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Abstract
This paper focuses on the topology optimization of a broadband acoustic transition section that connects two cylindrical 
waveguides with different radii. The primary objective is to design a transition section that maximizes the transmission of a 
planar acoustic wave while ensuring that the transmitted wave exhibits a planar shape. Helmholtz equation is used to model 
linear wave propagation in the device. We utilize the finite element method to solve the state equation on a structured mesh 
of square elements. Subsequently, a material distribution topology optimization problem is formulated to optimize the dis-
tribution of sound-hard material in the transition section. We employ two different gradient-based approaches to solve the 
optimization problem: namely, a deterministic approach using the method of moving asymptotes (MMA), and a stochastic 
approach utilizing both stochastic gradient (SG) and continuous stochastic gradient (CSG) methods. A comparative analysis 
is provided among these methodologies concerning the design feasibility and the transmission performance of the optimized 
designs, and the computational efficiency. The outcomes highlight the effectiveness of stochastic techniques in achieving 
enhanced broadband acoustic performance with reduced computational demands and improved design practicality. The 
insights from this investigation demonstrate the potential of stochastic approaches in acoustic applications, especially when 
broadband acoustic performance is desired.

Keywords Topology optimization · Stochastic methods · Acoustic transition section · Material distribution approach

1 Introduction

In many acoustic applications, acoustic waveguides connect 
various parts of a device from the transducer to the radiat-
ing aperture or receiver (Rutsch et al. 2022; Haugwitz et al. 
2022). This includes the transmission of acoustic waves 
between parts with different geometry, dimensions, and 
acoustic impedances. In most cases, a minimum reflection 
and alteration of the incoming signal is desired, which can 
be achieved using an impedance matching section (Wadbro 
2014; Robertson et al. 2019).

One of the earliest works on acoustic transition sections is 
the study by Kirby (2008), who used numerical simulations 
to model acoustic wave propagation in two waveguides con-
nected through a transition section. Wadbro Wadbro (2014) 
used a material distribution topology optimization method 
to design a transition section between two cylindrical wave-
guides with different radii to achieve impedance matching. 
Robertson et al. (2019) considered a similar problem of 
impedance matching between two cylindrical waveguides, 
although they used a two-neck Helmholtz resonator as the 
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transition section. They showed that perfect impedance 
matching can be achieved by tuning the dimensions of the 
Helmholtz resonator. However, this approach has bandwidth 
limitations with impedance matching achieved only at a nar-
row range of frequencies close to the resonance frequency of 
the resonator. Cao et al. (2020) took a different approach by 
considering a two-dimensional acoustic transformation sec-
tion with an impedance-tunable transformed medium. They 
showed that desirable broadband impedance matching can 
be achieved in this way, though in practice, it is very diffi-
cult to set a transformation medium with acoustic properties 
changing according to a given function (Cao et al. 2020).

Here, we use the material distribution topology optimiza-
tion method, also known as density-based topology optimi-
zation, to design an acoustic transition section for impedance 
matching. This is a common method in computational design 
optimization for acoustic problems (Wadbro and Berggren 
2006; Dühring et al. 2008; Bokhari et al. 2021; Yoon et al. 
2020). To obtain a final topology that is favorable for a broad 
range of frequencies, there are two fundamentally different 
approaches:

First, the problem can be viewed as a topology optimiza-
tion task for infinitely many load cases. Using an appropriate 
discretization scheme, the problem can be transformed into 
a deterministic multi-load formulation, where the objective 
function admits a finite sum structure (Diaz and Bendsøe 
1992; Li et al. 2020; Zhang et al. 2017), for which various 
deterministic optimization schemes have been explored. In 
this contribution, the resulting optimization problems are 
solved via the method of moving asymptotes (MMA) (Svan-
berg 1987). We investigate how the solution depends on the 
number of frequencies considered in the optimization.

Changing perspective, the original objective can also 
be considered as a robust optimization problem (Carrasco 
et al. 2012; Dunning and Kim 2013; Tootkaboni et al. 2012), 
where the broadband frequency range models an underly-
ing uncertainty of load cases. While many approaches for 
robust optimization again rely on discretizations or series 
expansions of the full objective, we specifically choose two 
methods from stochastic optimization which do not follow 
this philosophy. Namely, we optimize the transition section 
using the stochastic gradient descent (Robbins and Monro 
1951) and the continuous stochastic gradient descent (Pflug 
et al. 2020; Grieshammer et al. 2023a, b) method. Both of 
these approaches represent probabilistic, sample-based opti-
mization schemes.

On the first glance, using probabilistic solvers for a fully 
deterministic optimization problem seems counterintuitive, 
especially given that gradient descent schemes typically per-
form worse than specialized techniques like MMA. How-
ever, there are several reasons why these methods might still 
yield favorable results. The aforementioned discretization of 
integrals in the deterministic approach automatically results 

in a trade-off between accuracy and computational time. 
Especially in our broadband setting, the numerical effort 
associated to the required accuracy can quickly outgrow the 
computational time of sample-based methods, which have 
an approximately constant cost per iteration.

The remainder of this paper is structured as follows. 
In Sect. 2, we introduce the problem setup, including the 
geometric configuration and the governing equations. We 
also discuss the discretization of the state equations using 
the finite element method. Next, we introduce the objec-
tive function for the design optimization problem aiming 
for a broadband transition. For the different optimization 
approaches considered in this work, we present the corre-
sponding results of our numerical experiments in Sect. 3. 
Finally, in Sect. 4, we present a concluding discussion that 
includes a comprehensive comparison of the results obtained 
by the different approaches. We summarize the main find-
ings and provide insights into the strengths and limitations 
of each method.

