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Abstract
In this paper, a 2D isogeometric formulation of the material distribution for structural topology optimization considering 
minimum weight and local stress constraints using the overweight approach is proposed. The aim of this isogeometric for-
mulation is to provide solutions with high spatial definition using a lower number of design variables in comparison with 
the formulations previously developed to define the material layout. Despite of this, an important number of local stress 
constraints has to be considered in the solution of the problem. For this purpose, an Overweight Constraint is used to consider 
all of them. The structural analysis is performed by means of the Isogeometric Analysis (IGA) and the distribution of mate-
rial is modeled by means of quadratic B-splines. Moreover, the optimization is addressed by means of the Sequential Linear 
Programming algorithm (SLP) that is driven by the information provided by a full first-order sensitivity analysis extension 
of the IGA formulation. Finally, the proposed formulation is tested by means of some benchmark problems, and the results 
show that the isogeometric formulation provides solutions with high spatial definition. A comparison with a Finite Element 
Method (FEM) topology optimization formulation is included.

Keywords  Structural topology optimization · Stress constraints · Overweight approach · Isogeometric analysis · 
Aggregation techniques

1  Introduction

The basis of the structural topology optimization were 
established by Bendsøe and Kikuchi in 1988 (Bendsøe 
and Kikuchi 1988). Since then, a wide range of different 
approaches have been developed to extent the use of the 
structural topology optimization to different applications; for 
this reason, an important number of contributions has been 
published. Although an important number of different kind 
of problems have been formulated in this field, the Maxi-
mum Stiffness Problem (minimum compliance) (Bendsøe 
1995; Bendsøe and Kikuchi 1988; Niu et al. 2011; Stolpe 
and Svanberg 2001; Wang et al. 2020) is the most deeply 
analyzed. However, in this paper, the Minimum Weight 

with Stress Constraints Problem (Bruggi and Duysinx 2012; 
Duysinx and Bendsøe 1998; Navarrina et al. 2005; París 
et al. 2007, 2009, 2010a) is chosen to solve the topology 
optimization problem due to its high interest from the engi-
neering point of view. The Minimum Weight with Stress 
Constraints problem provides the cheapest structure, in 
terms of material cost, which supports a set of loads with 
the requirement that the structural stresses do not exceed 
its maximum allowable value. Different alternatives have 
been used to solve the Minimum Weight with Stress Con-
straints problem due to the drawbacks emerged during the 
solution process. These alternatives consider different ways 
to formulate the material distribution in the domain or the 
stress constraints in the problem. The different strategies 
used to formulate the stress constraints in the problem has 
been commented in Villalba et al. (2022).

Regarding the definition of the material distribution 
in the domain, several strategies have been used until 
now. Firstly, discontinuous formulations of the relative 
density, whose value is not continuous in all the domain, 
were stated. These formulations are defined by means of 
a microstructure in each division of the domain. The most 
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common approaches are listed below. The homogenization 
techniques (Allaire et al. 2004; Bendsøe 1995; Murat and 
Tartar 1985; Zhao et al. 2010) use only one microstructure 
in all the divisions of the domain and the unknowns are 
related with the dimensions of the microstructure at each 
division. The Solid Isotropic Material with Penalty (SIMP) 
(Bendsøe 1995; Bendsøe and Sigmund 1999; Bruns (2005; 
Rossow and Taylor 1973; Xu et al. 2021) was initially 
established from the theoretical point of view and later it 
was demonstrated the existence of a microstructure that 
represents faithfully the behavior of the theoretical for-
mulation. The unknowns are related with the amount of 
material required in each division of the domain. Finally, 
the Multimicrostructural approaches (Gao et al. 2019a; 
Nakshatrala et al. 2013; Sivapuram et al. 2016; Rodrigues 
et al. 2002) use several microstructures in the definition 
of the material layout. As a result, the microstructure at 
each division of the domain acts as an unknown. The main 
problem of these formulations is the mesh dependency 
phenomena since the solution depends on the discretiza-
tion of the domain. By contrast, the continuous formula-
tions of the relative density, whose value is continuous in 
all the domain, were developed to avoid the mesh depend-
ency phenomena. The most frequent formulations used 
until now are as follows:

•	 The Level Set Method (Amstutz and Adrä 2006; Luo 
et al. 2008; Van Dijk et al. 2013; Wang et al. 2003)  
uses an auxiliary function to determine the amount of 
material that have to be placed in each point of the 
domain. The most common auxiliary function is the 
Heaviside Function.

•	 The Bubble Method (Cai and Zhang 2020; Cai et al. 
2019) defines initially the boundary geometry and then 
an infinitesimal hole is introduced in the most appropri-
ated point of the domain. The process is repeated until 
an additional hole cannot be incorporated.

•	 The Phase Field Approach (Auricchio et  al. 2020; 
Blank et al. 2012; Jeong et al. 2014; Wang and Zhou 
2004) defines the material distribution using a parame-
ter that defines the solid region, the void, and the inter-
face between them. The Van der Waals–Cahn–Hilliard 
theory, a phase transition theory, is the most used in the 
formulation of the problem.

•	 The Isogeometric Analysis (IGA) (Gao et al. 2019b, 
2019c, 2020a, 2020b; Gai et al. 2021; Hassani et al. 
2012; Liu et al. 2018; Qian 2013; Sahithi and Chan-
drasekhar 2020; Wang and Benson 2016) defines the 
material distribution using B-splines or NURBS (Non-
Uniform Rational B-Spline). This is the only continu-
ous formulation which does not solve the mesh depend-
ency phenomena since the domain is discretized with 

knot spans whose role is equivalent to the elements of 
the Finite Element formulations.

In this research, the formulation of the Overweight 
Approach previously developed in Villalba et al. (2022) is 
used to impose the local stress constraints in the problem. 
The Sequential Linear Programming (SLP) is used for the 
optimization process. The material layout in the domain is 
defined with quadratic B-splines. The structural analysis 
is stated in terms of an Isogeometric Analysis formulation 
considering several hypotheses: elastic and linear material, 
small displacements, and small gradients of displacements. 
This formulation is analogous to the Finite Element formula-
tion with the consideration of several aspects. The elements 
and the nodes of the mesh are replaced by knot spans and 
control points, respectively. The shape functions are replaced 
by B-splines or NURBS interchangeably. The rest of the 
algorithm remains unchanged. The formulation of structural 
analysis has to include the effect of the design variables 
(Navarrina et al. 2005; París et al. 2007, 2009) since they are 
used in the definition of the material layout. The remainder 
of this paper is structured as follows. Section 2 describes 
the topology optimization problem. Section 3 describes the 
optimization algorithms. In Section 4 the sensitivity analysis 
is formulated. In Section 5, the most important aspects of the 
numerical implementation are commented. Section 6 solves 
different numerical examples with the optimization method. 
Section 7 makes a comparison of the obtained results with 
the FEM and IGA formulations. Finally, Conclusions are 
commented in Section 8.

