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Abstract
This study investigates a design-for-control (DfC) problem formulation for the joint minimization of pressure-induced leak-
age, maximization of resilience, and minimization of cost in water distribution networks (WDN). The DfC problem, which 
consists in simultaneously installing new valves and/or pipes and optimizing valve control settings, results in a challenging 
optimization problem belonging to the class of non-convex multi-objective mixed-integer non-linear programs (MOMINLP). 
Due to their complex mathematical structure, multi-objective WDN design-for-control problems have previously been solved 
using general-purpose evolutionary algorithms or local deterministic methods, which do not provide guarantees on the quality 
of the returned solutions. While branch-and-bound (BB) frameworks have been proposed to approximate the Pareto fronts 
of MOMINLPs with global bounds, they rely on the availability of attainable solutions which, for WDN design-for-control 
problems, can be hard to identify. Moreover, in the absence of general-purpose solvers, the performance of multi-objective 
BB implementations depends, for a given application, on the choice of adequate branching and lower bounding strategies. In 
this study, we investigate a multi-objective BB algorithm based on tailored branching, lower bounding and additional upper 
bounding strategies to efficiently approximate the Pareto front of WDN design-for-control problems with bounds of �-non-
dominance. The proposed algorithm is applied to the optimal DfC of two case study networks and is shown to outperform 
alternative solution methods.

Keywords Multi-objective optimization · Global optimization · Water distribution networks · Design-for-control

1 Introduction

Aging water distribution networks (WDN) are associated 
with increasing levels of losses through background leakage 
and frequent interruptions to customer supply. As a result, 
reducing pressure-induced pipe stress and leakage while 
improving network resilience, i.e., the ability of a WDN to 
maintain continuous customer supply, represents a critical 
challenge for water utilities.

This study investigates the design-for-control (DfC) prob-
lem which consists in simultaneously installing candidate 
valves (CNV) and pipes (CNP) in existing WDNs, and opti-
mizing the controls of new and existing pressure control 
valves for the joint minimization of leakage and maximi-
zation of resilience at minimum cost. We adopt a steady-
state hydraulic model, where flows and head differences 
across links and pressure heads at nodes are represented by 
continuous variables, subject to the conservation of mass 
and energy. The selection of CNVs and CNPs, on the other 
hand, is represented by binary variables, resulting in a non-
convex multi-objective mixed-integer non-linear program 
(MOMINLP).

The solution of the multi-objective DfC problem requires 
identifying the non-dominated set of trade-offs for which 
one objective cannot be improved without worsening 
another. However, obtaining a complete description of the 
non-dominated set (or Pareto front) of MOMINLPs, which 
may be composed of disconnected segments and isolated 
points (Das 2000), is impractical. As a result, while global 
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solution methods have been investigated for the single-objec-
tive design, control, and DfC of WDNs (Sherali et al. 1999; 
Gleixner et al. 2012; Pecci et al. 2018), multi-objective prob-
lems have mainly been solved using general-purpose evolu-
tionary algorithms (Maier et al. 2014) or local deterministic 
methods (Pecci et al. 2017), which do not provide guarantees 
on the quality of the returned solutions.

On the other hand, both scalarization (Fernández and 
Tóth 2007; Ehrgott and Gandibleux 2007) and multi-objec-
tive branch-and-bound (De Santis et al. 2020; Niebling and 
Eichfelder 2019; Eichfelder et al. 2021) approaches have 
been investigated to extend (single-objective) guarantees of 
global optimality to convex multi-objective mixed-integer 
problems or non-convex multi-objective continuous prob-
lems. These methods return a set of feasible solutions and a 
guarantee of their non-dominance in the form of an enclo-
sure of the Pareto front.

In Ulusoy et al. (2021), the authors first approximated 
the Pareto front of a bi-objective WDN design-for-control 
problem with global bounds using the method of �-con-
straints. More recently, Eichfelder et al. (2022) proposed a 
general branch-and-bound (BB) framework for non-convex 
MOMINLPs, the performance of which depends, in practice, 
on the choice of adequate branching and lower bounding 
strategies by the user. The framework also relies on the avail-
ability of attainable solutions which, for WDN design-for-
control problems, can be hard to identify. In this study, we 
investigate the implementation of a multi-objective BB algo-
rithm with tailored spatial branching, lower bounding and 
additional upper bounding strategies to efficiently approxi-
mate the Pareto front of WDN design-for-control problems 
with global bounds of �-non-dominance.

The structure of the paper is as follows. In Sect. 2, we 
describe the formulation of the considered WDN design-for-
control problem. Section 3 then presents a multi-objective 
branch-and-bound (BB) algorithm based on tailored branch-
ing, lower bounding and upper bounding strategies. The 
proposed approach is applied to the DfC of two case study 
networks in Sect. 4, extending previous studies to investigate 
the trade-off between operational objectives and design cost. 
The performance of the proposed algorithm is also com-
pared to the Non-Dominated Sorting Genetic Algorithm 
(NSGA-II) metaheuristic (Deb et al. 2002) and the scalari-
zation approach presented in Ulusoy et al. (2021), and the 
conclusions of our work are summarized in Sect. 5.

2  Problem formulation

We consider a steady-state hydraulic model of a WDN, repre-
sented by a directed graph G with nn + n0 nodes (including nn 
demand nodes or junctions and n0 water sources) and np links 
(including nV existing pressure control valves, nCNV candidate 

pressure control valves, and nCNP candidate pipes for instal-
lation). We denote by E the set of network links, and by EV , 
ECNV, and ECNP ⊂ E the index subsets corresponding to exist-
ing control valves, CNVs and CNPs, respectively. Moreover, 
we consider that the physical characteristics (length, diameter, 
material) and locations of CNVs and CNPs are defined based 
on preliminary analyses (Fig. 1, for instance, illustrates the 
CNV and CNP locations considered for the optimal expansion 
of pescara in Sect. 4.1).