2  Problem statement

Consider the cylindrical setup illustrated in Fig. 1, consist-
ing of two semi-infinite pipes connected by a transition sec-
tion. Assume a planar acoustic wave propagating from left 
to right in the left pipe. As this incoming wave propagates 
in the transition section ΩD , highlighted in grey, a part of 
the wave will propagate through the transition section to the 
right pipe, while another part will be reflected back to the 
left pipe. By optimizing the distribution of sound-hard mate-
rial in the transition section ΩD , this study aims to ensure 
that the planar incoming wave in the left pipe continues to 
propagate as a planar wave to the right pipe, despite the 
change in the diameter of the waveguide. A similar problem 
was previously considered by Wadbro (2014) for a narrower 
range of frequencies. In this study, we aim to extend the 
analysis to a broader range of frequencies, which is of prac-
tical importance for a wide range of acoustic applications. 
Additionally, we compare two distinct approaches to solving 
the optimization problem: the deterministic approach and 
the stochastic approach. Here and throughout this article, 
the waves that propagate away from the transition section 
are termed outgoing waves, and the waves that propagate 
towards the transition section are termed incoming waves. 
We note that the outgoing waves are further divided into 
reflected waves, traveling to the left in the left pipe, and 
transmitted waves, traveling to the right in the right pipe.

2.1  Mathematical model

In this study, we consider linear wave propagation in the 
cylindrically symmetric (axisymmetric) setup, illustrated in 
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Fig. 1a. Specifically, we let P(x, t) = Re
{
p(x)ei�t

}
 denote the 

time-harmonic pressure in the air-filled region. Under these 
assumptions, the complex pressure amplitude p(x) satisfies 
the Helmholtz equation in cylindrical coordinates. That is,

which describes the behavior of sound waves in the system. 
Therein, Ω̂ is the air-filled region of the setup, and the wave 
number k = �∕c is determined by the speed of sound in air 
c and the angular frequency � . As mentioned earlier, the 
design domain ΩD (transition section) may partly be filled 
with sound-hard material. At the air and the solid interface, 
the normal velocity is zero, which by the relation of veloc-
ity and pressure yields the sound-hard boundary condition 
�p∕�n = 0 , where n is the interface’s outward directed nor-
mal. Fig. 2 shows the air-filled domain Ω̂ and an arbitrary 
distribution of sound-hard material Ωs in the design domain. 
By varying the distribution of sound-hard material within 
the design domain, we can explore how this affects the prop-
agation of sound waves through the transition section and 

(1)−∇ ⋅ (r∇p) − k2rp = 0, in Ω̂,

identify optimal designs that minimize wave reflection and 
ensure planar wave transmission.

To numerically approximate the infinitely long pipes on 
both sides of the design domain, we truncate them and use 
Dirichlet-to-Neumann non-reflecting boundary conditions at 
the artificial boundaries ΓL and ΓR , as illustrated in Fig. 2. 
Considering these artificial boundary conditions, we obtain 
the boundary-value problem 

 Conditions (2c) and (2d), in which DtN represent the Dir-
ichet-to-Neumann operator, ensure that all the outgoing 
waves are perfectly absorbed. Furthermore, condition (2c) 
also specifies an incoming planar wave with unit-amplitude 
at ΓL . For more details about this type of artificial bound-
ary conditions, we refer the reader to the book by Ihlenburg 
(1998) and the appendix of the article by Wadbro (2014). By 
multiplying Eq. (2a) with a test function q and integrating 
over the domain Ω̂ , the variational form of boundary-value 
problem (2) can be written as follows.

(2a)−∇ ⋅ (r∇p) − k2rp = 0, in Ω̂,

(2b)
�p

�n
= 0, on Γs,

(2c)
�p

�n
− DtN(p) = 2ik, on ΓL,

(2d)
�p

�n
− DtN(p) = 0, on ΓR.

Ω D

r
z

(a)

(b)

(c)

ΩD

Fig. 1  a Axi-symmetric setup with cylindrical design domain ΩD in 
the middle and one cylindrical waveguide on both sides. b A 3D visu-
alization of the setup. c The targeted wave propagation characteristics 
in the waveguides, where the planar incoming wave in the left pipe 
continues to propagate as a planar wave to the right pipe

r
z
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Fig. 2  The computational domain Ω comprising the design domain 
ΩD and two truncated waveguides. An arbitrary sound-hard mate-
rial distribution inside ΩD is given as Ωs . The remainder of the setup 
Ω̂ = Ω ⧵Ωs is filled with air. The boundaries are divided into an axi-
symmetric axis Γsym (dash-dotted line), the sound-hard walls Γs (solid 
line) and the boundaries ΓL and ΓR (dashed lines) of the artificially 
truncated waveguides
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For a given distribution of solid material in the design 
domain and a given shape of region Ωs , the solution p to 
Eq. (3) shows the distribution of the complex pressure in 
Ω̂ . Following a standard approach in topology optimization, 
we define a material indicator function � such that � ≡ 0 
in Ωs and � ≡ 1 in Ω̂ . Using this function, we extend the 
integration domain of the domain integrals in variational 
formulation (3) from Ω̂ to Ω = Ω̂ ∪ Ωs . We note that the 
computational domain Ω consists of both the air and the 
solid regions. The resulting reformulation of variational for-
mulation (3) is then given by

The solution p to the variational formulation (4) represents 
the distribution of complex pressure in the waveguide, given 
a design of solid scatter in ΩD , described by a material indi-
cator function �.

