ðþ1Þ ¼ � 2

c2

Z þ1

�1

oUNðkÞ
ox?

dk; dkjjðþ1Þ ¼ 0; ð5Þ

where k ¼ xjjðkÞ þ OðhÞ. Taking the unperturbed path, we obtain the bending angle

â in the small-angle scattering limit (jâj � 1) as2

1 See Pyne and Birkinshaw (1993) for a detailed discussion of the consistency conditions for the

truncation of perturbed null geodesics.
2 With this sign convention, the bending angle â has the same sign as the change in photon propagation

direction (e.g., Jain et al. 2000). An alternative sign convention is often used in the literature (e.g.,

Bartelmann and Schneider 2001), in which â ! �â [or a ! �a; see Eq. (8)]:

123

Cluster–galaxy weak lensing Page 5 of 106 7



â ’ k?ðþ1Þ
kjjðþ1Þ ’ � 2

c2

Z þ1

�1

oUNðxjj; x?Þ
ox?

dxjj; ð6Þ

which is known as the Born approximation. This yields an explicit expression for

the bending angle of jâj ’ 4GM=ðrc2Þ ¼ 1:7500ðM=M�Þðr=R�Þ�1
. General relativ-

ity predicts a deflection angle twice as large as that Newtonian physics would

provide. Einstein’s prediction for the solar deflection of light is verified within

� 0:1% (e.g., Lebach et al. 1995).

The null geodesic condition leads to dk0ðkÞ ¼ �2UNðkÞ=c2 þ Oðh2Þ, or

cdt=dk ¼ 1 � 2UNðkÞ=c2 þ Oðh2Þ[ 1. The gravitational time-delay Dtgrav, with

respect to the unperturbed light propagation, is thus given by:

cDtgrav ¼ �2

Z þ1

�1
dkUNðkÞ=c2: ð7Þ

Note that there is an additional time-delay due to a change in the geometrical path

length caused by gravitational deflection (see Sect. 2.6.1).

2.2 Lens equation

Let us consider the situation illustrated in Fig. 1. A light ray propagates from a

far-distant source (S) at the position g in the source plane to an observer (O), passing

the position n in the lens plane, in which the light is deflected by a bending angle â.

Here, the source and lens planes are defined as planes perpendicular to the optical

axis at the distance of the source and the lens, respectively. The exact definition of

s

lsl

θ β
ξ

L

S

η

α̂

O

Optic axis

Lens plane Source plane

D

I

D D

Fig. 1 Illustration of a typical lens system. The light ray propagates from the source (S) at the position g

in the source plane to the observer (O), passing the position n in the lens plane (L), resulting in a bending
angle â. The angular position of the source (S) relative to the optical axis is denoted by b, and that of the
image (I) relative to the optical axis is denoted by h. The Dl, Ds, and Dls are the observer–lens, observer–
source, and lens–source angular diameter distances, respectively
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the optical axis does not matter, because the angular scales involved are very small.

The angle between the optical axis and the unlensed source (S) position is b, and the

angle between the optical axis and the image (I) is h. The angular diameter distances

between the observer and the lens, the observer and the source, and the lens and the

source, are denoted by Dl;Ds, and Dls, respectively.

As illustrated in Fig. 1, we have the following geometrical relation:

g ¼ ðDs=DlÞnþ DlsâðnÞ. Equivalently, this is translated into the relation between

the angular source and image positions, b ¼ g=Ds and h ¼ n=Dl, as:

b ¼ hþ Dls

Ds
â 	 hþ aðhÞ; ð8Þ

where we defined the reduced bending angle, or the deflection field (Broadhurst

et al. 2005a), aðhÞ ¼ ðDls=DsÞâ in the last equality. Equation (8) is referred to as the

lens equation, or the ray-tracing equation.

In general, the lens equation is nonlinear with respect to the image position h, so

that it may have multiple solutions h for a given source position b. This corresponds

to multiple imaging of a background source (see Hattori et al. 1999a; Kneib and

Natarajan 2011). An illustration of the typical circularly symmetric lens system is

shown in Fig. 2. We refer to Keeton (2001) for a review of various families of mass

models for gravitational lensing.

2.3 Cosmological lens equation

Here, we turn to the cosmological lens equation that describes the light propagation

in a locally inhomogeneous, expanding universe. There are various approaches to

derive a cosmological version of the lens equation (e.g., Schneider 1985; Sasaki

1993; Seitz et al. 1994; Futamase 1995; Dodelson 2003; Sereno 2009). We follow

the approach by Futamase (1995) based on perturbed null geodesic equations as

introduced in Sect. 2.1.

Consider a perturbed Friedman–Lemaı́tre–Robertson–Walker (FLRW) metric in

the Newtonian gauge of the form (e.g., Kodama and Sasaki 1984):

ds2 ¼ �ð1 þ 2W=c2Þc2dt2 þ ð1 � 2W=c2Þa2ðtÞ dv2 þ r2ðd#2 þ sin2 #du2Þ
� �

; ð9Þ

where a(t) is the scale factor of the universe (normalized to unity at present), v is the

comoving distance, # and u are the spherical polar and azimuthal angles, respec-

tively, W is a scalar metric perturbation, K is the spatial curvature of the universe,

and r ¼ fKðvÞ is the comoving angular diameter distance:

fKðvÞ ¼
ð�KÞ�1=2

sinhðv=
ffiffiffiffiffiffiffiffi
�K

p
Þ ðK\0Þ;

v ðK ¼ 0Þ;
K�1=2 sinðv=

ffiffiffiffi
K

p
Þ ðK[ 0Þ:

8><
>:

ð10Þ

The spatial curvature K is expressed with the total density parameter at the present

epoch, X0 	
P

X XX ¼ Xm þ Xr þ XK, as K ¼ ðX0 � 1ÞH2
0=c

2. The evolution of

a(t) is determined by the Friedmann equation, HðaÞ 	 ðda=dtÞ=a ¼
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H0½Xra
�4 þ Xma

�3 þ XK þ ð1 � X0Þa�2�1=2
. In the line element (9), we have

neglected all terms of higher than OðW=c2Þ, the contributions from vector and

tensor perturbations, and the effects due to anisotropic stress. As we will discuss in

Sect. 2.5.1, W is interpreted as the Newtonian gravitational potential generated by

local inhomogeneities of the matter distribution in the universe.

Since the structure of a light cone is invariant under the conformal transforma-

tion, we work with the conformally related spacetime metric given by d~s2 ¼
a�2ds2 	 ~glmdx

ldxm with ðxlÞ ¼ ðg; v; #;uÞ, where g ¼ c
R t

dt0=aðt0Þ is the confor-

mal time. The metric ~glm can be rewritten in the form of ~glm ¼ ~g
ðbÞ
lm þ hlm, as a sum

of the background metric and a small perturbation (jhj � 1).

s
βd

θ

β β = θ

I2I3 I1S

β = β

Lens mapping

Image parities 

Image configuration

Fig. 2 Illustration of the lens mapping b ¼ bðhÞ (upper panel), image configuration (middle panel), and
image parities (lower panel) for a typical axis-symmetric lens system. Three images (I1; I2; I3) are
produced for a source (S) at the location b ¼ bs with a radial width db. The images are formed at the
intersections of b ¼ bðhÞ and the horizontal line b ¼ bs. Critical curves are also shown by two solid
concentric circles in the middle panel. The inner circle represents the radial critical curve where
dbðhÞ=dh ¼ 0, while the outer circle represents the tangential critical curve where bðhÞ ¼ 0. The image
parities are illustrated in the lower panel. The images I1 and I2 have the same total parity as the source S,
while I3 has the opposite total parity to S. The concepts of critical curves and image parities are given in
Sect. 2.6.3
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We follow the prescription given in Sect. 2.1 to solve the null geodesic equations

in the perturbed spacetime (Eq. (9)). To this end, we consider past-directed null

geodesics from the observer. Choosing the spherical coordinate system centered on

the observer, we have kðbÞl ¼ ð�1; 1; 0; 0Þ in the background metric with W ¼ 0.

The unperturbed path is parameterized by the affine parameter k along the photon

path as xðbÞlðkÞ ¼ ð�k; k� ko; #I ;uIÞ, where ko is the affine parameter at the

observer and ð#I ;uIÞ denote the angular direction of the image position on the sky.

The comoving angular distance r in the background spacetime can be parameterized

by k as rðkÞ 	 fK ½vðk� koÞ� (see Eq. (10)).

The perturbed null geodesic equations for the angular components (#;u) can be

formally solved as:

dkiðkÞ ¼ � 2

r2ðkÞ

Z ks

ko

dk0oiWðk0Þ=c2 ði ¼ #;uÞ; ð11Þ

where oiW ¼ ðW;#; sin�2 #W;uÞ and we have chosen dk#ðkoÞ ¼ dkuðkoÞ ¼ 0.

Inserting this result in Eq. (4) and integrating by part yield (Futamase 1995;

Dodelson 2003):

#S ¼ #I �
2

c2

Z ks

ko

rðks � kÞ
rðksÞrðkÞ

ohWðkÞ dk;

uS ¼ uI �
2

c2

Z ks

ko

rðks � kÞ
rðksÞrðkÞ

ouWðkÞ dk;

ð12Þ

where ks is the affine parameter at the background source, ð#S;uSÞ 	 ð#ðksÞ;uðksÞÞ
denote the angular direction of the unlensed source position on the sky, and we set

d#ðkoÞ ¼ duðkoÞ ¼ 0. Here, the integral is performed along the perturbed trajectory

xlðkÞ ¼ xðbÞlðkÞ þ dxlðkÞ. Equation (12) relates the observed direction of the image

position ð#I ;uIÞ to the (unlensed) direction of the source position ð#S;uSÞ for a

given background cosmology and metric perturbation Wðv; gÞ. This is a general

expression of the cosmological lens equation obtained by Futamase (1995).

2.4 Flat-sky approximation

Now, we consider a small patch of the sky around a given line of sight (# ¼ 0),

across which the curvature of the sky is negligible (# � 1). Then, we can locally

define a flat plane perpendicular to the line of sight. By noting that dh 	 ðd#; #duÞ
is an angular displacement vector within this sky plane, we can express Eq. (12) as:

bðvsÞ ¼ hþ aðvsÞ; ð13Þ

where bðvsÞ is the (unlensed) angular position of the source, h is the apparent

angular position of the source image, and aðvsÞ is the deflection field given by

(Futamase 1995):
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aðvsÞ ¼ � 2

c2

Z vs

0

rðvs � vÞ
rðvsÞ

$?W½xlðvÞ� dv; ð14Þ

where $? 	 r�1ðkÞðo#; #�1ouÞ is the transverse comoving gradient and the integral

is performed along the perturbed trajectory xlðkÞ ¼ xðbÞlðkÞ þ dxlðkÞ with

k ¼ vþ OðW=c2Þ. Equation (13) can be applied to a range of lensing phenomena,

including multiple deflections of light from a background source (Sect. 2.5), strong

and weak gravitational lensing by individual galaxies and clusters (Sect. 2.6), and

cosmological weak lensing by the intervening large-scale structure (a.k.a., the

cosmic shear). Note that the cosmological lens equation is obtained using the

standard angular diameter distance in a background FLRW spacetime without

employing the thin-lens approximation (see Sect. 2.6).

2.5 Multiple lens equation

We consider a discretized version of the cosmological lens equation (Eq. (13)) by

dividing the radial integral between the source (v ¼ vs) and the observer (v ¼ 0)

into N comoving boxes (N � 1 lens planes) separated by a constant comoving

distance of Dv. The angular position hðnÞ of a light ray in the nth plane (1 6 n 6 N)

is then given by (e.g., Schneider et al. 1992; Schneider 2019):

bðnÞ ¼ hð0Þ þ
Xn�1

m¼1

rðvn � vmÞ
rðvnÞ

âðmÞ; ð15Þ

where hð0Þ ¼ bð1Þ is the apparent angular position of the source image and âðmÞ is the

bending angle at the mth lens plane (m ¼ 1; 2; . . .; n� 1):

âðmÞ ¼ � 2

c2
$?W½vm; rðvmÞbðmÞ�Dv: ð16Þ

The 2 � 2 Jacobian matrix of Eq. (15) (1 6 n 6 N) is expressed as (e.g., Jain et al.

2000):3

AðnÞ :¼ obðnÞ

ohð0Þ
¼ Iþ

Xn�1

m¼1

Dmn

Dn
HðmÞAðmÞ; ð17Þ

where I denotes the identity matrix, HðmÞ 	 oâðmÞ=obðmÞ is a symmetric dimen-

sionless Hessian matrix with H
ðmÞ
ij ¼ �ð2=c2ÞrðvmÞr?;ir?;jW½vm; rðvmÞbðmÞ�Dv

(i; j ¼ 1; 2), Dn is the angular diameter distance between the observer and the nth

lens plane, and Dmn is the angular diameter distance between the mth and nth lens

planes (m\n). In general, the Jacobian matrix AðnÞ can be decomposed into the

following form:

3 Note that we can write ðDmn=DnÞHðmÞ
ij ¼ �ð2=c2Þgðvm; vnÞr?;ir?;jW½vm; rðvmÞbðmÞ�Dv with

gðvm; vnÞ ¼ rðvmÞrðvn � vmÞ=rðvnÞ an effective lensing distance (Jain et al. 2000) and

Dmn=Dn ¼ rðvn � vmÞ=rðvnÞ.
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AðnÞ ¼ ð1 � jÞI� c1r3 � c2r1 � ixr2; ð18Þ

where j is the lensing convergence, ðc1; c2Þ are the two components of the gravi-

tational shear (see Sect. 2.6.2 for the definitions and further details of the conver-

gence and shear), x is the net rotation (e.g., Cooray and Hu 2002), and

ra ða ¼ 1; 2; 3Þ are the Pauli matrices that satisfy rarb ¼ i�abcrc, with �abc the Levi–

Civita symbol in three dimensions. The Born approximation AðmÞ ¼ I on the right-

hand side of Eq. (17) leads to a symmetric Jacobian matrix with x ¼ 0.

The multiple lens equation has been widely used to study gravitational lensing

phenomena by ray-tracing through N-body simulations (e.g., Schneider and Weiss

1988; Hamana et al. 2000; Jain et al. 2000).

2.5.1 Cosmological poisson equation

We assume here a spatially flat geometry with K ¼ 0 motivated by cosmological

observations based on cosmic microwave background (CMB) and complementary

data sets (e.g., Hinshaw et al. 2013; Planck Collaboration et al. 2015b). The

cosmological Poisson equation relates the scalar metric perturbation W (see Eq. (9))

to the matter density perturbation dq on subhorizon scales as:

$2Wðv; gÞ ¼ 4pGa2dq ¼ 3H2
0Xm

2

d
a
; ð19Þ

where d ¼ dq=q is the density contrast with respect to the background matter

density q of the universe, q ¼ a�3ð3H2
0XmÞ=ð8pGÞ, and $ is the three-dimensional

gradient operator in comoving coordinates. A key implication of Eq. (19) is that the

amplitude of W is related to the amplitude of d as jW=c2j � ð3Xm=2Þðl=LHÞ2ðd=aÞ
where l and LH ¼ c=H0 denote the characteristic comoving scale of density per-

turbations and the Hubble radius, respectively. Therefore, assuming the standard

matter power spectrum of density fluctuations (e.g., Smith et al. 2003), we can

safely conclude that the degree of metric perturbation is always much smaller than

unity, i.e., jW=c2j � 1, even for highly nonlinear perturbations with jdj 
 1 on

small scales of l � LH ð� 3h�1Gpc).

2.6 Thin-lens equation

2.6.1 Thin-lens approximation

Let us turn to the case of gravitational lensing caused by a single cluster-scale halo.

Galaxy clusters can produce deep gravitational potential wells, acting as powerful

gravitational lenses. In cluster gravitational lensing, it is often assumed that the total

deflection angle, aðhÞ, is dominated by the cluster of interest and its surrounding

large-scale environment, which becomes important beyond the cluster virial radius,

rvir (Cooray and Sheth 2002; Oguri and Hamana 2011; Diemer and Kravtsov 2014).

Assuming that the light propagation is approximated by a single-lens event due to

the cluster and that a light deflection occurs within a sufficiently small region

123

Cluster–galaxy weak lensing Page 11 of 106 7



(vl � Dv=2; vl þ Dv=2) compared to the relevant angular diameter distances, we can

write the deflection field by a single cluster as:

aðhÞ ’ � 2

c2

Dls

Ds

Z vlþDv=2

vl�Dv=2

$?W½v; rðvlÞh� dv; ð20Þ

where Ds ¼ aðvsÞrðvsÞ and Dls ¼ aðvsÞrðvs � vlÞ are the angular diameter distances

from the observer to the source and from the deflector to the source, respectively,

and rðvlÞh is the comoving transverse vector on the lens plane. In a cosmological

situation, the angular diameter distances Dmn between the planes m and n (zm\zn)

are of the order of the Hubble radius, LH 	 c=H0 � 3h�1Gpc, while physical extents

of clusters are about 2r200m �ð2 � 4Þh�1Mpc in comoving units. Therefore, one can

safely adopt the thin-lens approximation in cluster gravitational lensing.

We then introduce the effective lensing potential wðhÞ defined as:

wðhÞ ’ 2

c2

Dls

DlDs

Z vlþDv=2

vl�Dv=2

W½v; rðvlÞh� adv; ð21Þ

where Dl is the angular diameter distance between the observer and the lens,

Dl ¼ aðvlÞrðvlÞ. In terms of wðhÞ, the deflection field aðhÞ is expressed as:

aðhÞ ¼ �$hwðhÞ; ð22Þ

where $h ¼ r$? ¼ ðoh; h�1o/Þ.
With the Fermat or time-delay potential defined by:

sðh; bÞ 	 1

2
ðh� bÞ2 � wðhÞ; ð23Þ

the lens equation can be equivalently written as $hsðh; bÞ ¼ 0 (Blandford and

Narayan 1986). Here, the first term on the right-hand side of Eq. (23) is responsible

for the geometric delay and the second term for the gravitational time-delay. The

Fermat potential sðh; bÞ is related to the time-delay Dt with respect to the unper-

turbed path in the observer frame by Dtðh; bÞ ¼ DlDs=ðcDlsÞð1 þ zlÞs
ðh; bÞ 	 DDtsðh; bÞ=c. with DDt ¼ ð1 þ zlÞDlDs=Dls / H�1

0 the time-delay distance

(Refsdal 1964). According to Fermat’s principle, the images for a given source

position b are formed at the stationary points of sðh; bÞ with respect to variations of

h (Blandford and Narayan 1986).

Note that cluster gravitational lensing is also affected by uncorrelated large-scale

structure projected along the line of sight (e.g., Schneider et al. 1998; Hoekstra

2003; Umetsu et al. 2011a; Host 2012). The intervening large-scale structure in the

universe perturbs the propagation of light from distant background galaxies,

producing small but continuous transverse excursions along the light path. For a

given depth of observations, the impact of such cosmic noise is most important in

the cluster outskirts where the cluster lensing signal is small (Hoekstra 2003; Becker

and Kravtsov 2011; Gruen et al. 2015).
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2.6.2 Convergence and shear

Let us work with local Cartesian coordinates h ¼ ðh1; h2Þ centered on a certain

reference point in the image plane. The local properties of the lens mapping are

described by the Jacobian matrix defined as:

AðhÞ :¼ ob

oh
¼

1 � w;11 � w;12

�w;12 1 � w;22

 !
; ð24Þ

where we have introduced the notation, w;ij ¼ o2w=ohiohj (i; j ¼ 1; 2). Alterna-

tively, we can write the Jacobian matrix as Aij ¼ dij � w;ij (i; j ¼ 1; 2) with dij the

Kronecker delta in two dimensions. This symmetric 2 � 2 Jacobian matrix A can be

decomposed as:

A ¼ ð1 � jÞI� c1r3 � c2r1; ð25Þ

where ra ða ¼ 1; 2; 3Þ are the Pauli matrices (Sect. 2.5); jðhÞ is the lensing con-

vergence responsible for the change in the trace part of the Jacobian matrix

(trðAÞ ¼ 2ð1 � jÞ):

j :¼ 1

2
w;11 þ w;22

� �
¼ 1

2
Mw ð26Þ

with M ¼ $2
h, and (c1; c2) are the two components of the complex shear

cðhÞ :¼ c1ðhÞ þ ic2ðhÞ:

c1 :¼ 1

2
w;11 � w;22

� �
;

c2 :¼ 1

2
w;12 þ w;21

� �
¼ w;12:

ð27Þ

Note that Eq. (26) can be regarded as a two-dimensional Poisson equation,

MwðhÞ ¼ 2jðhÞ. Then, the Green function in the (hypothetical) infinite domain is

M
�1ðh; h0Þ ¼ ln jh� h0j=ð2pÞ,4 so that the convergence is related to the lensing

potential as:

wðhÞ ¼ 1

p

Z
lnðh� h0Þjðh0Þ d2h0: ð28Þ

The Jacobian matrix is expressed in terms of j and c as:

AðhÞ ¼
1 � j� c1 � c2

�c2 1 � jþ c1

� �
: ð29Þ

The determinant of the Jacobian matrix (Eq. (29)) is given as detA ¼ ð1 � jÞ2�
jcj2. In the weak-lensing limit where jjj; jcj � 1, detA ’ 1 � 2j to the first order.

4 Here, we assume that the field size is sufficiently larger than the characteristic angular scale of the

lensing clusters but small enough for the flat-sky assumption to be valid.
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The deformation of the image of an infinitesimal circular source (db ! 0) behind

the lens can be described by the inverse Jacobian matrix A�1 of the lens equation.

In the weak-lensing limit (jjj; jcj � 1), we have:

A�1
� �

ij
’ ð1 þ jÞdij þ Cij ði; j ¼ 1; 2Þ; ð30Þ

where Cij is the symmetric trace-free shear matrix defined by (Bartelmann and

Schneider 2001; Crittenden et al. 2002):

Cij ¼ oioj � dij
1

2
M

� �
wðhÞ; ð31Þ

with oi :¼ o=ohi (i ¼ 1; 2). The shear matrix can be expressed in terms of the Pauli

matrices as C ¼ r3c1 þ r1c2. The first term in Eq. (30) describes the isotropic light

focusing or area distortion in the weak-lensing limit, while the second term induces

an asymmetry in lens mapping. The shear c is responsible for image distortion and

can be directly observed from image ellipticities of background galaxies in the

regime where jjj; jcj � 1 (see Sect. 3). Note that both j and c contribute to the area

and shape distortions in the non-weak-lensing regime.

In Fig. 3, we illustrate the effects of the lensing convergence j and the gravitational

shear c on the angular shape and size of an infinitesimal circular source. The convergence

acting alone causes an isotropic magnification of the image, while the shear deforms it to

an ellipse. Note that the magnitude of ellipticity induced by gravitational shear in the

weak-lensing regime (jcj.0:1) is much smaller than illustrated here.

2.6.3 Magnification

Gravitational lensing describes the deflection of light by gravity. Lensing conserves

the surface brightness of a background source, a consequence of Liouville’s

Source Image

Convergence + Shear

Convergence alone

Grabitational Lensing

Gravitational Lensing

Fig. 3 Illustration of the effects of the convergence j and the shear c on the angular shape and size of a
hypothetical circular source. The convergence acting alone causes an isotropic focusing (magnification)
of the image (dashed circle), while the shear deforms it to an ellipse
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theorem. On the other hand, lensing causes focusing of light rays, resulting in an

amplification of the image flux through the local solid-angle distortion. Lensing

magnification l is thus given by taking the ratio between the lensed to the unlensed

image solid angle as l ¼ dXI=dXS ¼ 1=detA, with:

lðhÞ ¼ 1

½1 � jðhÞ�2 � jcðhÞj2
: ð32Þ

In the weak-lensing limit (jjj; jcj � 1), the magnification factor to the first order is:

lðhÞ ’ 1 þ 2jðhÞ: ð33Þ

The magnitude change at jðhÞ ¼ 0:1 is thus Dm ¼ �ð5=2Þ log10ðlÞ� � 0:2.

2.6.4 Strong- and weak-lensing regimes

The AðhÞ matrix has two local eigenvalues K�ðhÞ at each image position h:

K� ¼ 1 � j� jcj; ð34Þ

with Kþ > K�.

Images with detAðhÞ[ 0 have the same parity as the source, while those with

detAðhÞ\0 have the opposite parity to the source. A set of closed curves defined by

detAðhÞ ¼ 0 in the image plane are referred to as critical curves, on which lensing

magnification formally diverges, and those mapped into the source plane are

referred to as caustics (see Hattori et al. 1999a). The critical curves separate the

image plane into even- and odd-parity regions with detA[ 0 and detA\0,

respectively.

An infinitesimal circular source is transformed to an ellipse with a minor-to-

major axis ratio (6 1) of jK�=Kþj for j\1 and jKþ=K�j for j[ 1, and it is

magnified by the factor jlj ¼ 1=jKþK�j (see Sect. 2.6.3). The gravitational

distortion locally disappears along the curve defined by tr½AðhÞ� ¼ 0, i.e.,

jðhÞ ¼ 1, which lies in the odd-parity region (Kaiser 1995). This is illustrated in

Fig. 4 for a simulated lens with a bimodal mass distribution. Images forming along

the outer (tangential) critical curve K�ðhÞ ¼ 0 are distorted tangentially to this

curve, while images forming close to the inner (radial) critical curve KþðhÞ ¼ 0 are

stretched in the direction perpendicular to the critical curve.

A lens system that has a region with jðhÞ[ 1 can produce multiple images for

certain source positions b, and such a system is referred to as being supercritical.
Note that being supercritical is a sufficient but not a necessary condition for a

general lens to produce multiple images, because the shear can also contribute to

multiple imaging. Nevertheless, this provides us with a simple criterion to broadly

distinguish the regimes of multiple and single imaging. Keeping this in mind, we

refer to the region where jðhÞJ1 as the strong-lensing regime and the region where

jðhÞ � 1 as the weak-lensing regime.
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2.6.5 Critical surface mass density

The lensing convergence j is essentially a distance-weighted mass overdensity

projected along the line of sight. We express jðhÞ due to cluster gravitational

lensing as:

jðhÞ ¼
Z vs

0

ðq� qÞ c2

4pG
Ds

DlDls

� ��1

adv ’ RðhÞ
Rcr

; ð35Þ

where vs is the comoving distance to the source plane; R ¼
R vs

0
ðq� qÞ adv is the

surface mass density field of the lens projected on the sky; and Rcr is the critical

surface mass density of gravitational lensing5:

Rcrðzl; zsÞ ¼
c2

4pG
Ds

DlDls

ð36Þ

for zs [ zl and R�1
cr ðzl; zsÞ ¼ 0 (i.e., Dls=Ds ¼ 0) for an unlensed source with zs 6 zl.

In the second (approximate) equality of Eq. (35), we have explicitly used the thin-

lens approximation (Sect. 2.6.1). The critical surface mass density Rcr depends on

the geometric configuration (zl; zs) of the lens–source system and the background

cosmological parameters, such as (Xm;XK;H0). For example, for zl ¼ 0:3 and zs ¼
1 in our fiducial cosmology, we have Rcr � 4:0 � 1015hM� Mpc�2. For a fixed lens

Fig. 4 Shape distortion field produced by a simulated lens with a bimodal mass distribution. At each grid
point in the image plane (left panel), we have drawn the apparent shape for an intrinsically circular source
using the local deformation factors K� (Eq. (34)). All ellipses have an equal area regardless of the
magnification factor. The right panel shows the j map of the bimodal lens. In both panels, the solid lines
indicate the critical curves. The image distortion disappears locally along the curve j ¼ 1 indicated by the
dashed line, which lies in the negative-parity region

5 In the weak-lensing literature, projected densities and distances are often defined to be in comoving

units. For example, the critical surface mass density for lensing in comoving units, RðcÞ
cr ðzl; zsÞ, is related

to that in physical units, Rcrðzl; zsÞ, as RðcÞ
cr ¼ Rcrð1 þ zlÞ�2

. Similarly, the comoving projected separation

RðcÞ is related to that in physical units, R, as RðcÞ ¼ ð1 þ zlÞR.
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redshift zl, the geometric efficiency of gravitational lensing is determined by the

distance ratio Dls=Ds as a function of zs and the background cosmology.