2 � Optimization problem

The optimization problem solved in this paper is stated as 
follows:

where � =
{
�i,j

}
 is the design variables vector, r0 is the 

coordinates vector of the points considered in the formu-
lation of the Overweight Constraint, F(�) is the objective 
function, and g

(
r
0,�

)
 is the Overweight Constraint. n and 

m are the number of control points in each spatial dimen-
sion, and �min and �max are the side constraints of the design 
variables. The points considered in the formulation of the 
Overweight Constraint to check the structural stresses are 
placed at the center point of (i) each knot span of the patch 
(IGA-based formulations) or (ii) each element of the mesh 

(1)

Calculate � =
{
�i,j

}
i = 1, ..., n j = 1, ...,m

which minimize F(�)

subject to g
(
r
0,�

) ≤ 0

�min ≤ �i,j ≤ �max i = 1, ..., n j = 1, ...,m ,
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(FEM-based formulations). The choice of this set of points 
is crucial for the performance of the topology optimization 
problem formulated in this manuscript, since it is one of the 
key points in case of introducing stress constraints in the 
topology optimization problem.

Quadratic B-splines are used to define the material dis-
tribution and the design variables represents the value of 
the relative density in the control points. As a result, the 
number of design variables is equal to the number of con-
trol points. Linear B-splines are not considered due to its 
equivalence with the linear Finite Elements when the design 
variables represent the value of the relative density in the 
nodes of the mesh. Moreover, the use of linear formulations 
contributes to the appearance of checkerboard patterns in 
the solutions. Cubic B-splines are not considered since it 
requires the use of cubic finite elements to make a coher-
ent comparison between both formulations. Furthermore, 
the relative density at each point of the domain depends on 
a higher number of design variables as the degree of the 
B-splines is increased. Lastly, NURBS are not considered 
since they require to establish the value of the contribution 
weights of each control point. The introduction of a contri-
bution weights in the formulation means that the solutions 
are influenced by this choice. This circumstance does not 
happen in case of using simple B-splines in the definition 
of the material layout. All the details about the problem are 
described in the next subsections and the definition of the 
most important concepts of Isogeometric Analysis can be 
found in Hughes et al. (2005).

2.1 � Objective function

Minimum weight with stress constraints formulations 
(Bruggi and Duysinx 2012; Duysinx and Bendsøe 1998; 
Navarrina et al. 2005; París et al. 2007, 2009, 2010a) is 
established to attain the lowest cost structures. Since the 
amount of material required to manufacture the structure 
has an important impact in its cost, the objective function 
of the problem is in this case the structural weight that can 
be stated as follows:

The design variables of the problem represent the value of 
the relative density in each control point. Therefore, the rela-
tive density at any point of the domain can be obtained as 
follows:

(2)F(�) =

Ne∑
e=1

∫Ωe

�dΩe .

where �i,j is the value of the relative density in the control 
point (i, j) and Ni,p and Mj,q are the quadratic B-splines basis 
functions of the control point (i, j). Since the value of the 
design variable is independent of coordinates, Eq. (2) can 
be reduced to

On the other hand, the attainment of full-void solutions is 
intended in this paper. For this reason, it is necessary to 
introduce a factor p which penalizes intermediate values 
of relative density (Navarrina et al. 2003, 2005; París et al. 
2007, 2009, 2010a, 2010b). Thus, the objective function of 
the problem with a penalization of intermediate values of 
relative density is as follows:

The penalty coefficient p has to be greater than 1 to reduce 
the appearance of areas with intermediate values of relative 
density. This penalization of intermediate values of relative 
density produces an increase of the contribution to the struc-
tural weight of these areas. A graphic representation of the 
relative density penalized with the penalty coefficient p can 
be seen in Fig. 1. The penalty coefficient of the intermediate 
densities p is increased step by step during the optimization 
process to ensure the attainment of full-void solutions. Nev-
ertheless, its value is initially 1 to reduce the non-linearity 
of the problem. The introduction of the penalty coefficient p 
in the objective function, Eq. (5), makes necessary to com-
pute first the numerical integration of the structural weight 
and then its numerical derivative to compute its sensitivity 
analysis. Due to this numerical complexity, two alternative 
formulations of the objective function with the penalty coef-
ficient p are developed below. First, it is important to remark 
that the attainment of full-void solutions does not avoid 
the appearance of intermediate values of relative density 
due to its continuity. In the first approach, all the quadratic 
B-splines are integrated to compute the contribution of each 
design variable in the whole domain. Then, the penalization 
factor p is applied over the design variables. Therefore, the 
equation of the penalized objective function can be stated 
as follows:

(3)�(x, y) =

n∑
i=1

m∑
j=1

Ni,p(x)Mj,q(y)�i,j ,

(4)F(�) =

Ne∑
e=1

n∑
i=1

m∑
j=1

�i,j ∫Ωe

Ni,p(x)Mj,q(y)dΩe .

(5)F(�) =

Ne∑
e=1

∫Ωe

�1∕pdΩe .

(6)F(�) =

n∑
i=1

m∑
j=1

�
1∕p

i,j

Ne∑
e=1

∫Ωe

Ni,p(x)Mj,q(y)dΩe .
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In the second approach, the original objective function 
is integrated in each knot span separately, and the penali-
zation factor p is applied over the result of the integral at 
each knot span. Consequently, the equation of the penal-
ized objective function with this method is as follows:

where SΩks
 is the surface of each knot span and �e is the 

result of the integral of the relative density in the knot span 
e, integral that can be computed as follows:

Both methods have been tested and the results obtained with 
each of them have been analyzed. The second one is finally 
chosen, since in the first method the penalization is applied 
over the design variables that only avoids the appearance 
of intermediate values on it. This does not avoid interme-
diate relative density values in the domain. However, the 
effect that has been intended with the penalization has been 
obtained with the second method, where intermediate rela-
tive densities are penalized in the whole domain. Moreover, 
this way of introducing the penalization in the formulation 
introduces an inherent penalization of the perimeter. This 
perimeter penalization is important since it is related with 
the reduction of areas with intermediate values of relative 
densities, as the structural perimeter is defined with a thresh-
old relative density that takes an intermediate value of it.