2.2  Discretization

We use the finite element method to discretize and numeri-
cally solve problem (4) on a structured grid of square ele-
ments. Let V be a finite element functional space consisting 
of continuous and bi-quadratic functions on each element, 
and let �j , j = 1, 2,… ,N  be bi-quadratic shape func-
tions, where N is the number of degrees of freedom. Thus, 
V = span

{
�1,�2,… ,�N

}
 . We approximate the complex 

pressure p and the test function q by ph ∈ V  and qh ∈ V  , 
respectively. Additionally, we approximate the material indi-
cator function � with an element-wise constant function �h . 
Using the above definitions and approximations, we obtain the 
discretized version of problem (4) below.

(3)

Find p ∈ H1(Ω̂) such that:

∫Ω̂

r∇q ⋅ ∇p dΩ − k2 ∫Ω̂

rqp dΩ

− ∫ΓL

rqDtN(p) dΓ − ∫ΓR

rqDtN(p) dΓ

= 2ik ∫ΓL

rq dΓ, ∀q ∈ H1(Ω̂).

(4)

Find p ∈ H1(Ω) such that

∫Ω

�r∇q ⋅ ∇p dΩ − k2 ∫Ω

�rqp dΩ

− ∫ΓL

rqDtN(p) dΓ − ∫ΓR

rqDtN(p) dΓ

= 2ik ∫ΓL

rq dΓ, ∀q ∈ H1(Ω).

where DtNh represents semi-discrete Dirichlet-to-Neumann 
type boundary operators on ΓL and ΓR (Wadbro 2014, 
Appendix A). The algebraic or matrix formulation of prob-
lem (5) reads

where p =
[
p1, p2,… , pN

]T  is the vector of nodal val-
ues of the complex acoustic pressure amplitude, 
� =

[
�1, �2,… , �ND

]T is the vector that holds the element 
values of �h (with ND denoting the number of elements in 
ΩD ) and 1N = [1, 1,… , 1]T is a vector of length N. Also, the 
N × N stiffness K , mass M , and boundary mass ML matrices 
have components 

 respectively. The boundary matrices BL and BR represent 
the non-reflecting boundary conditions at ΓL and ΓR , respec-
tively. A detailed derivation of BL and BR is provided in a 
previous work by Wadbro (2014, Appendix A).

2.3  Power of outgoing waves

Let Helmholtz Eq. (1) govern the distribution of the complex 
pressure p in the two semi-infinite pipes on the left and right 
side of the transmission section illustrated in Fig. 1(a) with 
sound-hard boundary condition (2b) on the solid walls. Using 
the separation of variables, the general solution for p in the left 
and right pipes reads 

(5)

Find ph ∈ V such that

∫Ω

�hr∇qh ⋅ ∇ph dΩ − k2 ∫Ω

�hrqhph dΩ

− ∫ΓL

rqhDtNh(ph) dΓ − ∫ΓR

rqhDtNh(ph) dΓ

= 2ik ∫ΓL

rqh dΓ, ∀qh ∈ V ,

,

(6)
(
K(�) − k2M(�) − BL − BR

)
p = 2ikML

1
�
,

(7a)Kij = ∫Ω

�hr∇�i ⋅ ∇�j dΩ,

(7b)Mij = ∫Ω

�hr�i�j dΩ,

(7c)ML
ij
= ∫ΓL

r�i�j dΓ, ,

(8a)pL =
∑
m

fm(r)

(
AL
m
eikm(z

L−z) + BL
m
eikm(z−z

L)

)
,

(8b)pR =
∑
m

fm(r)

(
AR
m
eikm(z−z

R) + BR
m
eikm(z

R−z)

)
, ,
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 respectively, where zL and zR are the position of z-axis on 
ΓL and ΓR , the functions fm(r) are the modes at left and right 
waveguide, e is the base of the natural logarithm, i is the 
imaginary unit and AL

m
 and BL

m
 are complex constants that 

determine the amplitude of incoming and outgoing waves 
at the left waveguide, respectively. Similarly, AR

m
 and BR

m
 are 

complex constants that determine the amplitude of incom-
ing and outgoing waves at the right waveguide, respectively. 
Lastly, the constants km are the so-called reduced wave num-
bers. In the continuous case, we have an infinite number of 
modes m = 0, 1, 2,… , but only the modes with real-values 
of km are propagating modes and the ones with imaginary 
km will decay exponentially according to the equations (8). 
These modes are known as evanescent modes.

The mode functions fm(r) should satisfy the following one-
dimensional eigenvalue problem in the radial direction on the 
boundaries ΓL and ΓR:

where W is the radius of the pipe. In the continuous case, it is 
well-known that the functions fm are so-called Bessel func-
tions. For our numerical treatment, we can extrapolate the 
numerical solution on ΓL and ΓR to any point in the wave-
guides using expansion (8) and viewing the problem contin-
uously in the lengthwise direction and discretely in the radial 
direction. Note that for a given finite element discretization 
of Eq. (9), the number of modes that are representable in the 
discretized case M equals the number of basis functions with 
support on the boundary. Let f h

m
 be an eigenfunction (mode) 

corresponding to eigenvalue �m , where m = 0, 1,… ,M . 
Since the complex pressure p satisfies Helmholtz Eq. (1), 
for the reduced wave number we have

Recall that f h
m

 is a propagating mode if its corresponding 
reduced wave number is real. The smallest eigenvalue in 
solving problem (9) is 0, which corresponds to the planar 
wave. So �0 = 0 and k0 = k , and thus, the planar wave mode 
is always a propagating mode. Moreover, for a given fre-
quency f, there is a finite number Mp of propagating modes 
satisfying the condition �m ≤ k2 . The number of propagating 
modes depends on the frequency of the wave and the radius 
of the pipe. Thus, for the different radii of the left and right 
pipes, we may have a different number of propagating modes 
at ΓL and ΓR , which we denote by Mp

L
 and Mp

R
 , respectively.