To translate the observed lensing signal into surface mass densities, one needs an

estimate of Rcrðzl; zsÞ for a given background cosmology. In the regime where

zl � zs (say, zl.0:2 for background galaxy populations at zs � 1), Rcr depends

weakly on the source redshift zs, so that a precise knowledge of the source-redshift

distribution is less critical (e.g., Okabe and Umetsu 2008; Okabe et al. 2010).

Conversely, this distance dependence of the lensing effects can be used to

constrain the cosmological redshift–distance relation by examining the geometric

scaling of the lensing signal as a function of the background redshift (Taylor et al.

2007, 2012; Medezinski et al. 2011; Dell’Antonio et al. 2019). Figure 5 compares

Dls=Ds as a function of zs for various sets of the lens redshift and the cosmological

model.

Note that, in the limit where the lensing matter is continuously distributed along

the line of sight, the first equality of Eq. (35) can be formally rewritten as:

jðhÞ ¼ 3H2
0

2c2
Xm

Z vs

0

dv gðv; vsÞa�1ðvÞd½v; rðvÞh�; ð37Þ

with gðv; vsÞ ¼ rðvÞrðvs � vÞ=rðvsÞ and d ¼ dq=q. Equation (37) coincides with the

expression for the cosmic convergence due to intervening cosmic structures (see

Jain et al. 2000).

It is interesting to compare the above line-of-sight integral (Eq. (37)) to the

thermal Sunyaev–Zel’dovich effect (SZE) in terms of the Compton-y parameter

(e.g., Sunyaev and Zeldovich 1972; Rephaeli 1995; Birkinshaw 1999):

Fig. 5 Distance ratio Dls=Ds as
a function of the source redshift
zs for various sets of the lens
redshift zl and the cosmological
parameters ðXm;XKÞ. The ratio
Dls=Ds is shown for three
different lens redshifts,
zl ¼ 0:2; 0:5, and 0.8 (from left
to right) and for three sets of the
cosmological parameters,
ðXm;XKÞ ¼ ð1; 0Þ; ð0:3; 0Þ, and
(0.3, 0.7)
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y ¼ rT

mec2

Z
nekB Te � TCMBð Þ cdt ’ rT

mec2

Z
Pe cdt; ð38Þ

where rT, me, and kB are the Thomson scattering cross-section, the electron mass,

and the Boltzmann constant, respectively; TCMB ¼ T0ð1 þ zÞ is the temperature of

CMB photons with T0 ¼ 2:725 K; and Te and ne are the electron temperature and

number density of the intracluster gas, with Pe ¼ nekBTe the electron pressure. In

the second (approximate) equality, we have used Te 
 T0ð1 þ zÞ. The Compton-

y parameter is proportional to the electron pressure integrated along the line of sight,

thus probing the thermal energy content of thermalized hot plasmas residing in the

gravitational potential wells of galaxy clusters. The combination of the thermal SZE

and weak lensing thus provides unique astrophysical and cosmological probes (e.g.,

Doré et al. 2001; Umetsu et al. 2009; Osato et al. 2020).

2.6.6 Einstein radius

Detailed strong-lens modeling using many sets of multiple images with measured

spectroscopic redshifts allows us to determine the location of the critical curves

(e.g., Zitrin et al. 2015; Meneghetti et al. 2017), which, in turn, provides accurate

estimates of the projected total mass enclosed by them. In this context, the term

Einstein radius is often used to refer to the size of the outer (tangential) critical

curve (i.e., K�ðhÞ ¼ 0; Sect. 2.6.4). We note, however, that there are several

possible definitions of the Einstein radius used in the literature (see Meneghetti

et al. 2013). Here, we adopt the effective Einstein radius definition (Redlich et al.

2012; Meneghetti et al. 2013, 2017; Zitrin et al. 2015), #Ein ¼
ffiffiffiffiffiffiffiffiffiffi
Ac=p

p
, where Ac is

the (angular) area enclosed by the outer critical curve. For an axisymmetric lens, the

average surface mass density within the critical area is equal to Rcr (see Hattori

et al. 1999; Meneghetti et al. 2013), thus enabling us to directly estimate the

enclosed projected mass by M2Dð\#EinÞ ¼ pðDl#EinÞ2Rcr. Even for general non-

axisymmetric lenses, the projected enclosed mass profile M2Dð\#Þ ¼
RcrD

2
l

R
#0 
# jðh

0Þ d2h0 at the location #�#Ein is less sensitive to modeling

assumptions and approaches (e.g., Umetsu et al. 2012, 2016; Meneghetti et al.

2017), thus serving as a fundamental observable quantity in the strong-lensing

regime (Coe et al. 2010).

3 Basics of cluster weak lensing

In this section, we review the basics of cluster–galaxy weak lensing based on the

thin-lens formalism (Sect. 2.6). Unless otherwise noted, we will focus on subcritical

lensing (i.e., outside the critical curves). We consider both linear (j � 1) and

mildly nonlinear regimes of weak gravitational lensing.
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3.1 Weak-lensing mass reconstruction

3.1.1 Spin operator and lensing fields

For mathematical convenience, we introduce a concept of ‘‘spin’’ for weak-lensing

quantities as follows (Bacon et al. 2006; Okura et al. 2007, 2008; Schneider and Er

2008; Bacon and Schäfer 2009): a quantity is said to have spin N if it has the same

value after rotation by 2p=N. The product of spin-A and spin-B quantities has spin

(Aþ B), and the product of spin-A and spin-B� quantities has spin (A� B), where �
denotes the complex conjugate.

We define a complex spin-1 operator o :¼ o1 þ io2 that transforms as a vector,

o0 ¼ oeiu, with u being the angle of rotation relative to the original basis. Then, the

lensing convergence is expressed in terms of wðhÞ as:

jðhÞ ¼ 1

2
o�owðhÞ; ð39Þ

where oo� ¼ r2
h is a scalar or a spin-0 operator. Similarly, the complex shear

c ¼ c1 þ ic2 	 jcje2i/c is expressed as:

cðhÞ ¼ 1

2
oowðhÞ ¼ D̂wðhÞ; ð40Þ

where

D̂ :¼ oo=2 ¼ ðo2
1 � o2

2Þ=2 þ io1o2 ð41Þ

is a spin-2 operator transforms such that D̂0 ¼ D̂e2iu under a rotation of the basis

axes by u.

3.1.2 Linear mass reconstruction

Since cðhÞ and jðhÞ are both linear combinations of the second derivatives of wðhÞ,
they are related to each other by (Kaiser 1995; Crittenden et al. 2002; Umetsu

2010)6:

MjðhÞ ¼ o�o�cðhÞ ¼ 2D̂�cðhÞ: ð42Þ

The shear-to-mass inversion can thus be formally expressed as:

jðhÞ ¼ M
�1ðh; h0Þ o�o�cðh0Þ½ � ¼ 2D̂�

M
�1ðh; h0Þ cðh0Þ½ �

� �
: ð43Þ

Using M
�1ðh; h0Þ ¼ ln jh� h0j=ð2pÞ (Sect. 2.6.2), Eq. (43) in the flat-sky limit can

be solved to yield the following nonlocal relation between j and c (Kaiser and

Squires 1993, hereafter KS93):

6 An equivalent expression is MjðhÞ ¼ oio jCijðhÞ.
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jðhÞ � j0 ¼ 1

p

Z
d2h0 D�ðh� h0Þcðh0Þ; ð44Þ

where j0 is an additive constant and DðhÞ is a complex kernel defined as:

DðhÞ 	 2pD̂ M
�1ðhÞ

� �
¼ h2

2 � h2
1 � 2ih1h2

jhj4
¼ � 1

ðh1 � ih2Þ2
: ð45Þ

Similarly, the complex shear field can be expressed in terms of the convergence j
as:

cðhÞ ¼ 1

p

Z
d2h0 Dðh� h0Þjðh0Þ: ð46Þ

This linear mass inversion formalism is often referred to as the KS93 algorithm.

It is computationally faster to work in Fourier domain (Jain et al. 2000) using the

fast Fourier transform algorithm. By taking the Fourier transform of Eq. (42), we

have a mass inversion relation in the conjugate Fourier space as:

jðhÞ ¼
Z

d2k

ð2pÞ2
ĵðkÞeik�h;

ĵðkÞ ¼ k2
1 � k2

2 � 2ik1k2

k2
1 þ k2

2

ĉðkÞ ðk 6¼ 0Þ;
ð47Þ

where k is the two-dimensional wave vector conjugate to h, and ĵðkÞ and ĉðkÞ are

the Fourier transforms of jðhÞ and cðhÞ ¼ c1ðhÞ þ ic2ðhÞ, respectively. In practical

applications, one may assume ĵð0Þ ¼ 0 if the angular size of the observed shear

field is sufficiently large, so that the mean convergence across the data field is

approximated to zero. Otherwise, one must explicitly account for the boundary

conditions imposed by the observed shear field to perform a mass reconstruction on

a finite field (e.g., Kaiser 1995; Seitz and Schneider 1996; Bartelmann et al. 1996;

Seitz and Schneider 1997; Umetsu and Futamase 2000).

In Fig. 6, we show the shape distortion field in the rich cluster Cl0024?1654

(zl ¼ 0:395) obtained by Umetsu et al. (2010) from deep weak-lensing observations

taken with Suprime-Cam on the 8.2 m Subaru telescope. They accounted and

corrected for the effect of the weight function used for calculating noisy galaxy

shapes, as well as for the anisotropic and smearing effects of the point spread

function (PSF), using an improved implementation of the modified Kaiser et al.

(1995, hereafter KSB) method (see Sect. 3.4.2). In the left panel of Fig. 7, we show

the jðhÞ field reconstructed from the Subaru weak-lensing data (see Fig. 6). A

prominent mass peak is visible in the cluster center, around which the distortion

pattern is clearly tangential (Fig. 6). In this study, a variant of the linear KS93

algorithm was used to reconstruct the j map from the weak shear lensing data. In

the right panel of Fig. 7, we show the member galaxy distribution RnðhÞ in the

cluster. Overall, mass and light are similarly distributed in the cluster.

Figure 8 shows the projected mass distribution in the very nearby Coma cluster

(zl ¼ 0:0236) reconstructed from a 4 deg2 weak-lensing survey of cluster subhalos
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based on Subaru Suprime-Cam observations (Okabe et al. 2014). In the figure, the

weak-lensing mass map is compared to the luminosity and number density

distributions of spectroscopically identified cluster members, as well as to the

Weak lensing convergence, κ=Σm/Σcrit
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Fig. 7 Comparison of mass and galaxy distributions in the rich cluster Cl0024?1654 (zl ¼ 0:395). Left
panel: projected mass distribution jðhÞ ¼ RðhÞ=Rcr reconstructed from deep weak-lensing data (Fig. 6)
taken with Subaru/Suprime-Cam. Right panel: surface number density distribution RnðhÞ of color–color-
selected cluster member galaxies. The solid circle in each panel indicates the cluster virial radius of

rvir � 1:8h�1Mpc. Both maps are smoothed with a Gaussian of 1:40 FWHM. Also overlaid on the Rn map
is the jðhÞ field shown in the left panel, given in units of 2r reconstruction error from the lowest contour
level of 3r. North is to the top, east to the left. Image reproduced with permission from Umetsu et al.
(2010), copyright by AAS

Fig. 6 Shape distortion field in the rich cluster Cl0024?1654 (zl ¼ 0:395) obtained from deep weak-
lensing observations taken with Subaru/Suprime-Cam. The mean surface number density of background

galaxies after the color–color selection (Sect. 4.1) is ng ¼ 17:2 arcmin�2. A stick with a length of 10%

shear is indicated in the top right corner. The filled circle indicates the FWHM (1.4 arcmin) of the
Gaussian smoothing. The distortion field exhibits a coherent tangential pattern around the cluster center.
Image reproduced with permission from Umetsu et al. (2010), copyright by AAS
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projected large-scale structure model based on galaxy–galaxy lensing with the light-

tracing-mass assumption. The projected mass and galaxy distributions in the Coma

cluster are correlated well with each other. Thanks to the large angular extension of

the Coma cluster, Okabe et al. (2014) measured the weak-lensing masses of 32

cluster subhalos down to the order of 10�3 of the cluster virial mass.

3.1.3 Mass-sheet degeneracy

Adding a constant mass sheet to jðhÞ in the shear-to-mass formula (46) does not

change the shear field cðhÞ that is observable in the weak-lensing limit. This leads to

a degeneracy of solutions for the weak-lensing mass inversion problem, which is

referred to as the mass-sheet degeneracy (Falco et al. 1985; Gorenstein et al. 1988;

Schneider and Seitz 1995).

As we shall see in Sect. 3.4, in general, the observable quantity for weak shear

lensing is not the shear c, but the reduced shear:

gðhÞ ¼ cðhÞ
1 � jðhÞ ð48Þ

in the subcritical regime where detA[ 0 (or 1=g� in the negative-parity region

with detA\0). We see that the gðhÞ field is invariant under the following global

transformation:

Fig. 8 Projected mass distribution (contours) in the Coma cluster at z ¼ 0:0236 reconstructed from a

4 deg2 weak-lensing survey with Subaru Suprime-Cam observations. Left and middle panels: luminosity
and number density distributions of spectroscopically identified cluster members, respectively. Right
panel: projected large-scale structure model based on galaxy–galaxy lensing results. The mean surface

number density of background galaxies after the color–magnitude selection is ng ¼ 41:3 arcmin�2. Image

reproduced with permission from Okabe et al. (2014), copyright by AAS
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jðhÞ ! kjðhÞ þ 1 � k; cðhÞ ! kcðhÞ ð49Þ

with an arbitrary scalar constant k 6¼ 0 (Schneider and Seitz 1995). This transfor-

mation is equivalent to scaling the Jacobian matrix AðhÞ with k, AðhÞ ! kAðhÞ. It

should be noted that this transformation leaves the location of the critical curves

(detAðhÞ ¼ 0) invariant as well. Moreover, the location of the curve defined by

jðhÞ ¼ 1, on which the distortion locally disappears, is left invariant under the

transformation (Eq. (49)). A general conclusion is that all mass reconstruction

methods based on shape information alone can determine the j field only up to a

one-parameter family (k or j0) of linear transformations (Eq. (49)).

In principle, this degeneracy can be broken or alleviated, for example, by

measuring the magnification factor l in the subcritical regime (i.e., outside the

critical curves; see Umetsu 2013), because l transforms under the invariance

transformation (Eq. (49)) as:

lðhÞ ! k�2lðhÞ: ð50Þ

3.1.4 Nonlinear mass reconstruction

Following Seitz and Schneider (1995), we generalize the KS93 algorithm to include

the nonlinear but subcritical regime (outside the critical curves). To this end, we

express the KS93 inversion formula in terms of the observable reduced shear gðhÞ.
Substituting c ¼ gð1 � jÞ in Eq. (44), we have the following integral equation:

jðhÞ � j0 ¼ 1

p

Z
d2h0 D�ðh� h0Þ gðh0Þ ½1 � jðh0Þ�: ð51Þ

For a given gðhÞ field, this nonlinear equation can be solved iteratively, for example,

by initially setting jðhÞ ¼ 0 everywhere (Seitz and Schneider 1995),

Equivalently, Eq. (51) can be formally expressed as a power series expansion

(Umetsu et al. 1999):

jðhÞ � j0 ¼ ð1 � j0Þ Ĝ � Ĝ � Ĝ þ Ĝ � Ĝ � Ĝ � � � �
	 


¼ ð1 � j0Þ
X1
n¼1

ð�1Þn�1Ĝn;
ð52Þ

where Ĝ is the convolution operator defined by:

Ĝðh; h0Þ :¼ 1

p

Z
d2h0 D�ðh� h0Þgðh0Þ � : ð53Þ

Here, Ĝðh; h0Þ acts on a function of h0. The KS93 algorithm corresponds to the first-

order approximation to this power series expansion in the weak-lensing limit. Note

that solutions for nonlinear mass reconstructions suffer from the generalized mass-

sheet degeneracy, as explicitly shown in Eq. (52).
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Note that there is another class of mass inversion algorithms that uses maximum-

likelihood and Bayesian approaches to obtain a mass map solution and its error

covariance matrix from weak-lensing data (e.g., Bartelmann et al. 1996; Bradač

et al. 2006; Merten et al. 2009).

3.2 E/B decomposition

The shear matrix CðhÞ ¼ c1ðhÞr3 þ c2ðhÞr1 that describes a spin-2 anisotropy can

be expressed as a sum of two components corresponding to the number of degrees

of freedom. By introducing two scalar fields wEðhÞ and wBðhÞ, we decompose the

shear matrix Cij (i; j ¼ 1; 2) into two independent modes as (Crittenden et al. 2002):

CðhÞ ¼
c1 c2

c2 � c1

� �
¼ CðEÞðhÞ þ CðBÞðhÞ; ð54Þ

with

CðEÞ
ij ðhÞ ¼ oioj � dij

1

2
M

� �
wEðhÞ;

CðBÞ
ij ðhÞ ¼ 1

2
�kjoiok þ �kiojok
� �

wBðhÞ;
ð55Þ

where �ij is the Levi–Civita symbol in two dimensions, defined such that

�11 ¼ �22 ¼ 0, �12 ¼ ��21 ¼ 1. Here, the first term associated with wE is a gradient

or scalar E component and the second term with wB is a curl or pseudoscalar

B component.

The shear components ðc1; c2Þ are written in terms of wE and wB as:

c1 ¼þ C11 ¼ �C22 ¼ 1

2
wE;11 � wE;22

� �
� wB;12 ð56Þ

c2 ¼C12 ¼ C21 ¼ wE;12 þ
1

2
wB;11 � wB;22

� �
: ð57Þ

As we have discussed in Sect. 3.1.1, the spin-2 cðhÞ field is coordinate dependent

and transforms as c0 ¼ ce2iu under a rotation of the basis axes by u. The E and B
components can be extracted from the shear matrix as:

2r2
hjE 	 r4

hwE ¼ 2oiojCij;

2r2
hjB 	 r4

hwB ¼ 2�ijo
iokCjk;

ð58Þ

where we have defined the E and B fields, jE ¼ ð1=2ÞMwE and jB ¼ ð1=2ÞMwB,

respectively. This technique is referred to as the E/B-mode decomposition. We see

from Eq. (58) that the relations between E/B fields and spin-2 fields are intrinsically

nonlocal. Remembering that the shear matrix due to weak lensing is given as

Cij ¼ ðoioj � dijM=2ÞwðhÞ (i; j ¼ 1; 2), we identify wEðhÞ ¼ wðhÞ and wBðhÞ ¼ 0.

Hence, for a lensing-induced shear field, the E-mode signal is related to the
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convergence j, i.e., the surface mass density of the lens, while the B-mode signal is

identically zero.

Figure 9 illustrates characteristic distortion patterns from E-mode (curl-free) and

B-mode (divergence-free) fields. Weak lensing only produces curl-free E-mode

signals, so that the presence of divergence-free B modes can be used as a null test

for systematic effects. In the weak-lensing regime, a tangential E-mode pattern is

produced by a positive mass overdensity (e.g., halos), while a radial E-mode pattern

is produced by a negative mass overdensity (e.g., cosmic voids).

Now, we turn to the issue of E/B-mode reconstructions from the spin-2 shear

field. Rewriting Eq. (58) in terms of the complex shear c, we find:

MjE ¼ R D�cð Þ;
MjB ¼ I D�cð Þ;

ð59Þ

where RðZÞ and IðZÞ denote the real part and the imaginary part of a complex

variable Z, respectively. Defining j 	 jE þ ijB, we see that the first of Eq. (59) is

identical to the mass inversion formula (Eq. (42)). The B-mode convergence jB can

thus be simply obtained as the imaginary part of Eq. (44), which is expected to

vanish for a purely weak-lensing signal. Moreover, the second of Eq. (59) indicates

that the transformation c0ðhÞ ¼ icðhÞ (c01 ¼ �c2; c
0
2 ¼ c1) is equivalent to an inter-

change operation of the E and B modes of the original maps by j0EðhÞ ¼ �jBðhÞ and

j0BðhÞ ¼ jEðhÞ. Since c is a spin-2 field that transforms as c0 ¼ ce2iu, this operation

is also equivalent to a rotation of each ellipticity by p=4 with each position vector

fixed.

Note that gravitational lensing can induce B modes, for example, when multiple

deflections of light are involved (Sect. 2.5). However, these B modes can be

generated at higher orders and the B-mode contributions coming from multiple

deflections are suppressed by a large factor compared to the E-mode contributions

(see, e.g., Krause and Hirata 2010). In real observations, intrinsic ellipticities of

background galaxies also contribute to weak-lensing shear estimates. Assuming that

intrinsic ellipticities have random orientations in projection space, such an isotropic

ellipticity distribution will yield statistically identical contributions to the E and

E mode

B mode

Fig. 9 Illustration of shape
distortion patterns from E-mode
and B-mode fields. Image
reproduced with permission
from Van Waerbeke and Mellier
(2003)

123

Cluster–galaxy weak lensing Page 25 of 106 7



B modes. Therefore, the B-mode signal provides a useful null test for systematic

effects in weak-lensing observations (Fig. 9).

3.3 Flexion

Flexion is introduced as the next higher order lensing effects responsible for an arc-

like and weakly skewed appearance of lensed galaxies (Goldberg and Bacon 2005;

Bacon et al. 2006) observed in a regime between weak and strong lensing (i.e., a

nonlinear but subcritical regime). Such higher order lensing effects occur when jðhÞ
and cðhÞ are not spatially constant across a source galaxy image. By taking higher

order derivatives of the lensing potential wðhÞ, we can work with higher order

transformations of galaxy shapes by weak lensing (e.g., Massey et al. 2007b; Okura

et al. 2007, 2008; Goldberg and Leonard 2007; Schneider and Er 2008; Viola et al.

2012).

The third-order derivatives of wðhÞ can be combined to form a pair of complex

flexion fields as (Bacon et al. 2006):

F :¼ F1 þ iF2 ¼ 1

2
ooo�w ¼ oj;

G :¼ G1 þ iG2 ¼ 1

2
ooow ¼ oc:

ð60Þ

The first flexion F has spin-1 and the second flexion G has spin-3. The two complex

flexion fields satisfy the following consistency relation:

o�oGðhÞ ¼ ooFðhÞ: ð61Þ

Figure 10 illustrates the characteristic weak-lensing distortions with different spin

values for an intrinsically circular Gaussian source (Bacon et al. 2006).

Fig. 10 Weak-lensing distortions with different spin values increasing from left to right. The convergence
j is a spin-0 quantity, the first flexion F ¼ F1 þ iF2 is spin-1, the shear c ¼ c1 þ ic2 is spin-2, and the
second flexion G ¼ G1 þ iG2 is spin-3. Image reproduced with permission from Bacon et al. (2006),
copyright by the authors
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If the angular size of an image is small compared to the characteristic scale over

which wðhÞ varies, we can locally expand Eq. (13) to the next higher order as:

dbi ¼ Aijdhj þ
1

2
Aij;kdhjdhk þ Oðdh3Þ; ð62Þ

where Aij;k ¼ �w;ijk (i; j; k ¼ 1; 2). The Aij;k matrix can be expressed with a sum of

two terms:

Aij;k ¼ Fijk þ Gijk; ð63Þ

with the spin-1 part Fijk and the spin-3 part Gijk defined by:

Fij1 ¼ � 1

2

3F1 F2

F2 F1

� �
; Fij2 ¼ � 1

2

F2 F1

F1 3F2

� �
; ð64Þ

Gij1 ¼ � 1

2

G1 G2

G2 �G1

� �
; Gij2 ¼ � 1

2

G2 �G1

�G1 �G2

� �
: ð65Þ

Flexion has a dimension of inverse (angular) length, so that the flexion effects

depend on the angular size of the source image. That is, the smaller the source

image, the larger the amplitude of intrinsic flexion contributions (Okura et al. 2008).

The shape quantities affected by the first flexion F alone have spin-1 properties,

while those by the second flexion G alone have spin-3 properties.

Note that, as in the case of the spin-2 shear field, what is directly observable from

higher order image distortions are the reduced flexion effects, F=ð1 � jÞ and

G=ð1 � jÞ (Okura et al. 2007, 2008; Goldberg and Leonard 2007; Schneider and Er

2008), a consequence of the mass-sheet degeneracy.

From Eq. (60), the inversion equations from flexion to j can be obtained as

follows (Bacon et al. 2006):

ðjþ iBÞF ¼M
�1o�F; ð66Þ

ðjþ iBÞG ¼M
�2o�o�o�G; ð67Þ

where the complex part iB describes the B-mode component that can be used to

assess the noise properties of weak-lensing data (e.g., Okura et al. 2008). An

explicit representation for the inversion equations is obtained in Fourier space as:

bjFðkÞ ¼ �i
k1
bF1 þ k2

bF2

k2
1 þ k2

2

;

bjGðkÞ ¼ �i
bG1ðk3

1 � 3k1k
2
2Þ þ bG2ð3k2

1k2 � k3
2Þ

ðk2
1 þ k2

2Þ
2

;

ð68Þ

for k 6¼ 0.

In principle, one can combine independent mass reconstructions bjaðkÞ ða ¼
c;F;GÞ linearly in Fourier space to improve the statistical significance with

minimum noise variance weighting as (Okura et al. 2007):
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bjðkÞ ¼
P

a
bWjjaðkÞbjaðkÞP
a
bWjjaðkÞ

; ð69Þ

where bWjjaðkÞ ¼ 1=P
ðNÞ
ja ðkÞ with P

ðNÞ
jja ðkÞ the two-dimensional noise power spec-

trum of j reconstructed using the observable a:

P
ðNÞ
jjc ðkÞ ¼

P
ðNÞ
c ðkÞ

2
¼

r2
c

2nc
;

P
ðNÞ
jjFðkÞ ¼

P
ðNÞ
F ðkÞ
2k2

¼ r2
F

2nFk
2
;

P
ðNÞ
jjGðkÞ ¼

P
ðNÞ
G ðkÞ
2k2

¼ r2
G

2nGk
2
;

ð70Þ

with P
ðNÞ
a ðkÞ the shot noise power, ra the shape noise dispersion, and na the mean

surface number density of background source galaxies, for the observable a
(a ¼ c;F;G). Assuming that errors in bjaðkÞ between different observables are

independent, the noise power spectrum for the estimator (Eq. (69)) is obtained as

(Okura et al. 2007):

PðNÞ
j ðkÞ ¼ 1P

a
bWaðkÞ

¼ 1P
a 1=P

ðNÞ
jja ðkÞ

: ð71Þ

Figure 11 shows the j field in the central region of the rich cluster Abell 1689

(zl ¼ 0:183) reconstructed from the spin-1 flexion alone (Okura et al. 2008)

measured with Subaru Suprime-Cam data. Okura et al. (2008) used measurements

of higher order lensing image characteristics (HOLICs) introduced by Okura et al.

(2007). Their analysis accounted for the effect of the weight function used for

calculating noisy shape moments, as well as for higher order PSF effects. One can

employ the assumption of random orientations for intrinsic HOLICs of background

Fig. 11 Mass contours of the
rich cluster Abell 1689
(zl ¼ 0:183) reconstructed from
spin-1 flexion measurements
based on Subaru Suprime-Cam
observations, superposed on the
Suprime-Cam Vi0 color image.
The contours are spaced in units
of 1r reconstruction error
estimated from the rms of the B-
mode reconstruction. The field
size is 40 � 40. North is to the top
and east to the left. Image
reproduced with permission
from Okura et al. (2008),
copyright by AAS
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galaxies to obtain a direct estimate of flexion, in a similar manner to the usual

prescription for weak shear lensing. Okura et al. (2008) utilized the Fourier-space

relation (Eq. (68)) between FðhÞ and jðhÞ with the linear weak-lensing approxi-

mation. The B-mode convergence field was used to monitor the reconstruction error

in the j map. The reconstructed j map exhibits a bimodal feature in the central

region of the cluster. The pronounced main peak is associated with the brightest

cluster galaxy (BCG) and central cluster members, while the secondary mass peak is

associated with a local concentration of bright galaxies.

Note that, as discussed in Viola et al. (2012), there is a cross-talk between shear

and flexion arising from shear–flexion coupling terms, which makes quantitative

measurements of flexion challenging.

3.4 Shear observables

Since the pioneering work of Kaiser et al. (1995), numerous methods have been

proposed and implemented in the literature to accurately extract the lensing signal

from noisy pixelized images of background galaxies (e.g., Kuijken 1999; Bridle

et al. 2002; Bernstein and Jarvis 2002; Refregier 2003; Hirata and Seljak 2003;

Miller et al. 2007). On the other hand, considerable progress has been made in

understanding and controlling systematic biases in noisy shear estimates by relying

on realistic galaxy image simulations (e.g., Heymans et al. 2006; Massey et al.