(7)F(�) =

Ne∑
e=1

�1∕p
e

SΩks
.

(8)�e =

n∑
i=1

m∑
j=1

�i,j
1

SΩks
∫Ωe

Ni,p(x)Mj,q(y)dΩe .

2.2 � Overweight constraint

The overweight approach and the damage approach (Ver-
bart et al. 2016; Villalba et al. 2022) have demonstrated to 
be a valid alternative to the classical aggregation functions 
used to combine the effect of a certain number of local stress 
constraints in the problem. The Overweight Approach penal-
izes the violation of the local stress constraints in a structure 
through an extra-weight of the material in the areas where 
they are violated. This overweight consists in a perturbation 
of the relative density whose magnitude depends on the level 
of violation of the constraint. For this purpose, an alterna-
tive model of the original structure is created with an increase 
of the relative density of the material when the local stress 
constraints are violated. The Overweight approach used in 
this paper Villalba et al. (2022) is equivalent to the Damage 
Approach developed by Verbart in Verbart et al. (2016). The 
main difference between both approaches is the property con-
sidered in the formulation of the alternative model, the former 
uses the relative density and the latter the Young Modulus. 
The constraint in both approaches consists on the compari-
son of a global property of both models, the original and the 
alternative. This global property is related with the property 
perturbated in the alternative model. The Overweight approach 
compares the structural weight and the Damage approach the 
structural stiffness. In brief, the alternative model is created 
from the original one using the local stress constraints, and 
the constraint consists on a comparison between both models. 
Regarding the Overweight Approach, the overweight model is 
always heavier than the original one without overweight when 
there are violated local stress constraints. The process to gener-
ate the overweight model from the original one can be seen in 
Villalba et al. (2022). The Overweight Constraint imposed in 

Fig. 1   Penalized relative density
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the problem consists on a comparison between the structural 
weights of both models as follows:

where W is the structural weight of the original model and 
W̃ is the structural weight of the overweight one. This means 
that the structural weight of both models is different when 
some local stress constraints are violated. All local stress 
constraints are checked by comparing only one global prop-
erty of the structure. Moreover, the structural weight of the 
overweight model is never lower than the structural weight 
of the original one. Both structural weights can be computed 
as follows:

where � and 𝜌̃ are the relative density of the original and 
overweight model, respectively. This definition of the over-
weight constraint means that the constraint is always active 
even when all the structural stresses are lower than their 
maximum value since the structural weight of both mod-
els coincides. This circumstance is not desirable since the 
derivatives of the Overweight Constraint have to be com-
puted in any case. Therefore, in order to relax the equality 
constraint a small positive parameter � is introduced in the 
formulation of the overweight constraint, despite the fact 
that, theoretically, this means that stress constraints can be 
slightly violated. Thus, Eq. (9) becomes

The value of � should not be extremely high to avoid an 
excessive violation of the local stress constraints. By con-
trast, extremely small values of � means that the optimal 
solution is attained in a higher number of iterations. The 
value of the relaxation parameter of the overweight con-
straint � is 10−3 . On the other hand, the relative density of 
the overweight model can be computed as follows:

where � is the overweight function and �
(
�;�max

) ≥ 1 . The 
overweight function � has to satisfy two conditions: to be 
at least first order differentiable and to be monotonically 
increasing when stresses exceed its allowable limit. These 
conditions are needed to solve the problem with gradient-
based methods. The overweight function � considered is as 
follows:

(9)g(𝜌) =
W̃

W
− 1 = 0 ,

(10)W(𝜌) = ∫Ω

𝜌dΩ W̃(𝜌̃) = ∫Ω

𝜌̃dΩ ,

(11)g(𝜌) =
W̃

W
− 1 ≤ 𝜁 .

(12)𝜌̃ = 𝜌min + 𝛽
(
𝜌 − 𝜌min

)
,

where h is the classical local stress constraint normalized, 
𝛿 > 0 is the exponential degradation parameter which con-
trols the gradient of the overweight function and the amount 
of overweight for each stress level, � is the magnitude of 
the overweight function movement to the left, and � is the 
size of the definition range of the transition function, being 
( 𝜓 > 𝜏 ). In this manuscript, the value of these parameters is 
as follows: (i) exponential degradation parameter � = 50 , (ii) 
magnitude of the overweight function movement to the left 
� = 0.01 , and (iii) size of the definition range of the transi-
tion function � = 0.1 . On the other hand, the classical local 
stress constraint normalized h is stated as

where �VM is the Von Mises stress, �max is the maximum 
allowable value of stresses, and � is a stress relaxation coef-
ficient included in the formulation to avoid the singularity 
phenomena of the stress criterion when the relative den-
sity tends to zero and to increase the value of the maximum 
allowable stress for intermediate values of relative density. 
The basis of the stress relaxation technology and the epsilon-
relaxation algorithm has been established in Duysinx and 
Bendsøe (1998), Cheng and Guo (1997), and Cheng and 
Jiang (1992). In this manuscript and in the same way that 
in the literature, this stress relaxation coefficient ( � ≥ 1 ) 
depends on the value of the relative density as follows:

where � is the stress relaxation parameter whose value is 
progressively increased to make possible the appearance of 
areas with the lower limit of the relative density that intends 
the attainment of full-void solutions and � is the relative 
density at each point of the domain.