In the discretized case, the solution at the boundaries ΓL 
and ΓR , where zL − z = 0 and z − zR = 0 , respectively, reads 

(9)−
�

�r

(
r
�f

�r

)
= �rf ,

�f

�r

||||r=0 =
�f

�r

||||r=W = 0,,

(10)k2
m
= k2 − �m.

(11a)p
||||ΓL

=

M
p

L∑
0

f h
m
(r)

(
AL
m
+ BL

m

)
,

From now onward, we occasionally use the superscript X 
in an expression to represent either L for the left waveguide 
or R for the right waveguide. Note that the corresponding 
statement holds in both cases of replacing X by either L or R 
referring to the left and right waveguides, respectively. Let 
f h
n
 be the nth propagating mode. Then, we have

where the first equality follows from substituting p||ΓX from 
Eq. (11) into the first expression and the second equality 
follows from the orthonormality of modes. Considering vX

n
 

to be the N × 1 vector representing the nodal values of the 
discrete mode f h

n
 on the boundary nodes at ΓX (note that all 

other entries of vX
n
 corresponding to the internal nodes are 

zero), Eq. (12) in matrix form reads

where MX is the boundary mass matrix as defined in Eq. (7c) 
at ΓX , and p is the nodal values of the complex pressure. 
Thus, for a given solution p to problem (6), we can recover 
the complex amplitudes of the incoming and outgoing waves 
for each propagating mode at ΓX , using Eq. (13).

In this study, we only consider the case where we have a 
planar incoming wave with unit-amplitude at ΓL . Therefore, 
we can rewrite Eq. (13) as

Recall that Mp

L
 and Mp

R
 are the highest propagating modes in 

the left and right pipes, respectively.
The power of a propagating wave is proportional to the 

square of its amplitude and its corresponding reduced wave 
number. Defining the normalized power of outgoing waves 
as the power of outgoing wave divided by the power of the 
unit-amplitude incoming wave and considering Eq. (14) to 
compute the amplitude of outgoing waves, we have

and

(11b)p
||||ΓR

=

M
p

R∑
0

f h
m
(r)

(
AR
m
+ BR

m

)
.

(12)∫ΓX

rf h
n
p =

Mp∑
0
∫ΓX

rf h
n

((
AX
m
+ BX

m

)
f h
m

)

= AX
n
+ BX

n
, X ∈ {L, R},

,

(13)
(
vX
n

)T
MXp = AX

n
+ BX

n
, X ∈ {L, R},,

(14)

(
vL
0

)T
MLp = 1 + BL

0
,

(
vL
m

)T
MLp = BL

m
, m = 1, 2,… ,M

p

L
,

(
vR
n

)T
MRp = BR

n
, n = 0, 1,… ,M

p

R
.

(15)PL
m
=

⎧⎪⎨⎪⎩

����
�
vL
0

�T
MLp − 1

����
2

ifm = 0,

km

k

����
�
vL
m

�T
MLv

����
2

ifm = 1,… ,M
p

L
,



 A. Mousavi et al.   67  Page 6 of 13

Here PL
m

 and PR
n
 are the normalized power of the outgoing 

waves of mode m and n at ΓL and ΓR , respectively. A detailed 
derivation of the power of outgoing waves for a given ampli-
tude in the discretized case is provided by Wadbro (2014, 
Appendix B). Here and throughout this article, whenever 
the term power of outgoing wave is used, it means the nor-
malized power of the outgoing wave by dividing the power 
of the outgoing wave with the power of a unit-amplitude 
incoming wave imposed at ΓL.

2.4  Objective function

As mentioned earlier, the aim of this study is to design the 
transmission section in Fig. 1 to (i) maximize the transmis-
sion and (ii) ensure that the transmitted wave is planar as 
illustrated in Fig. 1c. To achieve this, we minimize the sum 
of the power of all outgoing waves except for the planar 
wave to the right over the targeted range of frequencies F  . 
Thus, the primary objective function can be written as

Note that we have normalized the objective by the length 
of the targeted frequency range |F| . Note that for each fre-
quency, we need to calculate Mp

L
(f ) and Mp

R
(f ) , the number 

of propagating modes at ΓL and ΓR , respectively.
For binary values of �h = {0, 1} , the optimization prob-

lem with objective function (17) is a large-scale non-linear 
integer optimization problem. Also, if �h = 0 in some of 
the elements, then the system matrix in Eq. (6) becomes 
singular. To solve the numerical and mathematical issues 
that arise when solving this problem, a standard approach in 
topology optimization is to relax the binary value constraint 
and let �h take values in the range [�, 1] , where � is a small 
number (Wadbro and Berggren 2006; Dühring et al. 2008; 
Wadbro 2014; Kasolis et al. 2015; Bokhari et al. 2021). 
Changing the lower bound from 0 to � slightly modifies the 
governing equation; the induced error in the complex pres-
sure field is linear in � (Kasolis et al. 2015).