We consider the problem which consists in determining the 
discrete design variables z ∈ {0, 1}(nCNV+nCNP) representing the 
installation of CNVs and CNPs, and the continuous control 
variables �k

j
 representing additional head losses across valves 

j ∈ EV ∪ ECNV at time steps k = 1,… , nt ( nt represents the 
number of considered loading conditions). Hydraulic condi-
tions at time step k are represented by the continuous state 
variables hk ∈ Rnn (hydraulic heads) and qk ∈ R

np (flows) 
which, given the vectors of known water demands and source 
heads dk ∈ Rnn and hk

0
∈ Rn0 , are uniquely determined by the 

decision variables z and �k (see Sect. 2.1). The objective is to 
find z and �k , for all k = 1,… , nt , corresponding to hydrauli-
cally feasible conditions hk and qk jointly minimizing pressure-
induced leakage, maximizing network resilience, and minimiz-
ing design cost (see Sect. 2.2).

2.1  Constraints

At time step k, the operation of a WDN is subject to the energy 
and mass conservation constraints: 

(1a)A12h
k + A10h

k
0
+ �

k + �
k = 0,

Fig. 1  Example of WDN design-for-control problem: expansion of 
the modified pescara network (Ulusoy et al. 2021)
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where A12 ∈ R
np×nn and A10 ∈ R

np×n0 are the link-node inci-
dence matrices for demand nodes and water sources, respec-
tively, �(qk) = [�1(q

k
1
)…�np

(qk
np
)]T represents the vector of 

fr iction head losses associated with link f lows 
qk = [qk

1
… qk

np
]T and the vector of auxiliary variables �k is 

introduced to isolate the non-convex potential-flow coupling 
constraints.

Friction head losses are commonly described by the 
Darcy–Weisbach (D-W) or Hazen–Williams (H-W) equa-
tions. However, a common approach in the literature (Eck 
and Mevissen 2015; Pecci et al. 2018; Zamzam et al. 2019) 
consists in using the quadratic approximation 
�j(q

k
j
) = qk

j
(aj ∣ q

k
j
∣ +bj) , where positive coefficients 

(aj, bj) ∈ (R+)
2 depend on the physical characteristics and 

range of operational flows considered for link j. Appendix B 
shows that, for the considered problem instances, the use of 
a quadratic approximations of the friction head loss models 
does not affect the feasibility of the computed design-for-
control solutions.

Moreover, the status of CNVs and CNPs j ∈ ECNV ∪ ECNP 
is represented by the binary design variables zlj ∈ {0, 1} , 
lj ∈ {1… nCNV + nCNP} . For j ∈ ECNV , either zlj = 1 and link 
j is selected for valve installation and modeled as a pressure 
control valve, or zlj = 0 and link j is modeled as an open 
pipe. For j ∈ ECNP , on the other hand, the candidate location 
j is modeled as an open pipe if zlj = 1 , and a closed pipe if 
zlj = 0 . This is represented by the big-M constraints (13) on 
variables qk , �k , �k and z defined in Appendix A.

Finally, infeasible designs are modeled by combinatorial 
constraints on the binary variables z:

where A and b are a matrix and vector of fixed entries. We 
define the overall vector of variables x = (xC, xI) , with sub-
scripts I  and C referring, respectively, to the vectors of inte-
ger (design) and continuous (control and state) variables, 
z and (q, h, �, �) , where q = (qk)k=1,…,nt

 , h = (hk)k=1,…,nt
 , 

� = (�k)k=1,…,nt
 and � = (�k)k=1,…,nt

.

2.2  Objectives

We investigate the joint minimization of pressure-induced 
background leakage, maximization of resilience, and mini-
mization of design cost.

(1b)AT
12
qk − dk = 0,

(1c)�
k = �(qk),

(2)Az ≤ b

Pressure-induced background leakage
In this study, we use the average zone pressure (AZP) as a 

surrogate measure of pressure-induced background leakage:

where w ∈ R
nn
+  is the vector of AZP weights (Wright et al. 

2015) and W =
∑nn

i=1
wi.

Resilience

Direct measures of WDN resilience, which rely on the simu-
lation of a wide range of failure events, suffer from combina-
torial limitations. As a result, surrogate measures depending 
on the performance of the network under normal operating 
conditions, such as the resilience index Ir (Todini 2000):

(where hmin ∈ Rn
n represents the vector of minimum hydrau-

lic heads) are generally preferred for the formulation of 
WDN optimization problems. Since both the numerator and 
denominator in (4) are affine functions of h and q, respec-
tively, Ir is, in general, a linear fractional function of x.

Cost

Finally, the cost of a solution is defined as a linear function 
of the integer design variables xI = z:

where, for lj = 1,… , nCNV + nCNP , clj represents the cost of 
installing a pressure control valve on link j, if j ∈ ECNV , or 
a pipe, if j ∈ ECNP.

Let X0 ∈ ℝnC+nI be the polyhedral set defined by the lin-
ear constraints (1a), (1b), (2), upper and lower bounds (12), 
and the big-M constraints (13)—see Appendix A. For any 
polyhedral set X ∈ ℝnC+nI , we define the corresponding non-
convex set Xg,I such that Xg,I = Xg ∩ XI , where

and g(x) ≤ 0 represents non-convex potential-flow coupling 
constraints (1c). The design-for-control problem with the 
objectives of jointly minimizing cost and AZP and maxi-
mizing Ir can then be written in compact form, for X = X0 , 
as the non-convex multi-objective mixed-integer non-linear 
program  MOMINLP(X):

(3)AZP =
1

ntW

nt∑

k=1

wT (hk − �),

(4)Ir =

∑nt
k=1

((dk)Thk − (dk)Thmin)
∑nt

k=1

�
(−A10h

k
0
)Tqk − (dk)Thmin

� ,

(5)cost = cTz,

(6)
Xg = {x ∈ X ∣ g(x) ≤ 0},

XI = {x ∈ X ∣ xI ∈ {0, 1}nCNV+nCNP},
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where fj , j = 1,… ,m , represent the AZP (3), −Ir (4), and 
cost (5) objective functions.

We also introduce the sets Xĝ,I = Xĝ ∩ XI , where Xĝ is a 
polyhedral relaxation of Xg (see Appendix  C), and 
Xg,x̂I = Xg ∩ Xx̂I , where, for x̂ ∈ XI , Xx̂I = {x ∈ X ∣ xI = x̂I} . 
Finally, let MINLPfj (X) be the single-objective problem 
minimizing fj over Xg,I  and, for any non-linear objective 
function fj , j = 1,… ,m , let f̂ X

j
 be a linear relaxation of fj 

such that f̂ X
j
(x) ≤ fj(x) for all x ∈ X (see Appendix C).