2.3 � Side constraints

The side constraints establish the maximum and the mini-
mum value of the design variables. The upper limit of the 
design variables is equal to 1, what means that this part of 
the domain is full of material. However, the lower limit of 
the design variables is not equal to zero, since this value 
produces the singularity of the stiffness matrix. For this rea-
son, the lower limit of the design variables takes a value 

(13)𝛽(𝜎;𝛿) =

⎧
⎪⎪⎨⎪⎪⎩

1, if
𝜎

𝜎
max

≤ (1 − 𝜓)

e

�
𝛿𝜏2

𝜓

2𝜓
𝜏

(h(𝜎)+𝜓)
2𝜓
𝜏

�

, if (1 − 𝜓) <
𝜎

𝜎
max

< 1

e
𝛿(h(𝜎)+𝜏)2 , if

𝜎

𝜎
max

≥ 1 ,

(14)h(�) =
�VM(�)

�max�
− 1 ≤ 0 ,

(15)� = 1 − � +
�

�
,
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slightly superior to zero. The lower limit is 0.001 according 
to other references in the literature (Bendsøe 1995; Bendsøe 
and Kikuchi 1988; Bruggi and Duysinx 2012; París et al. 
2007; Villalba et al. 2022). The value of the lower limit of 
the design variables does not have a big influence in the 
problem, since the areas with this value of relative density 
in the original model maintains this value in the overweight 
model in any case. This intends to simulate the particular 
case of relative density equal to zero where the structural 
stresses do not exist properly. As a consequence, the local 
stress constraints placed in the areas with relative density 
equal to its lower limit do not have influence in the formula-
tion of the overweight constraint.

3 � Optimization algorithms

An iterative algorithm that involves different approaches is 
used in the solution of the problem (1). The design variables 
vector � is updated in each iteration as follows:

where �k is the improvement factor which establishes the 
magnitude of modification between two consecutive itera-
tions and �� is the improvement design direction. A move 
limits approach of the design variables is considered to avoid 
an excessive modification of the design variables between 
two consecutive iterations. This limitation in the modifica-
tion of the design variables 

(
Δ�i,j

)
max

 is introduced due to 
the high non-linearity of the problem. Nevertheless, it is 
also important that the move limits do not become consider-
ably small to avoid an important increase in the number of 
iterations required to solve the problem. Therefore, the main 
objective of these move limits is to facilitate the convergence 
to the optimal solution. For this purpose, a reduction of them 
is done to avoid the oscillation around the optimal solution. 
This reduction consists on multiplying the move limits by 
a reduction factor 

(
FRed

)
 each certain number of iterations (

NIt,Red

)
 . Consequently, the best improvement direction is 

computed in a first place and then the improvement factor is 
established. The algorithms used to calculate the improve-
ment direction and the improvement factor can be seen in 
Villalba et al. (2022). In any case, it is required a complete 
first-order sensitivity analysis to compute both parameters.

4 � Sensitivity analysis

The optimization algorithms require the computation of all 
the first-order derivatives. This procedure is the key point in 
the solution of problem with isogeometric analysis since the 
relationship between relative density and design variables 

(16)�
k+1 = �

k
+ �k𝐬𝐤 ,

is not as straightforward as with the finite element formula-
tions. The computation of the first-order sensitivity analysis 
in an efficient way requires to use two different approaches 
due to the different characteristics of the objective function 
and the overweight constraint.

4.1 � Sensitivity analysis of the objective function

The direct differentiation approach is used to compute the 
sensitivity analysis of the objective function due to the direct 
dependence of the structural weight on the design variables. 
The sensitivity analysis of the objective function, Eq. (7), 
is computed considering the penalization of the interme-
diate values of relative density. As mentioned above, the 
first-order derivative of the objective function is analytically 
computed as follows:

where both terms are computed as follows:

where p ≥ 1 is the penalization factor of intermediate den-
sities, �e is the mean value of the relative density in the 
knot span e, �i,j is the value of the relative density in the 
control point (i, j), and SΩks

 is the surface of the knot span 
considered.

4.2 � Sensitivity analysis of the overweight 
constraint

Although the direct differentiation techniques can be also 
used in the computation of the sensitivity analysis of the 
overweight constraint, its use is not advisable in the majority 
of the cases. The use of direct differentiation techniques usu-
ally supposes an important need of computational require-
ments since the relationship between the overweight con-
straint and the design variables is not as straightforward as 
in the objective function. The dependence of the overweight 
constraint with respect to the design variables is direct and 
indirect through the structural stresses. The use of direct dif-
ferentiation requires to solve as many structural analyses as 
design variables to obtain the complete sensitivity analysis. 
However, when the number of constraints is considerably 
lower in comparison with the number of design variables, 
the Adjoint Variable Approach is the most efficient method 
to compute this sensitivity analysis (Holmberg et al. 2013; 
París et al. 2010a, 2010c; Poon and Martins 2007) , since it 

(17)�F

��i,j
=

Nks∑
e=1

�F

��e

��e

��i,j
,

(18)

�F

��e
=

1

p
�

1−p

p

e SΩks
and

��e

��i,j
=

1

SΩks
∫Ωe

Ni,p(x)Mj,q(y)dΩe ,
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is necessary to compute only as many linear equation sys-
tems as constraints. This is the case of this problem, where 
only the overweight constraint is defined. The analytical 
expression of the first-order derivatives of the overweight 
constraint can be stated as

where � is the local stress vector used to compute the Von 
Mises stress �VM and � is the nodal displacement vector. 
These derivatives can be computed by applying the Adjoint 
variable approach described in Holmberg et al. (2013), París 
et al. (2010a, 2010c), Poon and Martins (2007) as

where � is the adjoint variable, K is the structural stiffness 
matrix, and f is the applied loads vector. The adjoint variable 
� is computed by solving a system of linear equations

The terms �g

��VM
 and �g

��i,j
 can be computed using the chain rule 

as

and

5 � Numerical implementation

The most relevant numerical aspects of the algorithm 
developed in this paper to solve the topology optimization 
problem using isogeometric analysis (IGA) are commented 
below. First, Fortran is the programming language used for 
the numerical implementation of the algorithm developed. 
The optimization problem solved is extremely non-linear 
with respect to the overweight constraint. This circumstance 
produces an important oscillation of the solutions obtained 
during the optimization process around its optimum. As 
a consequence, a modification of some parameters of the 
problem is made to achieve that the solution converges to 
its optimum. First, the move limits of the design variables 
are reduced each certain number of iterations to dimin-
ish the oscillations around the optimal and guarantee the 
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convergence. The other parameters modified are the penalty 
coefficient of intermediate values of relative density (p) and 
the stress relaxation coefficient ( � ). These parameters are 
also modified with the objective of attaining full-void solu-
tions. The value of these parameters is also modified each 
certain number of iterations. At this point, it is important to 
remark that sharp modifications of the parameters are not 
advisable since it means an important change of the prob-
lem. The optimal solution is achieved when the solution does 
not experiment important changes after a certain number 
of iterations and all the considered values for the previous 
parameters are used.