Moreover, we aim for a pure solid ( �h = � ) or air 
( �h = 1 ) final design. Thus, we use a combination of fil-
tering and penalty methods to suppress the intermediate 
values. The non-linear density filters used in the numeri-
cal experiments also ensure a size control on the solid 
region in the design (Hassan et al. 2018; Sigmund 2007; 
Hägg and Wadbro 2017, 2018; Bokhari et  al. 2021). 
Let d =

[
d1, d2,… , dND

]T  be the vector of design vari-
ables before filtering. Thus, we define the ND × 1 vector 

(16)PR
n
=

kn

k

||||
(
vR
n

)T
MRp

||||
2

for n = 0, 1,… ,M
p

R
.

(17)Jp(�) =
1

�F� ∫F

⎛⎜⎜⎝

M
p

L
(f )�

m=0

PL
m
+

M
p

R
(f )�

n=1

PR
n

⎞⎟⎟⎠
dF.

� ∶= F(d) , where F  is a filter operator. To further sup-
press the intermediate values of the design variables, we 
add a standard quadratic penalty term (Allaire and Kohn 
1993; Borrvall and Petersson 2001; Wadbro 2014; Bokhari 
et al. 2021) to the primary objective function (17) and 
thus, we define the objective function for the numerical 
experiments as follows:

where � is the penalty parameter, |ΩD| denotes the size of 
the design domain.

3  Numerical experiments

In our numerical experiments, we consider the setup 
illustrated in Fig. 2 with the following dimensions: The 
radius and length of the design region ΩD is rD = 50mm 
and lD = 50mm , respectively. The radius and length of 
the truncated waveguides are rL = 30mm , rR = 40mm , 
and lW = 20mm , respectively. We aim to maximize the 
transmission of the planar incoming wave in the frequency 
range of 4–16 kHz, ensuring that the transmitted wave 
is also planar. We discretize the computational domain 
into a structured grid of square elements with a uniform 
mesh size of h = 0.25mm , resulting in 250,721 degrees 
of freedom for the finite element discretization. To solve 
the optimization problem, we employ three different opti-
mization algorithms: the MMA method (Svanberg 1987), 
the stochastic gradient (SG) method (Robbins and Monro 
1951), and the continuous stochastic gradient (CSG) 
method (Pflug et al. 2020; Grieshammer et al. 2023a, b).

We define the performance of a given design at fre-
quency f as the normalized power of the outgoing planar 
wave, computed using expression (16), as follows:

To evaluate the performance of the optimized designs, 
we use a boundary-fitted mesh for the final designs in the 
Acoustics Modules in COMSOL Multiphysics. The perfor-
mance of different designs are compared over a range of 
frequencies from 4 kHz to 16 kHz with a step size of 20 Hz.

(18)

J(�) = Jp(�) +
�

�ΩD� ∫ΩD

(�h − �)(1 − �h)

=
1

�F� ∫F

⎛
⎜⎜⎝

M
p

L
(f )�

m=0

PL

m
+

M
p

R
(f )�

n=1

PR

n

⎞
⎟⎟⎠
dF

+
�

ND

ND�
k=1

(�k − �)(1 − �k),

(19)Performance = PR
0
(f ) =

||||
(
vR
0

)T
MRp

||||
2

.
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3.1  MMA approach

To solve the optimization problem considering objective 
function (18) using the MMA method, we approximate the 
integral over the range of targeted frequencies using the 
function values of the integrand at just a few frequencies. 
Thus, we discretize the optimization problem as

where Q is the number of frequencies subject to optimiza-
tion, 1

�D is ND × 1 vector with all entries equal to 1, and 
A = {d ∈ ℝ

ND

∣ � ≤ di ≤ 1∀ i} is the set of admissible 
designs. The scaling constant Q−1 is neglected in expres-
sion (20). This is done because the scaling between the 
primary objective function and the quadratic penalty term 
can be also tuned using the penalty parameter � . Note that 
by increasing the number of frequencies subject to opti-
mization Q, we can improve the approximation used to 
discretize objective function (18). To solve optimization 
problem (20), we utilize the least squares formulation of 
the MMA approach described by Svangberg (1987, 2002). 
Thus, we need the sensitivity information for each part of the 
objective function in optimization problem (20). The com-
putation of sensitivities for the quadratic penalty term can 
be readily performed for a given filter F  . However, the task 
of computing the gradient of the power of outgoing modes 
with respect to the design variables poses a challenge. This 
process involves determining the gradient of the amplitudes 
of the outgoing modes with respect to the design variables, 
as per Eqs. (15) and (14). Notably, the power of a propa-
gating mode is proportional to the square of its amplitude. 
The sensitivity computations are done analytically using the 
adjoint variable method, which is a powerful technique for 
computing the gradient of a function that depends on the 
solution of a partial differential equation with respect to the 
design variables. A detailed derivation of the design sensi-
tivities is provided in the appendix.