2007a; Refregier et al. 2012; Kacprzak et al. 2012; Mandelbaum et al.

2014, 2015, 2018a).

Here, we will review the basic idea and essential aspects of the moment-based

KSB formalism. We refer the reader to Mandelbaum (2018) for a recent exhaustive

review on the subject.

3.4.1 Ellipticity transformation by weak lensing

In a moment-based approach to weak-lensing shape measurements, we use

quadrupole moments Qij (i; j ¼ 1; 2) of the surface brightness distribution IðhÞ of

background galaxy images to quantify the shape of the images as (Kaiser et al.

1995):

Qij 	
R

d2h qI ½IðhÞ�DhiDhjR
d2h qI ½IðhÞ�

; ð72Þ

where qI ½IðhÞ� is a weight function and Dhi ¼ hi � hi denotes the offset vector from

the image centroid. Here, we assume that the weight qI does not explicitly depend

on h, but is set by the local value of the brightness IðhÞ (Bartelmann and Schneider

2001). The trace of Qij describes the angular size of the image, while the traceless

part describes the shape and orientation of the image. With the quadrupole moments

Qij, we define the complex ellipticity e ¼ e1 þ ie2 as7:

7 Note that there are different definitions of ellipticity in the literature, which lead to different

transformation laws between the image ellipticity and the shear (Bartelmann and Schneider 2001).
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e 	 Q11 � Q22 þ 2iQ12

Q11 þ Q22

: ð73Þ

For an ellipse with a minor-to-major axis ratio of q ð6 1Þ, jej ¼ ð1 � q2Þ=ð1 þ q2Þ.
The spin-2 ellipticity e (Eq. (73)) transforms under the lens mapping as:

eðsÞ ¼ e� 2gþ e�g2

1 þ jgj2 � 2Rðe�gÞ
; ð74Þ

where eðsÞ is the unlensed intrinsic ellipticity and g ¼ c=ð1 � jÞ is the spin-2

reduced shear. Since e is a nonzero spin quantity with a direction dependence, the

expectation value of the intrinsic source ellipticity eðsÞ is assumed to vanish, i.e.,

EðeðsÞÞ ¼ 0, where EðXÞ denotes the expectation value of X. Schneider and Seitz

(1995) showed that Eq. (74) with the condition EðeðsÞÞ ¼ 0 is equivalent to:

0 ¼
X
n

wn
en � dg

1 �Rðe�ndgÞ
; ð75Þ

where en is the image ellipticity for the nth object, wn is a statistical weight for the

nth object, and dg is the spin-2 complex distortion (Schneider and Seitz 1995):

dg 	
2g

1 þ jgj2
: ð76Þ

Note that the complex distortion dg is invariant under the transformation g ! 1=g�.

For an intrinsically circular source with eðsÞ ¼ 0, we have:

e ¼ dg ¼
2g

1 þ jgj2
: ð77Þ

On the other hand, in the weak-lensing limit (jjj; jcj � 1), Eq. (74) reduces to

eðsÞ ’ e� 2g ’ e� 2c. Assuming random orientations of source galaxies, we

average observed ellipticities over a local ensemble of source galaxies to obtain:

c ’ g ’ EðeÞ
2

: ð78Þ

For an input signal of g ¼ 0:1, Eq. (77) yields e � 0:198. Hence, the weak-lensing

approximation (Eq. (78)) gives a reduced-shear estimate of gðestÞ � 0:099, corre-

sponding to a negative bias of 1%. For g ¼ 0:2 in the mildly nonlinear regime,

Eq. (78) gives gðestÞ � 0:192, corresponding to a negative bias of 4%.

In real observations, the reduced shear g may be estimated from a local ensemble

average of background galaxies as hgi ’ hei=2. The statistical uncertainty in the

reduced-shear estimate hgi decreases with increasing the number of background

galaxies N (see Sect. 4.2 for more details) as / r=
ffiffiffiffi
N

p
, with r the dispersion of

background image ellipticities (dominated by the intrinsic shape noise). Weak-

lensing analysis thus requires a large number of background galaxies to increase the

statistical significance of the shear measurements.
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3.4.2 The KSB algorithm: a moment-based approach

For a practical application of weak shear lensing, we must account for various

observational and instrumental effects, such as the impact of noise on the galaxy

shape measurement (both statistical and systematic uncertainties), the isotropic

smearing component of the PSF, and the effect of instrumental PSF anisotropy.

Therefore, one cannot simply use Eq. (78) to measure the shear signal from

observational data.

A more robust estimate of the shape moments (Eq. (72)) is obtained using a

weight function WðjhjÞ that depends explicitly on the separation jhj from the image

centroid. In the KSB approach, a circular Gaussian that is matched to the size of

each object is used as a weight function (Kaiser et al. 1995). The quadrupole

moments obtained with such a weight function WðjhjÞ suffer from an additional

smearing and do not obey the transformation law (Eq. (74)). Therefore, the

expectation value EðeÞ of the image ellipticity is different from the distortion dg ¼
2g=ð1 þ jgj2Þ (see Eq. (77)).

The KSB formalism (Kaiser et al. 1995; Hoekstra et al. 1998) accounts explicitly

for the Gaussian weight function used for measuring noisy shape moments, the

effect of spin-2 PSF anisotropy, and the effect of isotropic PSF smearing. The KSB

formalism and its variants assume that the PSF can be described as an isotropic

function convolved with a small anisotropic kernel. In the limit of linear response to

lensing and instrumental anisotropies, KSB derived the transformation law between

intrinsic (unlensed) and observed (lensed) complex ellipticities, eðsÞ and e,

respectively. The linear transformation between intrinsic and observed complex

ellipticities can be formally expressed as (Kaiser et al. 1995; Hoekstra et al. 1998;

Bartelmann and Schneider 2001):

ei ¼ e
ðsÞ
i þ Cgð Þijgj þ Cqð Þijqj ði; j ¼ 1; 2Þ; ð79Þ

where qi denotes the spin-2 PSF anisotropy kernel, ðCqÞij is a linear response matrix

for the PSF anisotropy qi, ðCgÞij is a linear response matrix for the reduced shear gi.

The PSF anisotropy kernel and the response matrices can be calculated from

observable weighted shape moments of galaxies and stellar objects (Kaiser et al.

1995; Bartelmann and Schneider 2001; Erben et al. 2001). In real observations, the

PSF anisotropy kernel qðhÞ can be estimated from image ellipticities e� observed for

a sample of foreground stars for which eðsÞ and g vanish, so that qiðhÞ ¼ ðCqÞ�1
ij e�j .

Assuming that the expectation value of the intrinsic source ellipticity vanishes

E½eðsÞ� ¼ 0, we find the following linear relation between the reduced shear and the

ensemble-averaged image ellipticity:

gi ¼ E Cgð Þ�1
ij ðe� CqqÞj

h i
ði; j ¼ 1; 2Þ: ð80Þ

In the KSB formalism, the shear response matrix Cg is denoted as Pg (or Pc) and

dubbed pre-seeing shear polarizability. Similarly, Cq is denoted as Psm and dubbed

smear polarisability.
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A careful calibration of the signal response Pg is essential for any weak shear

lensing analysis that relies on accurate shape measurements from galaxy images

(see Mandelbaum 2018). The levels of shear calibration bias are often quantified in

terms of a multiplicative bias factor m and an additive calibration offset c through

the following relation between the true input shear signal, gtrue, and the recovered

signal, gobs (Heymans et al. 2006; Massey et al. 2007a; Mandelbaum et al. 2014):

gobs
i ¼ ð1 þ miÞgtrue

i þ ci ði ¼ 1; 2Þ; ð81Þ

The original KSB formalism, when applied to noisy observations, is known to suffer

from systematic biases that depend primarily on the size and the detection signal-to-

noise ratio (S/N) of galaxy images (e.g., Erben et al. 2001; Refregier et al. 2012).

Different variants of the Kaiser et al. (1995) method (KSB?) have been developed

and implemented in the literature primarily to study mass distributions of high-mass

galaxy clusters (e.g., Hoekstra et al. 1998, 2015; Clowe et al. 2004; Umetsu et al.

2010, 2014; Oguri et al. 2012; von der Linden et al. 2014a; Okabe and Smith 2016;

Schrabback et al. 2018). Note that KSB? pipelines calibrated against realistic

image simulations of crowded fields can achieve a � 2% shear calibration accuracy

even in the cluster lensing regime (e.g., Herbonnet et al. 2019; Hernández-Martı́n

et al. 2020).

3.5 Tangential- and cross-shear components

As we have seen in Sect. 3.1, the spin-2 shear components c1 and c2 are coordinate

dependent, defined relative to a reference Cartesian coordinate frame (chosen by the

observer). It is useful to consider components of the shear that are coordinate

independent with respect to a certain reference point, such as the cluster center.

We define a polar coordinate system (#;u) centered on an arbitrary point hc on

the sky, such that h ¼ ð# cosu; # sinuÞ þ hc. The convergence jð#Þ averaged

within a circle of radius # about hc is then expressed as:

jð#Þ :¼ 2

#2

Z #

0

d#0 #0jð#0Þ 	 Rð#Þ
Rcr

;

jð#Þ :¼
I

du
2p

jð#;uÞ 	 Rð#Þ
Rcr

;

ð82Þ

where Rð#Þ is the surface mass density averaged within a circle of radius # about hc

and Rð#Þ is the surface mass density averaged over a circle of radius # about hc. The

reference point hc can be taken to be the cluster center, which can be determined

from symmetry of the strong-lensing pattern, the X-ray centroid position, or the

BCG position.

Let us introduce the tangential and 45�-rotated cross-shear components, cþðhÞ
and c�ðhÞ, respectively, defined relative to the position hc as:
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cþðhÞ ¼ �c1ðhÞ cosð2uÞ � c2ðhÞ sinð2uÞ;
c�ðhÞ ¼ þc1ðhÞ sinð2uÞ � c2ðhÞ cosð2uÞ;

ð83Þ

which are directly observable in the weak-lensing limit where jjj; jcj � 1 (see

Sect. 3.4). Using the two-dimensional version of Gauss’ theorem, we find the fol-

lowing identity for an arbitrary choice of hc (Kaiser 1995):

cþð#Þ :¼
I

du
2p

cþð#;uÞ ¼ jð#Þ � jð#Þ 	 DRð#Þ
Rcr

;

c�ð#Þ :¼
I

du
2p

c�ð#;uÞ ¼ 0;

ð84Þ

where we have defined the excess surface mass density DRð#Þ around hc as a

function of # by (Miralda-Escude 1991):

DRð#Þ ¼ Rð#Þ � Rð#Þ: ð85Þ

From Eqs. (82) and (84), we find:

djð#Þ
d ln#

¼ �2cþð#Þ: ð86Þ

Equation (84) shows that, given an arbitrary circular loop of radius # around the

chosen center hc, the tangential and cross-shear components averaged around the

loop extract E-mode and B-mode distortion patterns (Sect. 3.2).

An important implication of the first of Eq. (84) is that, with tangential shear

measurements from individual source galaxies (see Sect. 3.4), one can directly

determine the azimuthally averaged DRð#Þ profile around lenses in the weak-

lensing regime, even if the mass distribution RðhÞ is not axis-symmetric around hc.

Moreover, the second of Eq. (84) tells us that the azimuthally averaged �
component, or the B-mode signal, is expected to be statistically consistent with zero

if the signal is due to weak lensing. Therefore, a measurement of the B-mode signal

hg�ð#Þi provides a useful null test against systematic errors.

3.6 Reduced tangential shear

3.6.1 Azimuthally averaged reduced tangential shear

The reduced tangential shear gþð#Þ averaged over a circle of radius # about an

arbitrary reference point hc is expressed as:

gþð#Þ :¼
I

du
2p

gþð#;uÞ ¼
I

du
2p

cþð#;uÞ
1 � jð#;uÞ : ð87Þ

If the projected mass distribution around a cluster has quasi-circular symmetry (e.g.,

elliptical symmetry), then the azimuthally averaged reduced tangential shear

hgþð#Þi around the cluster center can be interpreted as:
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gþð#Þ ’
cþð#Þ

1 � jð#Þ ; ð88Þ

where cþð#Þ and jð#Þ are the tangential shear and the convergence, respectively,

averaged over a circle of radius # about hc.

According to N-body simulations in hierarchical KCDM models of cosmic

structure formation, dark-matter halos exhibit aspherical mass distributions that can

be well approximated by triaxial mass models (e.g., Jing and Suto 2002; Limousin

et al. 2013; Despali et al. 2014). Since triaxial halos have elliptical isodensity

contours in projection on the sky (Stark 1977), Eq. (88) can give a good

approximation to describe the weak-lensing signal for regular clusters with a modest

degree of perturbation. However, the approximation is likely to break down for

merging and interacting lenses having complex, multimodal mass distributions. To

properly model the weak-lensing signal in such a complex merging system, one

needs to directly model the two-dimensional reduced-shear field ðg1ðhÞ; g2ðhÞÞ with

a lens model consisting of multicomponent halos (e.g., Watanabe et al. 2011; Okabe

et al. 2011; Medezinski et al. 2013). Alternatively, one may attempt to reconstruct

the convergence field jðhÞ in a free-form manner from the observed reduced shear

field, with additional constraints or assumptions to break the mass-sheet degeneracy

(e.g., Jee et al. 2005; Bradač et al. 2006; Merten et al. 2009; Jauzac et al. 2012;

Umetsu et al. 2015; Tam et al. 2020).

On the other hand, for a statistical ensemble of galaxy clusters, the average mass

distribution around their centers tends to be spherically symmetric if the assumption

of statistical isotropy holds (e.g., Okabe et al. 2013). Hence, the stacked weak-

lensing signal for a statistical ensemble of clusters can be interpreted using Eq. (88).

For more details, see Sects. 3.6.4 and 4.5.

3.6.2 Source-averaged reduced tangential shear

With the assumption of quasi-circular symmetry in the projected mass distribution

around clusters (see Eq. (88)), let us consider the nonlinear effects on the source-

averaged cluster lensing profiles. The reduced tangential shear for a given lens–

source pair is written as:

gþð#jzl; zsÞ ¼ DRð#Þ
X1
n¼0

R�1
cr ðzl; zsÞ

� �nþ1
Rnð#Þ: ð89Þ

To begin with, let us consider the expectation value for the reduced tangential shear

averaged over an ensemble of source galaxies. For a given cluster, the source-

averaged reduced tangential shear is expressed as:

hgþð#jzlÞi ¼ DR hR�1
cr;li þ hR�2

cr;liRþ hR�3
cr;liR2 þ � � �

h i
; ð90Þ

where h� � �i denotes the averaging over all sources, defined such that:
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hR�n
cr;li ¼

X
s

wsR
�n
cr;ls

 ! X
s

ws

 !�1

; ð91Þ

where the index s runs over all source galaxies around the lens (l) and ws is a

statistical weight for each source galaxy. An optimal choice for the statistical weight

is ws ¼ 1=r2
gþ;s

, with rgþ;s the statistical uncertainty of gþð#jzl; zsÞ estimated for

each source galaxy. Note that this choice for the weight assumes that rgþ;s is

independent of the lensing shear signal (see Schneider and Seitz 1995; Seitz and

Schneider 1995). In the continuous limit, Eq. (91) is written as:

hR�n
cr;li ¼

Z 1

0

dz
dNðzÞ

dz
wðzÞR�n

cr ðzl; zÞ
� � Z 1

0

dz
dNðzÞ

dz
wðzÞ

� ��1

; ð92Þ

with dNðzÞ=dz the redshift distribution function of the source sample and w(z) a

statistical weight function. For a given cluster lens, R�1
cr ðzl; zsÞ / Dls=Ds, so that

hR�n
cr;li / hðDls=DsÞni.
In the weak-lensing limit, Eq. (90) gives hgþi ’ hcþi. The next order of

approximation is given by (Seitz and Schneider 1997):

hgþi ’
hcþi

1 � flhji
;

fl ¼
hR�2

cr;li
hR�1

cr;li
2
:

ð93Þ

From Eq. (93), we see that an interpretation of the averaged weak-lensing signal

hgþð#jzlÞi does not require knowledge of individual source redshifts. Instead, it

requires ensemble information regarding the statistical redshift distribution dN(z)/dz
of background source galaxies used for weak-lensing measurements.

For a lens at sufficiently low redshift (see Sect. 2.6.5), fl � 1, thus leading to the

single source-plane approximation: hgþi ’ hcþi=ð1 � hjiÞ. The level of bias

introduced by this approximation is Dhgþi=hgþi ’ ðfl � 1Þhji. In typical ground-

based deep observations of zl � 0:4 clusters, Dfl ¼ fl � 1 is found to be of the order

of several percent (Umetsu et al. 2014), so that the relative error Dhgþi=hgþi is

negligibly small in the mildly nonlinear regime of cluster lensing.

3.6.3 Source-averaged excess surface mass density

Next, let us consider the following estimator for the excess surface mass density

DRð#Þ for a given lens–source pair:

DRþð#jzl; zsÞ :¼ Rcrðzl; zsÞgþð#jzl; zsÞ: ð94Þ

This assumes that an estimate of R�1
cr ðzl; zsÞ for each individual source galaxy is

available, for example, from photometric-redshift (photo-z) measurements. This

estimator is widely used in recent cluster weak-lensing studies thanks to the
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availability of multiband imaging data and the advances in photo-z techniques (see

Sect. 4.1).

In real observations, if the photo-z probability distribution function (PDF), PsðzÞ,
is available for individual source galaxies (s), one can calculate:

R�1
cr;ls 	

Z
dz PsðzÞR�1

cr ðzl; zÞ
� � Z

dz PsðzÞ
� ��1

ð95Þ

averaged over the PDF for each source galaxy. Similarly to Eq. (90), DRþð#jzl; zsÞ
averaged over all sources is expressed as:

hDRþi ¼ DR 1 þ hR�1
cr;liRþ hR�2

cr;liR2 þ � � �
h i

ð96Þ

with

hR�n
cr;li ¼

X
s

wlsR
�n
cr;ls

 ! X
s

wls

 !�1

; ð97Þ

where the index s runs over all source galaxies around the lens (l) and wls is a

statistical weight for each source galaxy. An optimal choice for the statistical weight

is:

wls ¼ R�2
cr;ls=r

2
gþ;s

; ð98Þ

where rgþ;s is the statistical uncertainty of gþð#jzl; zsÞ estimated for each source

galaxy (Sect. 3.6.2).

In the weak-lensing limit, we thus have hDRþi ’ DR. The next order of

approximation is:

hDRþi ’
DR

1 � hR�1
cr;liR

: ð99Þ

3.6.4 Lens–source-averaged excess surface mass density

Finally, we consider an ensemble of galaxy clusters. Now, let DR be the ensemble

mass distribution of these clusters. Then, DRþ averaged over all lens–source (ls)
pairs is expressed as (Johnston et al. 2007):

hhDRþii ¼ DR 1 þ hhR�1
cr iiRþ hhR�2

cr iiR2 þ :::
� �

ð100Þ

with

hhR�n
cr ii ¼

X
l;s

wlsR
�n
cr;ls

 ! X
l;s

wls

 !�1

; ð101Þ

where hh� � �ii denotes the averaging over all lens–source pairs, the double sum-

mation is taken over all clusters (l) and all source galaxies (s), and wls is a statistical

123

7 Page 36 of 106 K. Umetsu



weight for each lens–source pair (ls). An optimal choice for the statistical weight is

given by Eq. (98).

Again, the weak-lensing limit yields hhDRþii ’ DR and the next order of

approximation is given by (Umetsu et al. 2014, 2020):

hhDRþii ’
DR

1 � hhR�1
cr iiR

: ð102Þ

Equation (102) can be used to interpret the stacked weak-lensing signal including

the nonlinear regime of cluster lensing. In Sect. 4.5, we provide more details on the

stacked weak-lensing methods.

3.7 Aperture mass densitometry

In this subsection, we introduce a nonparametric technique to infer a projected total

mass estimate from weak shear lensing observations. Integrating Eq. (86) between

two concentric radii #in and #outð[#inÞ, we obtain an expression for the f statistic

as (Fahlman et al. 1994; Kaiser 1995; Squires and Kaiser 1996):

fð#in; #outÞ :¼ jð#inÞ � jð#in; #outÞ

¼ 2

1 � ð#in=#outÞ2

Z #out

#in

d ln#0 cþð#0Þ;
ð103Þ

where jð#in; #outÞ is the convergence averaged within a concentric annulus between

#in and #out:

jð#in; #outÞ :¼
1

pð#2
out � #2

inÞ

Z #out

#in

d#0 #0jð#0Þ: ð104Þ

In the weak-lensing regime where cþð#Þ ’ gþð#Þ, f can be determined uniquely

from the shape distortion field in a finite annular region at #in 6 h 6 #out,

because additive constants j0 from the invariance transformation (Eq. (49)) cancel

out in Eq. (103). Note that this technique is also referred to as aperture mass
densitometry.

Since galaxy clusters are highly biased tracers of the cosmic mass distribution,

jð#in; #outÞ around a cluster is expected to be positive, so that fð#in; #outÞ yields a

lower limit to jð#inÞ. That is, the quantity Mf 	 pðDl#inÞ2Rcrfð#in; #outÞ yields a

lower limit to the projected mass inside a circular aperture of radius #in,

M2D ¼ pðDl#inÞ2Rð#inÞ. This technique provides a powerful means to estimate the

total cluster mass from shear data in the weak-lensing regime jcj � 1.

We now introduce a variant of aperture mass densitometry defined as (Clowe

et al. 2000):
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fcð#j#in; #outÞ :¼ jð#Þ � jð#in; #outÞ

¼ 2

Z #in

#

d ln#0 cþð#0Þ þ 2

1 � ð#in=#outÞ2

Z #out

#in

d ln#0 cþð#0Þ;

ð105Þ

where the aperture radii ð#; #in; #outÞ satisfy #\#in\#out, and the first and second

terms in the second line of Eq. (105) are equal to jð#Þ � jð#inÞ and

jð#inÞ � jð#in; #outÞ, respectively. In the weak-lensing limit, the quantity

Mfc
ð\#Þ 	 pðDl#Þ2Rcrfcð#j#in; #outÞ ð106Þ

yields a lower limit to the projected mass inside a circular aperture of radius #, that

is:

M2Dð\#Þ ¼ pðDl#Þ2Rð#Þ: ð107Þ

We can regard fcð#j#in; #outÞ as a function of # for fixed values of ð#in; #outÞ and

measure fcð#j#in; #outÞ at several independent aperture radii #. As in the case of the

standard f statistic (Eq. (103)), one may choose the inner and outer annular radii

(#in; #out) to lie in the weak-lensing regime where gþ ’ cþ. In general, however, #
may lie in the nonlinear regime where cþ is not directly observable. In the sub-

critical regime, we can express cþð#Þ in terms of the observed reduced tangential

shear gþð#Þ as:

cþð#Þ ¼ gþð#Þ½1 � jð#Þ�; ð108Þ

when assuming a quasi-circular symmetry in the projected mass distribution

(Sect. 3.6). If these conditions are satisfied, for a given boundary condition

j0 	 jð#in; #outÞ, Eq. (105) can be solved iteratively as (Umetsu et al. 2010):

fðnþ1Þ
c ð#j#in; #outÞ ¼ 2

Z #in

#

d ln#0 gþð#0Þ 1 � jðnÞð#0Þ
h i

þ 2

1 � ð#in=#outÞ2

Z #out

#in

d ln#0 gþð#0Þ;

jðnÞð#Þ ¼ L̂fðnÞc ð#j#in; #outÞ þ j0;

ð109Þ

where we have introduced a differential operator defined as L̂ð#Þ ¼ 1
2#2

d
d ln#

#2 that

satisfies L̂jð#Þ ¼ jð#Þ and L̂1 ¼ 1, and the quantities indexed by (n) refer to those

in the nth iteration (n ¼ 0; 1; 2; . . .).
We solve a discretized version of Eq. (109). See Appendix A of Umetsu et al.

(2016) for discretized expressions for gþð#Þ and jð#Þ. One can start the iteration

process with an initial guess of jð0Þð#Þ ¼ 0 for all # bins and repeat it until

convergence is reached in all # bins. This procedure will yield a solution for the

binned mass profile:
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jð#Þ ¼ fcð#j#in; #outÞ þ j0; ð110Þ

for a given value of j0. Note that the errors for the mass profile solution in different

radial bins are correlated. The bin-to-bin error covariance matrix Cbb0 	
Cov½jð#bÞ; jð#b0 Þ� (b; b0 ¼ 1; 2; . . .) can be calculated with the linear approximation

jð#Þ � 1 in Eq. (109), by propagating the errors for the binned gþð#Þ profile (e.g.,

Okabe and Umetsu 2008; Umetsu et al. 2010; Okabe et al. 2010).

Alternatively, one can attempt to determine the boundary term j0 from shear data

by incorporating additional iteration loops. Starting with an initial guess of j0 ¼ 0,

one can update the value of j0 in each iteration using a specific mass model (e.g., a

power-law profile) that best fits the binned jð#Þ profile. This iteration procedure is

repeated until convergence is obtained (see Umetsu et al. 2010).

4 Standard shear analysis methods

In this section, we outline procedures to obtain cluster mass estimates from

azimuthally averaged reduced tangential shear measurements for a given galaxy

cluster.

Fig. 12 Stacked weak-lensing profiles around CAMIRA clusters from the Subaru HSC survey, shown as
a function of cluster-centric comoving radius R. This figure compares different source-selection methods
for two different richness bins (left for 20 6 N 6 50 and right or 50 6 N 6 200). Upper panels show the
excess surface mass density profile hhDRþii; middle panels show the 45�-rotated component, expected to
be consistent with zero; and lower panels show the effective number density of source galaxies. All
quantities in this figure were calculated using photo-z PDFs of individual source galaxies, P(z) (see also
Sect. 3.6.3). Different lines in each panel show different source-selection schemes: using all galaxies
incorporating their P(z) (black), using P-cut selected galaxies (for which 98% of P(z) lies behind zl þ 0:2;
cyan), or CC-cut-selected galaxies (blue). Weak-lensing S/N values for each selection are given in the
legend of each panel. Image reproduced with permission from Medezinski et al. (2018b), copyright by the
author
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4.1 Background source selection

A critical source of systematics in weak lensing comes from accurately estimating

the redshift distribution of background source galaxies, which is needed to convert

the lensing signal into physical mass units (Medezinski et al. 2018b). Contamina-

tion of background samples by unlensed foreground and cluster galaxies with

R�1
cr ðzl; zsÞ ¼ 0, when not accounted for, leads to a systematic underestimation of the

true lensing signal. Inclusion of foreground galaxies produces a dilution of the

lensing signal that does not depend on the cluster-centric radius. In contrast, the

inclusion of cluster galaxies significantly dilutes the lensing signal at smaller cluster

radii and causes an underestimation of the concentration of the cluster mass profile

(Broadhurst et al. 2005b), as well as of the halo mass MD, especially at higher

overdensities D. The level of contamination by cluster galaxies increases with the

cluster mass or richness (see Fig. 12). A secure selection of background galaxies is

thus key for obtaining accurate cluster mass estimates from weak gravitational

lensing (Medezinski et al. 2007, 2010, 2018b; Umetsu and Broadhurst 2008; Okabe

et al. 2013; Gruen et al. 2014).

In real observations, acquiring spectroscopic redshifts for individual source

galaxies is not feasible, particularly to the depths of weak-lensing observations.

Instead of spectroscopic redshifts, photo-zs can be used when multiband imaging is

available. Cluster weak-lensing studies, however, often rely on two to three optical

bands for deep imaging (e.g., Broadhurst et al. 2005b; Medezinski et al. 2010;

Oguri et al. 2012; Okabe and Smith 2016), so that reliable photo-zs could not be

obtained. Instead, well-calibrated field photo-z catalogs, such as COSMOS (Ilbert

et al. 2009; Laigle et al. 2016), were used to determine the redshift distribution

dNðzÞ=dz of background galaxies for a given color–magnitude selection (Medezin-

ski et al. 2010; Okabe et al. 2010). Such field surveys are often limited to deep but

small areas and thus subject to cosmic variance.

