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Abstract
Laminated composite structures have a distinct inherent potential for optimization due to their tailorability and their asso-
ciated complex failure mechanisms that makes intuitive design remarkably difficult. Optimization of such is a maturing 
technology with many criteria and manufacturing constraints having been successfully demonstrated. An approach for high-
cycle fatigue is however yet to be developed in a gradient-based context. Thus, the objective of this work is to introduce a 
novel framework that allows for effective high-cycle fatigue optimization of laminated composite structures.Offset is taken 
in the Discrete Material and Thickness Optimization parametrization, which allows for simultaneous material and thickness 
selection for each layer that constitute a laminate. The fatigue analysis approach is based on accumulating damage from 
all variable-amplitude cycles in an arbitrary spectrum. As high-cycle fatigue behavior is highly nonlinear, it is difficult to 
handle in optimization. To stabilize the problem, damage is scaled using an inverse P-mean norm formulation that reduces 
the nonlinearity and provides an accurate measure of the damage. These scaled damages are then aggregated using P-norm 
functions to reduce the number of constraints. This is convenient, as it allows sensitivities to be efficiently calculated using 
analytical adjoint design sensitivity analysis. The effectiveness of this approach will be demonstrated on both benchmark 
examples and a more complicated main spar structure.

Keywords  Multi-material optimization · Discrete material optimization · Topology optimization · High-cycle fatigue · 
Laminated composites

List of symbols
x	� Candidate/generic design variable
p	� Patch number
l	� Layer number
c	� Candidate material number
�	� Density design variable
d	� Material domain number
w	� Interpolation function for candidate variables
v	� Interpolation function for density variables
q	� Penalization factor
C	� Constitutive matrix
C̃	� Interpolated constitutive matrix
Nc	� Number of candidate materials
T 	� Threshold for density variables

S	� Number of allowable ply drops
f 	� Objective function
g	� Constraint function
glim	� Constraint limit
�̂	� Reference stress state
t	� Time step
i	� Load combination number
c(t)	� Rainflow counting scaling factors
�(t)	� Fatigue stress state
ca	� Load amplitude scaling factor
cm	� Load mean scaling factor
K	� Global stiffness matrix
�	� Global nodal displacement vector
F	� Global force vector
u	� Element displacement vector
m	� Top/bottom of layer
B	� Strain-displacement matrix
�xy	� Strain vector in structural coordinates xy
�xy	� Stress vector in structural coordinates xy
T	� Transformation matrix
�12	� Stress vector in material coordinates 12
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�a	� Amplitude stress
�m	� Mean stress
�US	� Ultimate strength
�eqv	� Equivalent amplitude stress
z	� Stress component
UCS	� Ultimate compressive strength
UTS	� Ultimate tensile strength
�min	� Minimum stress of cycle
�max	� Maximum stress of cycle
R	� R-ratio
r	� Slope of radial lines in constant life diagrams
�f	� Fatigue strength
b	� Slope of S-N curve
N	� Cycles to failure
n	� Number of cycles at load combination
Dlim	� Right-hand side of Palmgren-Miner’s sum
cL	� Load spectrum scaling factor
Nloads	� Number of unique load cycles in spectrum
D	� Fatigue damage
D̄	� Interpolated fatigue damage
Ds	� Scaled fatigue damage
cD	� Inverse P-mean weighting factor
D̃s	� Weighted scaled fatigue damage
PD	� Inverse P-mean exponent
s	� Inverse P-mean scaling exponent
DPN	� P-norm aggregate of fatigue damage
P	� P-norm exponent
cACS	� Adaptive constraint scaling factor
Nz	� Number of stress components
Nl	� Number of layers
Ne	� Number of elements
�	� Adjoint vector
Mdnd	� Measure of density non discreteness
Nd	� Number of density domains
V 	� Volume
Mcnd	� Measure of candidate non discreteness
m∕m̃	� Mass function/Mass merit function

1  Introduction

Fiber-reinforced polymer laminated composites are becom-
ing increasingly popular for industrial applications. A 
laminate consists of two or, most commonly, more layers 
of fibrous orthotropic material with various orientations 
of fiber in each layer. The possibility of orienting fibers in 
the direction of the critical loads allows for efficient use of 
material which is desirable for minimizing weight and costs. 
Commonly used materials are Glass or Carbon Fiber Rein-
forced Polymers (GFRP/CFRP) as these achieve particular 
high stiffness- and strength-to-weight ratios compared to tra-
ditional engineering materials, such as steel or aluminum, 
and therefore have particular prevalence in weight-critical 

structures such as wind turbine blades (Thomsen 2009; 
Mishnaevsky et al. 2017) or various aerospace applications 
(Mangalgiri 1999; Ostergaard et al. 2011).

The design with layered materials is difficult due to the 
generally anisotropic behavior of laminates. The composi-
tion of laminated composites, i.e. fibers embedded in the 
polymer matrix, results in complex failure phenomena that 
can occur in either fiber, matrix, or in their interface. Tra-
ditional trial-and-error design approaches therefore often 
need many iterations, if relying on pure intuition of the 
engineer, and will typically result in sub-optimal designs. 
This calls for the application of structural optimization tech-
niques, such that the large design freedom can be effec-
tively utilized while ensuring the discussed complexities 
are accounted for.

Structural optimization of laminated composites has been 
an active research topic for many years, and as a result many 
approaches have been developed for the purpose, see Nik-
bakt et al. (2018) and Xu et al. (2018) for recent reviews. As 
evident from the review papers, zero-order methods remain 
quite popular in optimization of laminated composites. This 
is likely due to these methods being excellent at finding the 
global optimum of a problem. Another substantial moti-
vation is that the straightforward formulation of laminate 
optimization problems involve some sort of discrete vari-
ables, which can be handled directly by these methods. How-
ever, these methods are computationally expensive to such 
a degree, that they can only be applied to solve problems 
with a few design variables, see Sigmund (2011) for further 
discussion of the topic.

This paper will exclusively consider gradient-based 
methods that allow solving large-scale optimization prob-
lems, and there are many approaches to parametrization 
that are compatible with such a framework. For laminated 
composites, typical parametrizations include thickness 
(Pedersen 1991; Forcier and Joncas 2012; Buckney et al. 
2012; Sjølund and Lund 2018) and fiber angles (Pedersen 
1989; Boddeti et al. 2020). On the other hand, the cur-
rently most popular parametrization adopted in structural 
optimization is topology optimization, see Bendsøe and 
Kikuchi (1988), Bendsøe (1989), and Bendsøe and Sig-
mund (2003), due its potential for generating non-intuitive 
designs and thus significantly reducing material use. A 
subcategory of the field is multi-material topology opti-
mization, which is particularly relevant in the context of 
composites, where several materials typically are used. 
Here, the objective is to place the best material with 
respect to some criteria instead of choosing whether to 
place material or not. The approach was originally intro-
duced in Sigmund and Torquato (1997) and Gibiansky 
and Sigmund (2000) to design composite materials for 
extreme thermal expansion and for achieving an extreme 
bulk modulus respectively. Their approach considered at 
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maximum three candidate materials (two isotropic and 
one void), and this is insufficient for complex laminated 
composite structures, which can consist of many different 
materials that further can be oriented differently in each 
respective layer. To have a parametrization suitable for 
optimization of general laminated composite structures, 
multi-material topology optimization has been generalized 
in Discrete Material Optimization (DMO) (Stegmann and 
Lund 2005; Lund and Stegmann 2005), where choice of 
material, orientation of fibers and stacking sequence are 
all included as design variables. This is carried out by 
selecting materials from a pool of discrete candidates. A 
typical example is GFRP with fibers oriented as 0◦ , −45◦ , 
45◦ and 90◦ which constitute four candidates.

Similar to topology optimization, the straightforward 
formulation of the DMO problem is an integer program-
ming problem. Typically, this problem is solved by relax-
ing the design variables, making them continuous, and 
then applying penalization to achieve a discrete design. 
Hence, the candidate variables are also treated as continu-
ous with selection of a discrete material being carried out 
through penalization of intermediate values. In the original 
DMO papers, a self-balancing scheme is used to perform 
penalization and ensure choice of a single candidate mate-
rial. Later, Hvejsel and Lund (2011) generalized the well-
known SIMP (Bendsøe 1989; Zhou and Rozvany 1991) 
and RAMP (Stolpe and Svanberg 2001a) schemes to multi-
material optimization, which exhibit improved penalizabil-
ity in comparison to the self-balancing schemes. As the 
self-balancing feature is removed, the approach relies on 
linear constraints to ensure only a single material candidate 
is chosen for each layer. This approach therefore works 
the best with optimization techniques suited for handling 
many linear constraints, in particular as other important 
manufacturing constraints are also formulated as linear 
constraints. Alternative interpolation methods have been 
proposed which primarily aim to reduce the number of 
design variables in the problem, see (Bruyneel 2011; Bruy-
neel et al. 2011; Gao et al. 2012; Kiyono et al. 2017; Hozič 
et al. 2021).