The design problem has 40,000 design variables, that is, 
the number of elements in the design domain ΩD . We set the 
lower bound for the design variable as � = 10−8 , the filter 
radius to 1mm , and use a so-called continuation approach 
for the penalty parameter. That is, we solve problem (20) 
for a sequence of increasing penalty parameters �i = 10i , 
i = 0, 1,… , 5 , using the previously computed solution as 
the initial design. The aim is to gradually move the opti-
mizer’s focus from the acoustic performance of the device 
towards obtaining a black-and-white final design. This 
approach ensures an optimized layout with sharp solid–fluid 

(20)
min
d∈A

Q�
i=1

⎛
⎜⎜⎝

M
p

L(fi)�
m=0

PL
m
+

M
p

R(fi)�
n=1

PR
n

⎞
⎟⎟⎠

+
�

ND
(F(d) − �1

�D)T (1�D − F(d)),

,

boundaries, free of any intermediate values of the material 
indicator functions (Wadbro and Berggren 2006). To solve 
optimization problem (20), we need to consider a sufficiently 
large number of frequencies Q to get broadband acoustic 
performance. However, increasing the number of frequen-
cies subject to optimization will increase the number of 
times we need to solve the state Eq. (6). Note that the finite 
element solver is the primary contributor to the computa-
tional costs in the optimizer. Consequently, increasing the 
number of frequencies will result in a significant increase 
in computational cost. Here, we consider three cases for the 
number of frequencies subject to optimization: 

Case I  Four equidistant frequencies in the targeted range; 
that is, 4 kHz, 8 kHz, 12 kHz, and 16 kHz.

Case II  Seven equidistant frequencies in the targeted 
range; that is, 4 kHz, 6 kHz, ..., 16 kHz.

Case III  Thirteen equidistant frequencies in the targeted 
range; that is, 4 kHz, 5 kHz, ..., 16 kHz.

Note that here, the convergence criteria is based on 
the residual norm of the KKT (or the first-order optimal-
ity) condition, together with a limitation on the number of 
iterations in each penalty step. We will use the number of 
evaluations, defined as the number of times we need to solve 
the state Eq. 6, as a metric to compare the computational 
cost between different cases. Figure 3 shows the optimized 
design for all three cases. Figure 4 shows the performance 
of each of these designs, computed using expression (19). 
Figure 5 shows the convergence history for all three MMA 
cases, where two numerical approximations of the objective 
function (17) are plotted versus the number of evaluations, 
one is the naive approximation using only the frequencies 
subject to optimization in each case and the other one is 
achieved using 150 equidistant frequencies in the range 
4 kHz to 16 kHz.

Considering the observations from Figs. 4 and 5, the fol-
lowing conclusions can be drawn:

• In Case I, where only a few frequencies within the tar-
geted range are considered in the optimization, the over-
all broadband performance of the final layout is poor, 
with only a few peaks observed at the considered fre-
quencies. The total number of evaluations required for 
the convergence is approximately 500 evaluations.

• In Case II, by considering more frequencies to approxi-
mate objective function (17), a better overall performance 
is achieved for the optimized design. However, there are 
still deeps in the frequency response, indicating weak 
broadband performance. In this case, Fig. 5 shows that 
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the approximation of the objective function is still poor 
throughout the optimization. Moreover, approximately 
2200 evaluations were required for convergence.

• In Case III, a desirable broadband performance is 
achieved for the optimized layout. However, this 
improvement comes at the expense of an increase in 

computational cost, as evident from the approximately 
2700 evaluations required to obtain the optimized lay-
out. As illustrated in Fig. 5, the approximation of the 
objective function is significantly improved through-
out the optimization compared to Case I and Case II.

(a)

(b)

(c)

Fig. 3  On the left is an axisymmetric and on the right is a 3D visuali-
zation of the optimized designs in a Case I, b Case II, and c Case III
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Fig. 4  Performance of the optimized designs in a Case I, the red line 
b Case II, the dash-dotted teal line and c Case III, the dashed violet 
line

Case I

101 102 103
10− 3

10− 2

10− 1

100

Evaluations

Case II

101 102 103
10− 3

10− 2

10− 1

100

Evaluations

Case III

101 102 103
10− 3

10− 2

10− 1

100

Evaluations

Fig. 5  History of convergence in all three cases. The black line indi-
cates the approximation of the objective function (17) using numeri-
cal integration utilizing the evaluation of the integrand only at the 
targeted frequencies in each case. The dash-dotted colored lines dem-
onstrate the true objective function approximated by numerical inte-
gration using 150 equidistant frequencies
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These observations highlight two disadvantages of using a 
deterministic approach in this problem which can be mani-
fested as follows: 

1. To ensure an acceptable broadband performance, an 
increased number of frequencies needs to be included in 
the optimization process. This results in a higher number 
of evaluations and computational costs.

2. Evaluating objective function (17) only at specific fre-
quencies leads to designs that are tailored for those 
particular frequencies. As the number of frequencies 
considered in the optimization increases, the result-
ing designs exhibit numerous free-hanging parts, as 
depicted in Fig. 3. This phenomenon is characterized 
by an increasing number of small inclusions from Case 
I to Case III in Fig. 3.

In summary, while the MMA approach demonstrates advan-
tages in achieving desirable broadband performance, it is 
pivotal to consider the associated computational cost and 
the design’s specificity to the frequencies included in the 
optimization process. Furthermore, a key challenge in manu-
facturing the final designs, as depicted in Fig. 3, pertains to 
the placement of free-floating solid inclusions in the context 
of axially symmetric configurations. Note that these free-
hanging parts in the axially symmetric case are free-hang-
ing rings in reality as demonstrated in a 3D visualization in 
Fig. 3. A simple solution is to support these inclusions with 
thin strings or bars attached to the outer tube as suggested 
by Mousavi et al. (2023), where they showed that these thin 
connecting parts have a negligible effect on the acoustic per-
formance of the device. Another alternative is to modify the 
objective function for the optimization problem to ensure the 
connectivity of the design inclusions. However, it is essen-
tial to recognize that such an alteration would significantly 
restrict the available design space for the optimizer in the 
axial symmetric case.