6 � Application examples

The use of the isogeometric analysis to solve the structural 
problem and to define the material layout is validated by 
studying two structural problems frequently analyzed in the 
topology optimization field. These examples are two-dimen-
sional structures in plane stress and are used to compare the 
performance of the methodology developed in this paper 
with another formulation to define the relative density in 
the domain, a uniform relative density per element formula-
tion developed previously in Villalba et al. (2022). In all the 
examples, the material considered is steel with density �mat 
= 7850 kg∕m3 , Young’s modulus E = 210 GPa , Poisson’s 
ratio � = 0.3, and yield stress 𝜎̂max = 230 MPa . Self-weight 
of the structure is included as a structural load. The initial 
design of all the examples consists on a domain full of mate-
rial. All the examples have been computed on an Intel(R) 
Xeon(R) CPU E5-2697 A v4 processor of 2.60 GHz with 
64 GB of RAM.

6.1 � Cantilever beam

The first example corresponds to a cantilever beam with null 
displacements in the left edge and a vertical force applied in 
the middle of the right edge. Figure 2 shows the dimensions 

Fig. 2   Cantilever beam: domain dimensions. (Units—m)
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of the domain and the position of the vertical forces applied. 
The domain of the structure has been discretized using a 
patch with 200 x 100 quadratic knot spans. The thickness 
of the structure considered is 0.30 m and a vertical load of 
(1000 kN) has been distributed on ten elements to avoid 
stress accumulation phenomena. This number of elements 
only has influence in the stresses placed in the vicinity of the 
loading point. This influence diminishes as the distance with 
the area, where the load is applied, increases.

Figures 3 and 4 show the evolution of the optimal solution 
of the problem during the optimization process and Figs. 5 
and 6 show the optimal solution of the problem with both 
formulations: the uniform relative density per element and 
relative density defined using B-splines. Both final solu-
tions consist in a certain number of bars which coincide 
with the isostatic lines. The most important characteristic 
of this example is the existence of a certain symmetry in 
the final solutions between the upper and the lower part 

Fig. 3   Cantilever beam: optimal process—uniform density per element formulation

Fig. 4   Cantilever beam: optimal process—relative density defined using B-splines
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of the domain. This circumstance is due to the structural 
model used that is linear and the material chosen that is 
steel, which has the same behavior to traction and compres-
sion forces. The theoretical solution consists on an infinite 
number of bars which coincides with the isostatic lines. For 
this reason, a higher number of iterations is required to solve 
this problem in contrast with the other example since the 
topology optimization algorithm has to select and remove 
the majority of these infinite bars. Figures 7 and 8 show 
the normalized stress state for the optimal solution. This 
state is obtained through the quotient between the stress at 

each point of the domain and the stress relaxation coefficient 
times the maximum allowable stress. Figures 7 and 8 show 
the existence of regions where stresses are slightly higher 
to their maximum value. This circumstance, common to all 
the examples, is consequence of the relaxation of the over-
weight constraint required to have an inequality constraint. 
The violation of the local stress constraints produced by the 
relaxation of the overweight constraint can be mitigated 
by decreasing the value of the relaxation parameter or by 
increasing the value of the exponential degradation param-
eter of the overweight function. Nevertheless, this is not the 

Fig. 5   Cantilever beam: optimal solution—uniform density per element formulation

Fig. 6   Cantilever beam: optimal solution—relative density defined using B-splines

Fig. 7   Cantilever beam: normalized stress—uniform density per element formulation
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only cause that produces the appearance of stresses higher 
than their maximum. The definition of the relative density in 
the overweight model also facilitates the appearance of this 
regions when the relative density is equal to its lower limit. 
This circumstance is intended since it tries to simulate the 
absence of material in these areas what means the absence 
of structural stresses. Figures 9 and 10 show the evolution 
of the structural weight and the objective function during 
the optimization process. It is possible to observe in Figs. 9 
and 10 that the value of the structural weight is almost con-
stant during the majority of the process. This circumstance 
is due to the redistribution of the material in the domain that 
can be observed in Figs. 11 and 12. In contrast, the objec-
tive function tends to be reduced during all the process with 
the exception of the iterations in which the penalty coef-
ficient of intermediate values of relative density is modi-
fied. This reduction is zigzag instead of being continuous 
like the reduction attained when local stress constraints are 

used. Figures 11 and 12 show the distribution of the design 
variables in the last iteration in which each value of the pen-
alty coefficient of intermediate values of relative density is 
applied, the material layout in these iterations can be seen 
in Figs. 3 and 4. Figures 11 and 12 show that the presence 
of design variables with intermediate values is reduced con-
siderably as the penalty coefficient of intermediate values 
is increased.

Tables 1 and 2 show the value of the most important 
parameters of the problem. Table 1 shows the value of the 
parameters related with the definition of the problem and 
with the optimization process. The former are the num-
ber of design variables which coincides with the number 
of control points and the number of constraints that in this 
case is equal to 1, since only the overweight constraint is 
defined. The latter are the initial move limits, in this case 
0.005, the reduction factor of the move limits, and its fre-
quency of modification. Table 2 shows the different values 

Fig. 8   Cantilever beam: normalized stress—relative density defined using B-splines

Fig. 9   Cantilever beam: struc-
tural weight—uniform density 
per element formulation
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that the penalty coefficient of intermediate values of relative 
density and the stress relaxation coefficient take during the 
optimization process and the range of iterations in which 
they are applied. Table 3 shows the results obtained with the 
solution of the problem: number of iterations, final structural 
weight, percentage of the domain occupied by material, and 
total CPU time. 4000 and 4200 iterations were required to 
guarantee that the solution converges to its optimal. The part 
of the domain occupied by material is around the 15% and 
it has been required almost 27 and 18 h to attain the optimal 
solutions. Finally, Table 4 shows the distribution of the CPU 

time per algorithm of an average iteration. Table 4 shows 
that the structural and sensitivity analyses means more than 
the 90% of the total CPU time required to solve the problem 
in both cases. As a result, the CPU time required for the rest 
of the algorithms and the data initialization is considered 
negligible.