In Sørensen and Lund (2013) and Sørensen et al. (2014) 
DMO was extended to also include layer thickness as a design 
variable. This extended approach is termed Discrete Mate-
rial and Thickness Optimization (DMTO). Parametrization 
of thickness is done using a density variable, which is also 
interpolated and penalized. This density design variable is 
associated to either each individual layer of each element 
or to material domains, which can span multiple layers and 
elements. As such, it becomes possible to design general 
laminates by simultaneously considering material choice and 
thickness through DMTO. Various criteria have been devel-
oped for and demonstrated with optimization of laminated 
composites using DMTO. An approach not yet developed for 

gradient-based discrete material optimization is one treating 
fatigue. Compared to other criteria, fatigue is particularly tedi-
ous due to its non-linear nature, and that calculations must be 
carried out over a load spectrum, which significantly increases 
computational requirements. However, with the use of mod-
ern optimization techniques, it is indeed feasible to carry out 
fatigue optimization in this context and achieve good solutions.

This paper will thus extend the state of the art within gra-
dient-based optimization of laminated composite structures 
by demonstrating how variable-amplitude high-cycle fatigue 
loading can be included. The approach will be demonstrated 
with the DMO/DMTO approach allowing for the design of 
general laminate structures. Fatigue analysis will be based 
on well-known methods that are commonly applied in 
industry. The approach will be demonstrated on both bench-
mark examples and on a simplified main spar structure to 
demonstrate industrial application. Note, a preliminary out-
line of the content of the paper is given in Hermansen and 
Lund (2022) by the authors, however it contains no details 
necessary for implementing the method and reproducing the 
results, which is given in this present work.

The remaining paper is structured according to the fol-
lowing. In Sect. 2 the DMO/DMTO parametrization is 
presented with associated manufacturing constraints nec-
essary to achieve manufacturable designs. Section 3 will 
present the fatigue-analysis-related topics, including spec-
trum quantification, mean stress correction, determining 
cycles to failure, and damage calculations. This is followed 
by a description of the optimization techniques applied in 
Sect. 4, treating methods for stabilization of the fatigue 
optimization problem, dealing with stress-singularities, and 
damage function formulation. The design sensitivity analy-
sis is carried out in this section, determining the general 
analytical adjoint gradient with partial derivatives listed in 
Appendix A. This is followed by a description of the optimi-
zation approach with the numerous techniques adopted that 
enable achieving good solutions. Section 5 will demonstrate 
results attained by fatigue optimization. This section will 
also include a discussion of the model, methods and results. 
Finally, Sect. 6 will give concluding remarks.

2 � Discrete Material and Thickness 
Optimization

Discrete Material and Thickness Optimization (DMTO) 
(Sørensen and Lund 2013; Sørensen et al. 2014) allows 
simultaneous selection of material, fiber orientation, stack-
ing sequence, and thickness of laminated composites. Mate-
rial selection is based on choosing the best performing mate-
rial from a pool of candidates defined for each layer l in the 
model. A design variable x(p,l,c) is defined which governs this 
selection of material, see Eq. (1)
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Here, p denotes a patch that consists of one or more 
elements.

The motivation for introducing such patches is to regular-
ize the problem for manufacturing perspectives and to lower 
computational effort. If having an element-wise association 
of design variables, the optimal solution of the problem will 
depend on the discretization chosen, see Cheng and Olhoff 
(1981). By predefining the areas where design variables are 
to pertain, a solution is also defined for the problem. This 
also directly relates to the manufacturing of the structure. 
Laminated composite structures are typically manufactured 
by laying out rolls of material, that spans larger sections of 
the structure, and it is therefore desirable for such regions to 
share design variables. As an additional outcome, a substan-
tial reduction in the number of design variables is achieved 
through this parametrization.

The thickness is parametrized by density design vari-
ables �(d,l) , that indicate if a given layer should be present 
in the optimized laminate or not. These variables are often 
decoupled from the material patches, as it may be desirable 
to have different thicknesses of layers in the same material 
patch. Instead these are grouped in independent geometry 
domains d. Thus, the density design variables are formulated 
as shown in Eq. (2).

The described parametrization using patches and material 
domains is illustrated in Fig. 1.

The material selection and thickness parametrization 
as presented is an integer programming problem. How-
ever, this formulation is undesirable as such problems 

(1)x(p,l,c) =

{
1, if candidate c is chosen in l of p

0, else

(2)�(d,l) =

{
1, if material is present in l of domain d

0, else

are difficult and expensive to solve. Instead, the design 
variables are treated as continuous and are driven towards 
discreteness by penalizing intermediate values. In this 
work, the multi-phase version of the Rational Approxi-
mation of Material Parameters (RAMP) scheme (Stolpe 
and Svanberg 2001a; Hvejsel and Lund 2011) is applied 
for penalization. The RAMP scheme is preferred over the 
popular Solid Isotropic Material with Penalization (SIMP) 
approach due to its inherent property of having non-zero 
gradient when design variables are zero. Using RAMP, 
weighting functions are defined for both the candidate 
material and density variables as shown in Eqs. (3) and 
(4) respectively.

Here, qx is the penalization factor for the candidate material 
design variables x and q� for the density design variables � . 
To make intermediate stiffness economical, the penalization 
exponents must be larger than one. Commonly, qx = q� is 
applied to give equal weight to the two types of design vari-
ables, and this is also the case in this work.

The weighting functions enter through the constitutive 
matrices. To only necessitate solution of a single finite ele-
ment problem per iteration (Stegmann and Lund 2005), the 
constitutive matrix C̃ is defined as a weighted sum of the 
candidate material constitutive matrices C , see Eq. (5).

Here, Nc is the number of candidate materials.
Completing the parametrization is the inclusion of manu-

facturing constraints. For the candidate material variables, 
linear constraints are formulated to ensure the choice of a 
single candidate material, see Eq. (6).

Note that thickness is parametrized through the constitutive 
matrix in Eq. (5), which is a strategy adapted from density-
based topology optimization, see Sørensen and Lund (2013). 
The downside of such parametrization is that it allows inter-
mediate voids. As intermediate voids are unmanufacturable 
in laminated structures, they should not be present in the 
optimized design. To enforce material below non-zero den-
sity domains, i.e. that material is only removed from the 

(3)w(x(p,l,c)) =
x(p,l,c)

1 + qx (1 − x(p,l,c))

(4)v(�(d,l)) =
�(d,l)

1 + q� (1 − �(d,l))

(5)C̃
(e,l)

= v(𝜌(d,l))

Nc∑
c=1

w(x(p,l,c))C(e,l,c)

(6)
Nc∑
c=1

x(p,l,c) = 1

Fig. 1   The DMTO patch parametrization illustrated on a structure 
with five layered elements. Material candidates are associated to 
patches and thickness variables to domains. In this case, material can-
didates patches span the same layer of all elements, while thickness 
domains are created for each layer of every element
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top, constraints are applied to the thickness variation during 
optimization, see Eq. (7).

However, these constraints result in the formation of density 
bands, i.e. a domain-wise gradient of intermediate density 
that is unaffected by penalization, see Fig. 2. This problem 
is solved by using special move limits for the density during 
optimization. These are given in Eq. (8) following Sørensen 
and Lund (2013).

Here, T is a threshold parameter which dictates the amount 
of density that must be present in the underlying layers. This 
concept is illustrated in Fig. 3.

Furthermore, constraints are formulated on the allowable 
number of plies to drop at a time between adjacent layers. 
Such constraints are typically used in laminate design to 

(7)�(d,l+1) ≤ �(d,l)

(8)𝜌(d,l+1) ≤

⎧⎪⎨⎪⎩

T

1 − T
𝜌(d,l), if 𝜌(d,l) < (1 − T)

1 − T

T
𝜌(d,l) +

2T − 1

T
, else

reduce stress concentrations at ply-drop locations (Mukher-
jee and Varughese 2001). The constraints are formulated in 
Eq. (9).

Here, S is the number of plies that are allowed to drop and 
Nl is the number of layers.

This leads to the formulation of a generic DMTO prob-
lem. The problem is stated in nested analysis and design 
form, such that it is assumed that the state equations are 
solved implicitly with the optimization functions. As such, 
the optimization problem takes the form given in Eq. (10).

Here, f is the objective function, g is a constraint and glim is 
the right-hand side of the constraint.

3 � Fatigue analysis

Fatigue failure in composites is complex and thus no univer-
sal model exists to reliable predict the failure. This is primar-
ily due to laminates with varying layups responding differ-
ently to the same load thereby exhibiting different failure 
mechanisms. Furthermore, fatigue damage is progressive, 
which is typically characterized by initial void formulation 
leading to transverse matrix cracking, which propagates 
until final failure. Predicting the progressive fatigue failure 
response requires models with computational expense too 
high for use in structural optimization. As such the fatigue 
evaluation approach presented in this section assumes 
that stiffness does not degrade during the life time of the 
structure.