3  Solution of MOMINLP(X)

Solving MOMINLP(X) requires identifying the set of solu-
tions which represent the best trade-offs between the objec-
tive functions fj , j = 1,… ,m , also called non-dominated 
set. As identifying the complete non-dominated set of 
non-convex MOMINLPs is generally intractable, it can be 
approximated with good feasible solutions, called potentially 
non-dominated solutions, and global bounds on their quality, 
or non-dominance.

3.1  Preliminary definitions

In order to solve MOMINLP(X) , we are interested in iden-
tifying the set of non-dominated solutions representing the 
best trade-offs between the objectives fj , j = 1,… ,m.

Definition 1 The image f (x∗) of a feasible solution x∗ 
of MOMINLP(X) is non-dominated if there is no x ∈ Xg,I 
such that f (x) ≠ f (x∗) and fj(x) ≤ fj(x

∗) for all j = 1,… ,m . 
The set of non-dominated solutions is called non-dominated 
set or Pareto front of MOMINLP(X).

For two vectors y1 and y2 in Rm , we say that y1 domi-
nates y2 if y1 ≤ y2 , where the inequality sign is defined 
component-wise. Let YN denote the non-dominated set 
of MOMINLP(X) , as given by Definition 1. In general, 
identifying the exact non-dominated set of a multi-objective 
problem is intractable. Instead, YN can be approximated with 
a subset of potentially non-dominated solutions.

Definition 2 (De Santis et al. (2020)) A finite subset F  of 
f (Xg,I) is a potentially non-dominated set of MOMINLP(X) 
if no element of F  dominates any other element of F .

A set where no element dominates any other element is 
called stable, and, by Defintion 2, any finite, stable subset of 

minimize
x

f (x)

subject to x ∈ Xg,I,
(MOMINLP(X))

f (Xg,I) is a potentially non-dominated set of MOMINLP(X) . 
To provide a good approximation of YN , we are interested in 
computing a potentially non-dominated set with guarantees 
of �-non-dominance, where 𝜖 > 0 is a user-defined tolerance:

Definition 3 (Eichfelder et al. 2022) The point f (x∗) is �
-non-dominated for  MOMINLP(X) , for x∗ ∈ Xg,I  and 
𝜖 > 0 , if there is no x ∈ Xg,I  such that f (x) ≠ f (x∗) and 
f (x) ≤ f (x∗) − �e , where e = 1m denotes the m-by-1 vector 
of all ones.

Guarantees of �-non-dominance are derived by extending 
the global optimization notion of optimality bounds to bound-
ing sets of YN.

Definition 4 Let LB,UB ∈ Rm be two non-empty, compact 
sets. We say LB and UB are lower and upper bounding sets 
of the non-dominated set YN of MOMINLP(X) , respectively, 
if

Moreover, the width wUB(LB) of the enclosure defined by LB 
with respect to UB is given by

We note that, given a potentially non-dominated set F  and 
a sufficiently large box Z = [z, z̄] , such that z < f (x) < z̄ for all 
x ∈ Xg,I (where the inequality is defined component-wise), 
the uniquely determined local upper bounding set lub(F) ⊂ Z 
associated with F  (Eichfelder et al. 2021) represents an upper 
bounding set for YN.

For 𝜖 > 0 , MOMINLP(X) can then be solved to �-non-
dominance by computing a potentially non-dominated set F  
as well as a lower bounding set LB for the true Pareto front 
YN such that

By definition of LB and lub(F) , condition  (7) guaran-
tees that there exists no solution f (x) ∈ YN  such that 
f (x) ≤ f (x∗) − �e , ∀f (x∗) ∈ F .

3.2  Multi‑objective BB algorithm

In this section, we present a multi-objective BB algo-
rithm to approximate the Pareto front of MOMINLP(X) 
with global guarantees of �-non-dominance. In particular, 
we propose an implementation of the general framework 
proposed by Eichfelder et al. (2022), where branching 
and lower bounding rules are defined based on successful 
strategies for the single-objective design-for-control of 
WDNs. Moreover, we describe an explicit procedure to 

YN ⊂ (LB +R
m
+
) ∩ (UB −R

m
+
).

max
y,t

{t ∈ R+ ∣ y, y + te ∈ (LB +R
m
+
) ∩ (UB −R

m
+
)}.

(7)wlub(F)(LB) < 𝜖.
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update the potentially non-dominated and upper bound-
ing sets F  and lub(F) as, due to the complex structure 
of the feasible set of MOMINLP(X) , attainable solutions 
f(x), x ∈ Xg,I  , are generally not available otherwise.
Algorithm 1  Multi-objective BB algorithm

INPUT: initial set F & list LW (3.2.1), global
non-dominance tolerance , thresholds δLB & δUB

OUTPUT: set of -non-dominated solutions F
1: k ← 0;
2: LB ←

(X,LBX)∈LW

LBX ;

3: while LW = ∅, k < Kmax, wlub(F)(LB) ≥
do

4: k ← k + 1;
5: select node (X,LBX) from LW ; (3.2.2)
6: LW ← LW \ (X,LBX);
7: split X → X1, X2; (3.2.3)
8: for l = 1, 2 do
9: LBXl ← LBX , X̂l ← ∅;

10: tighten Xl; (Pecci et al, 2018, Alg. 1)
11: update LBXl and X̂l; (3.2.4)
12: if p ∈ LBXl + m

+ for any p ∈ lub(F)
then (3.2.5)

13: update F (using X̂l); (3.2.6)
14: LW ← LW ∪ (Xl, LB

Xl);
15: end if
16: end for
17: for (X,LBX) ∈ LW do
18: if p /∈ LBX + m

+ for all p ∈ lub(F)
then (3.2.5)

19: LW ← LW \ (X,LBX);
20: end if
21: end for
22: LB ←

(X,LBX)∈LW

LBX ;