Dedicated wide-area optical surveys, such as the Hyper Suprime-Cam Subaru

Strategic Program (HSC-SSP; Miyazaki et al. 2018a; Aihara et al. 2018a, b), the

Dark Energy Survey (DES; Abbott et al. 2018), and the upcoming Large Synoptic

Survey Telescope (LSST; Ivezic et al. 2008), are designed to observe in several

broad bands, so that photo-zs are better determined. These photo-z estimates will

still suffer from a large fraction of outliers due to inherent color–redshift

degeneracies, as limited by a finite number of broad optical bands. The photo-

z uncertainties are folded in by incorporating the full PDF for each source galaxy

(Applegate et al. 2014). However, photo-z PDFs are often sensitive to the assumed

priors. Moreover, the accuracy of photo-z PDFs will be limited by the

representability of spectroscopic-redshift samples used for calibration. Alternative

approaches rely on more stringent color cuts to reject objects with biased photo-zs
(Medezinski et al. 2010, 2011; Umetsu et al. 2010, 2012, 2014; Okabe et al. 2013),

which, however, lead to lower statistical power, because they result in lower source

galaxy densities.

Using the first-year CAMIRA (Cluster finding Algorithm based on Multiband

Identification of Red-sequence gAlaxies; Oguri et al. 2018) catalog of � 900
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clusters (0:1\zl\1:1) with richness N > 20 found in � 140 deg2 of HSC-SSP

survey data, Medezinski et al. (2018b) investigated robust source-selection methods

for cluster weak lensing. They compared three different source-selection schemes:

(1) relying on photo-z’s and their full PDFs P(z) to correct for dilution (all), (2)

selecting background galaxies in color–color space (CC-cut), and (3) selection of

robust photo-z’s by applying constraints on their cumulative PDF (P-cut). All three

methods use photo-z PDFs of individual source galaxies, P(z), to convert the lensing

signals into physical mass units. With perfect P(z) information, all these methods

should thus yield consistent, undiluted hhDRþðRÞii profiles. After applying basic

quality cuts, Medezinski et al. (2018b) found the typical mean unweighted galaxy

number density in the HSC shape catalog to be ng ¼ 21:7 arcmin�2. Similarly, they

found ng ¼ 11:6 arcmin�2 and ng ¼ 13:8 arcmin�2 for cluster lenses at zl\0:4 using

the CC-cut and P-cut methods, respectively.

Medezinski et al. (2018b) showed that simply relying on the photo-z PDFs (all)

results in a hhDRþii profile that suffers from dilution due to residual contamination

by cluster galaxies. Using proper limits, the CC- and P-cut methods give consistent

hhDRþii profiles with minimal dilution. Differences are only seen for rich clusters

with N > 50, where the P-cut method produces a slightly diluted signal in the

innermost radial bin compared to the CC-cuts (see Fig. 12). Employing either the P-

cut or CC-cut selection results in cluster contamination consistent with zero to

within the 0.5% uncertainties. For more details on the source-selection methods, we

refer the reader to Medezinski et al. (2018b) and references therein. An alternative

approach to correct for dilution of the lensing signal is to statistically estimate the

level of contamination and subtract it off (e.g., Varga et al. 2019), in which the

effect of magnification bias must be properly taken into account (see Sect. 5).

4.2 Tangential shear signal

Here, we describe a procedure to derive azimuthally averaged radial profiles of the

tangential (þ) and cross (�) shear components around a given cluster lens at a

certain redshift, zl. Specifically, we calculate for each cluster the lensing profiles,

fhgþð#bÞigNbin

b¼1 and fhg�ð#bÞigNbin

b¼1, in Nbin discrete cluster-centric bins spanning the

range # 2 ½#min; #max�.
Since weak shear measurements of individual background galaxies (Eq. (80)) are

very noisy, we calculate the weighted average of the source ellipticity components

as:

hgþð#bi ¼
P

s2b ws gþ;sP
s2b ws

;

hg�ð#bÞi ¼
P

s2b ws g�;sP
s2b ws

;

ð111Þ

where the summation is taken over all source galaxies (s) that lie in the bin (b); gþ;s

and g�;s represent the tangential and 45�-rotated cross components of the reduced

shear (Eq. (83)), respectively, estimated for each source galaxy; and ws is its
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statistical weight. The azimuthally averaged cross component, hg�ð#Þi, is expected

to be statistically consistent with zero (see Sect. 3.6.1).

The statistical uncertainty per shear component per source galaxy is denoted by

rgþ;s ¼ rg�;s 	 rg;s, which is dominated by the shape noise. Here, rg;s includes both

contributions from the shape measurement uncertainty and the intrinsic dispersion

of source ellipticities (e.g., Mandelbaum 2018). In general, an optimal choice for

weighting is to apply an inverse-variance weighting with ws ¼ 1=r2
g;s (Sect. 3.6.2).

However, using inverse-variance weights from noisy variance estimates may result

in an unbalanced weighting scheme (e.g., sensitive to extreme values). To avoid

this, one can employ a variant of inverse-variance weighting, ws ¼ 1=ðr2
g;s þ a2

gÞ,
with ag a properly chosen softening constant (see, e.g., Hamana et al. 2003; Umetsu

et al. 2009, 2014; Okabe et al. 2010; Oguri et al. 2010; Okabe and Smith 2016). The

error variance per shear component for hgþ;�ð#bÞi is given by:

r2
shapeð#bÞ ¼

P
s2b w

2
sr

2
g;sP

s2b ws

� �2
; ð112Þ

where we have assumed isotropic, uncorrelated shape noise, EðDgi;sDgj;s0 Þ ¼
r2
g;sdss0dij (i; j ¼ þ;�) with s and s0 running over all source galaxies.

To quantify the significance of the tangential shear profile measurement

fgþð#bÞgNbin

b¼1, we define a linear S/N estimator by (Sereno et al. 2017; Umetsu

et al. 2020):

S=Nð ÞL¼
PNbin

b¼1 gþð#bÞ=r2
shapeð#bÞ

PNbin

b¼1 1=r2
shapeð#bÞ

h i1=2
: ð113Þ

This estimator gives a weak-lensing S/N integrated over the radial range of the data.

Equation (113) assumes that the total uncertainty is dominated by the shape noise

and ignores the covariance between different radial bins. Note that we shall use the

full covariance matrix for cluster mass measurements (Sect. 4.4). This S/N esti-

mator is different from the conventional quadratic estimator defined by (e.g.,

Umetsu and Broadhurst 2008; Okabe and Smith 2016):

S=N ¼
XNbin

b¼1

g2
þð#bÞ=r2

shapeð#bÞ
" #1=2

: ð114Þ

As discussed by Umetsu et al. (2016, 2020), this quadratic definition breaks down

and leads to an overestimation of significance in the noise-dominated regime where

the actual per-bin S/N is less than unity.

The observed hgþð#Þi profile can be interpreted according to Eq. (93). Then, it is

important to define the corresponding bin radii #b so as to minimize systematic bias

in cluster mass measurements. We define the effective clutter-centric bin radius #b

(b ¼ 1; 2; . . .;Nbin) using the weighted harmonic mean of lens–source transverse

separations as (Okabe and Smith 2016; Sereno et al. 2017):
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#b ¼
P

s2b wsP
s2b ws#�1

s

: ð115Þ

If source galaxies are uniformly distributed in the image plane and ws is taken to be

constant, Eq. (115) in the continuous limit yields #b ¼
½
R #b2

#b1
d##wð#ÞÞ�½

R #b2

#b1
d#wð#Þ��1 ¼ ð#b1 þ #b2Þ=2 for a single radial bin defined in

the range # 2 ½#b1; #b2�.8

4.3 Lens mass modeling

4.3.1 NFW model

The radial mass distribution of galaxy clusters is often modeled with a spherical

Navarro–Frenk–White (Navarro et al. 1996, hereafter NFW) profile, which has been

motivated by cosmological N-body simulations (Navarro et al. 1996, 2004). The

radial dependence of the two-parameter NFW density profile is given by:

qðrÞ ¼ qs

ðr=rsÞð1 þ r=rsÞ2
; ð116Þ

where qs is the characteristic density parameter and rs is the characteristic scale

radius at which the logarithmic density slope, c3DðrÞ 	 d ln qðrÞ=d ln r, equals �2.

The logarithmic gradient of the NFW profile is

c3DðrÞ ¼ �½1 þ 3ðr=rsÞ�=½1 þ ðr=rsÞ�. For r=rs � 1, c3D ! �1, whereas, for

r=rs 
 1, c3D ! �3. The radial range where the logarithmic density slope is close

to the ‘‘isothermal’’ value of �2 is particularly important, given that such a mass

distribution is needed to explain the flat rotation curves observed in galaxies.

The overdensity mass MD is given by integrating Eq. (116) out to the

corresponding overdensity radius rD at which the mean interior density is D�
qcðzlÞ (Sect. 1). For a physical interpretation of the cluster lensing signal, it is useful

to specify the NFW model by the halo mass, M200c, and the concentration parameter,

c200c ¼ r200c=rs. The characteristic density qs is then given by:

qs ¼
D
3

c3
D

lnð1 þ cDÞ � cD=ð1 þ cDÞ
qcðzlÞ: ð117Þ

Analytic expressions for the radial dependence of the projected NFW profiles,

RNFWðRÞ ¼ 2qsrs � fNFWðR=rsÞ and RNFWðRÞ ¼ 2qsrs � gNFWðR=rsÞ with R ¼ Dl#,

are given by Wright and Brainerd (2000, see also Bartelmann 1996):

8 In general, the weighted bin center is defined by #b ¼ ½
R #b2

#b1
d##2wð#ÞÞ�½

R #b2

#b1
d##wð#Þ��1

with wð#Þ a

weight function. Assuming a power-law form for the weight function wð#Þ / #�n, we see that Eq. (115)

corresponds to the case where wð#Þ / #�1, which is optimal for an isothermal density profile with

cþð#Þ ¼ jð#Þ / 1=# (Okabe and Smith 2016).
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fNFWðxÞ ¼

1

1 � x2
�1 þ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � x2
p arctanh

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

1 þ x

r !
ðx\1Þ;

1

3
ðx ¼ 1Þ;

1

x2 � 1
1 � 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p arctan

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

xþ 1

r" !
ðx[ 1Þ;

8>>>>>>>>><
>>>>>>>>>:

ð118Þ

and

gNFWðxÞ ¼

2

x2

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

p arctanh

ffiffiffiffiffiffiffiffiffiffiffi
1 � x

1 þ x

r
þ ln

x

2

	 
" #
ðx\1Þ;

2 1 þ ln
1

2

� �� �
ðx ¼ 1Þ;

2

x2

2ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � 1

p arctan

ffiffiffiffiffiffiffiffiffiffiffi
x� 1

xþ 1

r
þ ln

x

2

	 
" #
ðx[ 1Þ:

8>>>>>>>>><
>>>>>>>>>:

ð119Þ

The excess surface mass density for an NFW halo is then obtained as

DRNFWðRÞ ¼ RNFWðRÞ � RNFWðRÞ. These projected NFW functionals provide a

good approximation for the projected matter distribution around cluster-size halos

(Oguri and Hamana 2011).

As an example, we show in Fig. 13 the reduced tangential and 45�-rotated shear

profiles hgþð#Þi and hg�ð#Þi, respectively, for two high-mass clusters, Abell 2142

and Abell 1689, obtained from Subaru Suprime-Cam data (Umetsu et al. 2009). The

hgþð#Þi profiles are compared with their best-fit NFW and singular isothermal

sphere (SIS) models. The SIS density profile is given by qðrÞ ¼ r2
v=ð2pGr2Þ, with

rv the one-dimensional velocity dispersion. For both clusters, the observed hgþð#Þi
profiles are better fitted by the NFW model having an outward-steepening density

profile. Abell 2142 is a nearby cluster at zl ¼ 0:091 perturbed by merging

substructures (e.g., Okabe and Umetsu 2008; Umetsu et al. 2009; Liu et al. 2018).

The radial curvature observed in the hgþi profile of Abell 2142 is highly

pronounced, so that the power-law SIS model is strongly disfavored by the Subaru

weak-lensing data. From the best-fit NFW model, the mass and concentration

parameters of Abell 2142 are constrained as M200c ¼ ð9:1 � 1:9Þ � 1014h�1M� and

c200c ¼ 4:1 � 0:8 (Umetsu et al. 2009; Liu et al. 2018).

In contrast, Abell 1689 (zl ¼ 0:183) is among the best-studied clusters and the

most powerful known lenses to date (e.g., Broadhurst et al. 2005a; Limousin et al.

2007; Umetsu and Broadhurst 2008; Lemze et al. 2009; Kawaharada et al. 2010;

Coe et al. 2010; Diego et al. 2015; Umetsu et al. 2011b, 2015), characterized by a

large Einstein radius (Sect. 2.6.6) of #Ein ¼ ð47:0 � 1:2Þ arcsec for a fiducial source

at zs ¼ 2 (Coe et al. 2010). This indicates a high degree of mass concentration in

projection of the sky. In fact, the observed hgþð#Þi profile of Abell 1689 is well

fitted by an NFW profile with a high concentration of c200c � 10 (Broadhurst et al.

2005b; Umetsu and Broadhurst 2008; Umetsu et al. 2009, 2015; Coe et al. 2010),
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compared to the theoretical expectations, c200c � 4 (e.g., Bhattacharya et al. 2013;

Diemer and Kravtsov 2015). From full triaxial modeling of two-dimensional weak-

lensing, X-ray, and SZE observations, Umetsu et al. (2015) obtained M200c ¼
ð12:1 � 1:9Þ � 1014h�1M� and c200c ¼ 7:91 � 1:41, which overlaps with the 1r tail

of the predicted distribution of halo concentration. Moreover, the multiprobe data

set is in favor of a triaxial geometry with a minor-to-major axis ratio of c=a ¼
0:39 � 0:15 and a major axis closely aligned with the line of sight by ð22 � 10Þ�.
Therefore, the superb lensing efficiency of Abell 1689 is likely caused by its

intrinsically high mass concentration combined with a chance alignment of its major

axis with the line-of-sight direction (see also Oguri et al. 2005).

4.3.2 Halo model

At large cluster-centric distances, the correlated matter around the cluster, namely

the 2-halo term (Cooray and Sheth 2002), contributes to the lensing signal. In the

standard halo-model prescription (Oguri and Takada 2011; Oguri and Hamana

2011), the total lensing signal DRðRÞ is given as the sum of the 1-halo and 2-halo

terms. The 1-halo term DR1h accounts for the mass distribution within the main

cluster halo, which can be described by a smoothly truncated NFW profile (Baltz

et al. 2009, hereafter BMO):

Fig. 13 Azimuthally averaged radial profiles of the reduced tangential shear gþ (top panels) and the
cross-shear component g� (bottom panels) for Abell 2142 (left) and Abell 1689 (right) based on Subaru
Suprime-Cam data. The solid and dashed lines show the best-fit NFW and SIS profiles for each cluster,
respectively. The 45�-rotated cross-shear component is expected to be consistent with zero. Image
reproduced with permission from Umetsu et al. (2009), copyright by AAS
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qðrÞ ¼ qs

ðr=rsÞð1 þ r=rsÞ2
1 þ r

rt

� �2
" #�2

; ð120Þ

where the truncation parameter rt is set to a fixed multiple of the halo outer radius

(e.g., rt � 2:6rvir or rt � 3r200c; see Oguri and Hamana 2011; Covone et al. 2014;

Umetsu et al. 2014). Analytic expressions for the radial dependence of the projected

BMO profiles are given by Baltz et al. (2009) and Oguri and Hamana (2011).

The 2-halo term contribution DR2h to the tangential shear signal is expressed as

(Oguri and Takada 2011; Oguri and Hamana 2011, see de Putter and Takada 2010

for the full-sky expression):9

DR2hðRjM200c; zlÞ ¼
qðzÞbhðM200c; zlÞ
ð1 þ zlÞ3D2

l ðzlÞ

Z
‘d‘

2p
J2ð‘#ÞPðk‘; zlÞ; ð121Þ

where bhðM200c; zlÞ is the linear halo bias (e.g., Tinker et al. 2010),

k‘ 	 ‘=½ð1 þ zlÞDlðzlÞ�, Pðk; zlÞ is the linear matter power spectrum as a function of

the comoving wavenumber k evaluated at the cluster redshift zl, and JnðxÞ is the

Bessel function of the first kind and the nth order. We can compute the corresponding

radial profile R2hðRjM200c; zlÞ of the lensing convergence by replacing J2ðxÞ in

Eq. (121) with the zeroth-order Bessel function J0ðxÞ. The 2-halo term is propor-

tional to the product bhr2
8, with r8 the rms amplitude of linear mass fluctuations in a

sphere of comoving radius 8h�1Mpc. In the standard KCDM model, the 2-halo term

contribution to DR (or R) becomes important, on average, at RJ several (or two)

virial radii (Oguri and Hamana 2011; Becker and Kravtsov 2011). In particular cases

where clusters are residing in extremely dense environments, the 2-halo contribution

to the lensing signal could become more significant (Sereno et al. 2018a).

4.3.3 DK14 model

Diemer and Kravtsov (2014, hereafter DK14) provide a useful fitting function for the

spherically averaged density profileqðrÞ around dark-matter halos calibrated for a suite

of N-body simulations in KCDM cosmologies. The DK14 density profile is given by:

Dq 	 qðrÞ � q ¼ qinner � ftrans þ qouter;

qinner ¼ q�2 exp � 2

aE

r

r�2

� �aE

�1

� �
 �
;

ftrans ¼ 1 þ r

rt

� �b
" #�c

b

;

qouter ¼
beq

D�1
max þ ðr=rpivÞse

;

ð122Þ

9 The corresponding 2-halo term in comoving density units is obtained by replacing DlðzlÞ in Eq. (121)

with the comoving angular diameter distance ð1 þ zlÞDlðzlÞ ¼ fK ½vðzlÞ�.
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with rpiv ¼ 5r200m and Dmax ¼ 103, which is introduced as a maximum cutoff

density of the outer term to avoid a spurious contribution at small halo radii (Diemer

2018). The inner profile qinnerðrÞ describes the intra-halo mass distribution in a

multistream region, which is modeled by an Einasto profile (Einasto 1965) with q�2

and r�2 the scale density and radius at which the logarithmic slope is �2 and aE the

shape parameter describing the degree of profile curvature. The transition term

ftransðrÞ characterizes the steepening around a truncation radius, rt. The outer term

qouter, given by a softened power law, is responsible for the material infalling toward

the cluster in a single-stream region at large halo radii. DK14 found that this fitting

function provides a precise description (.5%) of their simulated DM density

profiles at r.9rvir. At larger radii (rJ9rvir), the outer term is expected to follow a

shape proportional to the matter correlation function. As in the case of the NFW

profile, it is useful to define the halo concentration by cD ¼ rD=r�2.

The DK14 profile is described by eight parameters, ðq�2; r�2; aE; b; c; rt; be; seÞ,
and is sufficiently flexible to reproduce a range of fitting functions, such as the halo

model (Oguri and Hamana 2011; Hikage et al. 2013) and density profiles with a

sharp steepening feature associated with the splashback radius (see Sect. 6.3).

Equation (122) can be used as a fitting function in conjunction with generic priors

for some of the shape and structural parameters (see Diemer and Kravtsov 2014;

More et al. 2015; Umetsu and Diemer 2017; Chang et al. 2018). By projecting

DqðrÞ along the line of sight, we obtain the surface mass density responsible for

gravitational lensing as:

RðRÞ ¼ 2

Z 1

R

DqðrÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � R2

p ; ð123Þ

where the line-of-sight integral is evaluated numerically. The publicly available

code, COLOSSUS (Diemer 2018), implements a range of calculations relating to three-

dimensional and projected halo profiles including the NFW, Einasto, and DK14

models.

4.4 Shear likelihood function

The likelihood function L of a mass model for weak shear observations d 	
fhgþð#bÞigNbin

b¼1 is written as:

�2 lnLðpÞ ¼
XNbin

b;b0¼1

hgþð#bÞi � bgþð#bjpÞ
� �

ðC�1Þbb0 hgþð#b0 Þi � bgþð#b0 jpÞ
� �

þ ln ð2pÞNbin detðCÞ
� �

;

ð124Þ

where C is the Nbin � Nbin error covariance matrix for the binned reduced tangential

shear profile d and bgþð#bjpÞ represents the theoretical expectation for hgþð#bÞi
(Eq. (93)) predicted by the model parameterized by a set of parameters p. Note that

modeling of the cluster lensing signal bgþð#jpÞ requires information of the lensing

depth hR�1
cr i averaged over the source-redshift distribution (Sect. 3.6.2). Similarly,
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one can define a likelihood function for the lensing convergence profile jð#Þ, which

can be reconstructed from combined shear and magnification measurements (e.g.,

Umetsu et al. 2011b, 2014).

A well-characterized inference of the model parameters p can be obtained within

the Bayesian framework by properly choosing the priors (Umetsu et al. 2020). In

this context, when interpreting the cluster lensing signal with an NFW profile

(Sect. 4.3.1), it is useful to take p ¼ ðM200c; c200cÞ as fitting parameters.10 Tangential

shear fitting with a spherical NFW profile is a standard approach for measuring

individual cluster masses from weak lensing (e.g., Okabe et al. 2010; Applegate

et al. 2014; Hoekstra et al. 2015). Numerical simulations suggest that mass

estimates from tangential shear fitting can be biased low (by � 5 � 10%;

Meneghetti et al. 2010b; Becker and Kravtsov 2011; Rasia et al. 2012), because

local substructures that are abundant in the outskirts of massive clusters dilute the

shear tangential to the cluster center. Moreover, systematic deviations of the lensing

signal from the assumed NFW profile form in projection can lead to a substantial

level of mass bias, even if the spherically averaged density profiles qðrÞ in three

dimensions are well described by the NFW form (e.g., Sereno et al. 2016; Umetsu

et al. 2020). Therefore, it is highly important to optimize the radial range for

tangential shear fitting so as to alleviate the mass bias (von der Linden et al. 2014a;

Applegate et al. 2014; Pratt et al. 2019).

To obtain robust constraints on the underlying cluster mass distribution, we need

to ensure that the shear likelihood function (Eq. (124)) includes all relevant sources

of uncertainty (Gruen et al. 2015). Following Umetsu et al. (2016, (2020), we

decompose the error covariance matrix C for d ¼ fhgþð#bÞigNbin

b¼1 as:

C ¼ Cshape þ Clss þ Cint; ð125Þ

where ðCshapeÞbb0 ¼ r2
shapeð#bÞdbb0 is the diagonal statistical uncertainty due to the

shape noise (Eq. (112)); ðClssÞbb0 is the cosmic noise covariance due to uncorrelated

large-scale structure projected along the line of sight (Schneider et al. 1998;

Hoekstra 2003); and ðCintÞbb0 accounts for statistical fluctuations of the projected

cluster lensing signal due to intrinsic variations associated with assembly bias and

cluster asphericity (Gruen et al. 2015).

Figure 14 shows the diagonal elements of the covariance matrix used in a stacked

weak-lensing analysis of Miyatake et al. (2019) and the correlation matrix, defined

with the total covariance matrix as Cbb0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CbbCb0b0

p
. A similar figure but for the j

profile was presented in Umetsu et al. (2016), which presents a joint weak and

strong lensing analysis of 20 high-mass clusters targeted by the CLASH survey

(Cluster Lensing And Supernova survey with Hubble; Postman et al. 2012).

10 In general, it is appropriate to assume a log-uniform prior, instead of a uniform prior, for a positive-

definite quantity such as M200c and c200c, especially when the quantity spans a wide dynamic range

(Umetsu et al. 2014, 2020; Sereno et al. 2017; Okabe et al. 2019). Such a treatment is also self-consistent

with mass-scaling relation analysis, where one often works with logarithmic quantities (e.g., lnMD; ln cD).

Since the corresponding prior distributions in M200c and c200c scale as 1=M200c and 1=c200c, the choice of

their lower bounds is relatively important.
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The elements of the Clss matrix are given by (Hoekstra 2003; Oguri and Takada

2011):

ðClssÞbb0 ¼
Z

‘d‘

2p
Pjð‘ÞĴ2ð‘#bÞĴ2ð‘#b0 Þ; ð126Þ

where Ĵ2ð‘#bÞ is the Bessel function of the first kind and second order averaged over

the bth annulus (for the case of the binned convergence profile, see Umetsu et al.

2011a, 2016; Gruen et al. 2015); and Pjð‘Þ is the two-dimensional convergence

power spectrum (see Eq. (37)) as a function of angular multipole ‘ calculated using

the flat-sky and Limber’s approximation as (Limber 1953; Kaiser 1992):

Pjð‘Þ ¼
9H4

0X
2
m

4c4

Z vs

0

dvW2ðv; vsÞa�2ðvÞPNL k ¼ ‘

rðvÞ ; v
� �

; ð127Þ

with v the comoving coordinate along the line of sight, Wðv; vsÞ ¼ rðvs � vÞ=rðvsÞ
the ratio of angular diameter distances Dls=Ds, and PNLðk; vÞ the nonlinear matter

power spectrum. The convergence power spectrum Pjð‘Þ can be evaluated for a

given source population and a cosmological model. In Eq. (127), we have assumed

a single comoving distance vs corresponding to the effective single-plane redshift of

source galaxies (i.e., all source galaxies lying at v ¼ vs). Provided that D#b=#b � 1

with D#b the radial bin width, we have Ĵ2ð‘#bÞ ’ J2ð‘#bÞ (without bin-averaging)

in Eq. (126).

The Cint matrix describes statistical fluctuations of the projected cluster lensing

signal at fixed halo mass due to intrinsic variations in halo concentration, triaxiality

and orientation, and correlated secondary structures around the cluster, as well as to

Fig. 14 Left panel: diagonal components of the covariance matrix as a function of cluster-centric radius R
obtained from a stacked shear analysis based on Subaru Hyper Suprime-Cam observations. The black
solid line shows the total covariance C; the blue dashed line is the uncertainty due to intrinsic shapes of

source galaxies (Cstat, denoted as Cshape in this paper), the orange dotted line is the covariance due to

intrinsic variations of the projected cluster lensing signal (Cint), and the green dashed-dotted line is the

cosmic noise covariance due to large-scale structure uncorrelated with clusters (Clss). Shape noise is

dominant for R.3h�1Mpc (comoving), while the cosmic noise dominates at larger separations. Right
panel: correlation matrix of the stacked total covariance as a function of the radial bin. The correlation
between radial bins appears at large separation due to the cosmic noise covariance. Image reproduced
with permission from Miyatake et al. (2019), copyright by AAS
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deviations from the assumed NFW form (Becker and Kravtsov 2011; Gruen et al.

2015).11 Gruen et al. (2015) constructed a semianalytical model of Cint that is

calibrated to cosmological numerical simulations. Umetsu et al. (2016) found that

the diagonal part of the intrinsic covariance for the convergence j can be well

approximated by12:

ðCint
j Þbb ’ a2

intj
2ð#bÞ ð128Þ

with aint ¼ 0:2 in the intracluster (1-halo) regime at R ¼ Dl#.r200m. This suggests

that the intrinsic variance is self-similar in the sense that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðCint

j Þbb
p

=jð#bÞ� const.

A further simplification can be made by setting the off-diagonal elements of Cint
j to

zero, i.e., ðCint
j Þbb0 ¼ a2

intj
2ð#bÞdbb0 . In general, the diagonal approximation to Cint

j
can lead to an underestimation of parameter uncertainties (Gruen et al. 2015, see

Fig. 5), where the degree of underestimation depends on the binning scheme, depth

of weak-lensing observations, and halo mass. The impact of the diagonal approx-

imation is more severe for deeper observations (or higher S/N weak-lensing data).13

Assuming a representative mass profile, it is possible to convert the intrinsic

covariance matrix Cint
j for the convergence into that for the tangential shear. This

can be done by assuming an NFW density profile together with the concentration–

mass relation c200cðM200c; zÞ for a given cosmological model (Miyatake et al. 2019;

Umetsu et al. 2020). The covariance Cint for the gþ profile obtained in this way thus

depends on halo mass. Miyatake et al. (2019) found that, however, the intrinsic

covariances with different halo masses remain nearly self-similar in their shapes

once scaled by R ! R=r200m.