The analysis is carried out by first breaking down the 
variable-amplitude spectrum using rainflow counting, 
returning a set of scaling factors for mean and amplitude 

(9)−S ≤

Nl∑
l=1

(
�(d,l) − �(d+1,l)

)
≤ S

(10)

minimize
(x,�)

f (x,�)

subject to
g(x,�)

glim
− 1 ≤ 0

Nc∑
c=1

x(p,l,c) = 1

�(d,l+1) ≤ �(d,l)

Nl∑
l=1

(
�(d,l) − �(d+1,l)

)
≤ S

Nl∑
l=1

(
�(d+1,l) − �(d,l)

)
≤ S

x ∈ [0, 1]

� ∈ [0, 1]

Fig. 2   Illustration of the occurrence of density bands, i.e. distributed 
intermediate density constantly distributed between layers in the opti-
mized design

Fig. 3   Move limits for the density variables. The threshold value T 
governs the allowable density in the underlying layer
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loads. These are used to determine corresponding mean 
and amplitude stress, which are subsequently used to cal-
culate a mean-stress-corrected equivalent amplitude stress 
using a constant life diagram. This stress is comparable with 
the material S-N curves and is thus used to determine the 
number of cycles to failure for each combination of mean 
and amplitude loads. Finally, the damage values from each 
combination are summed using the linear Palmgren-Miner 
rule. The described fatigue approach is often termed the tra-
ditional approach to fatigue analysis, see Sutherland (1999) 
and Nijssen (2006) for more details. It is commonly applied 
in industry, e.g. for wind turbine blade design, where its 
use is prescribed by design standards, see DNV-GL (2015), 
which motivates its adaptation to optimization.

3.1 � Load spectrum quantification

Fatigue-critical structures are typically subject to com-
plex variable-amplitude spectra with many oscillations in 
load. To perform fatigue evaluation, such spectra must be 
quantified by use of an appropriate counting algorithm. 
One popular approach is rainflow counting (Matsuishi 
and Endo 1968), which is also adopted for this work. This 
approach is also recommended for use with laminated 
composites as a result of the studies in Passipoularidis and 
Philippidis (2009). The rainflow approach discretizes the 
continuous spectrum to a sequence of peaks and valleys, 
such that it is characterized by a time-dependent set of 
scaling factors c . The fatigue stress state �(t) at a time step 
t is then determined by scaling the reference stress state �̂ 
with the load scaling factor c(t) , see Eq. (11).

This scaling factor is later broken down to amplitude and 
mean components when calculating the respective stresses. 
A section of a load spectrum with associated amplitude and 
mean stress scaling components is illustrated in Fig. 4.

In this work, it is assumed that the loads applied are mutu-
ally proportional. Proportionality occurs when the loads are 
applied in sync which causes the orientation of principal 
stress to be constant through the entire load history. In the 
general case where loading is applied non-proportionally, 
rainflow counting has to be repeated for every evaluation 
point in each element and for each design iteration, which 
significantly increases the computationally expense. Thus, 
the proportionality assumption infers that only a single rain-
flow counting is needed, and from this the damaging stress 
state is calculated by application of the same set of scaling 
factors throughout optimization. For an approach to efficient 
computation of non-proportional stress states in the context 
of topology optimization of metals, see Zhang et al. (2019).

(11)�
(t) = c(t)�̂

The amount of combinations of mean and amplitude is 
typically reduced to increase computational efficiency by 
binning these within determined intervals. For instance, load 
combinations with mean and amplitude scaling factors in 
the interval ca, cm ∈ [0;0.1] can be placed in a single bin 
where ca = cm = 0.05 is assigned to represent these loads. 
Binning however lowers accuracy of the analysis and the 
degree hereof depends on the chosen bin discretization.

3.2 � Damage evaluation

The fatigue evaluation takes offset in linear static stress anal-
ysis. First, the linear static finite element problem is solved, 
see Eq. (12).

Here, K is the global stiffness matrix, � is the global dis-
placement vector, and F is the equivalent nodal load vector. 
From this, element-wise structural strains �xy and stresses 
�xy are calculated, see Eq. (13).

Here, B(e,l,m) is the strain-displacement matrix, u(e) is the dis-
placement vector, C(e,l) is the constitutive matrix, �(e,l,m)

xy
 is the 

strain vector in structural coordinates (x, y, z), and �(e,l,m)
xy

 is 
the stress vector in structural coordinates for layer l of each 
element e. The position of calculation in the layered element 
is indicated by m, which in this work is exclusively at the top 
( m = 1 ) and bottom ( m = 2 ) of each layer. To evaluate dam-
age of the material, the stress or strain is rotated to material 
coordinates (1, 2), see Fig. 5.

(12)K� = F

(13)
�
(e,l,m)
xy

= B
(e,l,m)

u
(e)

�
(e,l,m)
xy

= C
(e,l)

�
(e,l,m)
xy

Fig. 4   Illustration of the load spectrum and its discrete representation 
that only takes into account peaks and valleys. Associated scaling fac-
tors to each peak-valley combination (i) is shown, and how these are 
computed is given
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In this work a stress-based approach is used and as 
such, the stress is rotated to material coordinates using 
the appropriate transformation matrix T , see Eq. (14).

Here, �12 is stress in material coordinates and �xy is stress in 
the structural coordinates. Note, that if a structure is being 
designed for failure in the low-cycle fatigue regime, a strain-
based approach is more appropriate for capturing plastic 
deformation effects prone to occur in this case.

The material stress is then scaled with the amplitude 
and mean scaling factors ( ca and cm ) determined from rain-
flow counting, resulting in amplitude stress �a and mean 
stress �m components for each load combination i, see Eqs. 
(15) and (16).

These components are then combined to an equivalent 
amplitude stress, which is comparable to the material S-N 
curves. Many equivalent stress models exist, and the choice 
of such depends on the particular case. For engineering met-
als, the modified Goodman expression is widely used as it 
is considered conservative for such materials, in particular 
if neglecting the beneficial effect of positive mean stress.

For composite materials, alternating compressive 
stresses are damaging and are therefore not negligible. In 
some cases, the Goodman correction has been shown to 
underpredict the influence of mean stress on damage due 
to the different failure mechanisms exhibited in tension 
and compression (Vassilopoulos and Keller 2011). Moreo-
ver, it is not sufficient to perform mean stress correction 
based on an isotropic equivalent stress criterion such as 
the signed von Mises or Sines methods that are available 
for metals. This is due to the orthotropic behavior of fiber-
reinforced polymers and, as such, the damaging stress is 
normally determined for each stress component (Nijssen 

(14)�
(e,l,m)

12
= T

(e,l)
�
(e,l,m)
xy

(15)�
(e,l,m,i)
a

= c(i)
a
�
(e,l,m)

12

(16)�
(e,l,m,i)
m

= c(i)
m
�
(e,l,m)

12

2006). As a result, an S-N curve is necessary for each 
damaging stress component.

Despite its inadequacy, the Goodman correction is com-
monly used in industry due to its simplicity, and in particu-
lar, that only one S-N curve needs to be determined for each 
stress component z. The Goodman expression is given in 
Eq. (17).

Here, �eqv is the equivalent amplitude stress and �US is the 
ultimate strength (either compressive UCS or tensile UTS). 
Mean stress correction with modified Goodman is illustrated 
in a Constant Life Diagram (CLD) in Fig. 6.

The R-ratio R is used to characterize the nature of each 
cycle in the spectrum. It is determined from the ratio of 
minimum stress �min to maximum stress �max , see Eq. (18).

With the modified Goodman expression, the correction is 
made with the fully-reversed S-N curve, that is defined at 
R = −1 . It should be noted, that in an optimization context 
the Goodman correction is non-differentiable at this point. 
Therefore, if such a cycle exists in the spectrum, it should 
be offset with a small value to avoid problems.

To address the inadequacy of the Goodman criterion, 
multiple S-N curves can be included in the analysis. This 
gives a good evaluation of load combinations in different 
areas of the CLD, that represent different loading conditions 
in the spectrum, i.e. tension-tension, tension-compression 
or compression-compression combinations. However, no 
expression exists to calculate the cycles to failure by cor-
recting between two S-N curves. As such, the S-N curves are 
included by interpolation between available data at different 
the R-ratios.

In this work, linear interpolation will be applied, see 
Philippidis and Vassilopoulos (2004). This is a simple way 
to carry out the interpolation, however Vassilopoulos et al. 
(2010a) concludes that this method seems to perform quite 

(17)�(e,l,m,z,i)
eqv

=
�
(e,l,m,z,i)
a

1 − �
(e,l,m,z,i)
m ∕�

(z)

US

(18)R =
�min

�max

=
�m − �a

�m + �a

Fig. 5   Transformation from global coordinates (x,  y,  z) for a fiber 
laminate to material coordinates (1, 2) of one of its constituent layers

Fig. 6   CLD formulated with bilinear Goodman mean correction
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well compared to more complicated interpolation schemes. 
An improved piece-wise non-linear formulation has since been 
presented in Vassilopoulos et al. (2010b), and this can replace 
the piece-wise linear formulation if increased accuracy is 
required. For other methods, see Vassilopoulos et al. (2010a).