23: end while

The first step of the proposed algorithm consists in ini-
tializing the potentially non-dominated set F  and a list 
of active nodes LW  such that, for (X, LBX) ∈ LW  , LBX is 
a lower bounding set for the Pareto front of the subprob-
lem MOMINLP(X) defined on X (Sect. 3.2.1). Then, while

• the list of active nodes LW is not empty,
• the time limit and/or maximum number of iterations 

have not been exceeded,
• and the width of any active node in LW with respect to 

the incumbent set F  is greater than the user-defined 
tolerance �,

the active node (X, LBX) associated with the largest 
width wlub(F)(LBX) is removed from LW  (Sect.  3.2.2) 
and the polyhedral set X is split into subsets X1 and X2 
(Sect. 3.2.3). The lower bounding sets for the Pareto fronts 

of the subproblems corresponding to the children nodes 
(Xl, LB

Xl ) , l = 1, 2 , are updated with respect to the incum-
bent set F  (Sect. 3.2.4). If LBXl is not dominated by F  
(Sect. 3.2.5), integer feasible solutions computed during 
the lower bounding step are used to update the potentially 
non-dominated set (Sect. 3.2.6) and (Xl, LB

Xl ) is stored in 
the list of active nodes, LW . After verification of any of the 
termination conditions above, a last check removes from 
LW all active nodes (X, LBX) dominated by the incumbent 
potentially non-dominated set F  . The proposed framework 
is summarized by Algorithm 1, which includes references 
to the individual steps described in Sects. 3.2.1 to 3.2.6.

3.2.1  Initialization

To initialize the potentially non-dominated and lower bound-
ing sets F  and LBX0 , we apply a single-objective spatial 
branch-and-bound algorithm (Pecci et al. 2018) to compute 
feasible solutions with global optimality bounds for the 
problems MINLPfj (X0) , minimizing the AZP, −Ir , and cost 
objectives fj . If MINLPfj (X0) is infeasible for any 
j = 1,… ,m , then MOMINLP(X0) is infeasible and we have 
that F = � and LW = � . Otherwise, the solution of the sin-
gle-objective problems returns the incumbent solutions 
x∗
fj
∈ X

g,I

0
 , as well as lower bounds f

j
= fj(x̂

∗
fj
) over the feasi-

ble set Xg,I

0
 such that x̂∗

fj
∈ X

ĝ,I

0
 and, for all j = 1,… ,m and 

x ∈ X
g,I

0
 , f

j
≤ fj(x).

Solving the single-objective problems MINLP−fj (X0) 
maximizing the AZP, −Ir , and cost objectives, we can also 
derive upper bounds f̄j on fj such that, for all x ∈ X

g,I

0
 , 

fj(x) ≤ f̄j . In the rest of this study, we consider the multi-
objective WDN design-for-control problem MOMINLP(X) 
defined for the normalized AZP, −Ir , and cost objective 
functions fj:

where, for j = 1,… ,m , �j is an arbitrarily small positive 
value guaranteeing that fj(X

g,I

0
) ⊆ int([0, 1]) . Note that the 

existence of a box Z ⊂ Rm such that f (Xg,I

0
) ⊆ int(Z) is 

required to construct the local upper bounding sets lub(F) 
associated with a potentially non-dominated set F  (Eich-
felder et al. 2021). The normalized objective values of the 
solutions x∗

fj
 , j = 1,… ,m , are used to initialize the poten-

tially non-dominated set F  while a lower bounding set for 
the Pareto front is given by LBX0 = �

(
Rm

+

)
 , where �

(
Rm

+

)
 

represents the boundary of Rm
+
 . The list of active nodes LW 

of the multi-objective BB algorithm can then be initialized 
with (X0, LB

X0 ) . (This approach is adopted for the solution 

(8)fj(x)∶=

fj(x) − (f
j
− 𝛿j)

(f̄j + 𝛿j) − (f
j
− 𝛿j)

,
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of the bi-objective problem instances presented in 
Sects. 4.1.1 and 4.2.1.)

In addition, any available information about the nature 
of problem MOMINLP(X) MOMINLP(X) or the structure 
of its Pareto front can be used to initialize F  and/or LW 
and improve the convergence of Algorithm 1 to a set of �
-non-dominated solutions. For example, in each instance of 
the design-for-control problems considered in Sects. 4.1.2 
and 4.2.2, there is a single integer solution with a mini-
mum cost objective of 0$ , i.e., xI = �nI . Since big-M con-
straints (13) are tight for a fixed design xI ∈ XI

0
 , initializing 

the working list LW as

where X∗
0
= {x ∈ X0 ∣ (�

nI)TxI ≥ 1} , results in tighter 
non-dominance bounds on the non-dominated set 
of MOMINLP(X).

3.2.2  Node selection rule

Given a list of active nodes LW and set of potentially non-
dominated solutions F  , we define the width wlub(F)(LBX) of a 
node (X, LBX) ∈ LW with respect to the local upper bounding 
set lub(F) as

At any stage of the BB algorithm, the non-dominance gap 
with respect to F  associated with the current working list 
LW is then given by

As a result, while gap ≥ � , the BB algorithm moves on to 
selecting and processing the active node (X, LBX) ∈ LW with 
the largest width wlub(F)(LBX).

3.2.3  Branching and domain reduction

To ensure that the linear relaxations of MOMINLP(Xl) result 
in tight lower bounding sets LBXl for the children nodes 
(Xl, LB

Xl ) , l = 1, 2 , we adapt the successful spatial branch-
ing rule implemented by Pecci et al. (2018) to the multi-
objective design-for-control of WDNs.

Given an active node (X, LBX) ∈ LW , the correspond-
ing lower bounding set LBX is, by construction, an inter-
section of supporting hyperplanes of the Pareto front 
of MOMINLP(X) (see Sect.  3.2.4). As a result, for any 
local upper bound p ∈ lub(F) , there exists a lower bound-
ing hyperplane H𝜆p,f̂ (x̂p) defined by �p ∈ Rm and a vector 
x̂p = (ẑp, q̂p, ĥp, �̂�p, �̂�p) ∈ X

ĝ

0
 such that

(9)LW ∶= {(X∗
0
, LBX0 ), (X�nI

0
, LBX0 )},

(10)max
(p,t)∈lub(F)×R+

{t ∣ p − te ∈ (LBX +R
m
+
)}.