4.5 Stacked weak-lensing estimator

Stacking an ensemble of galaxy clusters helps average out large statistical

fluctuations inherent in noisy weak-lensing observations of individual clusters. The

statistical precision can be largely improved by stacking together a large number of

clusters, allowing for tighter and more robust constraints on the ensemble properties

of the cluster mass distribution. A stacked lensing analysis is thus complementary to

an alternative approach that relies on individual cluster mass measurements

(Sects. 4.2 and 4.4). In particular, a comparison of the two approaches provides a

useful consistency check in different S/N regimes (e.g., Okabe et al. 2010; Umetsu

et al. 2014, 2016, 2020; Okabe and Smith 2016).

11 When simultaneously determining the mass and concentration for a given individual cluster, strictly

speaking, the contribution from the intrinsic variance in concentration should be excluded from Cint.

Nevertheless, the effect of the concentration variance becomes important only at small cluster radii

(Gruen et al. 2015).

12 Following Umetsu et al. (2016, 2020), this formalism excludes the external contribution from Clss

(Eq. (126)), which was formally included in the Cint covariance by Gruen et al. (2015).
13 Adopting a constant logarithmic binning with D ln#� 0:3, Umetsu et al. (2016) found that the lensing

S/N estimated using the diagonal approximation to Cint
j is accurate to � 10% for their ground-based

weak-lensing observations of high-mass clusters with M200c � 1015h�1M�.
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Let us consider an ensemble of N galaxy clusters. We model the ensemble mass

distribution of these clusters in terms of the excess surface mass density profile as:

m ¼ DRðRbÞf gNbin

b¼1: ð129Þ

Specifically, our model is a vector of Nbin parameters containing the binned DRðRÞ
profile as a function of the projected cluster-centric radius R (see Sect. 3.5). Here,

we aim to construct an unbiased estimator for the model m, or the ensemble DRðRÞ
profile, given weak-lensing observations of N individual clusters.

We assume that these clusters are distributed in redshift, having different

geometric responses to the lensing signal through R�1
cr ðzl; zsÞ. We express weak-

lensing observations dl ¼ fhgþðRbjzlÞigNbin

b¼1 for a given cluster (l) as a sum of the

signal vector sl and the noise vector nl as:

dl ¼ sl þ nl ðl ¼ 1; 2; . . .;NÞ; ð130Þ

with

sl ¼ alm; ð131Þ

where the response coefficient al represents the source-averaged inverse critical

surface mass density evaluated for the lth cluster (Eq. (91)):

al ¼ R�1
cr;l

D E
: ð132Þ

In this expression, we assume that both dl and al have been averaged over an

ensemble of source galaxies to represent the respective source-averaged quantities

for the lth cluster. For simplicity, we have ignored the nonlinearity between the

lensing signal gþ and the surface mass density DR (see Sect. 3.6.2).14 We refer to

Umetsu et al. (2020) for a treatment of the stacked weak-lensing analysis

accounting for the nonlinear correction for the source-averaging effect.

Assuming that n obeys Gaussian statistics and that the noise vectors between

different clusters are statistically independent, we can write the total likelihood

function of observations d ¼ fd1; d2; . . .; dNg as:

PðdjmÞ ¼
YN
l¼1

N l

 !
exp � 1

2

XN
l¼1

ðdl � almÞtC�1
l ðdl � almÞ

" #
; ð133Þ

where Cl ¼ hnlntli is the error covariance matrix (Sect. 4.4) for the lth cluster and

N l ¼ ð2pÞ�Nbin=2jClj�1=2
is a normalization factor. In ground-based cluster weak-

lensing observations, the shear covariance matrix ðClÞbb0 per cluster

(b; b0 ¼ 1; 2; . . .;Nbin) is dominated by the statistical uncertainty due to the shape

noise. The contribution from cosmic noise (Sect. 4.4) becomes important at large

cluster-centric distances (Fig. 14).

The total log-likelihood function lnPðdjmÞ is expressed as:

14 Remember that the observable quantity for weak shear lensing is the reduced shear, g ¼ c=ð1 � jÞ.
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lnPðdjmÞ ¼ � 1

2

XN
l¼1

ðdl � almÞtC�1
l ðdl � almÞ þ const: ð134Þ

According to Bayes’ theorem, the posterior probability distribution of m given the

data d is:

PðmjdÞ ¼ PðdjmÞPðmÞ
PðdÞ ; ð135Þ

where PðmÞ is the prior probability distribution for the model m and PðdÞ is the

evidence that serves as a normalization factor here. We assume an uninformative

uniform prior for our model m, such that PðmjdÞ / PðdjmÞ. By maximizing

lnPðmjdÞ with respect to m, we obtain the desired expression for the stacked weak-

lensing estimator bm as (e.g., Umetsu et al. 2011a):

bm ¼
XN
l¼1

a2
l C

�1
l

 !�1 XN
l¼1

alC
�1
l dl

 !
	 hhDRþii: ð136Þ

Note that the weight assigned to DRþ of each cluster is proportional to a2
l ¼

R�1
cr;l

D E2

(see also Eq. (98)), because sl / al. The error covariance matrix C for the

stacked estimator hhDRþii (Eq. (136)) is given by:

Cbb0 ¼ F�1
� �

bb0
; ð137Þ

where F is the Fisher information matrix defined as (e.g., Umetsu et al. 2011a):

Fbb0 	 �E o2 lnPðmjdÞ
ombomb0

� �

m¼bm
¼

XN
l¼1

a2
l C

�1
l

 !

bb0

: ð138Þ

The total S/N for detection is given by (e.g., Umetsu and Broadhurst 2008):

ðS=NÞ2 ¼
XNbin

b;b0¼1

bmb C�1
� �

bb0
bmb0 ¼ bmtC�1 bm: ð139Þ

Again, this quadratic S/N estimator breaks down and leads to an overestimation of

significance if the actual per-bin S/N is less than unity (see Sect. 4.2).

It is noteworthy that interpreting the effective mass from the stacked lensing

signal (Eq. (136)) requires caution especially when the cluster sample spans a wide

range in mass and redshift. This is because the amplitude of the lensing signal is

weighted by the redshift-dependent sensitivity and it is not linearly proportional to

the cluster mass (e.g., Mandelbaum et al. 2005; Umetsu et al. 2016, 2020; Melchior

et al. 2017; Sereno et al. 2017). We refer the reader to Miyatake et al. (2019) and

Murata et al. (2019) for further discussion of this issue.

Figure 15 shows the stacked weak-lensing signals around a sample of 136

spectroscopically confirmed X-ray groups and clusters at 0:033 6 zl 6 1:033
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selected from the XMM-XXL survey (Umetsu et al. 2020). Their weak-lensing

analysis is based on HSC-SSP survey data. The figure compares stacked hhDRþii
profiles of the XXL sample obtained with different source-selection methods (see

Sect. 4.1). This comparison shows no significant difference between these profiles

within errors in all bins. From a single-mass-bin NFW fit to the stacked shear

profile, Umetsu et al. (2020) found M200c ¼ ð8:7 � 0:8Þ � 1013h�1M� and c200c ¼
3:5 � 0:9 at a lensing-weighted mean redshift of zl � 0:25. This is in agreement

with the mean concentration expected for dark-matter halos in the standard KCDM

cosmology, c200 � 4:1 at M200c ¼ 8:7 � 1013h�1M� and z ¼ 0:25 (e.g., Diemer and

Joyce 2019). Figure 15 also displays the best-fit halo model including the effects of

surrounding large-scale structure as a 2-halo term. Figure 15 shows that the 2-halo

term in the range R 2 ½0:3; 3� h�1Mpc (comoving) is negligibly small even in low-

mass clusters and groups (e.g., Leauthaud et al. 2010; Covone et al. 2014; Sereno

et al. 2015), for which the maximum radius corresponds to � 3r200c. This is because

the tangential shear DRðRÞ ¼ RðRÞ � RðRÞ is insensitive to flattened sheet-like

structures (Schneider and Seitz 1995).

Fig. 15 Stacked tangential (DRþ: top) and cross (DR�: bottom) shear profiles as a function of cluster-
centric comoving radius R, derived for a sample of 136 spectroscopically confirmed X-ray-selected

groups and clusters (0:033 6 zl 6 1:033) detected in the 25 deg2 XXL-N region. The results are based on
Subaru HSC-SSP survey data, shown for three different source-selection methods (black squares, blue
squares, and red circles). The data points with different selection methods are horizontally shifted for
visual clarity. The solid line and the dashed line represent the best-fit NFW model and the halo model,
respectively, derived from the fiducial P-cut measurements. The dotted line shows the 2-halo term of the
best-fit halo model. Ephor_AB and MLZ refer to HSC photo-z codes (Tanaka et al. 2018). Image
reproduced with permission from Umetsu et al. (2020), copyright by AAS
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4.6 Quadrupole shear

Halos formed in collisionless CDM simulations are not spherical and can have

complex shapes. A more realistic description of individual cluster halos is as triaxial

ellipsoids with minor-to-major axis ratios of order a=c� 0:5, slowly increasing with

halo-centric radius (Jing and Suto 2002; Bonamigo et al. 2015). More massive halos

are less spherical and more prolate, as they tend to form later. The projected matter

distributions around clusters are thus expected to be anisotropic, with typical axis

ratios of q� 0:6 (e.g., Okabe et al. 2018). The projected axis ratio of cluster halos

varies slowly with cluster-centric distance (e.g., Okabe et al. 2018).

For sufficiently massive clusters at low redshift, deep weak-lensing observations

allow us to constrain the halo shape on an individual cluster basis, by forward-

modeling the observed two-dimensional shear (or convergence) field with elliptical

lens models (Oguri et al. 2010; Okabe et al. 2011; Watanabe et al. 2011; Umetsu

et al. 2012; Medezinski et al. 2013, 2016; Wegner et al. 2017). This tow-

dimensional fitting approach is flexible and can be readily generalized to include

multiple halo components (see the discussion in Sect. 3.6.1, e.g., Okabe et al. 2011;

Medezinski et al. 2013) and triaxial halo shapes (e.g., Oguri et al. 2005; Sereno and

Umetsu 2011; Umetsu et al. 2015; Chiu et al. 2018).

In this subsection, we introduce quadrupole shear estimators for measuring the

projected halo shape for a stacked ensemble of galaxy clusters.

4.6.1 Projected halo shape and multipole expansion

Following Adhikari et al. (2015), we introduce a formalism that allows for

modeling the effects of halo ellipticity on weak shear observables based on an

angular multipole expansion of the lensing fields.15 Let us write the azimuthally

averaged projected mass density profile as Rð0ÞðRÞ / R�g0 with

g0 ¼ �d lnRð0ÞðRÞ=d lnR[ 0. Assuming that q is constant with cluster-centric

radius, we can write the surface mass density around clusters as Rðx; yÞ / R�g0
q

(Adhikari et al. 2015; Clampitt and Jain 2016), where Rq is an elliptical radial

coordinate defined as (Evans and Bridle 2009; Oguri et al. 2012; Umetsu et al.

2012, 2018):

Rq ¼ qx2 þ y2=q
� �1=2

; ð140Þ

with q the minor-to-major axis ratio ð0\q 6 1Þ. Here, we have chosen the Carte-

sian coordinate system (x, y) centered on the halo, such that the x-axis is aligned

with the major axis of the projected ellipse. We define the corresponding mass

ellipticity by e ¼ ð1 � q2Þ=ð1 þ q2Þ.
We express the multipole expansion of R as (Adhikari et al. 2015; Clampitt and

Jain 2016):

15 For example, we decompose the j field into angular multipoles as jðR;uÞ ¼
P1

m¼�1 jðmÞðRÞ eimu.

Explicitly, the multipoles are jð0ÞðRÞ ¼ ð2pÞ�1 H jðR;uÞ du for m ¼ 0 and jðmÞðRÞ ¼
p�1

H
jðR;uÞ cosmu du for m > 1.
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RðR;uÞ / R�g0
q ¼ R�g0 1 þ eg0

2
cos 2uþ Oðe2Þ

h i
;

	 Rð0ÞðRÞ þ Rð2ÞðRÞ cos 2uþ :::;
ð141Þ

where u is the azimuthal angle relative to the halo’s major axis, the multipole

RðmÞðRÞ is the coefficient of the eimu component of the azimuthal behavior, and we

assume eg0=2 � 1 to justify the neglect of higher order terms in the expansion. We

thus model the projected mass distributions of clusters as the sum of a monopole and

a quadrupole. We further assume that:

e ’ 2Rð2ÞðRÞ
g0ðRÞRð0ÞðRÞ

: ð142Þ

The quadrupole Rð2Þ can thus be completely determined by the monopole

Rð0Þ / R�g0 , up to a multiplicative factor corresponding to the halo ellipticity e.

Similarly, the quadrupole moments of the tangential (þ) and cross (�) shear

components are given by (Adhikari et al. 2015):

Rcrc
ð2Þ
þ ðRÞ ¼ e

2
�Rð0ÞðRÞg0ðRÞ þ I1ðRÞ þ I2ðRÞ
h i

cos 2u;

Rcrc
ð2Þ
� ðRÞ ¼ e

2
I1ðRÞ � I2ðRÞ½ � sin 2u;

ð143Þ

where I1ðRÞ and I2ðRÞ are defined by (Clampitt and Jain 2016):

I1ðRÞ ¼
3

R4

Z R

0

R03Rð0ÞðR0Þg0ðR0Þ dR0;

I2ðRÞ ¼
Z 1

R

R0ðR0Þg0ðR0Þ
R0 dR0:

ð144Þ

Equation (143) suggests an optimal estimator weighted by cos 2u to extract the

quadrupole of the excess surface mass density, DRð2ÞðRÞ, from tangential shear

measurements.

Weighted quadrupole estimators for the tangential and cross-shear components

are given by (Natarajan and Refregier 2000; Mandelbaum et al. 2006):16

hhDRð2Þ
þ ii ¼

X
l;s

wlsDRþðRjzl; zsÞ cos 2uls

" # X
l;s

wls cos2 2uls

" #�1

;

hhDRð2Þ
� ii ¼

X
l;s

wlsDR�ðRjzl; zsÞ sin 2uls

" # X
l;s

wls sin2 2uls

" #�1

;

ð145Þ

16 Equation (145) corresponds to 2fegDRiso and 2f45egDRiso of Mandelbaum et al. (2006), where DRiso is

the monopole of the excess surface mass density, eg is the observed ellipticity of the tracer distribution,

and f and f45 represent the quadrupole strengths of the tangential and cross-shear components,

respectively. See also Clampitt and Jain (2016).
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where DRþ;�ðRjzl; zsÞ ¼ Rcrðzl; zsÞgþ;�ðRjzl; zsÞ (Eq. (94)); wls ¼ R�2
cr;ls=r

2
g;ls is the

statistical weight for each lens–source pair (ls), with rg;ls the statistical uncertainty

per shear component (see Eq. (98)); and uls is the azimuthal angle of each source

galaxy (s) relative to the major axis of each cluster lens (l). In real observations, we

must rely on the major axis of the distribution of baryonic tracers (e.g., central

galaxies and X-ray gas) to perform aligned, stacked lensing measurements by

Eq. (145) (Mandelbaum et al. 2006; van Uitert et al. 2012, 2017; Clampitt and Jain

2016).

As discussed by Hoekstra et al. (2004) and Mandelbaum et al. (2006), in

practical applications, Eq. (145) is susceptible to a possible systematic alignment of

lens galaxy (e.g., BCGs) and source ellipticities. Such a spurious alignment signal

can arise from an incomplete correction of the PSF anisotropy, which tends to affect

neighboring objects in a similar manner. On the other hand, when interpreting the

quadrupole shear signal, one must take into account possible misalignment between

the underlying matter and tracer distributions, which will cause a dilution of the

quadrupole shear signal. Moreover, modeling of the quadrupole shear based on the

multipole expansion (Eq. (142)) should only be applied to the case with a small halo

ellipticity (eg=2 � 1), so that the higher order terms can be safely ignored (see

Eq. (141)).

4.6.2 Cartesian estimator

Now, we introduce the Cartesian estimator of Clampitt and Jain (2016). Compared

to the estimator of Natarajan and Refregier (2000), a practical advantage of this

estimator is that one of the two Cartesian components (DRð�Þ
2 defined below) is

insensitive to the spurious alignment of lens–source galaxy ellipticities (Clampitt

and Jain 2016) discussed at the end of Sect. 4.6.1. With this estimator, we measure

the stacked quadrupole shear signal with respect to a coordinate system with the x-

axis aligned with the major axis of the distribution of baryonic tracers (e.g., central

galaxies and X-ray gas). The monopole signal is nulled with this Cartesian

estimator. We adopt the same sign convention for the Cartesian c1 and c2

components as defined in Clampitt and Jain (2016) and use u to denote the

azimuthal angle relative to the x-axis of each cluster. This is illustrated in Fig. 16.

The Cartesian shear components are related to the tangential and cross

components (see Eq. (83)) by:

c1ðR;uÞ ¼ �cþðR;uÞ cos 2uþ c�ðR;uÞ sin 2u;

c2ðR;uÞ ¼ �cþðR;uÞ sin 2u� c�ðR;uÞ cos 2u:
ð146Þ

In the framework of Adhikari et al. (2015) based on the multipole expansion, the

16 Equation (145) corresponds to 2fegDRiso and 2f45egDRiso of Mandelbaum et al. (2006), where DRiso is

the monopole of the excess surface mass density, eg is the observed ellipticity of the tracer distribution,

and f and f45 represent the quadrupole strengths of the tangential and cross-shear components,

respectively. See also Clampitt and Jain (2016).
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multipole moments of the Cartesian shear components are written as follows

(Clampitt and Jain 2016):

Rcrc
ð2Þ
1 ¼ e

4
Rð0ÞðRÞg0ðRÞ � 2I1ðRÞ
h i

cos 4uþ Rð0ÞðRÞg0ðRÞ � 2I2ðRÞ
	 


;

Rcrc
ð2Þ
2 ¼ e

4
Rð0ÞðRÞg0ðRÞ � 2I1ðRÞ
h i

sin 4u:
ð147Þ

Equation (147) shows that the azimuthal dependence of the Cartesian shear com-

ponents goes as cos 4u (except for the two terms without u dependence; see

Clampitt and Jain 2016 for more discussion) and sin 4u, so that there is a sign

change in both components after every angle p=4. When moving around the circle,

the shear signal from elliptical clusters transitions between regions where cð2Þ1 and

then cð2Þ2 alternately dominate (Clampitt and Jain 2016), as illustrated in Fig. 16.

Following Clampitt and Jain (2016), we group together the first and second shear

components ðg1; g2Þ of background source galaxies in the regions where cos 4u and

sin 4u have the same sign (see Fig. 17), respectively, and define the following

estimator:

hhDRð�Þ
i ðRÞii ¼

X
l;s

wlsDRiðRjzl; zsÞ
" # X

l;s

wls

" #�1

ði ¼ 1; 2Þ; ð148Þ

where we have introduced the notation in analogy to the tangential shear (Eq. (94)):

DRiðRjzl; zsÞ ¼ Rcrðzl; zsÞgiðRjzl; zsÞ; ð149Þ

where wls ¼ R�2
cr;ls=r

2
g;ls is the statistical weight for each lens–source pair (ls), with

rg;ls the statistical uncertainty per shear component (see Eq. (98)); and s runs over

all source galaxies that fall in the specified bin ðR;uÞ, different for each shear

component i and sign (Clampitt and Jain 2016): i ¼ 1, sign ¼ �, �p=8 6 u\p=8;

i ¼ 1, sign ¼ þ, p=8 6 u\3p=8; i ¼ 2, sign ¼ �, 0 6 u\p=4; i ¼ 2, sign ¼ þ,

p=4 6 u\p=2. For each case, the summation in Eq. (148) also includes source

γ1  < 0

γ1  > 0

γ2  > 0 

γ2  < 0 
x

y

Fig. 16 The quadrupole shear pattern produced by an elliptical mass distribution. The x-axis of the
Cartesian coordinate system is aligned with the major axis of the tracer distribution, which is assumed to
be aligned with the major axis of the underlying mass distribution. The sign convention for the Cartesian
shear components (c1; c2) is shown at the right. Note that the monopole shear (which is purely tangential)
is not contributing to the shear pattern illustrated here. Image reproduced with permission from Clampitt
and Jain (2016), copyright by the authors
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galaxies lying in symmetrical regions shifted by p=2, p, and 3p=2, as illustrated in

Fig. 17.

Figure 18 shows the stacked quadrupole shear profiles, hhDRðþÞ
1 ii, hhDRð�Þ

1 ii,
hhDRðþÞ

2 ii, and hhDRð�Þ
2 ii, derived for a sample of 20 high-mass CLASH clusters

(Umetsu et al. 2018). The quadrupole shear signal was measured with respect to the

major axis of the X-ray gas shape of each cluster. Umetsu et al. (2018) modeled the

stacked hhDRð�Þ
1;2 ii profiles by assuming an elliptical-NFW density profile with the

major axis aligned with the X-ray major axis (for an elliptical extension of lensing

mass models, see Keeton 2001). Any misalignment would thus lead to a dilution of

the quadrupole signal and hence an underestimation of the halo ellipticity. Umetsu

et al. (2018) obtained stacked constraints on the projected axis ratio of q ¼
0:67 � 0:10 (or 1 � q ¼ 0:33 � 0:10), which is fully consistent with the median axis

ratio q ¼ 0:67 � 0:07 of this sample obtained from their two-dimensional shear and

magnification analysis of the 20 individual clusters. Their results suggest that the

total matter distribution is closely aligned with the X-ray brightness distribution

(with a median misalignment angle of jDPAj ¼ 21� � 7�) as expected from

cosmological hydrodynamical simulations (see Okabe et al. 2018).

(+)

(+)

x

y

(-)

x

y

x

y

1

x

y
(-)

2

Fig. 17 Illustration of the Cartesian quadrupole shear estimator of Clampitt and Jain (2016). The x-axis of
the Cartesian coordinate system is aligned with the major axis of the tracer distribution (black solid
ellipse). We group together the Cartesian first and second shear components in same-sign regions of
cos 4u and sin 4u (gray-shaded regions), respectively, and define four quadrupole shear components,

namely, DRð�Þ
1 (upper left), DRðþÞ

1 (upper right), DRð�Þ
2 (lower left), and DRðþÞ

2 (lower right). Image

reproduced with permission from Umetsu et al. (2018), copyright by AAS
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5 Magnification bias

In addition to the shape distortions, gravitational lensing can cause focusing of light

rays, which results in an amplification of the image flux through the solid-angle

distortion (Sect. 2.6.3). Lensing magnification provides complementary and inde-

pendent observational alternatives to gravitational shear, especially at high redshift

where source galaxies are more difficult to resolve (Van Waerbeke et al. 2010;

Hildebrandt et al. 2011; Ford et al. 2014; Chiu et al. 2016, 2020).

5.1 Magnified source counts

Let us consider source number counts n0ð[FÞ per unit solid angle as a function of

the limiting flux F for a given population of background objects (e.g., color–

magnitude-selected galaxies, quasars, etc.). In the absence of gravitational lensing,

the intrinsic source counts can be written as:

n0ð[FÞ ¼
Z

dz
d2V

dzdX

Z 1

LðzÞ
dL

d2NðL; zÞ
dLdV

	
Z

dz
dn0½zj[ LðzÞ�

dz
; ð150Þ

where d2VðzÞ=dz=dX is the comoving volume element per redshift interval per unit

solid angle, d2NðL; zÞ=dL=dV is the luminosity function of the background popu-

lation, LðzÞ ¼ 4pD2
LðzÞF is the luminosity threshold corresponding to the flux limit

F at redshift z, with DLðzÞ the luminosity distance, and dn0½zj[ LðzÞ�=dz is the

redshift distribution function.

Fig. 18 Stacked quadrupole shear profiles for a sample of 20 CLASH clusters measured with respect to

the X-ray major axis of each cluster. Left panel: observed hhDRð�Þ
1 ii (red squares) and hhDRð�Þ

2 ii (blue

triangles) profiles shown along with the best-fit elliptical-NFW model. Right panel: same as the left panel,

but showing the results for the hhDRðþÞ
1;2 ii profiles. The best-fit model was obtained from a simultaneous

elliptical-NFW fit to the four quadrupole shear profiles. Image reproduced with permission from Umetsu
et al. (2018), copyright by AAS
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Here, we focus on the subcritical regime with lðhÞ[ 0 (i.e., outside the critical

curves). Lensing magnification causes focusing of light rays while conserving the

surface brightness (Sect. 2.6.3), resulting in the following two competing effects

(Broadhurst et al. 1995; Umetsu 2013):

1 Area distortion: dX ! lðhÞdX;

2 Flux amplification: F ! lðhÞF.

The former effect reduces the geometric area in the source plane, thus decreasing

the observed number of background sources per unit solid angle. On the other hand,

the latter effect amplifies the flux of background sources, increasing the observed

number of sources above the limiting flux.

In the presence of gravitational lensing, the magnified source counts are given as:

nlð[FÞ ¼
Z

dz
d2V

lðzÞdzdX

Z 1

LðzÞ=lðzÞ
dL

d2NðL; zÞ
dLdV

¼
Z

dz
dn0½zj[ LðzÞ=lðzÞ�

lðzÞdz 	
Z

dz
dnl½zj[ LðzÞ�

dz
;

ð151Þ

where dnl½zj[ LðzÞ�=dz is the magnified redshift distribution function of the source

population. Hence, the net change of the magnified source counts

nlð[FÞ=n0ð[FÞ, known as magnification bias, depends on the intrinsic (un-

lensed) source luminosity function, d2NðL; zÞ=dL=dV . One can calculate the

expectation value for the magnified source counts nlð[FÞ for a given background

cosmology and a given source luminosity function.

In real observations, we apply different cuts (e.g., size, magnitude, and color

cuts) in source selection for measuring the shear and magnification effects, thus

leading to different source-redshift distributions. In contrast to the former effect,

measuring the effect of magnification bias does not require source galaxies to be

spatially resolved, but it does require a stringent flux limit against incompleteness

effects (Hildebrandt 2016; Chiu et al. 2020).

Equation (151) indicates that, when redshift information of individual source

galaxies is available from spectroscopic redshifts, we can directly measure the

magnified redshift distribution of background source galaxies for a flux-limited

sample (Broadhurst et al. 1995):

dnl½zj[ LðzÞ�
dz

¼ dn0½zj[ LðzÞ=lðzÞ�
lðzÞdz : ð152Þ

Hence, in principle, the lensing-induced distortion of the redshift distribution

dnl½zj[ LðzÞ�=dz can be measured from spectroscopic-redshift measurements with

respect to the unlensed distribution dn0½zj[ LðzÞ�=dz, which can be found in ran-

dom fields. In particular, the integrated magnification-bias effect will translate into

an enhancement in mean source redshift of the background sample (i.e., the first

moment of Eq. (152)). Using 300,000 BOSS survey galaxies with accurate spec-

troscopic redshifts, Coupon et al. (2013) measured their mean redshift depth behind

four large samples of optically selected clusters from the Sloan Digital Sky Survey
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(SDSS), totaling 5000–15,000 clusters. They found a J1 percent level of mean

redshift increase dzðRÞ toward the cluster center for SDSS-defined optical clusters

with an effective mass of M200c �ð1 � 2Þ � 1014M�.

5.2 Magnification observables

To simplify the calculations, we discretize Eq. (151) as:

nlð[FÞ ’
X
s

dnl½zsj[ LðzsÞ�
dz

Dz 	
X
s

nlðzsj[FÞ; ð153Þ

where nlðzsj[FÞ represents a subsample of the background population in the

redshift interval ½zs; zs þ Dz�. If the change in flux due to magnification is small

compared to the range over which the slope of the luminosity function varies, the

intrinsic source counts n0½zsj[ LðzsÞ� can be approximated at LðzsÞ by a power law

with a logarithmic slope of17:

aðzsÞ ¼ � d log n0ðzsj[ LÞ
d log L

����
LðzsÞ

: ð154Þ

The magnified source counts nlðzsj[FÞ in the redshift interval ½zs; zs þ Dz� are

given by:

nlðzsj[FÞ ¼ 1

l
dn0½zsj[ LðzsÞ=l�

dz
Dz ð155Þ

The corresponding magnification bias is given by:

blðzsÞ :¼
nlðzsj[FÞ
n0ðzsj[FÞ ¼ la�1: ð156Þ

Equation (156) implies a positive bias for a[ 1 and a negative bias for a\1. The

net magnification effect on the source counts vanishes at a ¼ 1. For a depleted

sample of background sources with a � 1, the effect of magnification bias is

dominated by the geometric area distortion (bl ! l�1 at a ! 0) and insensitive to

the intrinsic source luminosity function (Umetsu 2013). In the weak-lensing limit

(jcj; jjj � 1), we have:

bl ’ 1 þ 2ða� 1Þj: ð157Þ

Hence, the flux magnification bias bl in the weak-lensing limit provides a local

measure of the surface mass density field, jðhÞ. The combination of shear and

magnification can thus be used to break or alleviate mass-sheet degeneracy (Sch-

neider et al. 2000; Broadhurst et al. 2005b; Umetsu and Broadhurst 2008; Umetsu

et al. 2011b, 2014, 2018).