Explicit expressions for calculating stress amplitude at any 
R-ratio have been derived in Philippidis and Vassilopoulos 
(2004), and these are used in the following to derive S-N data 
at a given load combination. The expressions are included 
here, however not derived. For the full derivation see Vassilo-
poulos and Keller (2011). The expressions use the R-ratio at 
the particular load combination, which is defined in Eq. (18). 
Commonly, data for stress ratios of R = 10 and R = 0.1 are 
used to represent the different loading conditions described, 
which yields a CLD as illustrated in Fig. 7.

Taking offset in the Goodman formulation, with mean cor-
rection based on ultimate strengths, the interpolation of data 
in the interval R1 < R < 1 is formulated as shown in Eq. (19).

Here, UTS is the tensile strength of the material and r is 
the slope of a radial line in the CLD, which represents the 
interpolated S-N curve. This slope is defined in Eq. (20).

If the stress ratio is in the interval of R2 = −1 < R < R1 < 0 , 
the interpolation yields the expression in Eq. (21).

(19)�eqv =
UTS

UTS

�a,R1

+ r − r1

(20)r =
1 + R

1 − R
=

�m

�a

Next, if the stress ratio is in the interval of R2 = −1 < R < R3 , 
the interpolation yields the expression in Eq. (22).

Finally if R > R3 > 1 , the interpolation yields Eq. (23).

Here, UCS is the compressive strength of the material.
To apply these equations, an interpolation is performed 

first at N = 1 . At this point, the fatigue strength parameter �f , 
which is the y-intercept, can be derived. Subsequent inter-
polations are performed at N ≠ 1 , from which the S-N curve 
slope b is derivable by regression. This yields all necessary 
parameters at the particular load combination for determin-
ing fatigue life for the particular load combination.

Note, that this process infers that much data is generated, as 
in principle, the fatigue spectrum can consist of entirely unique 
load combinations, each requiring an S-N curve. To reduce 
the amount of data, it is chosen to pre sample a number of 
S-N curves before performing the fatigue calculation. Because 
of the proportional loading assumption, sampling only once 
before optimization is needed. Each load combination will 
then use the S-N curve derived at the closest R-ratio.

(21)�eqv =
�a,R1

(r1 − r2)

(r1 − r)
�a,R1

�a,R2

+ (r − r2)

(22)�eqv =
�a,R2

(r2 − r3)

(r2 − r)
�a,R2

�a,R3

+ (r − r3)

(23)�eqv =
UCS

UCS

�a,R3

− r + r3

Fig. 7   Example of a CLD with interpolation between three S-N curves. The interpolation is illustrated for three different N-values, where 
N
1
< N

2
< N

3
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To investigate the impact of choosing an S-N curve, that 
is not derived exactly at the R-ratio of the load combination, 
a sensitivity analysis has been carried out. The analysis indi-
cated that R becomes particularly sensitive when reaching 
the negative abscissa, i.e. in the interval R ∈ [0, 2] . At this 
point, the S-N parameters change rapidly with small changes 
in R-ratio, indicating that more samples could be useful in 
this area. Nevertheless, through numerical testing it was 
determined that generating 20 sampling points between each 
reference point yielded a reasonable approximation to the 
fatigue damage computed by interpolating at each R-ratio.

Note that inclusion of more S-N curves increases the 
amount of intersecting points of straight lines, see Fig. 7, 
which are non differentiable, and action should therefore be 
taken to avoid presence of values in the transition between 
two S-N curves in the CLD. This problem is entirely avoid-
able, if instead using a continuous representation of the 
CLD, see Vassilopoulos et al. (2010a) for such models and 
a comparison of their accuracy.

After deriving the equivalent amplitude stress by an 
appropriate CLD method, cycles to failure is calculated for 
each stress component using an S-N curve expression. Many 
S-N representations exist with various levels of accuracy and 
different amounts of material characterization requirements, 
see e.g. Nijssen (2006). The Basquin expression, which is a 
linear curve in a log-log plot, is commonly applied fit to the 
high-cycle material behavior and is also adopted here. From 
the Basquin expression, cycles to failure N is determined as 
shown in Eq. (24).

Here, �(z)

f
 is the fatigue failure strength and b(z) is the Basquin 

exponent, that represents the material fatigue strength deg-
radation, for each stress component z. Note that, in case of 
using CLD interpolation, these parameters are derived from 
the interpolation and are used to calculate cycles to failure 
along with the amplitude stress at the particular R-ratio of 
every load cycle i.

Finally, damage from each individual load combination 
has to be accumulated. A variety of methods also exists for 
this purpose. In this work, the well-known linear Palmgren-
Miner rule is adopted due to its simplicity and widespread 
usage, see Eq. (25).

Here, D is the damage, n(i) is the number of cycles at a given 
level, Nloads is the number of unique cycles in the spectrum, 
Dlim is the damage fraction limit and cL is a scaling factor 
which can be used to scale the load if the load spectrum 

(24)N(e,l,m,z,i) =

(
�
(e,l,m,z,i)
eqv

�
(z)

f

)1∕b(z)

(25)D(e,l,m,z) = cL

Nloads∑
i=1

n(i)

N(e,l,m,z,i)
≤ Dlim

consists of repeated blocks. The use of this scaling factor 
can make fatigue calculation more efficient, as it can be 
performed on only a single block smaller than the full load 
spectrum. In this work, Dlim = 1 is always used for simplic-
ity, however this value can be reduced if a higher margin of 
safety is desired.

4 � Optimization approach

Finite-element-based fatigue analysis results in many local 
damage values. This infers that the optimization problem 
consists of many local functions that must be minimized or 
constrained. It is desirable to reduce this amount to be make 
the optimization problem easier to solve, and a method for 
this purpose will be presented in the following. Moreover, 
fatigue damage as defined has inherent difficulties, which 
require reformulation of the problem in order to stabilize the 
optimization and be able to achieve a good solution. These 
difficulties are namely singular optima in the design domain, 
and the exponential dependence of the fatigue damage on 
stress that makes it difficult for the problem to converge. 
Techniques are presented in this section to also solve these 
problems. A fatigue optimization function is then formulated 
and its gradients are derived. This is followed by a presenta-
tion of the optimization framework with several techniques 
to improve convergence.

4.1 � Singularities in stress‑based optimization

It is well known that stress-based criteria suffer from the 
presence of singular optima, see Sved and Ginos (1968), 
Kirsch (1990), and Rozvany and Birker (1994). Solving the 
singularity problem is typically done by relaxing the design 
space. Popular methods for relaxation include the �-approach 
of Cheng and Guo (1997) and the qp-method of Bruggi 
(2008). Here, the qp-method is adopted, as it allows for fur-
ther penalization of intermediate density besides resolving 
the singular optima problem. It entails artificially increasing 
the stress of intermediate density for the optimizer, thus mak-
ing such uneconomical in the design. For the RAMP interpo-
lation, see Eqs. (3) and (4), this is achieved by using q < 0.

Interpolation has to be done to both stress and damage, 
and it is possible to add penalization to both measures. In 
this work, relaxation is applied to only the damage, meaning 
that stress is interpolated using linear functions. Penalization 
and relaxation functions are illustrated in Fig. 8. The actual 
values used for the exponent in the various penalty functions 
are presented when demonstrating the approach in Sect. 5. 
The candidate damage D̄ is then calculated by multiplying 
the corresponding weighting function wD to relax the prob-
lem, see Eq. (26).
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4.2 � Damage scaling

Fatigue life, as evaluated in Eq. (24), is exponentially 
dependent on the stress. This non-linear formulation is 
difficult to handle in an optimization context, as relatively 
small changes in stress can yield large changes in cycles to 
failure. Stabilizing the measure is therefore needed to reli-
ably achieve a solution which is introduced by scaling the 
damage. Various approaches have been formulated for this 
purpose, see Olesen et al. (2021) for a comparison. In this 
work, the inverse P-mean scaling also presented in Olesen 
et al. (2021) is used, see Eq. (27).

Here, Ds is the scaled damage array, PD controls the accuracy 
of the P-mean norm approximation, s is a scaling exponent, 
and cD is a weighting factor which determines the accuracy 
between the scaled measure and the true damage.

The damage measure for different values of cD is illus-
trated in Fig.  9. As illustrated, when cD → 1 , the high 
non-linearity is effectively suppressed. However it is also 
evident that the scaled damage measure overestimates the 
true damage when it is less than one. This is problematic 
when solving damage-constrained problems, since this 
will be the case for many local damages, and as a conse-
quence, the design may be overdimensioned in some areas. 