(11)gap = max
(X,LBX )∈LW

wlub(F)(LBX).

In particular, the vector x̂p defining the distance wp(LBX) 
between p and the lower bounding set LBX , which belongs 
to the set Xĝ

0
 , is not required to verify the non-convex poten-

tial-flow coupling constraints (1c). To efficiently tighten the 
relaxations of sets Xg

l
 , l = 1, 2 , the polyhedral set X is split 

along the flow variable q̂p∗ whose value in x̂p∗ is associated 
with the largest violation of (1c), where p∗ ∈ lub(F) is given 
by

To further tighten the relaxations of the resulting children 
sets Xg

l
 , l = 1, 2 , we also implement the optimization-

based bound tightening procedure described in (Pecci et al. 
2018,Algorithm 1).

3.2.4  Lower bounding

After branching on the polyhedral set X, the lower bound-
ing sets of the children nodes (Xl, LB

Xl ) are initialized to 
LBX . The next step then consists in tightening LBXl , l = 1, 2 . 
As the performance of the BB algorithm depends on the 
choice of an adequate lower bounding procedure, we pro-
pose to extend successful strategies implemented for the 
single-objective design-for-control of WDNs. Moreover, the 
adopted lower bounding procedure does not rely on ideal 
point estimates but directly makes use of the cuts proposed 
for convex MOMINLPs to speed up the search.

For a given node (X, LBX) , De Santis et al. (2020) propose 
to tighten the lower bounding set LBX with respect to local 
upper bounds p ∈ lubLB

X

(F) = lub(F) ∩ (LBX +Rm
+
) . How-

ever, for a given tolerance � , only local upper bounds p such 
that w{p}(LBX) ≥ � prevent the BB algorithm from terminat-
ing with guarantees of �-non-dominance on the incumbent 
potentially non-dominated set F  . Moreover, every lower 
bounding set update requires solving a relaxed LP and MILP 
(see below). To prevent redundant lower bound updates 
when the set lub(F) grows too large, we define the subset 
lubLB

X

(F) of local upper bounds with respect to which the 
lower bounding set LBX is to be updated such that

∀p ∈ lubLB
X

(F) , where �LB ∈ [0, 1] is a user-defined thresh-
old representing the trade-off between the size of the BB 
search tree and the tightness of lower bounding set updates 
at every iteration. The best value for �LB depends, in part, on 
the geometry of the Pareto front: in the case of a “flat" front, 

(12)𝜆
T
p
( p − wp(LBX) e ) = 𝜆

T
p
f̂ (x̂p).

(13)wp∗ (LBX) = wlub(F)(LBX).

(14)

w{p}(LBX) ≥ � and

w{p}(LBX) ≥ w{p�}(LBX),

∀p� ∈ (lub(F) ⧵ {p}) ∶ ‖p − p�‖2 ≤ �LB,
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for instance, many redundant lower bounding set updates can 
be avoided by choosing a large value of �LB . In the numerical 
experiments presented in Sect. 4, we use a value of �LB = 0.3

.
The lower bounding set LBX is then first updated by solv-

ing the continuous problems:

parametrized by p ∈ lubLB
X

(F) . Let (tp, x̂p) be a (glob-
ally) optimal solution of LPp(X) and �p the correspond-
ing Lagrange multiplier associated with the constraint 
f̂ X(x) ≤ p + te . The hyperplane H𝜆p,f̂

X (x̂p) defined by

is a supporting hyperplane of f (Xg,I) (Löhne et al. 2014; 
Niebling and Eichfelder 2019). If tp ≥ 0 or if x̂p is integer 
feasible, H𝜆p,f̂ (x̂p) can be added to LBX to improve the lower 
bounding set:

If tp < 0 and the solution x̂p of LPp(X) is not integer feasible, 
however, tighter lower bounds can be derived by solving the 
mixed-integer linear program MILP

�p
(X) parameterized by 

�p ∈ Rm:

If MILP
�p
(X) is feasible, the lower bounding set LBX can be 

improved by including the hyperplane H𝜆p,f̂
X (x̂p) , where 

x̂p = argmin MILP
�p
(X) , and integer feasible solutions 

x̂p ∈ Xĝ,I are stored in ̂X  . On the other hand, if either of the 
relaxed problems LPp(X) or MILP

�p
(X) is infeasible, node 

(X, LBX) can be discarded. The lower bounding step is sum-
marized by Algorithm 2 in Appendix D.

Note that, in order to compute a supporting hyperplane of 
the non-dominated set of MOMINLP(X) , lower bounding 
problems LPp(X) and MILP

�p
(X)are defined over relaxations 

of the feasible set Xg,I which do not require the verification of 
the potential-flow coupling constraints (1c). In particular, com-
pared to the approach presented in De Santis et al. (2020), an 
explicit upper bounding procedure is required to compute fea-
sible solutions of the WDN design-for-control problem and 
update the potentially non-dominated set F—see Sect. 3.2.6.

minimize
t,x

t

subject to f̂ X(x) ≤ p + te,
t ∈ R, x ∈ Xĝ,

(LPp(X))

(15)H𝜆p,f̂
X (x̂p) = {y ∈ R

m ∣ 𝜆T
p
y = 𝜆

T
p
f̂ X(x̂p)}

(16)LBX∶=𝛿
(
(LBX +R

m
+
) ∩ (H𝜆p,f̂

X (x̂p) +R
m
+
)
)
.

minimize
x

𝜆
T
p
f̂ X(x)

subject to x ∈ Xĝ,I,
(MILP

𝜆p
(X))

3.2.5  Discarding test

Consider a set of potentially non-dominated solutions F  and 
an active node (X, LBX) ∈ LW . Node (X, LBX) can be dis-
carded if

However, condition (17) is hard to verify for MOMINLP(X) , 
as Xg,I  is defined by mixed-integer and non-convex con-
straints. Instead, it is sufficient to check whether (Eichfelder 
et al. 2021)

Condition (18), which consists in verifying whether the lin-
ear inequalities 𝜆Tp < 𝜆

T f̂ X(x̂) hold for all p ∈ lub(F) and 
H𝜆,f̂ X (x̂) in LBX , provides a more tractable discarding test. 
After branching on (X, LBX) ∈ LW and updating the lower 
bounding sets LBXl , l = 1, 2 , children nodes (Xl, LB

Xl ) for 
which condition (18) is not verified are added to the work-
ing list LW.