6.2 � MBB beam

The second example corresponds to a MBB beam with 
null vertical displacements in the supports and a vertical 

Fig. 10   Cantilever beam: struc-
tural weight—relative density 
defined using B-splines
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Fig. 11   Cantilever beam: design 
variables distribution—uniform 
density per element formulation
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distributed force applied in the central part of the structure 
over the upper edge. Figure 13 shows the dimensions of the 
domain and the position of the vertical forces applied of the 
entire structure and the part of the structure considered in 

the solution of the problem. The structural domain has been 
discretized using a homogeneous patch with 240 times 80 
quadratic knot spans. The thickness of the structure is 0.40 
m and an external distributed load of 2700 kN/m is applied 

Fig. 12   Cantilever beam: design 
variables distribution—relative 
density defined using B-splines
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Table 1   Cantilever beam: general parameters of the problem

Data input Value FEM Value IGA

n 20,000 20,604(
Δ�

i,0

)
max

0.005 0.005
F
red

0.8 0.8
N
It,Red

360 380

Table 2   Cantilever beam: evolutionary parameter of the problem

Iterations FEM Iterations IGA p �

0–719 0–759 1 0
720–1439 760–1519 2 0.001
1440–2159 1520–2279 3 0.002
2160–2879 2280–3039 4 0.003
2880–4000 3040–4200 5 0.005

Table 3   Cantilever beam: results

Data Output Value FEM Value IGA Units

Number of iterations 4000 4200
Final Weight 107.7 106.7 kg
Domain occupied by material 14.29% 14.16%
Total CPU Time 26.26 17.60 h

Table 4   Cantilever beam: distribution of computing time per iteration

Algorithms Time FEM (%) Time IGA (%)

Structural analysis 72.12 27.96
Sensitivity analysis 25.89 65.97
Optimization algorithms 1.84 3.69
Rest of the process 0.15 2.38

Fig. 13   MBB beam: domain dimensions (units—m)



Isogeometric topology optimization of structures using the overweight approach﻿	 Page 13 of 26     84 

over 32 adjacent elements in the upper part of the domain in 
the proximity of the symmetry axis.

Figures 14 and 15 show the evolution of the optimal solu-
tion during the resolution of the problem, while Figs. 16 
and 17 show the optimal solution of the problem once the 
symmetrical replication through the symmetry axis has been 
made since only half of the structure is computed. In both 

examples, the quality of the results obtained using quadratic 
B-splines to define the material layout that is quantified in 
terms of smoothness, is very good in comparison with the 
uniform density per element formulation. Figures 18 and 
19 show the normalized stress state for the optimal solution 
with both formulations. In the same way that for the cantile-
ver beam, there are regions with structural stresses slightly 

Fig. 14   MBB beam: optimal process—uniform density per element formulation

Fig. 15   MBB beam: optimal process—relative density defined using B-splines

Fig. 16   MBB beam: optimal solution—uniform density per element formulation
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higher than their maximum value. The causes of its appear-
ance and the strategies used to mitigate it have been com-
mented in the previous example. Figures 20 and 21 show the 
evolution of the structural weight and the objective function 
during the optimization process. Figures 22 and 23 show the 
distribution of the design variables in the last iteration in 
which each value of the penalty coefficient of intermediate 
values of relative density is applied. Figs. 14 and 15 show 
the material layout at these iterations. All these figures have 
the same behavior than the figures of the cantilever beam. 
The consideration of the self-weight as a structural load does 

not have a big influence in the results since the magnitude 
of the structural weight only supposes at most 7% of the 
value of the external loads applied over the structure. This 
percentage is quickly reduced in the first iterations of the 
optimization process.

Tables 5 and 6 show the value of the most important 
parameters of the problem. Table 5 shows the value of 
the parameters related with the definition of the problem: 
number of design variables and number of constraints; 
and with the optimization process: initial move limits, 

Fig. 17   MBB beam: optimal solution—relative density defined using B-splines

Fig. 18   MBB beam: normalized stress—uniform density per element formulation

Fig. 19   MBB beam: normalized stress—relative density defined using B-splines
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reduction factor of the move limits, and frequency of 
modification of the move limits. Table 6 shows the dif-
ferent values that the penalty coefficient of intermediate 
values of relative density and the stress relaxation coef-
ficient take during the optimization process and the range 
of iterations in which they are applied. Table 7 shows the 
results obtained with the solution of the problem: num-
ber of iterations, final structural weight, percentage of the 
domain occupied by material, and total CPU time. 2400 
and 2600 iterations were required to guarantee that the 

solution converges to its optimal. As it was commented 
previously, it is important to remark that the complex-
ity of the problem is related with the number of itera-
tions required to solve it as it can be seen if a comparison 
between the number of iterations required to solve both 
examples is made. Finally, Table 8 shows the distribution 
of the CPU time per algorithm of an average iteration. 
Table 8 shows that the structural and sensitivity analyses 
mean more than the 94% of the total CPU time required to 
solve the problem. Consequently, the CPU time required 
for the rest of the algorithms can be considered negligible. 

Fig. 20   MBB beam: structural 
weight—uniform density per 
element formulation
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Fig. 21   MBB beam: structural 
weight—relative density defined 
using B-splines
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Fig. 22   MBB beam: design 
variables distribution—uniform 
density per element formulation
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Fig. 23   MBB beam: design 
variables distribution—relative 
density defined using B-splines
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Table 5   MBB beam: general parameters of the problem

Data input Value FEM Value IGA

n 19,200 19,844(
Δ�

i,0

)
max

0.005 0.005
F
Red

0.80 0.80
N
It,Red

240 260

Table 6   MBB beam: evolutionary parameter of the problem

Iterations FEM Iterations IGA p �

0–479 0–519 1 0
480–959 520–1039 2 0.001
960–1439 1040–1559 3 0.002
1440–1919 1560–2079 4 0.003
1920–2400 2080–2600 5 0.005
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The CPU time required by the data initialization is also 
negligible with respect to the CPU time required to solve 
one iteration of the problem.

6.3 � L‑shaped beam

The last example corresponds to a L-shaped beam with null 
displacements in the upper edge and a vertical force applied 
in the upper part of the right edge. Figure 24 shows the 
dimensions of the domain and the position of the vertical 
forces applied. The structural domain has been discretized 
using a mesh of 19,600 quadratic knot spans. The thickness 
of the structure is 0.40 m and a vertical load of (900 kN) 

has been distributed on six elements in order to avoid stress 
accumulation phenomena.