17 Note that, instead of a, s 	 d log10 n0ð\mÞ=dm ¼ 0:4a in terms of the limiting magnitude m is also

used in the literature (e.g., Broadhurst et al. 2005b; Umetsu et al. 2011b, 2014).
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In practical applications, we need to average over a broad range of source

redshifts to increase the S/N. The magnification bias averaged over the source-

redshift distribution is expressed as:

hbli :¼
nlð[FÞ
n0ð[FÞ ¼

P
s n0ðzsj[FÞlaðzsÞ�1

P
s n0ðzsj[FÞ : ð158Þ

In the continuous limit
P

s n0ðzsj[FÞ !
R

dz dn0ðzj[FÞ=dz, we have the fol-

lowing equation (Umetsu 2013; Umetsu et al. 2016):

hbli ¼
Z

dz
dn0ðzj[FÞ

dz
laðzÞ�1

� � Z
dz

dn0ðzj[FÞ
dz

� ��1

¼ hla�1i: ð159Þ

Equation (159) gives a general expression for the flux magnification bias. Deep

multiband photometry spanning a wide wavelength range allows us to identify

distinct populations of background galaxies (e.g., Medezinski et al.

2010, 2011, 2018b; Umetsu et al. 2012, 2014, 2015). Since a given flux limit (F)

corresponds to different intrinsic luminosities LðzsÞ at different source redshifts zs
(Eq. (150)), source counts of distinctly different background populations probe

different regimes of magnification bias. The bias is strongly negative for quiescent

galaxies at hzsi� 1, with a faint-end slope of a� 0:4 at the limiting magnitude

z0 � 25:6 ABmag (e.g., Umetsu et al. 2014, 2015). A net count depletion (bl\1)

results for such a source population with a � 1 (e.g., Broadhurst 1995; Taylor et al.

1998; Broadhurst et al. 2005b; Umetsu and Broadhurst 2008; Umetsu et al.

2011b, 2012, 2014, 2015; Ford et al. 2012; Coe et al. 2012; Medezinski et al. 2013;

Radovich et al. 2015; Ziparo et al. 2016; Wong et al. 2017), because the effect of

magnification bias is dominated by the geometric area distortion. In the regime of

density depletion, a practical advantage is that the effect is not sensitive to the exact

form of the source luminosity function. The S/N for detection of bl increases

progressively as the flux limit F decreases.

Figure 19 displays weak-lensing radial profiles for the cluster

MACS J1206.2-0847 at zl ¼ 0:439 derived from Subaru Suprime-Cam observa-

tions (Umetsu 2013). It is a highly massive X-ray cluster with M200c ¼ ð11:1 �
2:5Þ � 1014h�1M� (Umetsu et al. 2014) targeted by the CLASH survey. The black

squares in the top panel show the reduced tangential shear profile gþðRÞ. The blue

and red circles in the bottom panel are positive and negative magnification-bias

measurements nlðRÞ showing density enhancement and depletion, respectively, as a

function of cluster-centric radius R. These weak-lensing measurements yield

respective S/N values of 10.2, 2.9, and 4.7. Figure 19 also shows a joint Bayesian

reconstruction of each observed profile obtained from combined strong-lensing,

weak shear lensing, and positive/negative magnification-bias measurements.

5.3 Nonlinear effects on the source-averaged magnification bias

It is instructive to consider a maximally depleted population of source galaxies with

a ¼ �d log n0ð[FÞ=d logF ¼ 0 at the limiting flux F. For such a population, the
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effect of magnification bias is purely geometric, hbli ¼ hl�1i, and insensitive to

details of the intrinsic source luminosity function, d2NðL; zÞ=dL=dz. In the nonlinear

subcritical regime, the source-averaged inverse magnification factor is expressed as

(Umetsu 2013):

hl�1i ¼ ð1 � jÞ2 � jcj2
D E

¼ 1 � hjið Þ2�jhcij2 þ ðfl � 1Þ hji2 � jhcij2
	 


	 ð1 � hjiÞ2 � jhcij2 þ Dhl�1i;

ð160Þ

where h� � �i denotes the averaging over the source-redshift distribution (see

Eq. (159)), fl ¼ hR�2
cr;li=hRcr;li2

is a quantity of the order of unity, and Dhl�1i is the

correction with respect to the single source-plane approximation. The error asso-

ciated with the single source-plane approximation is

Dhl�1i=hl�1i ’ ðfl � 1Þ hji2 � jhcij2
	 


, which is much smaller than unity for

background populations with a� 0 in the mildly nonlinear subcritical regime where

jhjij � jhcij �Oð10�1Þ. It is therefore reasonable to use the single source-plane

approximation for calculating the magnification bias of depleted source populations

with a � 0.

Fig. 19 Weak-lensing radial profiles of MACS J1206.2-0847 (zl ¼ 0:439) from Subaru Suprime-Cam
observations. The top panel shows the reduced tangential shear profile gþ (squares). The bottom panel
shows the coverage- and masking-corrected number-count profiles nl for flux-limited samples of blue and

red background galaxies (blue and red circles, respectively). The error bars include contributions from
Poisson counting uncertainties and those from intrinsic angular clustering of each source population. For
the red sample, a strong depletion of the source counts is seen toward the cluster center due to
magnification of the sky area, while a slight enhancement of blue counts is present in the innermost radial
bins due to the effect of positive magnification bias. Also shown for each observed profile is the joint
Bayesian reconstruction (shaded area) from combined strong-lensing, weak shear lensing, and positive/
negative magnification-bias measurements. Image reproduced with permission from Umetsu (2013),
copyright by AAS
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In the regime of density enhancement (a[ 1), on the other hand, interpreting the

observed lensing signal requires detailed knowledge of the intrinsic source

luminosity function (see, e.g., Chiu et al. 2016, 2020), especially in the nonlinear

regime where the flux amplification factor is correspondingly large (say, lJ1:5).

For example, a blue distant population of background galaxies is observed to have a

well-defined redshift distribution that is fairly symmetric and peaked at a mean

redshift of hzsi� 2 (e.g., Lilly et al. 2007; Medezinski et al. 2010). Therefore, the

majority of these faint blue galaxies are in the far background of typical cluster

lenses, so that the lensing signal has a weaker dependence on the source redshift zs.
In such a case, the single source-plane approximation may well be justified (Umetsu

2013).

5.4 Observational systematics and null tests

In real observations, contamination of the background sample by unlensed galaxies

is a critical source of systematics in cluster weak lensing, as discussed in Sect. 4.1.

In particular, contamination by cluster galaxies has a direct impact on the

interpretation of background source counts, because it will cause an apparent

density enhancement at small cluster-centric radii. To avoid significant contami-

nation and alleviate this problem as much as possible, one often relies on a stringent

color–color selection (Sect. 4.1) to measure the lensing magnification signal from a

distinct population of background galaxies (e.g., Broadhurst et al. 2005b; Umetsu

and Broadhurst 2008; Umetsu et al. 2011b, 2014; Ziparo et al. 2016; Chiu et al.

2016, 2020). If well-calibrated photo-z PDFs are available from multiband

observations, the impact of cluster contamination can be characterized and assessed

by statistically decomposing the photo-z PDF P(z) into the cluster and random-field

populations (e.g., Gruen et al. 2014; Chiu et al. 2020).

Fig. 20 Stacked magnification-bias profiles around a sample of 3029 CAMIRA clusters obtained using
low-z (left) and high-z (middle) samples, as well as the joint (right) background sample, from the Subaru
HSC-SSP survey. The results are shown as a function of the projected physical cluster-centric radius R.
Filled circles with error bars represent the stacked magnification-bias measurements with the respective
lensing-cut samples. The total detection significance for each measurement is labeled in each panel. Open
diamonds with error bars show the results for ‘‘null-test’’ samples, for which the net effect of
magnification bias is expected to be zero. The green shaded region in each panel represents the 1r
confidence interval around the best-fit profile. Image reproduced with permission from Chiu et al. (2020),
copyright by the authors
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Moreover, for unbiased magnification-bias measurements, one has to correct for

the incomplete area coverage due to masked regions and incomplete measurement

annuli. Specifically, masking (or blocking) of background galaxies by foreground

objects, cluster members, and saturated or bad pixels needs to be properly accounted

for (see Umetsu et al. 2011b; Chiu et al. 2020). Another concern is the impact of

blending effects in the crowded regions of cluster environments and the presence of

intracluster light (Gruen et al. 2019a), which could bias the photometry and thus

photo-zs. The effects of masking and blending on the source counts can be

examined and quantified by injecting synthetic galaxies into real images from

observations (Huang et al. 2018; Chiu et al. 2020).

Since the net effect of magnification bias is expected to vanish for a flux-limited

background sample defined at a ¼ 1 (Sect. 5.2), weak-lensing magnification

provides a powerful null test, similar to the cross-shear (B-mode) signal in the

case of weak shear lensing (Sect. 4.2). By performing a null test, one can

empirically assess the level of residual bias that could be present in the

measurement for a ‘‘lensing-cut’’ sample defined at a[ 1 or a\1. The only

assumption made in this approach is that residual systematics are the same between

the lensing-cut and null-test samples defined at different flux (magnitude) limits.

This null test allows us to quantify the impact of deblending effects, biased

photometry in crowded regions, and any incorrect assumptions about P(z)-
decomposition (Chiu et al. 2020). This is demonstrated in Fig. 20. The figure shows

the stacked magnification-bias profiles around a sample of 3029 CAMIRA clusters

with richness N[ 15 in the redshift range 0:2 6 z\1:1, obtained using flux-limited

low-z and high-z background samples, as well as the joint sample, selected in the

g� i versus r � z diagram from HSC-SSP survey data (Chiu et al. 2020). The

magnification-bias signal for the full CAMIRA sample is detected at a significance

level of 9:5r. On the other hand, the residual bias estimated from the null-test

samples was found to be statistically consistent with zero (Chiu et al. 2020).

6 Recent advances in cluster weak-lensing observations

Galaxy clusters provide valuable information from the physics driving cosmic

structure formation to the nature of dark matter and dark energy. Their content

reflects that of the universe: � 85% dark matter and � 15% baryons (cf.

Xb=Xm ¼ ð15:7 � 0:4Þ%; Planck Collaboration et al. 2016a), with � 90% of the

baryons residing in a hot, X-ray-emitting phase of the intracluster medium. Massive

clusters dominated by dark matter are not expected to be significantly affected by

baryonic gas cooling (Blumenthal et al. 1986; Duffy et al. 2010), unlike individual

galaxies, because the high temperature and low density prevent efficient cooling and

gas contraction. Consequently, for clusters in a state of quasi-equilibrium, the form

of their total mass profiles reflects closely the underlying dark-matter distribution.

Hence, galaxy clusters offer fundamental tests on the assumed properties of dark

matter, as well as on models of nonlinear structure formation.

The KCDM paradigm assumes that dark matter is effectively cold (nonrelativis-

tic) and collisionless on astrophysical and cosmological scales (Bertone and Tait
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2018). In this context, the standard CDM model and its variants, such as self-

interacting dark matter (SIDM; Spergel and Steinhardt 2000) and wave dark matter

(wDM; Peebles 2000; Hu et al. 2000; Schive et al. 2014), can provide a range of

testable predictions for the properties of cluster-size halos (Sects. 6.1 and 6.2). A

prime example is the ‘‘Bullet Cluster’’, a merging pair of clusters exhibiting a

significant offset between the centers of the gravitational lensing mass and the X-ray

peaks of the collisional cluster gas (Clowe et al. 2004, 2006). The data support that

dark matter in clusters is effectively collisionless like galaxies, placing a robust

upper limit on the self-interacting cross-section for dark matter of

rDM=m\1:25 cm2 g�1 (Randall et al. 2008).

The abundance of clusters as a function of redshift provides a sensitive probe of

the amplitude and growth rate of primordial density perturbations, as well as of the

cosmological volume element d2VðzÞ=dz=dX. This cosmological sensitivity arises

mainly because clusters populate the high-mass exponential tail of the halo mass

function (e.g., Haiman et al. 2001). In principle, galaxy clusters can complement

other cosmological probes, such as CMB, galaxy clustering, cosmic shear, and

distant supernova observations. To place cosmological constraints using clusters,

however, it is essential to study large cluster samples with well-characterized

selection functions, spanning a wide range in mass and redshift (Allen et al. 2004;

Vikhlinin et al. 2009; Mantz et al. 2010). Currently, the ability of galaxy clusters to

provide robust cosmological constraints is limited by systematic uncertainties in

their mass calibration (Pratt et al. 2019). Since the level of mass bias is sensitive to

calibration systematics of the instruments (Donahue et al. 2014; Israel et al. 2015)

and is likely mass dependent (Sereno and Ettori 2017; Umetsu et al. 2020), a

concerted effort is needed to enable an accurate mass calibration with weak

gravitational lensing (see Sect. 6.4).

Substantial progress has been made in constructing statistical samples of galaxy

clusters thanks to dedicated wide-field surveys in various wavelengths (Planck

Collaboration et al. 2014a, 2015a; Bleem et al. 2015; Miyazaki et al. 2018b; Oguri

et al. 2018). Systematic lensing studies of galaxy clusters often target X-ray- or

SZE-selected samples (e.g., von der Linden et al. 2014a; Postman et al. 2012;

Gruen et al. 2014; Hoekstra et al. 2015; Sereno et al. 2017). This is because the hot

intracluster gas provides an excellent tracer of the cluster’s gravitational potential

(e.g., Donahue et al. 2014), except for the cases of massive cluster collisions caught

in an ongoing phase of dissociative mergers (Clowe et al. 2006; Okabe and Umetsu

2008). Moreover, X-ray and SZE observations provide useful centering information

of individual clusters. The effect of off-centered clusters is to dilute and flatten the

observed RðRÞ profile at scales smaller than the offset scale roff (Johnston et al.

2007; George et al. 2012; Du and Fan 2014). Since flattened, sheet-like mass

distributions produce little shear, the impact of miscentering on DRðRÞ is much

larger. The off-centered DRðRÞ profile is strongly suppressed by smoothing at scales

R.2:5roff (Johnston et al. 2007). A comparison of X-ray, SZE, and optical (e.g.,

BCGs) center positions allows us to empirically assess the level of halo

miscentering. It should be noted, however, that a merger can boost the X-ray and

SZE signals, and make their peaks off-centered during the compression phase
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(Molnar et al. 2012). Although the timescale on which this happens is expected to

be short (� 1 Gyr; Ricker and Sarazin 2001), it could induce a selection effect and

contribute to the scatter in their scaling relations (Umetsu et al. 2020).

In this section, we review recent advances in our understanding of the

distribution and amount of mass in galaxy clusters based on cluster weak-lensing

observations.

6.1 Cluster mass distribution

The distribution and concentration of mass in dark-matter-dominated halos depend

fundamentally on the properties of dark matter. For the case of collisionless CDM

models, cosmological N-body simulations with sufficiently high resolution can

provide accurate predictions for the end product of collisionless collapse in an

expanding universe. Although the formation of halos is a complex, nonlinear

dynamical process and halos are evolving through accretion and mergers, KCDM

models predict that the structure of quasi-equilibrium halos characterized in terms of

the spherically averaged density profile qðrÞ is approximately self-similar with a

characteristic density cusp in their centers, qðrÞ / 1=r (Navarro et al. 1996, 1997).

The density profile qðrÞ of dark-matter-dominated halos steepens continuously with

radius and it is well described by the NFW form out to the virial radius, albeit with

large variance associated with the assembly histories of individual halos (Jing and

Suto 2000).

Subsequent numerical studies with improved statistics and higher resolution

found that the spherically averaged density profiles of KCDM halos are better

approximated by the three-parameter Einasto function with an additional degree of

freedom (Merritt et al. 2006; Gao et al. 2008), which is closely linked with the mass

accretion history of halos (Ludlow et al. 2013). The Einasto profile has a power-law

logarithmic slope of c3DðrÞ ¼ �2ðr=r�2ÞaE (Sect. 4.3.3). For a given halo concen-

tration, an Einasto profile with aE � 0:18 closely resembles the NFW profile over

roughly two decades in radius (Ludlow et al. 2013). The shape parameter aE of

KCDM halos increases gradually with halo mass and redshift (see Gao et al. 2008;

Child et al. 2018; 0:15.aE.0:25 at z ¼ 0), so that the density profiles of KCDM

halos are not strictly self-similar (Navarro et al. 2010). By analyzing a large suite of

N-body simulations in KCDM, Child et al. (2018) found that both Einasto and NFW

profiles provide a good description of the stacked mass distributions of cluster-size

halos at low redshift, implying that the two fitting functions are nearly indistin-

guishable for stacked ensembles of low-redshift clusters, in contrast to clusters at

higher redshift (zJ1).

The three-dimensional shape of collisionless halos is predicted to be generally

triaxial with a preference for prolate shapes (Warren et al. 1992; Jing and Suto

2002), reflecting the collisionless nature of dark matter (Ostriker and Steinhardt

2003). Older halos tend to be more relaxed and thus to be rounder. Since more

massive halos form later on average, cluster-size halos are expected to be more

elongated than less massive systems (Shaw et al. 2006; Ho et al. 2006; Despali

et al. 2014, 2017; Bonamigo et al. 2015). Accretion of matter from the surrounding
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large-scale environment also plays a key role in determining the shape and

orientation of halos. The halo orientation tends to be in the preferential infall

direction of the subhalos and hence aligned along the surrounding filaments (Shaw

et al. 2006). The shape and orientation of galaxy clusters thus provide an

independent test of models of structure formation (see Sect. 4.6).

Prior to dedicated wide-field optical imaging surveys such as Subaru HSC-SSP

and DES, several cluster lensing surveys carried out deep targeted observations

toward a few tens to several tens of highly massive galaxy clusters with

M200c � 1015M� (e.g., Postman et al. 2012; Okabe et al. 2013; von der Linden

et al. 2014a; Hoekstra et al. 2015). Since such clusters are extremely rare across the

sky, targeted weak-lensing observations with deep multiband imaging currently

represent the most efficient approach to study in detail the high-mass population of

galaxy clusters each with sufficiently high S/N (see Contigiani et al. 2019).

In the last decade, cluster–galaxy weak-lensing observations have established

that the total matter distribution within clusters in projection can be well described

by cuspy, outward-steepening density profiles (Umetsu et al. 2011b, 2014, 2016;

Beraldo e Silva et al. 2013; Newman et al. 2013b; Okabe et al. 2013; Sereno et al.

2017), such as the NFW and Einasto profiles with a near-universal shape (Niikura

et al. 2015; Umetsu and Diemer 2017), as predicted for collisionless halos in quasi-

gravitational equilibrium (e.g., Navarro et al. 1996, 1997; Taylor and Navarro 2001;

Merritt et al. 2006; Gao et al. 2008; Hjorth and Williams 2010; Williams and Hjorth

2010). Moreover, the shape and orientation of galaxy clusters as constrained by

weak-lensing and multiwavelength data sets are found to be in agreement with

KCDM predictions (e.g., Oguri et al. 2005; Evans and Bridle 2009; Oguri et al.

2010; Morandi et al. 2012; Sereno et al. 2013, 2018b; Umetsu et al. 2015, 2018;

Chiu et al. 2018; Shin et al. 2018), although detailed studies of individual clusters

Fig. 21 Stacked tangential
(DRþ: top) and cross (DR�:
bottom) shear profiles obtained
for a sample of 50 X-ray
luminous LoCuSS clusters.
Solid red and dashed green lines
are the total mass model and the
NFW model, respectively. The
dotted blue and dash-dotted
magenta lines represent the
2-halo term and the central point
source multiplied by a factor of
10, respectively. Image
reproduced with permission
from Okabe and Smith (2016),
copyright by the authors
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are currently limited to a relatively small number of high-mass clusters with deep

multiwavelength observations (see Sereno et al. 2018b; Umetsu et al. 2018). These

results are all in support of the standard explanation for dark matter as effectively

collisionless and nonrelativistic on sub-megaparsec scales and beyond, with an

excellent match with standard KCDM predictions (however, see Meneghetti et al.

2020, for an excess of galaxy–galaxy strong-lensing events in clusters with respect

to KCDM).

In Fig. 21, we show the ensemble-averaged hhDRþii profile in the radial range

R 2 ½0:1; 2:8� h�1Mpc obtained for a stacked sample of 50 X-ray clusters (Okabe

and Smith 2016) targeted by the LoCuSS Survey (Local Cluster Substructure

Survey; Smith et al. 2016). Their weak shear lensing analysis is based on two-band

imaging observations with Subaru/Suprime-Cam. Their cluster sample is drawn

from the ROSAT All-Sky Survey (RASS; Voges et al. 1999) at 0:15\z\0:3 and is

approximately X-ray luminosity limited. The stacked shear profile of the LoCuSS

sample is in excellent agreement with the NFW profile with M200c ¼ 6:37þ0:28
�0:27 �

1014h�1M� and c200c ¼ 3:69þ0:26
�0:24 at zl ¼ 0:23. The 2-halo term contribution to DR

for the LoCuSS sample is negligibly small in the radial range .2r200c. From a single

Einasto profile fit to the stacked hhDRii profile, Okabe and Smith (2016) obtained

the best-fit Einasto shape parameter of aE ¼ 0:161þ0:042
�0:041, which is consistent within

the errors with the KCDM predictions for cluster-size halos at zl ¼ 0:23 (Gao et al.

2008; Dutton and Macciò 2014).

Figure 22 shows the ensemble-averaged hhRii profile of 16 CLASH X-ray-

selected clusters (Umetsu et al. 2016) based on a joint strong- and weak-lensing

analysis of 16-band Hubble Space Telescope (HST) observations (Zitrin et al. 2015)

Fig. 22 Left panel: ensemble-averaged projected mass density profile hhRðRÞii (black squares) for a
sample of 16 CLASH X-ray-selected clusters (gray lines), obtained from a joint analysis of strong-

lensing, weak-lensing shear and magnification data. Right panel: models with v2 probabilities to exceed
(PTE) of [ 0:05 are shown with solid lines, while those with PTE
 0:05 are shown with dashed lines.
The averaged mass profile is well described by a family of density profiles predicted for dark-matter-
dominated halos in gravitational equilibrium, such as the NFW, Einasto, and DARKexp models. Cuspy
halo models (red) that include the 2-halo contribution from surrounding large-scale structure provide
improved agreement with the data. This is a slightly modified version of the figure presented in Umetsu
et al. (2016)
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and wide-field multicolor imaging taken primarily with Subaru/Suprime-Cam

(Umetsu et al. 2014). The CLASH survey is an HST Multi-Cycle Treasury program

designed to study with 525 assigned orbits the mass distributions of 25 high-mass

clusters. In this sample, 20 clusters were selected to have regular X-ray

morphologies and X-ray temperatures above 5 keV. Numerical simulations suggest

that this X-ray-selected subsample is mostly composed of relaxed clusters (� 70%)

but the rest (� 30%) are unrelaxed systems (Meneghetti et al. 2014). Another subset

of five clusters were selected by their high-magnification lensing properties. Umetsu

et al. (2016) studied a subset of 20 CLASH clusters (16 X-ray-selected and 4 high-

magnification systems) taken from Umetsu et al. (2014), who presented a joint shear

and magnification weak-lensing analysis of these individual clusters. The stacked

hhRii profile over 2 decades in radius, R 2 ½0:02; 2�r200m, is well described by a

family of density profiles predicted for cuspy dark-matter-dominated halos in

gravitational equilibrium, namely, the NFW, Einasto, and DARKexp models

(Umetsu et al. 2016).18 In contrast, the single power-law, cored-isothermal, and

Burkert density profiles are statistically disfavored by the data. Cuspy halo models

that include the 2-halo term provide improved agreement with the data.

Umetsu et al. (2016) found the best-fit NFW parameters for the stacked CLASH

hhRii profile of M200c ¼ 10:1þ0:8
�0:7 � 1014h�1M� and c200c ¼ 3:76þ0:29

�0:27 (Umetsu et al.

2016) at a lensing-weighted mean redshift of zl � 0:34. Similarly, the best-fit

Einasto shape parameter for the stacked hhRii profile is aE ¼ 0:232þ0:042
�0:038, which is

in excellent agreement with predictions from KCDM numerical simulations, aE ¼
0:21 � 0:07 (Meneghetti et al. 2014, aE ¼ 0:24 � 0:09 when fitted to surface mass

density profiles of projected halos).

Note that the innermost bin in Fig. 22 represents the mean density interior to

Rmin ¼ 40h�1kpc corresponding to the typical resolution limit of their HST strong-

lensing analysis, d# � 10 arcsec. This scale Rmin is about twice the typical half-light

radius of the CLASH BCGs (see Tian et al. 2020), within which the stellar baryons

dominate the total mass of the clusters (e.g., Caminha et al. 2019). Determinations

of the central slope of the dark-matter density profile qDMðrÞ in clusters require

additional constraints on the total mass in the innermost region, such as from stellar

kinematics of the BCG (Newman et al. 2013a). To constrain qDMðrÞ, one needs to

carefully model the different contributions to the cluster total mass profile, coming

from the stellar mass of member galaxies, the hot gas component, the BCG stellar

mass, and dark matter (Sartoris et al. 2020). Moreover, it is important to take into

account the velocity anisotropy on the interpretation of the line-of-sight stellar

velocity dispersion profile of the BCG (Schaller et al. 2015; Sartoris et al. 2020; He

et al. 2020). For these reasons, current measurements and interpretations of the

asymptotic central slope of qDMðrÞ in galaxy clusters appear to be controversial

(e.g., Newman et al. 2013a; Sartoris et al. 2020; He et al. 2020).

18 The NFW and Einasto profiles represent phenomenological models for cuspy dark halos motivated by

numerical simulations. The DARKexp model describes the distribution of particle energies in

collisionless self-gravitating systems with isotropic velocity distributions (Hjorth and Williams 2010;

Williams and Hjorth 2010), providing theoretical predictions for the structure of collisionless halos.
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According to cosmological N-body simulations, the spherically averaged density

profiles in the halo outskirts are most self-similar when expressed in units of

overdensity radii rDm
defined with respect to the mean density of the universe, qðzÞ,

especially to r200m (Diemer and Kravtsov 2014). This self-similarity indicates that

overdensity radii defined with respect to the mean cosmic density are preferred to

describe the structure and evolution of the outer density profiles. The structure and

dynamics of the infall region are expected to be universal in units of the turnaround

radius, according to self-similar infall models (Gunn and Gott 1972; Fillmore and

Goldreich 1984; Bertschinger 1985; Shi 2016). In these models, the turnaround

radius is a fixed multiple of the radius enclosing a given fixed overdensity with

respect to the mean cosmic density. The outer profiles can thus be expected to be

self-similar in r=r200m. In contrast, the density profiles in the intra-halo (1-halo)

region are found to be most self-similar when they are scaled by r200c (or any other

critical overdensity radius with a reasonable threshold; Diemer and Kravtsov 2014).

That is, density profiles of KCDM halos in N-body simulations prefer different

scaling radii in different regions of the density profile (Diemer and Kravtsov 2014).

These empirical scalings were confirmed in cosmological hydrodynamical simu-

lations of galaxy clusters (Lau et al. 2015, see also Shi 2016). However, the physical

explanation for the self-similarity of the inner density profile when rescaled with

r200c is less clear.