3.2.6  Upper bounding

Previous global BB methods rely on the availability of 
attainable solutions to update the potentially non-dominated 
set F  (De Santis et al. 2020; Eichfelder et al. 2021, 2022). 
For non-convex problems with complex feasible sets such 
as MOMINLP(X) , however, identifying an attainable solu-
tion can be hard. We implement a procedure (summarized 
in Appendix D by Algorithm 3) inspired by the leaf node 
solution presented in Cacchiani and D’Ambrosio (2017) to 
explicitly compute feasible solutions x ∈ Xg,I  . Instead of 
approximating the entire Pareto front of a leaf node by solv-
ing a sequence of scalarized problems given by a pre-defined 
distribution of weights, Algorithm 3 focuses on regions of 
the objective space where lower bounds LBX on the poten-
tially non-dominated set F  are loose.

Consider a node (X, LBX) with updated lower bounding 
set LBX and the corresponding set of integer feasible solu-
tions ̂X  . If the lower bounding set LBX is not dominated by 
the incumbent potentially non-dominated set F  and ̂X ≠ ∅ , 
the upper bounding procedure first solves, for each integer 
feasible solution x̂ ∈ ̂X  and objective function fj , 
j = 1,… ,m , the non-convex problem NLPfj,x̂(X) minimizing 
fj , subject to x ∈ Xg,x̂I . In particular, let x∗

fj
 be a (locally) 

optimal solution of NLPfj,x̂(X).
For all local upper bounds p in the restricted set lubx̂I (F) 

defined such that 

(17)YN ∩
(
f (Xg,I) +R

m
+

)
= �.

(18)lub(F) ∩
(
LBX +R

m
+

)
= �.

(19a)fj(x
∗
fj
) ≤ pj, ∀j = 1,… ,m,
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 where �UB ∈ [0, 1] is a user-defined tolerance, the upper 
bounding procedure then solves the non-convex problem:

In particular, condition (19c) aims to prevent redundant 
updates when lub(F) grows too large. Unlike lower bound-
ing set updates, however, an upper bounding set update only 
requires solving a non-linear program to local optimality. As 
a result, we use a value of �UB = 0.1 in the numerical experi-
ments presented in Sect. 4.

Finally, the locally optimal solutions x∗
fj
 , obtained 

for NLPfj,x̂(X) , j = 1,… ,m , and x∗
p
 , obtained for NLPp,x̂(X) , 

p ∈ lubx̂I (F) , are iteratively compared to the incumbent 
potentially non-dominated set F  . If they are dominated by 
any point in F  , they are disregarded. Otherwise, they are 
added to F  (and all dominated points in F  are removed). 
The local upper bounding set lub(F) is updated accordingly, 
following the procedure described in Klamroth et al. (2015).

4  Application and results

The formulation proposed in Sect.  2 accommodates a 
wide range of design-for-control problems. In this sec-
tion, we apply the proposed BB algorithm to the expansion 
of pescara (4.1) and the redesign of Net25 (4.2). We 
first consider the bi-objective problem for the minimiza-
tion of AZP and maximization of Ir , before investigating 
the joint minimization of cost. The BB algorithm is imple-
mented in Matlab R2022a using a 2.60-GHz  Intel®  Core™ 
i7-10750 H CPU, with 16 GB of RAM and a 64-bit operat-
ing system. Continuous problems are solved using IPOPT 
(v3.12.9) (Wachter and Biegler 2006), called from the Mat-
lab interface (Currie et al. 2012), and mixed-integer prob-
lems are solved using GUROBI.

In the absence of general-purpose solvers, we com-
pare the BB algorithm against the scalarization approach 
proposed in Ulusoy et al. (2021) which, for an appropri-
ate choice of settings (see Appendix E), can be shown to 
approximate the Pareto front of MOMINLP(X) with guar-
antees of �-non-dominance. The proposed algorithm is also 
compared against NSGA-II, which is commonly applied 
to WDN design and control problems (Maier et al. 2014). 

(19b)w{p}(LB) ≥ � and

(19c)
w{p}(LB) > w{p�}(LB),

∀p� ∈ (lub(F) ⧵ {p}) ∶ ‖p − p�‖2 ≤ 𝛿UB,

minimize
t,x

t

subject to f (x) ≤ p + te,

t ∈ R, x ∈ Xg,x̂I .

(NLPp,x̂(X))

In this work, we use the Matlab function gamultiobj, 
called with a population size of 200 and for a maximum time 
of 18, 000s (5 hours). Moreover, the value of ParetoF-
raction is modified for every problem instance to ensure 
gamultiobj returns the same number of Pareto solutions 
as the BB algorithm.

All methods are initialized using anchor points computed 
with a tailored single-objective spatial branch-and-bound 
algorithm (Pecci et al. 2018). (The remaining individuals of 
the GA population are generated by the default gacrea-
tionuniform.) Finally, fitness and non-linear constraint 
evaluations in gamultiobj are performed using a null 
space solver (Abraham and Stoianov 2016) and a quadratic 
approximation of the H-W friction head loss equation. This 
ensures the solutions returned by NSGA-II and the proposed 
BB algorithm are comparable and eliminates the overhead 
associated with calls to the simulation tool EPANET (Ross-
man 2000)—see Jenks et al. (2023).

4.1  Expansion of pescara

The pescara network represents the reduced WDN of an 
Italian medium-size city (Bragalli et al. 2008). The origi-
nal network model, defined for a single loading condition, 
counts 71 junctions, 3 reservoirs, and 99 pipes. Friction 
head losses are modeled according to the H-W equation. In 
this section, we investigate the network expansion problem 
which consists in simultaneously selecting valves and pipes 
for installation at candidate locations represented in Fig. 1, 
and optimizing the control settings of newly installed valves. 
In particular, 3 CNPs, with diameters 100, 150, and 200mm 
are considered for installation at each candidate link loca-
tion and combinatorial constraints (2) limit the selection of 
CNPs to 1 per location. (The reader is referred to Ulusoy 
et al. (2021) or Appendix G for the physical characteristics, 
locations, and costs of individual CNVs and CNPs.)