(26)D̄(e,l,m,z,c) = wD(x
(p,l,c))D(e,l,m,z)

(27)D
(z,c)
s

=
(
cD(D̄

(z,c)
)s PD + (1 − cD)(D̄

(z,c)
)−PD

)−1∕PD

Preferably, a damage-constrained problem is to be solved 
using cD ≠ 1 , as a better general approximation of the true 
damage is achieved. Numerical investigations however indi-
cate, that convergence is best when using cD = 1 , which is 
due to it suppressing the nonlinearity the most. Thus, inverse 
P-mean scaling is well-suited for application with a continu-
ation approach on the factor cD , such that good convergence 
behavior is prioritized in the beginning of the optimization 
and then gradually changed to more accurately estimate the 
true damage, thus only allowing the expression to become 
more nonlinear, once the optimizer is close to an optimum.

Various approaches for how to scale the different dam-
age measures have been tested, herein particularly scaling 
the candidate values before performing the summation in 
Eq. (28). This way would be convenient if a single S-N 
curve is used, as the damage may be scaled using the asso-
ciated Basquin exponent b, see Eq. (24). An unfortunate 
feature of this scaling is that infeasible true damage can be 
scaled to become feasible. This behavior is undesirable as 
the optimizer can converge to solutions that have feasible 
scaled damage, but infeasible true damage. Furthermore, 
when using multiple S-N curves with CLD interpolation, 
a single scaling factor s must be chosen to scale the dam-
age anyway. As such, an appropriate value of s is applied 
for the examples based on numerical studies, see also Lee 
et al. (2015) and Zhang et al. (2019).

Scaling of the interpolated damage and aggregated dam-
age has also been tested. However, common for both is that 
performing the scaling after damage interpolation seems to 
negate the penalization effect and, as a result, it was not pos-
sible to solve the examples shown in Sect. 5 and achieve a 

Fig. 8   Typical exponent values applied for interpolation illustrated 
for RAMP. For stiffness values, it is desirable to penalize intermedi-
ate density, i.e. use q > 0 , whereas for stress it is desirable to relax the 
values with q < 0

Fig. 9   Illustration of damage scaling with the inverse P-mean formu-
lation using different parameters. Notice that using c

D
= 0 the origi-

nal formulation of damage is recovered. s = −0.1 is used for the illus-
tration



Multi‑material and thickness optimization of laminated composite structures subject to…

1 3

Page 11 of 27  259

discrete high-quality solution using these approaches. They 
were therefore abandoned going forward.

Finally, the scaled candidate damages are summed and 
weighted, using the density weighting function, yielding Eq. 
(28).

Here, D̃s is the interpolated scaled damage used in optimiza-
tion and vD is the thickness weighting factor with an appro-
priate exponent for damage penalization according to Fig. 8.

4.3 � Damage aggregation

Damage calculation in Eq. (28) results in Ne × Nl × 2 × Nz 
functions in the optimization problem, where Ne is the num-
ber of elements, Nl is the number of layers, and Nz is the 
number of stress components considered in the model (i.e. 
six for a general 3D stress state). This causes the optimi-
zation problem of most finite element models to become 
inherently large scale, from which it is difficult to achieve a 
good solution efficiently using mathematical programming 
methods. To solve this problem, the local damage measures 
are aggregated to reduce the number of functions in the opti-
mization problem. The aggregation is carried out using a 
P-norm function as shown in Eq. (29).

Here, DPN is the P-norm approximation of the maximum 
damage and P is an exponent governing the accuracy of the 
approximation. To achieve adequate accuracy in the global 
measure, P has to be a contextually large number which can 
make the expression substantially nonlinear and this makes 
achieving convergence tedious. To avoid this, the P-norm 
aggregation is coupled with adaptive constraint scaling (Le 
et al. 2010), which normalizes the measure with a factor 
cACS based on information from previous iterations. Com-
putational details regarding cACS can be found in Oest and 
Lund (2017).

It should be emphasized that the method relies on using 
the max-operator, which makes the function non-differenti-
able. The degree of non-differentiability is however reduced 
since the scaling stabilizes during optimization and thus con-
verges along with the problem. The approach is also well-
documented to work on both stress and fatigue problems, see 
e.g. Le et al. (2010), Lund (2018), and Zhang et al. (2019). 
It is however undesirable to have a significantly small adap-
tive constraint scaling factor value as it increases the influ-
ence of the non-differentiability, when solving the problem. 
This can occur if trying to aggregate many values with a 

(28)D̃(e,l,m,z)
s

= vD(�
(d,l))

Nc∑
c=1

D(e,l,m,z,c)
s

(29)DPN =

(
Ne∑
e=1

Nl∑
l=1

2∑
m=1

Nz∑
Nz=1

(
D̃(e,l,m,z)

s

)P
)1∕P

significant span of magnitudes using a smaller P-exponent 
in the P-norm function. To alleviate this problem, a local 
aggregation strategy (Le et al. 2010; París et al. 2010) is 
adopted, where the aggregation is made in multiple smaller 
areas of the model. This works particularly well when com-
bined with the patch parametrization approach, as aggrega-
tion conveniently can be carried out in each patch, see e.g. 
Lund (2018).

4.4 � Design sensitivity analysis

Design Sensitivity Analysis (DSA) is the process of deriving 
and computing sensitivities of the problem functions. Avail-
able DSA approaches are characterized as numerical (finite 
difference approximations), analytical, or semi-analytical 
where the two are combined. The analytical approaches are 
preferable as they are the most computationally efficient. 
However, two analytical approaches are available, direct 
differentiation and the adjoint approach, and the choice 
between these depends entirely on the problem to solve. 
The adjoint DSA method is in particular appropriate for 
problems with few constraints, and many design variables, 
as it requires solution of an equation per criterion. Such is 
the case in this work due to the use of P-norm functions 
that drastically reduce the number of structural constraints 
to significantly less than the number of design variables.

The adjoint sensitivities are thus derived in the follow-
ing, which underlines its strength for said problems. Omit-
ting many intermediate partial derivatives, the derivative 
of the damage function with respect to an arbitrary design 
variable x(j) is found by application of the chain rule, see 
Eq. (30).

Reference is made to Appendix A for the expanded deriva-
tive and derivation of the omitted explicit terms.

The adjoint vector is then formulated from the derivative 
of the governing equation of Eq. (12), resulting in Eq. (31).

It is assumed that the nodal load vector is independent of the 
design variables and its derivative is zero as a result. It is 
therefore omitted in the following expressions. The partial 
derivative of displacement with respect to design variables 
is then isolated, see Eq. (32).

(30)
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dx(j)
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�x(j)
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Inserted into the full function derivative yields Eq. (33).

Directly solving this equation is the direct DSA approach, 
which implies solving it for each design variable. This is 
demanding for problems with many design variables, which 
is the case for those treated in this work. For efficiently com-
puting gradients of many design variables, it is convenient to 
define an adjoint vector � as shown in Eq. (34).

As K is symmetric it is unaltered by transposition. Thus 
by inverting and transposing K a set of linear equations is 
achieved, see Eq. (35).

This linear set of equations is solved efficiently by reusing 
the factored stiffness matrix from the finite element analysis. 
Thus, only this extra single set of equations has to be solved 
in order to compute the sensitivities of all design variables. 
Inserting � into Eq. (33) yields the resulting adjoint sensitiv-
ity expression, see Eq. (36).

4.5 � Optimization techniques

DMTO problems are notoriously difficult to solve due to 
the design space being non-convex, and the inclusion of 
many linear manufacturing constraints. The typical solution 
strategy for these problems is application of a mathemati-
cal programming algorithm, which is tunable by a set of 
parameters. One framework, that has been demonstrated to 
handle difficult non-linear structural optimization problems 
well, is the Method of Moving Asymptotes (MMA) (Svan-
berg 1987). However, for the problems considered presently 
MMA is not particularly appropriate as it is only able to 
handle inequality constraints and works the best with few 
constraints. This is particularly problematic due to the reli-
ance on the linear constraints of Eq. (6) and the necessity of 
other manufacturing constraints to achieve usable designs.

Another widely used framework is sequential program-
ming, either implemented as Sequential Linear Program-
ming (SLP) and Sequential Quadratic Programming (SQP). 
In this work, an SLP-based framework is adopted. This 
choice is made based on the conclusions of the study in 
Sørensen and Lund (2013) that showed that the applied SLP 
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�

approaches in general outperformed the considered SQP 
approaches for DMTO problems. Additionally, good results 
for strength problems was later demonstrated in Lund (2018) 
using this SLP approach.

The SLP framework makes use of a merit function, see 
Sørensen et al. (2014). The purpose of the merit function 
is to ensure unconditional infeasibility of the structural 
constraints and to penalize such by an auxillary term in 
the objective function, see Nocedal and Wright (2006) for 
more details. Additionally, external move limits are applied 
on each design variables. These prevent too large design 
changes between iterations which would otherwise cause 
convergence to a poor optimum or potentially divergence. 
This is particularly important for highly non-linear prob-
lems such as the fatigue problem. These are applied adap-
tively, which is necessary to achieve convergence with SLP 
frameworks, as otherwise, the optimizer will not settle on 
an optimum.