In Fig. 23, we show the projected total mass density (R) and enclosed mass (M2D)

profiles for seven CLASH clusters derived from a detailed strong-lensing analysis of

Caminha et al. (2019) based on extensive spectroscopic information, primarily from

Fig. 23 Projected mass density (left) and enclosed mass (right) profiles for seven CLASH clusters derived
from a detailed strong-lensing analysis, rescaled by M200c and r200c obtained from NFW fits to
independent weak-lensing measurements (Umetsu et al. 2018). Vertical lines color-coded for each cluster
indicate the positions of multiple images used for the lens modeling, all belonging to spectroscopic
confirmed families. MACS J0416 with a shallower inner density slope is a highly asymmetric merging
system. Image reproduced with permission from Caminha et al. (2019), copyright by ESO
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the Multi Unit Spectroscopic Explorer (MUSE) archival data complemented with

CLASH-VLT redshift measurements (Biviano et al. 2013; Rosati et al. 2014). In the

figure, the projected mass profiles of individual clusters are rescaled using M200c and

r200c obtained from NFW fits to independent ground-based weak-lensing measure-

ments (Umetsu et al. 2018). All clusters have a relatively large number of multiple-

image constraints in the region 10�2
.R=r200c.10�1, where the shapes of the

rescaled RðRÞ and M2Dð\RÞ profiles are remarkably similar. Even MACS J0416

(Zitrin et al. 2013; Jauzac et al. 2015; Grillo et al. 2015; Balestra et al. 2016),

which is a highly asymmetric merging system, does not deviate significantly from

the overall homologous profiles. Within 10% and 20% of r200c for the seven clusters,

Caminha et al. (2019) measured a mean projected total mass value of 0.13 and

0:32 �M200c, respectively, finding a remarkably small scatter of 5% and 6%. At

these same radii, for the projected total mass density profiles, they found a mean

value of 9.0 and 4:7 �M200c=ðpr2
200cÞ, with a slightly larger scatter of 7% and 9%,

respectively. The observed trend is qualitatively consistent with the predictions by

Diemer and Kravtsov (2014) and Lau et al. (2015).

6.2 The concentration–mass relation

The halo concentration cD is a key quantity that characterizes the density structure

of dark-matter halos, where cD is defined as the ratio of the outer halo radius rD
(typically defined at an overdensity of Dc ¼ 200) and the inner characteristic radius

rs at which the logarithmic density slope is �2 (Sect. 4.2).19 The halo concentration

as a function of halo mass and redshift is referred to as the concentration–mass (c–

M) relation (e.g., Bullock et al. 2001; Wechsler et al. 2002). For NFW halos, the c–

M relation fully specifies the structure of halos at fixed halo mass and thus is a key

ingredient of cluster cosmology.

In hierarchical KCDM models, cD is predicted to depend on the accretion history.

In the early phase of rapid mass accretion, the scale radius rs of a halo scales

approximately as the virial radius and thus cD remains nearly constant (Zhao et al.

2003). During the subsequent slow accretion phase, the scale radius stays

approximately constant, whereas rD continues to grow through a mixture of

physical accretion and pseudo-evolution, resulting in an increase in halo concen-

tration (Navarro et al. 1997; Bullock et al. 2001; Wechsler et al. 2002; Diemer et al.

2013; Correa et al. 2015). Since the mass accretion history depends on the

amplitude and shape of peaks in the initial density field, as well as on the mass scale

and the background cosmology, cD depends on halo mass, redshift, and cosmolog-

ical parameters (Prada et al. 2012; Dutton and Macciò 2014; Diemer and Kravtsov

2015; Diemer and Joyce 2019). There have been a number of attempts to obtain a

more universal representation of cD as a function of physical parameters, such as the

halo peak height mðMD; zÞ and the local slope of the matter power spectrum

d lnPðkÞ=d ln k (see Zhao et al. 2009; Prada et al. 2012; Diemer and Kravtsov 2015;

Diemer and Joyce 2019).

19 This definition can be generalized to any form of the density profiles other than the NFW profile, such

as the Einasto profile (Einasto 1965, Sect. 4.3.3) and the generalized NFW profile (Zhao 1996).
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Since galaxy clusters are, on average, dynamically young and still growing

through accretion and mergers, cluster halos are expected to have relatively low

concentrations, c200cðz ¼ 0Þ� 4, in contrast to individual galaxy halos that have

denser central regions, c200cðz ¼ 0Þ� 7 � 8 (Bhattacharya et al. 2013; Dutton and

Macciò 2014; Diemer and Kravtsov 2015; Child et al. 2018; Diemer and Joyce

2019). These general trends are complicated by diverse formation and assembly

histories of individual halos (Ludlow et al. 2013), which translate into substantial

scatter in the c–M relation, with a lognormal intrinsic dispersion of

rintðln c200cÞ� 35%20 at fixed halo mass (e.g., Duffy et al. 2008; Bhattacharya

et al. 2013; Diemer and Kravtsov 2015)21

On the observational side, cluster lensing studies targeting lensing-unbiased

samples (e.g., Merten et al. 2015; Du et al. 2015; Umetsu et al. 2016, 2020; Okabe

and Smith 2016; Cibirka et al. 2017; Sereno et al. 2017; Klein et al. 2019) have

found that the c–M relations derived for these cluster samples agree well with

theoretical models calibrated for recent KCDM cosmologies (e.g., Bhattacharya

et al. 2013; Dutton and Macciò 2014; Meneghetti et al. 2014; Diemer and Kravtsov

2015; Child et al. 2018; Diemer and Joyce 2019).

In Fig. 24, we show the c200c–M200c relation derived from a Subaru weak-lensing

analysis of 50 X-ray-selected clusters targeted by the LoCuSS survey (see Sect. 6.1;

Okabe and Smith 2016). Their results are based on NFW profile fits to the reduced

tangential shear profiles of individual clusters. The best-fit c200c–M200c relation for

the LoCuSS sample is c200c ¼ 5:12þ2:08
�1:44 � ðM200c=1014h�1M�Þ�0:14�0:16

at zl ¼ 0:23

(Okabe and Smith 2016). The normalization and slope of the c200c–M200c relation for

the LoCuSS sample are in excellent agreement with those found for mass-selected

samples of dark-matter halos in KCDM numerical simulations (Bhattacharya et al.

2013; Meneghetti et al. 2014; Diemer and Kravtsov 2015), indicating no significant

impact of the X-ray selection on the normalization and mass slope parameters.

Okabe and Smith (2016) found an intrinsic lognormal dispersion of

rintðln c200cÞ\20% (68:3% CL) at fixed halo mass, which is lower than found for

KCDM halos in N-body simulations (� 35% for the full population of halos

including both relaxed and unrelaxed systems; Bhattacharya et al. 2013; Diemer

and Kravtsov 2015). Similar results on the concentration scatter were obtained for

independent X-ray cluster samples (e.g., the CLASH and the XXL samples with

rintðln c200cÞ ¼ ð13 � 6Þ% and rintðln c200cÞ\24% at the 99:7% CL, respectively;

see Umetsu et al. 2016, 2020). This is likely caused in part by the X-ray selection

bias in terms of the cool-core or relaxation state, as found by previous studies

(Buote et al. 2007; Ettori et al. 2010; Eckert et al. 2011; Meneghetti et al. 2014).

Cluster samples are traditionally defined by X-ray or optical observables, and

more recently through the thermal SZE strength (e.g., Planck Collaboration et al.

20 The fractional scatter in natural logarithm is quoted as a percent (see, e.g., Umetsu et al. 2020).
21 According to N-body simulations, the distribution of concentrations derived for all halos has tails at

both low and high values of c200c, and it is neither Gaussian nor lognormal (see Fig. 1 of Diemer and

Kravtsov 2015). By selecting ‘‘relaxed’’ halos (which excludes some of the tails resulting from poor fits),

some authors found that the distribution of concentrations is described by a lognormal distribution (e.g.,

Jing 2000; Bullock et al. 2001; Neto et al. 2007), while others found that it is better described by a

Gaussian (Reed et al. 2011; Bhattacharya et al. 2013).
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2015a). The SZE is a characteristic spectral distortion in the CMB induced by

inverse Compton scattering between cold CMB photons and hot ionized electrons

(Sect. 2.6.5; Rephaeli 1995; Birkinshaw 1999). Unlike any other detection

techniques, SZE-selected cluster samples are nearly mass-limited and have well-

behaved selection functions. This is because the SZE detection signal has a very

weak dependence on the redshift (see Eq. (38)) and it is also less sensitive to the

relaxation state of the cluster. Blind SZE surveys can thus provide representative

cluster samples representative of the full population of halos out to high redshift.

This makes SZE surveys ideal for cosmological tests based on the evolution of the

cluster abundance.

We show in Fig. 25 the c200c–M200c relation at zl ¼ 0:20 obtained for a sample of

Planck clusters targeted by the PSZ2LenS project (Sereno et al. 2017). The

PSZ2LenS sample includes 35 optically confirmed Planck clusters selected from the

second Planck catalog of Sunyaev–Zel’dovich sources (PSZ2; Planck Collaboration

et al. 2015a) located in the fields of two lensing surveys, namely the CFHTLenS

(Canada France Hawaii Telescope Lensing Survey; Heymans et al. 2012) and

RCSLenS (Red Cluster Sequence Lensing Survey; Hildebrandt et al. 2016) surveys.

The PSZ2LenS sample represents a faithful subsample of the whole population of

Planck clusters, for which homogeneous weak-lensing data and photometric

redshifts are available from the CFHTLenS and RCSLenS surveys (Sereno et al.

2017). The resulting relation between mass and concentration is in broad agreement

with theoretical predictions from N-body simulations calibrated for recent KCDM

Fig. 24 The concentration–mass (c200c–M200c) relation for a sample of 50 X-ray luminous clusters (black
circles with error bars) derived from the LoCuSS survey (Okabe and Smith 2016). The results are based
on weak-lensing measurements from Subaru Suprime-Cam observations. The thick and thin red lines
show the best-fitting function and the errors, respectively. The dashed blue, dotted green, and dot-dashed
magenta lines are the mean c–M relation of KCDM halos derived from numerical simulations of
Bhattacharya et al. (2013), Diemer and Kravtsov (2015), and Meneghetti et al. (2014) at zl ¼ 0:23,
respectively. Image reproduced with permission from Okabe and Smith (2016), copyright by the authors
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cosmologies (Bhattacharya et al. 2013; Dutton and Macciò 2014; Meneghetti et al.

2014; Ludlow et al. 2016).

6.2.1 Superlens clusters: are they overconcentrated?

In contrast to X-ray- or SZE-selected samples, galaxy clusters identified by the

presence of strongly lensed giant arcs represent a highly biased population. In

particular, cluster lenses selected to have large Einstein radii (e.g., #Ein [ 30 arcsec

for zs ¼ 2) represent the most lensing-biased population of clusters with their major

axis preferentially aligned with the observer’s line of sight (Hennawi et al. 2007;

Oguri and Blandford 2009; Meneghetti et al. 2010a, 2011). Such an extreme

population of cluster lenses is referred to as superlenses (Oguri and Blandford

2009). A selection bias in favor of prolate structure pointed to the observer is

expected, because this orientation boosts the projected surface mass density and

hence the lensing signal. A population of superlens clusters is also expected to be

biased toward halos with intrinsically higher concentrations (Hennawi et al. 2007;

Sereno et al. 2010). Accordingly, in the context of KCDM, superlens clusters are

predicted to have large apparent concentrations in projection of the sky, compared

to typical clusters with similar masses and redshifts (Oguri and Blandford 2009).

Calculations of the enhancement of the projected mass and thus boosted Einstein

radii find a statistical bias of � 34% in concentration based on N-body simulations

of KCDM cosmologies (Hennawi et al. 2007). Semianalytical simulations based on

Fig. 25 The concentration–mass (c200c–M200c) relation at zl ¼ 0:20, derived from a weak-lensing analysis
of 35 PSZ2LenS clusters (Sereno et al. 2017) selected from the Planck SZE survey. The solid and dashed
black lines show the median c–M relation and its intrinsic scatter, respectively. The shaded gray region
encloses the 68:3% probability around the median relation due to uncertainties on the scaling parameters.
The blue, green, and orange lines show the c–M relation of KCDM halos derived from numerical
simulations of Bhattacharya et al. (2013), Dutton and Macciò (2014), and Ludlow et al. (2016),
respectively. The solid and dashed red lines show the c–M relation of KCDM halos and its 1r scatter,
respectively, from Meneghetti et al. (2014). Image reproduced with permission from Sereno et al. (2017),
copyright by the authors
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triaxial halos find a concentration bias of � 40%–60% for superlens clusters (Oguri

and Blandford 2009).

Despite attempts to correct for potential projection and selection biases inherent

to lensing, initial results from combined strong- and weak-lensing measurements

assuming a spherical halo revealed a relatively high degree of halo concentration in

lensing clusters (Gavazzi et al. 2003; Kneib et al. 2003; Broadhurst et al.

2005b, 2008; Oguri et al. 2009; Zitrin et al. 2011; Umetsu et al. 2011a), lying

above the c–M relation calibrated for KCDM cosmologies (e.g., Neto et al. 2007;

Duffy et al. 2008) based on earlier Wilkinson Microwave Anisotropy Probe
(WMAP) releases (Spergel et al. 2003; Komatsu et al. 2009). A possible explanation

for the apparent discrepancy was that cluster halos are highly overconcentrated than

expected from KCDM models. Motivated by possible implications for the

overconcentration problem, one of the key objectives of the CLASH survey is to

establish the degree of mass concentration for a lensing-unbiased sample of high-

mass clusters using combined strong- and weak-lensing measurements with

homogeneous data sets.

As a precursor study of the CLASH survey, Umetsu et al. (2011a) carried out a

combined strong- and weak-lensing analysis of four superlens clusters of similar

masses (A1689, A1703, A370, and Cl0024þ1654; see Umetsu et al. 2011b) using

strong-lensing, weak-lensing shear and magnification measurements obtained from

high-quality HST and Subaru observations. The stacked sample has a lensing-

weighted mean redshift of zl � 0:32. These clusters display prominent strong-

lensing features characterized by large Einstein radii, hEinJ30 arcsec for zs ¼ 2.

Umetsu et al. (2011a) found that the stacked hhRii profile of the four clusters in the

range R 2 ½40; 2800�h�1kpc is well described by a single NFW profile, with an

effective concentration of c200c ¼ 6:31 � 0:35 at

M200c ¼ ð13:4 � 0:9Þ � 1014h�1M�, corresponding to an Einstein radius of #Ein �
36 arcsec for zs ¼ 2. After applying a 50% superlens correction, Umetsu et al.

(2011a) found a discrepancy of � 2r with respect to the c–M relation of Duffy et al.

(2008) calibrated for the WMAP 5-year cosmology. They concluded that there is no

significant tension between the concentrations of the four clusters and those of

KCDM halos if lensing biases are coupled to a sizable intrinsic scatter in the c–

M relation.

In Fig. 26, we show in the c200c–M200c plane the stacked lensing constraints

obtained for the CLASH X-ray-selected subsample (Umetsu et al. 2016) and those

for the superlens sample of Umetsu et al. (2011a). The stacked lensing constraints

for the two cluster samples are compared to theoretical c–M relations of Duffy et al.

(2008), Bhattacharya et al. (2013), Dutton and Macciò (2014), Meneghetti et al.

(2014), and Diemer and Kravtsov (2015, their mean relation), all evaluated for the

full population of halos at z ¼ 0:32. This comparison demonstrates that c–M
relations that are calibrated for more recent simulations and KCDM cosmologies

(WMAP 7- and 9-year cosmologies and Planck cosmologies) provide better

agreement with the CLASH lensing measurements (Umetsu et al. 2014, 2016;

Merten et al. 2015). This is also in line with the findings of Dutton and Macciò

(2014), who showed that the c–M relation in the WMAP 5-year cosmology has a
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20% lower normalization at z ¼ 0 than in the Planck cosmology, which has a

correspondingly higher normalization in terms of Xm and r8.

To account for the superlens bias in the Umetsu et al. (2011a) sample, Fig. 26

shows each of the c–M predictions with a maximal 60% correction applied (Oguri

and Blandford 2009). We see from the figure that, once the effects of selection and

orientation bias are taken into account, the results of Umetsu et al. (2011a) come

into line with the models of Dutton and Macciò (2014), Meneghetti et al. (2014),

and Diemer and Kravtsov (2015), the three most recent c–M models studied in

Umetsu et al. (2016). Hence, the discrepancy found by Umetsu et al. (2011a) can be

fully reconciled by the higher normalization of the c–M relation as favored by more

recent WMAP and Planck cosmologies (Komatsu et al. 2011; Hinshaw et al. 2013;

Planck Collaboration et al. 2015b). Therefore, there appears to be no compelling

evidence for the overconcentration problem within the standard KCDM framework

(see also Oguri et al. 2012; Foëx et al. 2014; Robertson et al. 2020).

Another issue when comparing to theoretical relations is that they are generally

quantified by the mean and median concentration of individual halos (Diemer and

Kravtsov 2015), rather than that of stacked density profiles (Child et al. 2018). Since the

lensing signal depends nonlinearly on halo concentration, even if c200cðM200cÞ is

normally distributed, there is no guarantee that the concentration extracted from a

stacked lensing profile would be equal to the mean of the concentrations of the halos in

the stack. The difference can be significant, especially when taking into account

different stacking procedures used in lensing measurements (Umetsu and Diemer 2017).

Fig. 26 Stacked lensing constraints on the c–M relation derived assuming spherical NFW halos for the

CLASH X-ray-selected subsample (Umetsu et al. 2016, c200c ¼ 3:76þ0:29
�0:27 at zl � 0:34; blue contours) and

for the superlens sample of (Umetsu et al. 2011a, c200c ¼ 6:31 � 0:35 at zl � 0; 32; gray contours). Both
results are based on their respective strong- and weak-lensing analyses. For each case, the contours show
the 68:3% and 95:4% confidence levels. The results are compared to theoretical c–M relations (solid
lines) from numerical simulations of KCDM cosmologies (Duffy et al. 2008; Bhattacharya et al. 2013;
Dutton and Macciò 2014; Meneghetti et al. 2014; Diemer and Kravtsov 2015), all evaluated at z ¼ 0:32
for the full population of halos. The dashed lines show 60% superlens corrections to the solid lines,
accounting for the effects of strong-lensing selection and orientation bias expected for the population of
superlens clusters (Oguri and Blandford 2009). Image reproduced with permission from Umetsu et al.
(2016), copyright by AAS
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It is intriguing to note that, as already discussed in Sect. 4.3.1, full triaxial modeling

of Abell 1689 (zl ¼ 0:183) shows that combined lensing, X-ray, and SZE observations

of the cluster can be consistently explained by its intrinsically high mass concentration

combined with a chance alignment of its major axis with the line-of-sight direction

(Umetsu et al. 2015). A careful interpretation of lensing, dynamical, and X-ray data

based on N-body/hydrodynamical simulations suggests that Cl0024þ1654

(zl ¼ 0:395) is the result of a high-speed, line-of-sight collision of two massive

clusters viewed approximately 2–3 Gyr after impact when the gravitational potential

has had time to relax in the center, but before the gas has recovered (Umetsu et al.

2010). Similar to the case of Cl0024þ1654, Abell 370 (zl ¼ 0:375) is faint in both

X-ray and SZE signals and does not follow the X-ray/SZE observable–mass-scaling

relations (see Czakon et al. 2015). N-body/hydrodynamical simulations constrained

by lensing, dynamical, X-ray, and SZE observations suggest that Abell 370 is a post-

major merger after the second core passage in the infalling phase, just before the third

core passage (Molnar et al. 2020). In this post-collision phase, the gas has not settled

down in the gravitational potential well of the cluster, which explains why A370 does

not follow the mass scaling relations. Note that, because of its large projected mass and

high lensing magnification capability, Abell 370 has been selected as one of the six

Hubble Frontier Fields clusters (Lotz et al. 2017).

Finally, it should be noted that high-magnification-selected clusters at zl [ 0:5,

such as those selected by the CLASH and Frontier Fields surveys, often turn out to

be dynamically disturbed, highly massive ongoing mergers (e.g., Torri et al. 2004;

Zitrin and Broadhurst 2009; Merten et al. 2011; Zitrin et al. 2013; Medezinski et al.

2013, 2016). These ongoing mergers can produce substructured, highly elongated

lenses in projection of the sky (e.g., Umetsu et al. 2005; Acebron et al. 2019),

enhancing the lensing efficiency (Meneghetti et al. 2003, 2007; Redlich et al. 2012)

by boosting the number of multiple images per critical area, due to the increased

ratio of the caustic area relative to the critical area (Zitrin et al. 2013). The projected

mass distributions of such ongoing mergers cannot be well described by a single

NFW profile. In contrast to the superlens clusters at zl\0:4 (Umetsu et al. 2011a),

NFW fits to the lensing profiles of high-magnification CLASH clusters yield

relatively low concentrations (see Umetsu et al. 2016).

6.3 Splashback radius

In the standard KCDM paradigm of hierarchical structure formation, galaxy clusters

form through accretion of matter along surrounding filamentary structures, as well

as through successive mergers of smaller objects. An essential picture of halo

assembly is that shells of matter surrounding an overdense region in the early

universe will initially expand with the Hubble flow, decelerate, turn around, and fall

back in. Each shell will cross previously collapsed shells that are oscillating in the

growing halo potential. In this picture, accreting particles will pile up near the

apocenter of their first orbit, thus creating a sharp density enhancement or caustic in

the halo outskirts (Fillmore and Goldreich 1984; Bertschinger 1985). This

steepening feature depends on the slope of the initial mass perturbation, which
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determines the mass accretion rate of dark-matter halos (Fillmore and Goldreich

1984; Lithwick and Dalal 2011). This is illustrated in Fig. 27.

Recently, a closer examination of the halo density profiles in cosmological N-

body simulations has revealed systematic deviations from the NFW and Einasto

profiles in the outskirts at rJ0:5r200m (Diemer and Kravtsov 2014). In particular,

the halo profiles exhibit a sharp drop in density, a feature associated with the orbital

apocenter of the recently accreted matter in the growing halo potential (see Fig. 27).

The location of the outermost density caustic expected in collisionless halos is

referred to as the splashback radius (Diemer and Kravtsov 2014; Adhikari et al.

2014; More et al. 2015). The splashback radius constitutes a physical boundary of

halos, because it sharply separates (at least in perfect spherical symmetry) the

multistream intra-halo region from the outer infall region (Diemer and Kravtsov

2014; More et al. 2015; Mansfield et al. 2017; Okumura et al. 2018). The

splashback radius is also related to the transition scale between the 1-halo and

2-halo regimes of the halo–mass correlation function (Garcia et al. 2020).

Splashback features are determined by the orbits of dark-matter particles in the

halo potential and thus fully characterized in phase space (Diemer 2017; Okumura

et al. 2018). Hence, the steepening feature in the density profile alone cannot

capture the full dynamical information of dark-matter halos (see Okumura et al.

2018). In particular, the ‘‘true’’ location of the splashback radius based on particle

orbits is not equivalent to a particular location in the spherically averaged density

profile (Diemer 2017; Diemer et al. 2017). Nevertheless, it is convenient to define

Fig. 27 Density caustics for self-similar collisionless halos with an accretion rate of s ¼ d lnM=d ln a ¼
3 (Fillmore and Goldreich 1984; Lithwick and Dalal 2011). The left panel shows particle trajectories in
the phase-space diagram for spherically symmetric collapse (solid black curve) and for three-dimensional
triaxial collapse (color map). The horizontal axis is the halo-centric distance (r) and the vertical axis is the
radial velocity (Vr). The right panel shows the spherically averaged density profile qðrÞ for different
values of the initial ellipticity parameter e (Lithwick and Dalal 2011). The vertical line indicates the
location of the outermost caustic, or the splashback radius, predicted by the similarity solution for
spherical collisionless collapse with this value of accretion rate. The caustic location depends on the mass
accretion rate of halos, while the steepening caustic feature in the spherically averaged qðrÞ depends on
e. Image reproduced with permission from Adhikari et al. (2014), copyright by IOP and SISSA. See also
Shi (2016) for an analytical approach to modeling the outer profile of dark-matter halos
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the splashback radius rsp as the halo radius where the logarithmic slope of the three-

dimensional density profile, c3DðrÞ ¼ d ln qðrÞ=d ln r, is steepest (Diemer and

Kravtsov 2014; More et al. 2015). The splashback radius is a genuine prediction of

the standard CDM picture of structure formation. We can possibly learn something

about the nature of dark matter and cosmology (Adhikari et al. 2018; Banerjee et al.

2020). Moreover, this steepening feature may be used to make the connection to the

dynamical relaxation state of halos.

In the context of KCDM, the location of rsp with respect to r200m is predicted to

decrease with mass accretion rate sðaÞ 	 d lnMvirðaÞ=d ln a (Diemer and Kravtsov

2014; Adhikari et al. 2014; More et al. 2015; Diemer et al. 2017) and to increase

with XmðaÞ 	 qðaÞ=qcðaÞ (More et al. 2015; Diemer et al. 2017), with some

additional dependence on peak height m (see Diemer et al. 2017). In KCDM

cosmologies, fast accreting halos have rsp.r200m with a sharper splashback feature,

while, for slowly accreting halos, rsp can be as large as ð2 � 3Þr200m (More et al.

2015; Diemer et al. 2017). The steepening splashback signal is thus expected to be

strongest for massive galaxy clusters, because they are, on average, fast accreting

systems (Adhikari et al. 2014; Diemer and Kravtsov 2014). Galaxy clusters are thus

the best objects to look for the splashback feature.

The steepening feature near the splashback radius rsp can be inferred from weak

lensing and density statistics of the galaxy distribution. When using galaxies as a

tracer of the mass distribution around clusters, however, one needs to account for

the effect of dynamical friction that acts to reduce the orbital apocenter of

sufficiently massive subhalos hosting cluster galaxies (see Adhikari et al. 2016).

Since the efficiency of dynamical friction increases with the ratio of subhalo to

cluster halo mass, the impact of dynamical friction on the splashback feature is

expected to depend on the luminosity of tracer galaxies (e.g., More et al. 2016;

Chang et al. 2018). The splashback feature in stacked galaxy surface density

profiles has been routinely detected using cluster–galaxy cross correlations, thanks

to statistical samples of clusters defined from large optical or SZE surveys (More

et al. 2016; Baxter et al. 2017; Chang et al. 2018; Shin et al. 2019; Zürcher and

More 2019; Murata et al. 2020).

Cluster–galaxy weak lensing can be used to directly test detailed predictions for the

splashback feature in the outer density profile of cluster halos. Since the location of the

steepest slope in three dimensions is a trade-off between the steepening 1-halo term

and the 2-halo term, one needs to precisely measure the lensing signal in both 1-halo

and 2-halo regimes spanning a wide range in cluster-centric radius. The location of the

three-dimensional splashback radius rsp can then be inferred by forward-modeling the

projected lensing profile (DRðRÞ or RðRÞ) assuming a flexible fitting function, such as

the DK14 profile (Sect. 4.3.3).22 As discussed in More et al. (2016) and Umetsu and

Diemer (2017), one would apply two requirements to claim a detection of the

splashback radius using a DK14 model (Eq. (122)), namely (1) that the location of the

22 In projection, the 2-halo term has a substantial impact on the apparent location of the steepest density

slope d lnR=d lnR, which emerges at a much smaller radius that is unrelated to the steepening term in

three dimensions (Umetsu and Diemer 2017). This highlights the importance of forward-modeling the

effects of the steepening based on the underlying three-dimensional density profile (Umetsu and Diemer

2017).
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steepest slope in three dimensions can be identified at high statistical significance and

(2) that this steepening is greater than expected from a model without a steepening

feature, such as an Einasto profile (or a DK14 model with ftransðrÞ ¼ 1). The second

criterion is important to ensure that the steepening is associated with a density caustic

rather than the transition between the 1-halo and 2-halo terms.

Umetsu and Diemer (2017) were the first to attempt to place direct constraints on

the splashback radius rsp around clusters using gravitational lensing observations.