4.1.1  Bi‑objective problem

We first consider the network expansion problem for the 
joint minimization of AZP and maximization of Ir . We 
approximate the Pareto front of the bi-objective problem 
with global bounds of �-non-dominance using the algorithm 
presented in Sect. 3.2.3. For the sake of brevity, we refer 
to Ulusoy et al. (2021) and Appendix F for a detailed dis-
cussion of the trade-off between AZP and Ir , represented 
in Fig. 2.

The results in Table 1 show that, for the bi-objective 
expansion of pescara, the BB algorithm is 4–5 times 
faster than the scalarization method presented in Ulusoy 
et al. (2021). This is explained by the fact that the scalariza-
tion method requires to independently solve to global opti-
mality a sequence of n

�
= ⌈ 1

�

⌉ problems (see Appendix E) 
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which, despite sharing very similar structures, cannot make 
use of any previously derived lower bounding information. 
We note that, given the absence of steep segments or discon-
nected branches in the Pareto front represented in Fig. 2, 
more advanced approaches relying on adaptive parameter 
distributions  (Kim and De Weck 2005) or grid genera-
tion techniques (Burachik et al. 2017, 2019) are unlikely 
to improve the performance of the scalarization method on 
this problem instance.

Next, we apply gamultiobj to the bi-objective net-
work expansion problem. Figure 2 shows that the Pareto 
solutions returned by NSGA-II are similar to the set of �
-non-dominated solutions computed using the BB algo-
rithm for � = 5 ⋅ 10−2 . While this is explained, in part, by 
the anchor points provided to initialize the GA popula-
tion, we also expect the performance of the metaheuris-
tic to benefit from specific properties of the problem 
instance, such as the small number of variables repre-
senting continuous control settings.

Finally, a posteriori analysis of the potentially non-
dominated solutions in Fig.  2 shows that, at nearly 
173, 000$ , the network configuration minimizing AZP 
is the most expensive solution of the Pareto front 

approximation, while the cheapest stands at just under 
99, 000$ . In comparison, the cost of installation of a CNV 
in pescara ranges between 17, 500$ and 23, 750$ . In 
the next section, we investigate the trade-off between the 
operational objectives and the cost of design-for-control 
solutions.

4.1.2  Tri‑objective problem

Next, we apply the proposed BB algorithm to solve the 
network expansion problem for the joint optimization of 
AZP and Ir and the minimization of cost. The marked knee 
in the resulting �-non-dominated Pareto front approxima-
tion ( � = 10−1 ), represented in Fig. 3, shows that satisfac-
tory trade-offs between the performance objectives can be 
achieved at much lower design cost than suggested by the 
results in 4.1.1. Consider, for instance, the solution asso-
ciated with an AZP of 24.0m, a resilience index value of 
38% , and a design cost of over 91, 000$ . Its performance is 
comparable to another which, at just under 14, 000$ , allows 
to achieve AZP and resilience index values of 24.0m and 
37% , respectively.

Next, the BB algorithm is compared against gamulti-
obj. (Note that, in the tri-objective case, we cannot evalu-
ate the performance of the scalarization method proposed 
in Ulusoy et al. (2021), since its generalization to problems 
with more than 2 objectives is not straightforward.) The 
lower bounding set LB returned by the proposed BB algo-
rithm results in a 28.9% non-dominance gap with respect to 
the Pareto points computed by NSGA-II, as the metaheuris-
tic algorithm fails to explore the region of the objective 
space corresponding to low AZP values and design costs—
see Fig. 8a and c in Appendix F.

16 18 20 22 24 26
-0.45

-0.4

-0.35

-0.3

-0.25

-0.2

Fig. 2  �-non-dominated ( � = 5 ⋅ 10−2 ) Pareto front approxima-
tion obtained with the proposed BB algorithm  1 and Pareto points 
returned by NSGA-II for the bi-objective expansion of pescara 

Table 1  CPU time (in s) required to compute an �-non-dominated 
approximation of the Pareto front of MOMINLP(X) for the joint min-
imization of AZP and maximization of I

r

� pescara Net25

10−1 5 ⋅ 10−2 10−1 5 ⋅ 10−2

Multi-objective BB 153 2,659 127 992
Ulusoy et al. (2021) 832 11,596 165 3,367

Fig. 3  �-non-dominated ( � = 10−1 ) Pareto front approximation 
obtained with the proposed BB algorithm for the tri-objective expan-
sion of pescara (in 1615 s)
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While the parametrization of NSGA-II has not been 
extensively investigated in the WDN optimization literature 
and is not the focus of this study, Wang et al. (2019) suggest 
that population size is the single most important parameter 
when solving WDN design problems. Numerical experi-
ments show that increasing the population size from 200 
(twice the default value for mixed-integer problems in gam-
ultiobj) to 500, however, does not significantly improve 
the spread of solutions returned by NSGA-II. This highlights 
the advantages of computing Pareto front approximations 
with global non-dominance bounds, as the Pareto optimal 
solutions returned by NSGA-II could lead a decision-maker 
to incorrectly believe, for instance, that the AZP in pes-
cara cannot be reduced below 24m for less than 61, 250$ 
(while Fig. 3 shows that AZP values as low as 18m can be 
achieved for less than 55, 000$).

4.2  DMA aggregation in Net25

Network sectorization, which consists in closing off bound-
ary valves (BV) between district metered areas (DMA) to 
facilitate pressure management and leakage monitoring, is 
widespread in England and Wales. However, the practice 
affects the resilience of operational WDNs. In this section, 
we investigate a cost-efficient solution to improve the resil-
ience of sectorized networks, which consists in aggregating 
DMAs by reopening closed BVs (Wright et al. 2015). The 
DMA aggregation problem is illustrated on the modified 
case study network Net25, which counts 3 reservoirs, 17 
nodes, and 26 links, including 15 pipes, 3 existing PCVs, and 
8 closed BVs, represented, in MOMINLP(X) , by CNPs. In 
order to preserve the structure of the network, the aggrega-
tion of DMAs is limited to pairs by constraint (2)—see (Ulu-
soy et al. 2019, Appendix A). Finally, we consider 24 time 
steps representative of a day of operation and friction head 
losses are modeled by the H-W formula.