Figures 25 and 26 show the evolution of the optimal solu-
tion during the resolution of the problem, while Figs. 27 
and 28 show the optimal solution of the problem. In both 
Figs. 27 and 28, it is possible to observe that the stress con-
centration phenomena which takes place in the inside cor-
ner of the domain is avoided by the formulation with stress 
constraints developed in this manuscript. For this purpose, 
the geometry of the optimal solution is rounding in the cor-
ners where this stress concentration phenomena appears. 
Figures 29 and 30 show the normalized stress state for the 
optimal solution with both formulations. In the same way 
that for the previous examples, there are regions with struc-
tural stresses slightly higher than their maximum value. The 
causes of its appearance and the strategies used to mitigate 
it has been commented in the cantilever beam example. The 
scale of the normalized stress shown in all the figures is 
fixed in order to facilitate the comparison of the different 
formulations with each other. Figures 31 and 32 show the 
evolution of the structural weight and the objective function 
during the optimization process. Figures 33 and 34 show the 
distribution of the design variables in the last iteration in 
which each value of the penalty coefficient of intermediate 
values of relative density is applied; Figs.  25 and 26 show 
the material layout at these iterations. All these figures have 
the same behavior than the figures of the previous examples.

Tables 9 and 10 show the value of the most important 
parameters of the problem. Table  11 shows the results 
obtained with the solution of the problem. Finally, Table 12 
shows the distribution of the CPU time per algorithm of an 
average iteration. Table 12 shows that the structural and sen-
sitivity analyses mean more than the 94% of the total CPU 
time required to solve the problem. Consequently, the CPU 
time required for the rest of the algorithms can be considered 
negligible.

7 � Comparative analysis

Once the results obtained with the formulation developed in 
this paper and the material distribution established in Vil-
lalba et al. (2022) have been commented, it is possible to 
make a comparative analysis between these two ways used 
to define the material distribution in the domain: a uniform 
relative density per element formulation (FEM-based) and 
the density relative defined using B-splines (IGA-based). 
This comparative analysis considers all the differentiating 
aspects of the problem.

Table 7   MBB beam: results

Data output Value FEM Value IGA Units

Number of iterations 2400 2600
Final weigh 313.9 338.5 kg
Domain occupied by material 5.21% 5.62%
Total CPU time 11.10 8.49 h

Table 8   MBB beam: distribution of computing time per iteration

Algorithms Time FEM (%) Time IGA (%)

Structural analysis 64.83 23.16
Sensitivity analysis 33.72 71.81
Optimization algorithms 1.25 2.10
Rest of the process 0.20 2.93

Fig. 24   L-shaped beam: domain dimensions (units—m)
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Fig. 25   L-shaped beam: optimal 
process—uniform density per 
element formulation

Fig. 26   L-shaped beam: optimal process—relative density defined using B-splines
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7.1 � Geometry of the domain

FEM-based formulations tend to use, in general, regular 
meshes in the discretization of the domain for the solu-
tion of this kind of problems to reduce the influence of the 

meshing in the solution to the mesh size (mesh dependence 
phenomena). Regular meshes can only be attained with IGA 
formulations using a single B-spline basis functions if the 
domain is assimilable to a square or a rectangle. For this rea-
son, the geometry of the domain is a limiting criterion in the 

Fig. 27   L-shaped beam: optimal solution—uniform density per element formulation

Fig. 28   L-shaped beam: optimal solution—relative density defined using B-splines
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IGA-based formulations with a single B-spline basis func-
tions in contrast with the FEM-based formulations where 

geometries of the domain more complex can be defined with 
regular meshes.

Fig. 29   L-shaped beam: normalized stress—uniform density per element formulation

Fig. 30   L-shaped beam: normalized stress—relative density defined using B-splines
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7.2 � Design variables

There are a little difference in the number of design variables 
used with both formulations as it can be seen in Tables 1 
and 5. The IGA-based formulation requires (nx + 2)(ny + 2) 
design variables while the FEM-based formulation uses 
only nxny design variables. This difference can be consid-
ered neglectable in high spatial definition problems where 
the magnitude of nx and ny is considerably high and, as a 
consequence, it does not have a big influence in the compu-
tational requirements.

7.3 � Structural stiffness matrix

The size of the structural stiffness matrix is one of the key 
aspects in the solution of the structural analysis. This is one 
of the most important aspects, since it means an impor-
tant difference in the computational requirements used 
for both formulations. The size of the structural stiffness 
matrix depends on the dimensions of the problem and the 
number of nodes required for the structural analysis. The 
IGA-based formulation requires as many nodes as control 
points have been used in the definition of the material layout 

Fig. 31   L-shaped beam: struc-
tural weight—uniform density 
per element formulation

Fig. 32   L-shaped beam: struc-
tural weight—relative density 
defined using B-splines
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Fig. 33   L-shaped beam: design 
variables distribution—uniform 
density per element formulation

Fig. 34   L-shaped beam: design 
variables distribution—relative 
density defined using B-splines

Table 9   L-shaped beam: general parameters of the problem

Data input Value FEM Value IGA

n 19,600 20,448(
Δ�

i,0

)
max

0.005 0.005
F
Red

0.80 0.80
N
It,Red

220 260

Table 10   L-shaped beam: evolutionary parameter of the problem

Iterations FEM Iterations IGA p �

0–439 0–519 1 0
440–879 520–1039 2 0.001
880–1319 1040–1559 3 0.002
1320–1759 1560–2079 4 0.003
1760–2200 2080–2600 5 0.005
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(nx + 2)(ny + 2) . On the contrary, the FEM-based formula-
tion uses eight-node quadrilateral elements and the number 
of nodes required is equal to 3nxny + 2nx + 2ny + 1 . This 
means that the difference in the number of nodes between 
both formulations is equal to 2nxny − 3 . This difference is 
extremely relevant, since in high spatial definition prob-
lems the IGA-based formulation only requires one-third 
of the nodes required by the FEM-based formulation. This 
supposes an important improvement in the computational 
requirements used to solve the structural analysis. This cir-
cumstance can be observed in Tables 4 and 8 where the 
percentage of CPU time required by the structural analy-
sis is considerably higher in the FEM-based formulation. 
Moreover, the bandwidth of the IGA-based matrix is lower 
than the bandwidth of the FEM-based matrix. The most 
common bandwidth in IGA-based matrix is equal to 3n + 6 , 
while this parameter with the FEM-based matrix is equal 
to 5n + 3 , where n in two-dimensional problems is equal to 
the minimum of (nx, ny) . The size of the structural stiffness 
matrix and the size of the bandwidth supposes with IGA-
based formulation a reduction of the CPU time and memory 
space required with respect to the FEM-based formulation. 
This reduction of computational requirements is important 
since the structural analysis became the critical step to solve 
the topology optimization problem in terms of CPU time 
and memory when the FEM-based formulations were used.