They developed methods for modeling averaged cluster lensing profiles scaled to a

chosen halo overdensity D, which can be optimized for the extraction of gradient

features that are local in cluster radius, in particular the density steepening due to

the splashback radius. Umetsu and Diemer (2017) examined the ensemble mass

distribution of 16 CLASH X-ray-selected clusters with a weighted mean mass of

M200m � 13 � 1014h�1M�, by forward-modeling the RðRÞ profiles of individual

clusters (Fig. 22) obtained by Umetsu et al. (2016). The maximum radius of their

ensemble analysis is Rmax � 5h�1Mpc� 2:5r200m. Their results are shown in

Fig. 28. They found that the CLASH ensemble mass profile in projection is

remarkably well described by an NFW or Einasto density profile out to R � 1:2r200m

(Sect. 6.1), beyond which the data exhibit a flattening with respect to the NFW or

Fig. 28 An overview of the first attempt to detect rsp from lensing (Umetsu and Diemer 2017). Left: The

top panel shows the scaled surface mass density R=Rðr200mÞ of the CLASH X-ray-selected sample as a
function of R=r200m. The blue thick solid line and the blue shaded area show the best-fit DK14 profile and
its 1r uncertainty derived from a simultaneous ensemble fit to the scaled R profiles of 16 individual
clusters (gray lines). The corresponding NFW (black dashed) and Einasto (black solid) fits are also
shown. The lower panel shows deviations (in units of r) of the observed cluster profiles from the best-fit
DK14 profile. Right: similarly, the top panel shows the logarithmic gradient of the inferred three-
dimensional density profiles as a function of r=r200m for the DK14, NFW, and Einasto models. The gray
vertical shaded area indicates the range from the 16th to the 84th percentile of the marginalized posterior
distribution of the splashback radius rsp=r200m. The bottom panel is the same as the top panel, but showing

the logarithmic slope of the surface mass density profiles. The best-fit DK14 profile is shown as blue dots
at the locations of the data points. This is a slightly modified version of the figure presented in Umetsu
and Diemer (2017)
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Einasto profile due to the 2-halo term. The gradient feature in the cluster outskirts is

most pronounced for a scaling with r200m, which is consistent with simulation results

of Diemer and Kravtsov (2014) and Lau et al. (2015) (Sect. 6.1). Umetsu and

Diemer (2017), however, did not find statistically significant evidence for the

existence of rsp in the CLASH lensing data, as limited by the field of view of

Suprime-Cam (34 � 27 arcmin2) on the Subaru telescope. Assuming the DK14

profile form and generic priors calibrated with numerical simulations, they placed

an informative lower limit on the splashback radius of the clusters, if it exists, of

rsp=r200m [ 0:89 at 68% confidence. This constraint is in agreement with the KCDM

expectation for the CLASH sample, rsp=r200m � 0:97 (More et al. 2015).

The first successful determination of rsp from lensing was achieved by Chang

et al. (2018), who measured both galaxy number density (Rg) and tangential shear

(DRþ) profiles around a statistical sample of clusters detected by the red-sequence

Matched-filter Probabilistic Percolation (redMaPPer; Rykoff et al. 2016) algorithm

in the first year DES data. Their fiducial sample of 3684 clusters is defined by a

redshift selection of 0:2\zl\0:55 and a richness selection of 20\k\100. The

sample is characterized by an effective mass of M200m � 1:8 � 1014h�1M� at a

mean redshift of zl � 0:41. The left panels of Fig. 29 show the stacked hhDRþðRÞii
profile around their fiducial sample along with the best-fit DK14 profile. For DK14

modeling of the weak-lensing signal (see Sect. 4.3.3), Chang et al. (2018) assumed

uniform priors on ðq�2; r�2; beq; seÞ and Gaussian priors on the shape parameters of

log10 aE ¼ log10ð0:19Þ � 0:1, log10 b ¼ log10ð6:0Þ � 0:2, and log10 c ¼
log10ð4:0Þ � 0:2 (More et al. 2016; Umetsu and Diemer 2017), allowing a

representative range of values calibrated by N-body simulations (Diemer and

Kravtsov 2014; More et al. 2015). They also marginalized over two additional

parameters describing the cluster miscentering effect expected for optically selected

clusters (Johnston et al. 2007).

With the stacked DES weak-lensing measurements, Chang et al. (2018)

constrained the location of the steepest slope in the three-dimensional density

profile to lie in the range rsp=r200m ¼ 0:97 � 0:15. The location and steepness of this

gradient feature inferred from the weak-lensing signal agrees within the errors with

those inferred from the stacked galaxy density measurements

(rsp=r200m ¼ 0:82 � 0:05), as shown in the right panels of Fig. 29. Note that, as

mentioned above, the rsp determined by the galaxy density profile is expected to be

smaller than that of the underlying matter distribution because of dynamical friction,

depending on the mass of the galaxies used. From the weak-lensing (or galaxy

density) profile, Chang et al. (2018) found the total cluster density profile at the

location of rsp to be steeper than the NFW profile form at a significance level of 2:0r
(or 3:0r). Similarly, they found the 1-halo term of the DK14 profile qEðrÞftransðrÞ at

the location of rsp to be steeper than the NFW form at the 2:9r (or 4:6r) level.

Chang et al. (2018) found that rsp measured from weak lensing is smaller than

but consistent with the expectation from N-body simulations within the large errors.

The rsp measured from the galaxy density profile with a higher precision is

significantly smaller than that determined from the corresponding population of

subhalos in N-body simulations (see also Shin et al. 2019), which is in agreement
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with the previous results based on the SDSS redMaPPer samples (More et al. 2016;

Baxter et al. 2017). Using N-body simulations, Chang et al. (2018) found that the

effect of dynamical friction is significant only for very massive subhalos and the

fiducial galaxy sample used in their analysis is likely not significantly affected by

dynamical friction. This discrepancy is likely due to the systematic effects

associated with the optical cluster finding algorithm (Zu et al. 2017; Busch and

White 2017; Murata et al. 2020). By analyzing synthetic galaxy catalogs created

from N-body simulations, Murata et al. (2020) found that the level of systematic

bias in the inferred location of rsp can be significantly alleviated when increasing the

aperture size of optical cluster finders beyond the splashback feature.

More recently, Contigiani et al. (2019) placed a stacked lensing constraint on the

splashback feature for their sample of 27 high-mass clusters at 0:15\zl\0:55

targeted by the CCCP survey (Cluster Canadian Comparison Project; Hoekstra et al.

2015). The cluster sample is characterized by a weighted mean mass of M200m �
12 � 1014h�1M� at a mean redshift of zl � 0:2. Their analysis is based on wide-field

Fig. 29 The first successful rsp determination from weak lensing by Chang et al. (2018). Left: The top

panel shows the stacked hhDRþii profile as a function of (comoving) cluster-centric radius R (black points
with error bars) derived for a sample of 3684 redMaPPer clusters (0:2\zl\0:55; 20\k\100) in the
first-year DES data. The red line shows the model fit to the lensing measurements. The inferred location
of the splashback radius rsp with its 1r uncertainty is marked by the vertical orange band. The bottom

panel shows the residual in the fits divided by the uncertainty of the measurement. Right: comparison of
model-fits from the projected galaxy distribution (gray) and weak lensing (red). The upper panel shows

the fraction of the density profile qcollðrÞ=qðrÞ for the collapsed material qcollðrÞ 	 qEðrÞftransðrÞ over the
total density profile qðrÞ (see Eq. (122)). The middle panel shows the logarithmic gradient of the total
density profile compared to that of an NFW profile (dashed line). The lower panel shows the logarithmic
gradient of the profile for the collapsed material compared to that of an NFW profile. The vertical lines
mark the mean values of rsp inferred from the model fits for both galaxy and lensing measurements, while

the horizontal bars in the middle panel indicate the uncertainties on rsp. Image reproduced with

permission from Chang et al. (2018), copyright by AAS
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weak-lensing data taken with CFHT/MegaCam with a 1 deg2 field of view. Their

data set is very similar in nature to the CLASH sample of Umetsu and Diemer

(2017), because both studies are based on targeted lensing observations of similarly

high-mass clusters. Although they did not detect a significant steepening, Contigiani

et al. (2019) constrained the splashback radius for their stacked sample as rsp ¼
3:6þ1:2

�0:7 Mpc (comoving) assuming a DK14 profile with generic priors calibrated

with numerical simulations. Although the sample size of clusters in Contigiani et al.

(2019) is not significantly larger than that of Umetsu and Diemer (2017), the large

field-of-view of CFHT/MegaCam allowed them to better constrain the location and

steepness of the splashback feature in the cluster outskirts.

These studies represent a first step toward using cluster–galaxy weak lensing and

density statistics of the galaxy distribution to examine well-defined predictions for

the splashback features from cosmological N-body simulations (e.g., Diemer et al.

2017) and to explore the physics associated with the splashback radius of

collisionless halos. A significant improvement in the statistical quality of data is

expected from ongoing and upcoming wide-field surveys. On the other hand,

improved understanding of systematic effects, such as selection bias of observable-

selected clusters and projection effects, will be needed to harness the full potential

of such high-precision measurements. Furthermore, the use of phase-space statistics

will be extremely useful to explore the properties and signatures of dark matter, in

particular of dark-matter self-interactions (More et al. 2016; Okumura et al. 2018).

6.4 Mass calibration for cluster cosmology

Determining the abundance of rare massive galaxy clusters above a given mass

threshold provides a powerful probe of cosmological parameters, especially Xm and

r8 (e.g., Rosati et al. 2002). This constraining power is primarily due to the fact that

clusters constitute the high-mass tail of hierarchical structure formation, which is

exponentially sensitive to the growth of cosmic structure (Haiman et al. 2001;

Watson et al. 2014). Conversely, obtaining an accurate calibration of the mass scale

for a given cluster sample is key to harness the power of cluster cosmology (Pratt

et al. 2019). In this context, large statistical samples of clusters spanning a wide

range in mass and redshift, with a well-characterized selection function, provide an

independent means of examining any viable cosmological model (e.g., Allen et al.

2004, 2011; Vikhlinin et al. 2009; Mantz et al. 2010; Weinberg et al. 2013; de Haan

et al. 2016). In principle, clusters can complement other cosmological probes if the

systematics are well understood and controlled.

Thanks to dedicated blind SZE surveys that are made possible in recent years,

large homogeneous samples of clusters have been obtained through the SZE

selection, out to and beyond a redshift of unity over a wide area of the sky (e.g.,

Planck Collaboration et al. 2014a, 2015a; Bleem et al. 2015; Hilton et al. 2018). In

particular, the Planck satellite mission produced representative catalogs of galaxy

clusters detected via the SZE signal from its all-sky survey. The Planck PSZ2

catalog contains 1653 SZE detections of cluster candidates from the 29 month full-

mission Planck data (Planck Collaboration et al. 2015a). The full-mission Planck

123

7 Page 84 of 106 K. Umetsu



cosmology sample contains 439 clusters down to S/N of 6, representing the most

massive population of clusters with a well-behaved selection function (Planck

Collaboration et al. 2015a, 2016b).

Despite these recent advances, we must reiterate that accurate cluster mass

measurements are essential in the cosmological interpretation of the cluster

abundance (Pratt et al. 2019). Since clusters are detected by the observable baryonic

signature, an external calibration of the corresponding observable–mass-scaling

relation is necessary for a cosmological interpretation of the cluster sample, by

accounting for inherent statistical effects and selection bias (e.g., Battaglia et al.

2016; Miyatake et al. 2019; Sereno et al. 2020). This was acutely demonstrated as

an internal tension in the Planck analyses (Planck Collaboration et al.

2014b, 2016b), which revealed a non-negligible level of discrepancy between the

cosmological parameters ðXm; r8Þ derived from the Planck cluster counts and those

from combining the Planck primary CMB measurements with non-cluster data sets,

both within the framework of the standard KCDM cosmology. Here, it should be

noted that Planck Collaboration et al. (2014b) employed X-ray observations with

XMM-Newton to calibrate the scaling relation between the SZE signal strength and

cluster mass for their Planck cluster cosmology sample. However, the determination

of cluster mass relied on the assumption that the intracluster gas is in hydrostatic

equilibrium (hereafter HSE) with the gravitational potential dominated by dark

matter.

To characterize the overall level of mass bias (assumed to be constant in cluster

mass and redshift) for their SZE-selected clusters, Planck Collaboration et al.

(2014b) introduced a parameter defined as (see also Planck Collaboration et al.

2016b):

1 � b ¼ MSZE

Mtrue

� �
; ð161Þ

where MSZE denotes the SZE mass proxy and Mtrue is the true mass (see Penna-Lima

et al. 2017), both defined at an overdensity of Dc ¼ 500. Note that this factor

includes not only astrophysical biases but also all systematics encoded in the sta-

tistical relationship between the Planck-based mass and the true mass (see Planck

Collaboration et al. 2014b; Donahue et al. 2014). The Planck team initially adopted

1 � b ¼ 0:8 as a fiducial value with a flat prior in the range [0.7, 1.0] (Planck

Collaboration et al. 2014b), which is about the level expected due to deviations

from the assumed HSE, b�ð10 � 20Þ% (e.g., Nagai et al. 2007; Meneghetti et al.

2010b; Angelinelli et al. 2020). If the bias were zero, the Planck CMB cosmology

would predict far more massive clusters than observed. By analyzing the Planck
cosmology sample from the full PSZ2 cluster catalog, Planck Collaboration et al.

(2016b) found that the level of mass bias required to bring the Planck cluster counts

and Planck primary CMB into full agreement in their base KCDM cosmology is

1 � b ¼ 0:58 � 0:04. Intriguingly, this would imply that Planck masses underesti-

mate the true values by b ¼ ð42 � 4Þ%, compared to b� 20% initially adopted by

Planck Collaboration et al. (2014b). The level of disagreement between the Planck
cluster counts and Planck primary CMB is about 2r.
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While this tension could potentially reflect a higher-than-expected sum of

neutrino masses or more exotic physics, the confidence in such a scenario would be

limited by systematic uncertainties arising from both astrophysical and observa-

tional effects (e.g., Planck Collaboration et al. 2014b; Donahue et al. 2014; Sereno

and Ettori 2017). In fact, the level of disagreement appears to slightly decrease after

accounting for updated lower values of the reionization optical depth (Planck

Collaboration et al. 2016c). Nevertheless, this tension has attracted considerable

attention in the cluster community and led to deeper investigations into the mass

calibration for this representative cosmology sample of Planck clusters.

Weak gravitational lensing offers a direct probe of the cluster mass distribution.

Cluster–galaxy weak lensing can provide an unbiased mass calibration of galaxy

clusters, if one can carefully control systematic effects, such as shear calibration

bias (Sect. 3.4.2), photo-z bias, residual cluster contamination (Sect. 4.1), and mass

modeling bias (Sect. 4.3). This has become possible thanks to concerted efforts by

various groups over the last few decades (e.g., Kaiser et al. 1995; Hoekstra et al.

1998, 2015; Okabe and Umetsu 2008; Okabe et al. 2010, 2013; Medezinski et al.

2010, 2018b; Oguri 2010; Umetsu et al. 2011b, 2014; Rosati et al. 2014; von der

Linden et al. 2014a; Kelly et al. 2014; Applegate et al. 2014; Merten et al. 2015;

Sereno and Ettori 2015; Melchior et al. 2017; Mandelbaum et al. 2018a, b; Gruen

et al. 2019b).

Several recent studies used weak-lensing mass estimates, MWL, to recalibrate

cluster masses for subsets of the Planck cosmology sample, assuming that the

average weak-lensing mass is unbiased (von der Linden et al. 2014b; Hoekstra et al.

2015; Smith et al. 2016; Sereno et al. 2017; Penna-Lima et al. 2017). The samples

used in these studies typically contain a few tens of Planck clusters. The results of

mass calibrations are controversial in terms of the inferred level of bias, with some

studies finding relatively high values of mass bias, 1 � bWL 	 hMSZE=MWLi� 0:6 �
0:8 with typical uncertainties of �0:1 (von der Linden et al. 2014b; Hoekstra et al.

2015; Sereno et al. 2017; Penna-Lima et al. 2017), and some finding little bias for

low-z Planck clusters, 1 � bWL ¼ 0:95 � 0:04 (at 0:15\z\0:3; Smith et al. 2016).

However, it should be noted that some of these mass calibrations did not include the

correction for Eddington bias and their inferred values of ð1 � bWLÞ are thus likely

overestimated (see Battaglia et al. 2016; Medezinski et al. 2018a; Miyatake et al.

2019). The results of mass-calibration efforts for SZE-selected cluster samples are

summarized in Fig. 30 (for details, see Miyatake et al. 2019).

Recently, Medezinski et al. (2018a) performed a weak-lensing analysis of five

Planck clusters located within � 140 deg2 of full-depth and full-color HSC-SSP

data. With its unique combination of area and depth, the HSC-wide layer will

provide uniformly determined weak-lensing mass measurements for thousands of

clusters over the total sky area of � 1000 deg2. This is different from previous

studies in which weak-lensing measurements are based on targeted observations

and/or archival data. Using the high-quality HSC weak-lensing data and accounting

for Eddington bias, Medezinski et al. (2018a) determined the mean level of mass

bias to be 1 � bWL ¼ hMSZE=MWLi ¼ 0:80 � 0:14 at a mean weak-lensing mass of

MWL ¼ ð4:15 � 0:61Þ � 1014M�. Since Medezinski et al. (2018a) analyzed only
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five Planck clusters in a lower mass regime than previous weak-lensing studies, as

shown in Fig. 30, this relatively low bias, bWL ¼ ð20 � 14Þ%, does not stand in

tension with previous higher values of bWL nor with the level needed to explain the

high value of r8 found from Planck primary CMB, b ¼ ð42 � 4Þ% (Planck

Collaboration et al. 2016b).

Therefore, the mystery continues. More representative subsamples with greater

overlap with the Planck cosmology sample are needed to draw a definitive

conclusion about ð1 � bÞ and its cosmological implications. When the full HSC-

Wide survey is complete, we expect to have � 40 Planck clusters observed in the

total area of � 1000 deg2. The level of uncertainty on the mass calibration, if

assuming it is statistics dominated, will be reduced from the � 10% level achieved

with five Planck-HSC clusters (Medezinski et al. 2018a) to reach � 4%. This is

below the current level of systematic uncertainty in the cluster mass calibration,

.10% (Medezinski et al. 2018a; Miyatake et al. 2019) and will thus require an even

more stringent treatment of weak-lensing systematics. It will also allow us to

examine in detail the level of HSE bias and study its possible dependence on cluster

Fig. 30 Comparison of 1 � b as a function of the SZE mass proxy MSZE for Planck clusters and for
clusters detected by the Atacama Cosmology Telescope Polarimeter (ACTpol) experiment. The data

points show the ratios of MSZE to MWL, 1 � bWL ¼ hMSZE=MWLi. These MSZE masses (denoted as MUPP
SZ

in the figure) are derived using the universal pressure profile (UPP) and X-ray mass-scaling relation from
Arnaud et al. (2010), which assumes that the intracluster gas is in hydrostatic equilibrium. The gray band
indicates the values of ð1 � bÞ required to reconcile the Planck cluster counts (Planck Collaboration et al.
2016b) with cosmological parameters from Planck primary CMB (Planck Collaboration et al. 2016a).
The blue diamond shows the HSC weak-lensing mass calibration of ACTpol clusters by Miyatake et al.
(2019). Previous ð1 � bÞ measurements by CS82-ACT (Battaglia et al. 2016), LoCuSS (Smith et al.
2016), CLASH (Penna-Lima et al. 2017), PSZ2LenS (Sereno et al. 2017), and HSC-Planck (Medezinski
et al. 2018a) are shown in yellow, brown, orange, pink, and red squares, respectively. The green and
purple squares with error bars show the original measurements from the Weighing the Giants project
(WtG; von der Linden et al. 2014b) and CCCP (Hoekstra et al. 2015), respectively, and the same colored
squares connected by the dashed lines show the 3%–15% range for the Eddington-bias-corrected
measurements calculated in Battaglia et al. (2016). Image reproduced with permission from Miyatake
et al. (2019), copyright by AAS
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mass and redshift, providing valuable information about the thermodynamic history

of intracluster gas.

7 Conclusions

In this paper, we presented a comprehensive review of cluster–galaxy weak lensing,

covering a range of topics relevant to its cosmological and astrophysical

applications. The goals of this review were (1) to provide a self-contained

pedagogical overview of the theoretical foundations for gravitational lensing from

first principles (Sect. 2), with special attention to the basics and advanced concepts

of cluster weak lensing (Sects. 3, 4, and 5), and (2) to summarize and highlight

recent advances in our understanding of the mass distribution in and around cluster

halos based on numerical simulations and observational results (Sect. 6).

Thanks to concerted community efforts, there has been substantial progress over

the last few decades in this area on both observational and theoretical grounds. In

this review, we focused on several key issues, namely, the shape of the mass density

profile (Sect. 6.1), the c–M relation and its intrinsic scatter (Sect. 6.2), splashback

features in the cluster outskirts (Sect. 6.3), and cluster mass calibrations for cluster

cosmology (Sect. 6.4). Observations of cluster–galaxy weak lensing are, thus far,

generally favorable for the standard KCDM paradigm of structure formation, in

terms of the standard explanation for dark matter as effectively collisionless and

nonrelativistic on sub-megaparsec scales and beyond, with an excellent match

between data and predictions for cluster-size massive halos (Sect. 6).

These studies constitute an encouraging step toward using cluster–galaxy weak

lensing to robustly test detailed predictions of KCDM and its variants, such as

SIDM and wDM, calibrated from cosmological numerical simulations. Such

predictions can be unambiguously tested across a wide range in cluster mass and

redshift, with large statistical samples of clusters from ongoing and planned lensing

surveys, such as Subaru HSC-SSP, DES, LSST, WFIRST, and Euclid.
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Bradač M, Clowe D, Gonzalez AH et al (2006) Strong and Weak Lensing United. III. Measuring the Mass

Distribution of the Merging Galaxy Cluster 1ES 0657–558. ApJ 652:937–947. https://doi.org/10.

1086/508601. arXiv: astro-ph/0608408

Bridle SL, Kneib JP, Bardeau S, Gull SF (2002) Bayesian Galaxy Shape Estimation. In: Natarajan P (ed)

The Shapes of Galaxies and their Dark. World Scientific, pp 38–46. https://doi.org/10.1142/

9789812778017_0006

Broadhurst T (1995) Gravitational ‘Convergence’ and Cluster Masses. ArXiv e-prints arXiv:astro-ph/

9511150

Broadhurst TJ, Taylor AN, Peacock JA (1995) Mapping cluster mass distributions via gravitational

lensing of background galaxies. ApJ 438:49–61. https://doi.org/10.1086/175053. arXiv:astro-ph/

9406052

Broadhurst T, Benı́tez N, Coe D et al (2005a) Strong-Lensing Analysis of A1689 from Deep Advanced

Camera Images. ApJ 621:53–88. https://doi.org/10.1086/426494. arXiv:astro-ph/0409132

Broadhurst T, Takada M, Umetsu K et al (2005b) The Surprisingly Steep Mass Profile of A1689, from a

Lensing Analysis of Subaru Images. ApJL 619:L143–L146. https://doi.org/10.1086/428122. arXiv:

astro-ph/0412192

Broadhurst T, Umetsu K, Medezinski E, Oguri M, Rephaeli Y (2008) Comparison of Cluster Lensing

Profiles with KCDM Predictions. ApJL 685:L9–L12. https://doi.org/10.1086/592400. arXiv:0805.

2617

Bullock JS, Kolatt TS, Sigad Y et al (2001) Profiles of dark haloes: evolution, scatter and environment.

MNRAS 321:559–575. arXiv:astro-ph/9908159

123

7 Page 90 of 106 K. Umetsu

https://doi.org/10.1088/1475-7516/2016/08/013
http://arxiv.org/abs/1509.08930
http://arxiv.org/abs/1509.08930
https://doi.org/10.3847/1538-4357/aa6ff0
http://arxiv.org/abs/1702.01722
https://doi.org/10.1088/0004-637X/740/1/25
http://arxiv.org/abs/1011.1681
https://doi.org/10.1093/mnras/stt1761
https://doi.org/10.1093/mnras/stt1761
http://arxiv.org/abs/1301.1684
https://doi.org/10.1086/338085
http://arxiv.org/abs/astro-ph/0107431
https://doi.org/10.1038/s41586-018-0542-z
https://doi.org/10.1038/s41586-018-0542-z
http://arxiv.org/abs/1810.01668
https://doi.org/10.1086/191028
https://doi.org/10.1088/0004-637X/766/1/32
http://arxiv.org/abs/1112.5479
http://arxiv.org/abs/1112.5479
http://arxiv.org/abs/astro-ph/9808050
https://doi.org/10.1051/0004-6361/201321955
http://arxiv.org/abs/1307.5867
https://doi.org/10.1086/164709
https://doi.org/10.1146/annurev.aa.30.090192.001523
https://doi.org/10.1088/0067-0049/216/2/27
https://doi.org/10.1088/0067-0049/216/2/27
http://arxiv.org/abs/1409.0850
https://doi.org/10.1086/163867
https://doi.org/10.1093/mnras/stv417
http://arxiv.org/abs/1410.0015
https://doi.org/10.1086/508601
https://doi.org/10.1086/508601
http://arxiv.org/abs/astro-ph/0608408
https://doi.org/10.1142/9789812778017_0006
https://doi.org/10.1142/9789812778017_0006
http://arxiv.org/abs/astro-ph/9511150
http://arxiv.org/abs/astro-ph/9511150
https://doi.org/10.1086/175053
http://arxiv.org/abs/astro-ph/9406052
http://arxiv.org/abs/astro-ph/9406052
https://doi.org/10.1086/426494
http://arxiv.org/abs/astro-ph/0409132
https://doi.org/10.1086/428122
http://arxiv.org/abs/astro-ph/0412192
http://arxiv.org/abs/astro-ph/0412192
https://doi.org/10.1086/592400
http://arxiv.org/abs/0805.2617
http://arxiv.org/abs/0805.2617
http://arxiv.org/abs/astro-ph/9908159


Buote DA, Gastaldello F, Humphrey PJ, et al. (2007) The X-Ray Concentration-Virial Mass Relation.

ApJ 664(1):123–134. https://doi.org/10.1086/518684. arXiv:astro-ph/0610135 [astro-ph]

Busch P, White SDM (2017) Assembly bias and splashback in galaxy clusters. MNRAS

470(4):4767–4781. https://doi.org/10.1093/mnras/stx1584. arXiv:1702.01682 [astro-ph.CO]

Caminha GB, Rosati P, Grillo C et al (2019) Strong lensing models of eight CLASH clusters from

extensive spectroscopy: Accurate total mass reconstructions in the cores. A&A 632:A36. https://doi.

org/10.1051/0004-6361/201935454. arXiv:1903.05103 [astro-ph.GA]

Chang C, Baxter E, Jain B et al (2018) The Splashback Feature around DES Galaxy Clusters: Galaxy

Density and Weak Lensing Profiles. ApJ 864(1):83. https://doi.org/10.3847/1538-4357/aad5e7.

arXiv:1710.06808 [astro-ph.CO]

Child HL, Habib S, Heitmann K et al (2018) Halo Profiles and the Concentration-Mass Relation for a

KCDM Universe. ApJ 859:55. https://doi.org/10.3847/1538-4357/aabf95. arXiv:1804.10199

Chiu IN, Umetsu K, Murata R, Medezinski E, Oguri M (2020) The Richness-to-Mass Relation of

CAMIRA Galaxy Clusters from Weak-lensing Magnification in the Subaru Hyper Suprime-Cam

Survey. MNRAS. https://doi.org/10.1093/mnras/staa1158. arXiv:1909.02042 [astro-ph.CO]

Chiu IN, Umetsu K, Sereno M et al (2018) CLUMP-3D: Three-dimensional Shape and Structure of 20

CLASH Galaxy Clusters from Combined Weak and Strong Lensing. ApJ 860:126. https://doi.org/

10.3847/1538-4357/aac4a0. arXiv:1804.00676

Chiu I, Dietrich JP, Mohr J et al (2016) Detection of enhancement in number densities of background

galaxies due to magnification by massive galaxy clusters. MNRAS 457:3050–3065. https://doi.org/

10.1093/mnras/stw190. arXiv:1510.01745

Cibirka N, Cypriano ES, Brimioulle F, et al. (2017) CODEX weak lensing: concentration of galaxy

clusters at z*0.5. MNRAS 468:1092–1116. https://doi.org/10.1093/mnras/stx484. arXiv:1612.

06871

Clampitt J, Jain B (2016) Lensing measurements of the ellipticity of luminous red galaxies dark matter

haloes. MNRAS 457:4135–4146. https://doi.org/10.1093/mnras/stw254. arXiv:1506.03536

Clowe D, Luppino GA, Kaiser N, Gioia IM (2000) Weak Lensing by High-Redshift Clusters of Galaxies.

I. Cluster Mass Reconstruction. ApJ 539:540–560. https://doi.org/10.1086/309242. arXiv:astro-ph/

0001356

Clowe D, Gonzalez A, Markevitch M (2004) Weak-Lensing Mass Reconstruction of the Interacting

Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter. ApJ 604:596–603. https://

doi.org/10.1086/381970. arXiv:astro-ph/0312273
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