3.2  SG approach

In contrast to MMA, SG does not require a computation of 
the integral over frequencies appearing in (18). Instead, in 
each iteration, we draw a random frequency fn ∈ F  and 
evaluate the objective function gradient only for this specific 
choice. This gradient sample is then used as a search direc-
tion for the current optimization step. As a result, compared 
to MMA, an SG iteration consumes significantly less time, 
but generally provides a smaller improvement of the objec-
tive function.

While SG is typically used with a diminishing learning rate, 
we fix a constant learning rate and impose a shrinkage in step 
length directly through move limits. To be precise, in every 

iteration, the search direction is multiplied by the constant 
learning rate and afterward projected onto the set

where Cn = O(1∕
√
n) . To end up with a black-and-white 

design, the final result is rounded, i.e., we apply an element-
wise threshold operation

 This setup yielded the best performance for SG in our 
numerical experiments.

Due to the stochastic nature of SG, we performed 50 inde-
pendent optimization runs with 500 iterations each. An over-
view of the observed performance range is found in Fig. 10. 
For the best final design obtained, the objective function evo-
lution is shown in Fig. 6, while the final design is illustrated 
in Fig. 7. The corresponding performance is given in Fig. 8.  

3.3  CSG approach

Similar to SG, the CSG search direction is based on stochas-
tic samples of the full objective function gradient. However, 
since evaluating such a gradient sample is still computationally 
expensive, discarding all information after each iteration is 
rather wasteful. Therefore, in CSG, gradient samples (gi)i=1,…,n 
from past iterations are stored. By calculating design-depend-
ent integration weights (�i)i=1,…,n , the full objective function 
gradient is then approximated by the continuous stochastic 
model

�
x ∈ ℝ

ND

∶ ‖x‖∞ ≤ Cn

�
,,

𝛼final
i

=

{
𝜖 if 𝛼i <

1

2
,

1 else,
for i = 1,… ,ND.

∇J(�n) ≈

n∑
i=1

𝛽igi =∶ Ĝn.

100 101 102 103
10− 3

10− 2

10− 1

100

Evaluations

Fig. 6  Value of the objective function  (17) for all intermediate SG 
iterates. Each value was approximated by numerical integration using 
150 equidistant frequencies
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For our numerical experiments, we choose so-called exact 
hybrid weights, since they are easily computable due to 
dim(F) = 1 . More details on how these weights are com-
puted in practice is given by Grieshammer et al. (2023a). 
Therein, it was also shown that the approximation error van-
ishes during the optimization process. That is,

As a consequence, CSG inherits strong convergence results 
from full gradient schemes, like convergence for constant 
learning rates and line search techniques, while retaining a 
low cost per iteration, since the integration weight computa-
tion is negligible compared to the numerical solution of the 
state equation.

lim
n→∞

‖‖∇J(�n) − Ĝn
‖‖ = 0.

For a better comparison, we also choose a combination 
of constant learning rates and move limits for CSG in our 
experiments. This time, however, it is not necessary to 
pick diminishing move limits. Instead, we can adaptively 
choose these limits based on the progress achieved in the 
internal CSG model for the objective function.

Again, 50 independent optimization runs with 500 eval-
uations each were performed. The full overview of results 
is shown in Fig. 10. The objective function evolution of 
the run corresponding to the best final result obtained is 
given in Fig. 9. Therein, we also included the history of 
objective function approximations by CSG. These approxi-
mations indicate the quality of the underlying continu-
ous–stochastic model, which is used internally in CSG. An 

(a)

(b)

Fig. 7  On the left is axisymmetric and on the right is a 3D visualiza-
tion of the optimized designs in a SG approach and b CSG approach
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Fig. 8  Performance of the optimized designs in the SG approach, the 
dash-dotted orange line, and in the CSG approach, the blue line
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Fig. 9  CSG approximation to the objective function value  (17) in 
each iteration (black). The dash-dotted blue line gives a different 
approximation to the objective function value, obtained using numeri-
cal integration with 150 equidistant frequencies
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Fig. 10  Median transmission spectrum (solid lines) of all final 
designs after 500 iterations of CSG (blue) and SG (orange). The 
shades areas indicate the quantiles P0.1,0.9 (light) and P0.25,0.75 (dark)
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illustration of the final design and the corresponding per-
formance can be found in Fig. 7 and Fig. 8, respectively.

3.4  Impact of Stochasticity

To better capture the probabilistic nature of SG and CSG, 
the transmission spectra of all 50 final designs are calcu-
lated. Afterwards, for each individual frequency f ∈ F  , we 
determined the respective transmission quantiles P0.1,0.9(f ) 
and P0.25,0.75(f ) . Here, P0.1,0.9(f ) denotes the range of trans-
mission values achieved by all runs, where the highest 10 % 
and lowest 10 % of values are omitted. Likewise, P0.25,0.75(f ) 
indicates the range of transmission values obtained by 50 % 
of all runs, where the best 25 % and worst 25 % of results are 
neglected. Thus, the resulting quantile plots in Fig. 10 give a 
good impression concerning both the average performance 
of a design obtained by SG or CSG as well as the variance 
in results, depending on the random sequence of sample fre-
quencies. Note, however, that this form of representation 
results in smoother-looking spectra, since sharp peaks and 
other resonance effects are averaged out in the process.