4.2.1  Bi‑objective problem

First, we consider the DMA pairing problem for the joint 
minimization of AZP and maximization of Ir , for which 
we compute a Pareto front approximation with bounds of �
-non-dominance using the proposed BB algorithm. We refer 
to Ulusoy et al. (2021) and Appendix F for a detailed discus-
sion of the trade-off between AZP and Ir , represented, for 
� = 5 ⋅ 10−2 , in Fig. 4.

We evaluate the performance of the proposed BB algo-
rithm against the scalarization method proposed by Ulusoy 
et al. (2021). Table 1 shows that, while both methods effi-
ciently compute an �-non-dominated set of the bi-objective 
problem for � = 10−1 , the BB algorithm is nearly 4 times 
faster for � = 5 ⋅ 10−2 . Moreover, the lower bounding set 
returned by the proposed BB algorithm for � = 5 ⋅ 10−2 

results in a 8.9% non-dominance gap with respect to the 
Pareto points returned by gamultiobj (see Fig. 4), which 
are all dominated by the computed �-non-dominated set. (No 
improvement is observed after increasing the size of the GA 
population from 200 to 500 individuals.)

The performance of gamultiobj might be affected, 
in part, by the larger number of continuous decision vari-
ables involved in the formulation of the DMA aggregation 
problem, which requires deriving control settings for 3 PRVs 
over 24 different time steps. The size of the resulting search 
space represents a significant challenge for the application 
of evolutionary algorithms such as NSGA-II (Maier et al. 
2014).

4.2.2  Tri‑objective problem

Next, we approximate the Pareto front of the DMA aggrega-
tion problem for the joint optimization of AZP and Ir and 
minimization of cost with guarantees of �-non-dominance 
( � = 10−1 ) using the proposed BB algorithm. We assume 
all closed BVs require the same amount of resources to reo-
pen and we use the number of selected CNPs as a surrogate 
measure of cost.

While Fig. 5 shows that reopening BVs allows to increase 
Ir for a given AZP value by creating more efficient pathways, 
limited improvements are observed beyond 1 new CNP. 
The absence of more “expensive" non-dominated solutions 
in the range of lower AZP values, in particular, suggests 
that reopening more than 1 BV could have a detrimental 
effect on pressure management by reducing pressure control 
capabilities. As for the expansion of pescara, the Pareto 
front approximation guarantees that satisfactory trade-offs 

20 25 30 35
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Fig. 4  �-non-dominated ( � = 5 ⋅ 10−2 ) Pareto front approxima-
tion obtained with the proposed BB algorithm  1 and Pareto points 
returned by NSGA-II for the bi-objective aggregation of DMAs in 
Net25 
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between the performance objectives can be achieved in 
Net25 at minimum cost.

Moreover, the lower bounding set LB computed by Algo-
rithm 1 results in a 18.7% non-dominance gap with respect 
to the solutions returned by gamultiobj, which suggests 
a more linear trade-off between the network performance 
objectives—see Fig. 10a and b in Appendix F. For instance, 
consider the solution, returned by gamultiobj, which 
requires reopening 2 BVs to achieve an AZP value of 32.3m 
and a resilience index of 63.7% . In comparison, the proposed 
BB algorithm identifies a solution requiring the creation of a 
single DMA pair which allows to reduce the AZP by nearly 
2m while maintaining a resilience index of 63.8%.

While additional heuristics and alternative settings might 
improve the performance of gamultiobj, the results high-
light important limitations of NSGA-II, which can struggle 
to find representative sets of Pareto solutions for problems 
involving continuous variables. The proposed BB algorithm, 
on the other hand, provides global bounds on the true Pareto 
front of multi-objective WDN design-for-control problems, 
guaranteeing the �-non-dominance of computed Pareto front 
approximations.

5  Conclusion

This study investigates the solution of the DfC problem 
which consists in simultaneously installing new valves 
and/or pipes in existing WDNs and optimizing the control 
of new and existing valves. We consider the objectives of 
jointly minimizing pressure-induced leakage, maximizing 
network resilience, and minimizing design cost, resulting in 
the (non-convex) multi-objective mixed-integer non-linear 

program MOMINLP(X) for which, to the best of our knowl-
edge, currently available solvers cannot return a Pareto front 
approximation with global bounds.

This study presents a BB algorithm based on the frame-
work proposed by Eichfelder et al. (2022) to approximate 
the Pareto front of MOMINLP(X) with global bounds of �
-non-dominance. In particular, we present tailored branching 
and lower bounding procedures based on successful strate-
gies developed for the single-objective design-for-control of 
WDNs. Moreover, as feasible solutions of MOMINLP(X) 
can be hard to identify, we propose a procedure to efficiently 
update the upper bounding set which searches for feasible 
solutions in regions of the objective space where lower 
bounds on the potentially non-dominated set are looser.

The proposed algorithm is applied to the DfC of two case 
study networks, extending previous bi-objective formula-
tions to investigate the trade-off between network resilience 
( Ir ), pressure-induced leakage (AZP), and design cost. The 
marked knee in the Pareto front enclosures computed for 
the tri-objective problems guarantees that satisfactory net-
work performance is achieved at a fraction of the cost of 
previously identified solutions for the bi-objective problems 
jointly minimizing AZP and maximizing Ir.

Finally, the numerical experiments show that the pro-
posed algorithm efficiently computes �-non-dominated 
approximations of the Pareto fronts of WDN design-for-
control problems with 2 or more objectives, converging in 
less than 3 min in 3 out of 4 problem instances for � = 10−1 . 
These results suggest that the BB algorithm can be applied 
to the multi-objective DfC of large-scale operational WDNs. 
Even when convergence is not achieved, the algorithm pro-
vides global bounds allowing to identify gaps in the com-
puted potentially non-dominated set. In comparison, NSGA-
II can fail to return representative approximations of the 
Pareto front, while computing equivalent global guarantees 
with the scalarization method proposed in Ulusoy et al. 
(2021) is associated with up to a fivefold increase in com-
putational effort.
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