Because of the non-linearity involved, the problem is 
likely to become significantly infeasible during the opti-
mization due to the linear approximation not accurately 
representing the fatigue function at a particular point. To 
not cause a need for excessive feasibility restoration dur-
ing optimization, an SLP filter is introduced. Different fil-
ters exist, however the one applied in this work is based on 
that of Fletcher et al. (1999), see also Sørensen and Lund 
(2015b). The SLP filter checks the quality of a design, i.e. 
if the objective function is less than in the previous point 
or if constraint violations have been reduced. When either 
of these condition are met, the design is placed in the filter, 
and if a design is better on both criteria than a previous 
solution stored in the filter, the old design is discarded. If a 
design does not pass the filter, the external move limits are 
uniformly reduced, and the problem is solved again. This 
process is repeated until a new point is accepted, or no bet-
ter point can be found by the optimizer. By allowing only 
feasible designs in the SLP-filter convergence may take a 
significant amount of time, or the optimizer may get stuck 
prematurely. Some slack is introduced by accepting designs 
that are infeasible up to a set limit ulim . This limit used in 
this work is ulim = 0.01 , and is chosen based on numerical 
experiments.

The original SLP filter formulation only discards designs 
that are worse on both parameters than those in the filter, 
i.e. that both objective and constraint violations are larger. 
However, in the formulation adopted here, the acceptance 
criterion is modified so that emphasis is placed on ensuring 
feasibility. Thus, designs that have violations that exceed a 
preset limit is always discarded. Moreover note that assess-
ment of a design should be carried out on the optimization 
functions to ensure consistency, i.e. the linearized func-
tion in the SLP framework. However, since this might be 
a poor representation of the actual fatigue damage, the true 
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damages will be used, when comparing a design to the 
entries in the SLP filter. Although the global-convergence 
property of the original filter is lost, it has been observed to 
work well in practice.

Despite all the introduced techniques, a good solution is 
not necessarily found through their use. This is because of 
the problem being remarkably non-convex with high prob-
ability of ending up in a poor local minimum. To guide the 
optimizer to a good solution, a continuation approach is 
applied where the penalization is gradually increased (or 
decreased in case of considering the stress-relaxation param-
eter). The basic idea is that the design domain is convex 
when using linear interpolation (i.e. no penalization) for 
compliance problems (Bendsøe and Sigmund 2003), and 
less non-convex for more complex problem formulations, 
thus allowing the optimizer to find a good local optimum 
as a reference. Then, exponents are subsequently changed 
allowing a better starting point for the optimizer to solve a 
more non-convex problem. This is repeated for a number of 
appropriate steps, until arriving at adequate penalization.

Continuation is however a heuristic approach, and one 
can not expect to follow the global trajectory when chang-
ing the interpolation exponents, see Stolpe and Svanberg 
(2001b). In Lund (2018) it was demonstrated how applica-
tion of continuation to both the penalization and relaxation 
exponents resulted in the global solution for some bench-
mark examples. Nevertheless, it is necessary to fine-tune 
how the exponents are updated for each problem. The con-
tinuation strategy adopted for each example in this work is 
detailed in Sect. 5.

Furthermore, measures of non discreteness are defined to 
quantify the (non) discreteness of the solution. A measure of 
density non discreteness Mdnd (Sigmund 2007) is associated 
to the thickness variables, and is given in Eq. (37).

Here, V (e,l) is the volume of the layer l and element e and Nd 
is the number of material domains with associated thick-
ness design variables. Note that the summation indicates 
that every element e is summed for their associated domain 
d. A measure of candidate non discreteness Mcnd (Sørensen 
et al. 2014) is also defined, see Eq. (38).

These measures are used to assess the quality of a solu-
tion, when presenting the examples in the following section. 
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They yield 100% for the most non discreteness possible, i.e. 
design variables = 0.5, and 0% for 0/1 discrete designs.

5 � Numerical examples

This section demonstrates fatigue optimization of various 
examples. The examples include two academic benchmark 
examples where the global optimum is known, demonstrat-
ing the DMO and DMTO methods respectively, a more 
challenging damage-constrained problem, and finally a 
simplified industrial main spar example. The finite element 
models demonstrated in this section use equivalent single 
layer (ESL) shell elements, see e.g. Reddy (2003) for details. 
All examples use the 9-noded isoparametric layered shell 
element formulation to avoid locking issues. Note that, the 
methods presented in the following are equivalently appli-
cable to more general 3D models.

The materials applied are uni-directional (UD) GFRP, 
GFRP cross-ply (CP), rotated 45◦ (this is termed biax), and 
Rohacell WF110 foam. Static and fatigue strength properties of 
these are given in tables 1 and 2. Material fatigue properties are 
not widely available for laminated composites, due to the exten-
sive experimental campaigns required for S-N curve determina-
tion. The fatigue properties for the fiber materials used in this 
work is based on the OPTIDAT Nijssen et al. (2006) database. 
However, no data was available for the cross-ply laminates for 
all directions and R-values in this database. For these materi-
als, the properties are derived from a scaling between the static 
strength values and available fatigue data. The foam data is 

Table 1   Elastic and static strength properties used

Material property UD CP Foam

Stiffness [GPa]
 Long. modulus E11 38.0 24.0 0.18
 Transv. modulus E22 9.0 24.0 0.18
 In-plane shear modulus G12 3.6 3.6 0.07
 Transv. shear modulus G13 3.6 3.5 0.07
 Transv. shear modulus G23 3.46 3.5 0.07

Static strengths [MPa]
 Long. tensile strength Xt 930.0 84.0 3.7
 Long. compres. strength Xc 570.0 260.0 3.6
 Transv. tensile strength Yt 33.0 84.0 3.7
 Transv. compres strength Yc 110.0 260.0 3.6
 In-plane shear strength S12 70.0 60.0 2.4
 Transv. shear strength S13 70.0 35.0 2.4
 Transv. shear strength S23 41.5 35.0 2.4

Miscellaneous
 Density [kg/m3] 1870 1870 110
 Poisson’s ratio v12 [-] 0.3 0.11 0.29
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based on that given in Zenkert and Burman (2009, 2011). As 
no data is available for R ≠ −1 , mean stress correction is only 
carried out using a bilinear Goodman correction.

In Table 3 the continuation parameters are given. Continu-
ation is applied on both the inverse P-mean function scaling 
variable and for design variable penalization. The P-mean 
function is used only for the third and fourth optimization 
problems, as only they are fatigue-constrained problems. In 
damage-minimization problems, which is treated in the first 
two examples, it is not important if the damage is accurately 
represented, as long as minimizing the approximated value 
also minimizes the true maximum damage. The number of 
iterations, until a continuation step is made, is stated in the 
following for each example as the strategy used varies between 
them. Finally, to solve the linear programming problems, the 
Sparse Nonlinear OPTimizer (SNOPT) by Gill et al. (2005) 
has been applied with default settings for all problems. Conver-
gence of the problems is defined as a relative change in design 
variables between iterations of 0.1%.

5.1 � Example 1: DMO of single‑layer clamped plate

This first example demonstrates fatigue optimization with the 
DMO parametrization. The problem concerns finding the opti-
mal fiber distribution in a single-layered clamped plate subject 
to distributed pressure load p = 1MPa , see Fig. 10.

The objective is to minimize the P-norm aggregated scaled 
fatigue damage. It is a standard benchmark example where the 
optimal fiber distribution for stiffness and strength problems 
are known to be symmetric - this is also the case for fatigue. 
The optimization problem is stated in conventional form in 
Eq. (39).