7.4 � Sensitivity analysis

The definition of the material distribution is one of the key 
aspects in the computation of the sensitivity analysis, since 
the objective function and the overweight constraint depends 
on the structural weight. This is the other important aspect 
since it means a crucial difference in the computational 
requirements used for both formulations. The sensitivity 

analysis is the critical step of the IGA-based formulation 
in terms of CPU time. In the FEM-based formulation the 
relative density at any point of the domain depends only on 
one design variable. However, the use of quadratic B-splines 
to define the material layout means that the relative density 
at any point depends on nine design variables. This means 
that the sensitivity analysis of each knot span requires nine 
times the time required for solving the sensitivity analysis 
of each element in the FEM-based formulation. This differ-
ence is not as important as the size of the structural stiffness 
matrix since it does not depend directly on the dimensions 
of the problem. But it supposes a relevant complexity in 
the computational requirements used to solve the sensitivity 
analysis. Tables 4 and 8 show that the highest percentage of 
CPU time is required by the sensitivity analysis in the IGA-
based formulation.

7.5 � Spatial definition of the solution

The spatial definition of the solutions obtained for the 
same problem with the FEM-based formulation has been 
considerably improved with the IGA-based formulation. 
The FEM-based formulation can only improve its spatial 
definition using more elements in the domain; however, 
the IGA-based formulation improves its spatial definition, 
not only using more knot spans but also by increasing the 
degree of the B-splines considered in the definition of the 
material layout.

7.6 � Transition from low densities to high densities

The IGA-based formulation avoids the appearance of sharp 
transitions from low densities to high densities due to the 
continuity in the value of the relative density. However, these 
sharp transitions tend to be predominant with the FEM-
based formulation as the value of the penalization coefficient 
of intermediate values of relative density is increased. This 
is possible because of the discontinuity in the value of the 
relative density between adjacent elements. The continuity 
in the value of the relative density in the domain guarantees 
the structural integrity and avoids the appearance of check-
erboard patterns in the solutions obtained. The discontinuity 
between adjacent elements can introduce a punctual contact 
between two parts of the structure derived from the appear-
ance of checkerboard patterns.

7.7 � CPU time

The CPU time required to solve the same problem with both 
formulations is quite similar as it can be seen in Tables 3 and 
7. In all the problems solved in this paper, the CPU required 

Table 11   L-shaped beam: results

Data output Value FEM Value IGA Units

Number of iterations 2200 2600
Final Weight 206.8 211.2 kg
Domain occupied by material 10.29% 10.51%
Total CPU Time 11.84 10.01 h

Table 12   L-shaped beam: distribution of computing time per iteration

Algorithms Time FEM (%) Time IGA (%)

Structural analysis 67.20 23.39
Sensitivity analysis 31.00 71.39
Optimization algorithms 1.60 2.64
Rest of the process 0.20 2.58



	 D. Villalba et al.   84   Page 24 of 26

is slightly lower with the IGA-based formulation, despite of 
having to use more iterations to solve both problems. This 
circumstance is important because an improvement in the 
quality of the results obtained has been achieved without 
increasing the CPU time required to solve the problem with 
the FEM-based formulation.

In short, the IGA-based formulation provides important 
benefits with respect to the FEM-based formulations. A bet-
ter spatial definition of the solutions is attained due to the 
continuity of the relative density in the domain that at the 
same time reduces the mesh dependence of the solutions and 
avoids the appearance of checkerboard patterns. Solutions 
with the same spatial definition requires less design vari-
ables and the CPU time required to solve the same topol-
ogy optimization problem is lower. Moreover, an implicit 
perimeter penalization is introduced with the penalization 
of intermediate values of relative density.

8 � Conclusion

This paper introduces an isogeometric formulation in the 
solution of the topology optimization of two-dimensional 
structures problem with minimum weight and stress con-
straints using the overweight approach. For this purpose, 
quadratic B-splines are used to define the material layout 
and to solve the structural analysis.

This method provides solutions with a continuous value 
of the relative density in all the domain. Moreover, the use of 
B-splines in the definition of the problem provides solutions 
with more spatial definition than the majority of the formu-
lations used until now. This is important since the attain-
ment of solutions with the same spatial definition requires 
the use of less design variables, what means a reduction of 
the computational requirements. On the other hand, the use 
of B-splines uses the classical optimization algorithms to 
attain the optimal solution and avoids the solution of com-
plex differential equations required by the Level Set or the 
Phase Field methods. However, the solutions attained with 
B-splines presents a certain mesh dependence.

The use of B-splines and an Overweight Constraint means 
that the sensitivity analysis is the critical step of the algo-
rithm developed in this paper in terms of CPU time and 
memory. Moreover, the use of B-splines in the definition of 
the material layout provides solutions without checkerboard 
patterns due to its continuous character. The introduction 
of a penalty coefficient over the intermediate values of the 
relative density to obtain full-void solutions also introduces 
a perimeter penalization. On the other hand, the use of the 
same B-splines to define the material layout in the domain 
and to compute the structural analysis has several important 
advantages since the relative density is considered in the 
definition of the structural stiffness matrix.

In conclusion, the use of quadratic B-splines to define 
the material distribution reports important benefits from a 
computational point of view in topology optimization prob-
lems. The CPU time required to obtain solutions with high 
spatial definition is not extremely high since these solutions 
can be obtained using less design variables than the exist-
ing formulations. However, if the number of design vari-
ables is increased the smoothness of the obtained solutions 
is improved. Moreover, the use of a penalty coefficient over 
the intermediate values of the relative density provides solu-
tions whose topology is clearly defined.
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