3.5  Discussion

To better compare the achieved performances for all meth-
ods, we introduce the Cumulative Performance Density 
function (CPD), defined as follows:

By construction, CPD(p) provides the relative amount 
of frequencies in our frequency range F  , for which the 
performance is lower than the given threshold p ∈ [0, 1] . 
For example, if a design satisfies CPD(0.5) = 0.25 , its per-
formance is less or equal to 0.5 for 25% of all considered 
frequencies. Thus, an ideal design, which has a perfect per-
formance of 1 for all f ∈ F  , satisfies

Furthermore, the objective function value (17) of a design is 
obtained by integrating CPD over the interval [0, 1], that is,

As a consequence, CPD allows for a more detailed analy-
sis of the final designs than a plain comparison of objec-
tive function values. Especially, even if two designs have 

(21)

CPD(p) =
1

|F| �F

�[0,p]

(
PR
0
(f )

)
df

=

|||
{
f ∈ F ∶ PR

0
(f ) ≤ p

}|||
|F|

CPD(p) =

{
0, p < 1,

1 p = 1.

Jp(�) = ∫
1

0

CPD(p) dp.

identical average performance, they can still differ in CPD, 
e.g., if one design performs relatively equal for all consid-
ered frequencies, while the other has strong oscillations in 
the performance spectrum.

For each of the optimization approaches, the CPD of the 
corresponding final design is given in Fig. 11. Therein, we 
also included the CPD for the empty design domain ( �h ≡ 1) . 
As we can see, the final design obtained with MMA in Case 
I yields the worst performance overall, even falling behind 
the empty design region. The final designs of SG and MMA 
Case II have comparable median performances. However, 
while the final SG design performs rather similar for all fre-
quencies, indicated by the sharp increase of CPD at ∼ 0.9 , 
the MMA Case II design performs poorly for a wide range of 
frequencies, resulting in a much better final objective func-
tion value of SG. The best overall performance is achieved 
by the final design of MMA Case III, with the final CSG 
design performing slightly worse. However, recall that 
the associated numerical effort for MMA Case III is much 
higher (2704 state equation solutions) when compared to 
CSG (500 state equation solutions).

4  Conclusion

In this study, we presented the results of topology optimiza-
tion applied to a broadband acoustic transition section. We 
compared the outcomes of a deterministic approach using the 
method of moving asymptotes (MMA) with two stochastic 

Fig. 11  Cumulative performance density (CPD) curves, see (21), for 
all final designs in Figs. 3 and 7 as well as the empty design domain. 
For a given final design, the cumulative performance density curve 
directly indicates two measures of quality: the objective function 
value (area under the graph) and the median performance (intersec-
tion with horizontal line at y = 0.5)
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approaches: stochastic gradient (SG) and continuous stochastic 
gradient (CSG) methods.

In the case of the MMA approach, we found that achieving 
optimal broadband performance requires optimizing over an 
increased number of frequencies (Fig. 4). However, this comes 
at the cost of a significant increase in computational costs and 
results in designs with a higher number of free-hanging inclu-
sions, which can negatively impact manufacturability (Fig. 3). 
On the other hand, the stochastic approaches, SG and CSG, 
offer a more computationally efficient alternative while still 
producing optimized designs with improved manufacturability. 
In particular, we observed that the CSG method outperforms 
the SG method, as evidenced by the median transmission spec-
trum of the final designs and the overall frequency response 
shown in the quantile plots (Fig. 10).

These findings highlight the potential of stochastic 
approaches in acoustic applications, especially when broad-
band acoustic performance is desired. By reducing compu-
tational costs and improving manufacturability, stochastic 
methods offer a promising alternative for optimizing acoustic 
systems in such applications.

Appendix: Sensitivity analysis

Let � correspond to a given design, and let �� correspond to 
an arbitrary perturbation of the design. Differentiating state 
problem (6) with respect to this perturbation, using that M and 
K are linear in � , we obtain the following expression:

On the other hand, differentiating expression (14) yields 

 Let zL
m
 be the solution to the problem (6) with the right-hand 

side replaced by MLvL
m
 . By multiplying the linearized state 

problem (A1) with (zL
m
)T , using the fact that the matrices are 

symmetric, we obtain

(A1)

(
K(��) − k2M(��)

)
p

(
K(�) − k2M(�) − BL − BR

)
�p = 0.

(A2a)�BL
m
=
(
vL
m

)T
ML�p, m = 0,… ,M

p

L
,

(A2b)�BR
n
=
(
vR
n

)T
MR�p, n = 0,… ,M

p

R
.

Substituting the last term in Eq. (A3) using Eq. (A2a), we 
identify the partial derivatives of BL

m
 with respect to the ele-

ment values of �E in element E as

where pE and (zL
m
)E are vectors containing the components of 

p and (zL
m
) corresponding to nodes in element E and ME and 

KE are the element mass and stiffness matrices for element 
E, respectively.

Considering zR
n
 to be the solution to the problem (6) with 

the right-hand side replaced by MRvR
n
 , following the same 

argumentation as for zL
m
 , we obtain the partial derivatives of 

BR
n
 with respect to the element values of �E in element E as

Note that zL
m
 and zR

n
 are known as adjoint variables.
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