The mesh consists of 32x32 shell finite elements. The mate-
rial used in the model is GFRP with four DMO candidates 
having different fiber orientations of −45◦ , 0◦ , 45◦ and 90◦ . 
These are all associated x(k=0) = 0.25 as a starting guess. 
A fatigue load spectrum of 106 cycles has been applied for 
a zero-based constant amplitude loading, i.e. R = 0 for all 

(39)ℙ1 =

⎧
⎪⎪⎨⎪⎪⎩

min
(x)

DPN

s.t.
Nc∑
c=1

x(p,l,c) = 1

x ∈ [0, 1]

Table 2   Fatigue strength properties used. Note that the Biax material 
uses the properties of a cross ply, which is then rotated 45◦

Material property UD CP Foam [Unit]

Fatigue properties, R = −1

 Long. strength Sf ,11 578 158 5.14 MPa
 Transv. strength Sf ,22 86 211 5.14 MPa
 In-plane shear strength Sf ,12 150 75 3.34 MPa
 Transv. shear strength Sf ,13 150 125 3.34 MPa
 Transv. shear strength Sf ,23 150 128 3.34 MPa
 Long. exponent b11 −0.082 −0.082 −0.071 –
 Transv. exponent b22 −0.105 −0.105 −0.071 –
 In-plane shear exponent b12 −0.073 −0.073 −0.071 –
 Transv. shear exponent b13 −0.073 −0.073 −0.071 –
 Transv. shear exponent b23 −0.073 −0.073 −0.071 –

Fatigue properties, R = 10

 Long. strength Sf ,11 235 143 – MPa
 Transv. strength Sf ,22 87 476 – MPa
 In-plane shear strength Sf ,12 180 90 – MPa
 Transv. shear strength Sf ,13 180 150 – MPa
 Transv. shear strength Sf ,23 180 154 – MPa
 Long. exponent b11 −0.027 −0.027 – –
 Transv. exponent b22 −0.039 −0.039 – –
 In-plane shear exponent b12 −0.026 −0.026 – –
 Transv. shear exponent b13 −0.026 −0.026 – –
 Transv. shear exponent b23 −0.026 −0.026 – –

Fatigue properties, R = 0.1

 Long. strength Sf ,11 574 348 – MPa
 Transv. strength Sf ,22 71 385 – MPa
 In-plane shear strength Sf ,12 154 150 – MPa
 Transv. shear strength Sf ,13 154 250 – MPa
 Transv. shear strength Sf ,23 154 257 – MPa
 Long. exponent b11 −0.119 −0.119 – –
 Transv. exponent b22 −0.149 −0.149 – –
 In-plane shear exponent b12 −0.1 −0.1 – –
 Transv. shear exponent b13 −0.1 −0.1 – –
 Transv. shear exponent b23 −0.1 −0.1 – –

Table 3   Values applied in each weighting function, and how they are changed during optimization

Measure Weigthing func-
tion type

Exponent values

ℙ
1

ℙ
2

ℙ
3

ℙ
4

Mass wm 0 0 0 0
Stiffness wC 1, 4, 20 1, 4, 20 1, 4, 20 1, 2, 4, 8, 10, 12
Stress w� 0 0 0 0
Damage wD 0, −0.4 , −0.8 0, −0.4 , −0.8 −0.1 , −0.4 , −0.8 −0.1 , −0.2 , −0.4 , −0.6 , −0.7 , −0.8
P-mean cD 1 1 1, 0.8, 0.6, 0.5, 0.25, 0.1 1, 0.8, 0.6, 0.4, 0.2, 0.1
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load combinations. Only the S-N curve at R = −1 is used 
for the fatigue evaluation, and as such the bilinear Good-
man expression, see Eq. (17), is applied for mean stress 
correction. An 8x8 patch parametrization is used, such that 
each patch contains a 4x4 square of elements to which the 
same candidate design variable is assigned. Note that this 
parametrization does not ensure fiber continuity between 
neighboring patches and is therefore not appropriate for 
generating a manufacturing-ready design. The purpose of 
the parametrization is to be able to verify that the global 
optimum of the mathematical problem has been found.

Each damage component is scaled using s = −0.05 and 
cD = 1 in the inverse P-norm mean function of Eq. (27). 
The P factor used in the P-norm, see Eq. (29), and inverse 
P-mean functions is chosen as 8. Penalization exponents 
vary according to Table 3 and is changed after every 15th 

iteration. Additionally, adaptive external move limits are 
applied, which are capped at 10%.

The resulting fiber and damage distributions of D1 and 
D2 are illustrated in Fig. 11. Note that, shear stress is not 
particularly prevalent in this example, and the correspond-
ing damages are therefore not illustrated. The maximum true 
damage is D = 3.7 × 10−6 and is found at the bottom posi-
tion of the shell element in the 2-direction.

Remark that the solution is the global optimum, how-
ever, achieving a global optimum requires numerical stud-
ies to select the appropriate parameters, i.e. the continua-
tion scheme for the interpolation exponents, P value in the 
P-norm approximation, scaling factor s, the external move 
limit cap etc. It should in general not be expected to reach 
the global optimum for fatigue optimization problems. The 
design achieved is also noticeably similar to the strength-
optimized design achieved in Lund (2018) for the same para-
metrization, which is expected, since the stress and strain 
distributions used to compute both static and fatigue failure 
are the same. A slight difference is observed, which may be 
a result of a different failure mode becoming increasingly 
critical as the strength degrades during fatigue loading. The 
transverse strength is associated with the smallest S-N expo-
nent and therefore degrades faster than the longitudinal and 

Fig. 10   The clamped plate problem subject to a distributed pressure 
load

Fig. 11   Resulting fiber and damage distribution of ℙ
1
 for the given 

parameters. This result is also the global optimum, which has been 
verified by an exhaustive search. The increased gradient of damage 

around hot spots are observed for the scaled measure when com-
pared to the true damage. As a consequence, damage does not change 
uncontrollably in between iterations
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shear strengths, which may lead to e.g. ±45◦-plies becoming 
favorable in transversely loaded areas over 90◦-plies.

Using cD = 1 the formulation linearizes the damage, 
which can be observed from the increased gradient in 
drop-off of scaled damage around the most damages areas. 
The true damage is more localized around certain hot-spot 
areas. The maximum damage has been evaluated post opti-
mization, where the design variables have been enforced to 
zero or one. However note, that the measure of candidate 
non discreteness is Mcnd = 0.016% when the convergence 
criteria had been met, i.e. an almost fully discrete design 
has been achieved. This causes a slight increase in the 
maximum damage, which can be seen if carefully consid-
ering the convergence plot in Fig. 12.

It is observed from Fig. 12 that the optimization oscil-
lates a bit in the beginning of the optimization. This is 
attributable to the combination of the non-linear fatigue 
equations and the rather large 10% external move limit 
cap. It is possible to stabilize the convergence by capping 
the move limits at e.g. 5% however, this will be at the cost 
of more iterations to solve the problem. The problem may 
also be solved using cD ≠ 1 , however this slows conver-
gence, and, as mentioned, accurately representing the dam-
age is not important in damage-minimization problems. As 
such, it is not recommended for this problem.

The problem was also solved using SIMP interpolation 
with a minimum on the design variables of xmin = 10−6 
to avoid a singular stiffness matrix. Similar results are 
achievable using SIMP, but fine tuning of the parameters 
is likewise necessary. It can not be expected that a given 
set of parameters will yield the same solution for a SIMP-
penalized problem as that achieved for a RAMP-penalized 
problem.

5.2 � Example 2: DMTO of a layered cantilever plate

This next example demonstrate fatigue optimization with the 
DMTO parametrization. The problem considered is a canti-
lever shell with a concentrated transverse load of P = 10N 
at the edge, see Fig. 13. The problem is to minimize the 
P-norm of the scaled damage subject to a mass constraint of 
60% of the original mass, see Eq. (40).

Here, Manufacturing constraints is used to denote candidate 
summation constraints of Eq. (6), the thickness-drop con-
straints of Eq. (7) and ply-drop constraints of Eq. (9). This 
problem is also a benchmark example, where the expected 
solution for the fiber orientation is that all fibers are in the 
longitudinal direction and the thickness being distributed 
in a staircase-like manner. The model is meshed with 5x1 
elements with ten layers each. Observe that using shell finite 
elements, a staircase-like geometry does not create stress 
singularities, which causes its occurrence in the final design.

The load spectrum considered in this example is fully 
reversed and of variable amplitude. 103 points are generated 
using the random_number() function, and this is scaled 
by a factor cL = 104 , see Eq. (25). Bilinear Goodman is used 
for mean correction with respect to the S-N curve at R = −1 , 
similarly to the previous example.

Candidate materials are GFRP with orientations −45◦ , 
0◦ , 45◦ and 90◦ , which are all assigned a starting value of 
x(k=0) = 0.25 . The density variables are initially �(k=0) = 1 
in all layers. Candidate design variables patches are 
assigned to each layer, such that the material chosen must 
be continuous in the longitudinal direction of the struc-
ture, which is typically necessary for manufacturability. 
The density variable domains are associated to each layer 
of every element, except for the bottom layer where the 
design variable is shared for all elements. This variable 

(40)ℙ2 =

⎧
⎪⎪⎨⎪⎪⎩

min
(x,�)

DPN

s.t. m ≤ 0.6m0

Manufacturing constraints

x ∈ [0, 1]

� ∈ [0, 1]

Fig. 12   Convergence for ℙ
1
 with continuations steps highlighted Fig. 13   The cantilever plate problem subject to an end force
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is fixed at one, ensuring presence of a bottom layer in the 
plate. For the through-the-thickness density change con-
straints of Eq. (8), a threshold value of T = 0.1 is used, and 
for the ply-drop constraints of Eq. (9) S = 1 , i.e. a single 
ply is allowed to drop at a time.

The continuation approach adopted here is changing 
the exponents every 20th iteration according to Table 3. As 
in the previous example, the scaling factor in the inverse 
P-mean is cD = 1 , as damage minimization is considered, 
and s = −0.1 is used. In the P-norm damage aggregate 
and inverse p-mean function, P and PD are selected as 8. 
Furthermore, adaptively updated external move limits are 
used with a cap at 10%.

Solving the problem results in the expected solution 
with all 0◦-oriented plies and a staircase-like thickness 
distribution as shown in Fig. 14. The optimizer converged 
after 34 iterations with a measure of non discreteness for 
both candidate and density of Mcnd = Mdnd = 0.0% . At 
the point of convergence, the continuation had not been 
completed. 

Damage distributions are illustrated in Fig. 15. As illus-
trated, more gradient of damage is again achieved for the 
scaled measure compared to the true damage. The maxi-
mum damage is found in the longitudinal direction at the 
bottom of the first layer. Damages are in general quite low 
for this example, indicating that this structure is able to 
carry significantly more load. There is a slight difference 
in the damage values and distribution between top and bot-
tom due to the different tensile and compressive strengths 
of the material, when performing mean stress correction.

5.3 � Example 3: Fatigue‑constrained DMTO 
of a cantilever plate

In this example, a fatigue-constrained mass-minimization 
problem is solved with the DMTO parametrization. The 
problem is similar to that solved in the previous subsec-
tion, however 20 elements and 20 layers are used instead to 
make it more challenging. The load has also been adjusted 
to comply with the change in structure. The problem is 
illustrated in Fig. 16. The optimization problem is given 
in Eq. (41)

Note, that m̃ indicates the merit reformulation of the mass 
objective function. The same load spectrum as the previous 
example is used, i.e. 103 randomly generated points that are 
scaled by 104 . Here, mean correction is carried out using 
CLD interpolation with 20 sampled S-N curves between the 
three available, given in Table 2.

A right-hand side of 0.99 is chosen for this problem. 
The motivation for this is to keep the damage measure 
stable when modifying the inverse P-mean scaling factor 
cD during continuation. A damage measure that is only 
slightly infeasible, when a modification is made to cD , can 

(41)ℙ3 =

⎧
⎪⎪⎨⎪⎪⎩

min
(x,�)

m̃

s.t. cACSDPN ≤ 0.99

Manufacturing constraints

x ∈ [0, 1]

� ∈ [0, 1]

Fig. 14   Optimized thickness distribution for ℙ
2
 . The layer thickness 

has been scaled by a factor of 20 in this illustration

Fig. 15   Damage distribution for ℙ
2
 . The layer thickness has been 

scaled by a factor of 20 in this illustration

Fig. 16   The cantilever plate problem with 20 elements
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cause a vast increase in damage thereby making it dif-
ficult to restore feasibility or, in some cases, not possible 
entirely. Infeasibility is prevented entirely using the SLP 
limit of ulim = 0.01 , guaranteeing stability during the cho-
sen scheme.

As in the previous example, −45◦ , 0◦ , 45◦ and 90◦ oriented 
GFRP are used as candidate materials and these are assigned 
to patches that span all elements in each layer. Density vari-
ables are assigned to every layer in every element, except 
for the bottom layer, which shares design variable in all ele-
ments. The starting guess is x(k=0) = 0.25 for the candidate 
design variables and �(k=0) = 1 for the density variables. For 
the manufacturing constraints, a threshold value of T = 0.2 
is used in Eq. (8), and S = 2 for Eq. (9).

Since this example involves a damage constraint, the true 
damage has to be accurately approximated during the opti-
mization, else the final design will be overdimensioned. To 
demonstrate the effect of this, three problems with different 
strategies for updating the scaling factor cD are solved. With 
offset in Table 3, a problem is solved with the shown strategy, 
ending up with cD = 0.1 . The other two problems follow the 
strategy until cD = 0.5 and cD = 1 respectively. The scaling 
factor is updated every 80th iteration, while the penalization 
exponents are updated every 30th . For the inverse P-mean 
function, an exponent of PD = 8 is used for all problems, and 
for the P-norm function, an exponent of P = 12 is used. Addi-
tionally, the scaling factor used is s = −0.1.

Adaptive external move limits are also used here with a 
cap at 5%. These are coupled with the SLP filter to achieve 
a good solution. An allowable infeasible limit of ulim = 0.01 
is used. The strategy applied is to accept the design with the 
most amount of infeasibility, within the tolerance ulim , at 

the end of optimization and to ensure feasibility, when the 
optimization is finished, the right-hand side of the constraint 
is reduced to 0.99, see Eq. (41).

Convergence of the problems are shown in Fig. 17. As 
is evident, convergence takes significantly longer for this 
problems compared to the previous. It can also be observed, 
that the best designs are achieved by using cD ≠ 1 . How-
ever, by doing so the formulation becomes more non-linear 
as cD = 0 is approached, see Fig. 9, which consequently 
increases the number of iterations to convergence. As such, 
the trade-off on accuracy and efficiency in solving the prob-
lem is important to consider, when selecting values for the 
inverse P-mean function. Notwithstanding, DMTO is strong-
est in the early design phases, as the design typically needs 
adjustment for additional manufacturing considerations and 
more computationally expensive analyses, thus a good trade 
off may be to keep cD = 1 in most problems.

The resulting designs and damage distributions (maxi-
mum damage component) are shown in Fig. 18. In every 
solution, UD fiber is chosen for all layers with a material non 
discreteness of 0.0% , and this is selected early in the optimi-
zation. The difference between the solution is the thickness 
distribution and density discreteness. Here it is interesting 
to note, that the problem solved with cD = 1 is most dis-
crete, having a density non discreteness of Mdnd = 0.6% . The 
optimizations ending with cD = 0.5 and cD = 0.1 finish with 
Mdnd = 1.7% and Mdnd = 1.2% respectively. However, layers 
were removed in both these designs that were not removed 
otherwise, indicating that these solutions are not the same 
as that achieved with cD = 1 , but with more intermediate 
density.

It was also attempted to solve the problem using cD ≠ 1 
initially. All tests did however prematurely converge to a 

Fig. 17   Convergence of the three problems. As seen on the figure, 
there is a change in trajectory when c

D
 changes from 1. The descent 

of the mass function where c
D
 is changed levels out, such that it takes 

more iterations to reach the same mass from this point. As such it is 
clear that the best convergence is achieved using this setting, however 
it is at the cost of damage accuracy

Fig. 18   The distribution of maximum damage in the designs, where 
the top c

D
= 0.1 , center c

D
= 0.5 and bottom c

D
= 1 . The visualiza-

tion here i scaled by a factor of 20
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design with unsatisfactory amounts of intermediate values 
for primarily the candidate materials. As such, to reach the 
best optimum, a continuation scheme applied to cD seems 
to yields the best results. Nevertheless, it is important to 
underline, that decent designs can be achieved efficiently 
using exclusively cD = 1.

The use of the SLP filter approach is necessitated to solve 
this problem. Due to the significant non-linearity of the 
fatigue functions, the function is observed to oscillate sig-
nificantly above the constraint limit. This makes it difficult 
to converge when coupled with the continuation approach, 
which may cause the mean stress to exceed e.g. the ultimate 
strength if performing mean stress correction with the modi-
fied Goodman expression of Eq. (17). The SLP filter will 
reject solutions that are significantly outside the constraint 
limit, thus keeping the optimizations stable as observed in 
Fig. 17. As is also observable from this figure is that adjust-
ing the constraint and SLP filter limits to be less than one 
keeps the damage stable when performing continuation on 
cD.

5.4 � Example 4: Multi‑criteria DMTO of a wind 
turbine blade main spar

The final example demonstrate inclusion of fatigue con-
straints in a multi-criteria optimization of a 14 m simplified 
industrial main spar of a wind turbine blade. The geom-
etry of the spar is shown in Fig. 19. It is clamped at its 
root (where the cross section is circular), and is loaded with 
an experimentally-based force equivalent to 164.7 kN, see 
Overgaard et al. (2010), distributed at the tip of the spar 
on the webs. The finite element model consists of 1,652 
9-node shell elements with 20 layers each that are 0.0025 
m thick, and the outer geometry is used as reference for 
shell offset. The structure is parametrized in 120 patches for 
thickness, and 8 longitudinal patches for material, which 
are highlighted on Fig. 19. Three candidate materials are 

used: 0 ◦ UD GFRP, biax GFRP and the Rohacell WF110 
foam material. In total, the number of design variables in 
the problem is 2,880.

The example has been solved using additional structural 
criteria, which besides fatigue damage are tip displacement 
and linear buckling. These criteria are necessary to take into 
account to realize this type of structure. For details on the 
implementation of these criteria see Sørensen et al. (2014). 
The optimization problem is given in Eq. (42).

Here, g� is the buckling constraint, gU is the displacement 
constraint and gD is the damage constraint, with the latter 
also including adaptive constraint scaling. Similarly to the 
previous example, a limit of 0.99 is used for the fatigue 
constraint.

The fatigue analysis is carried out using a random spec-
trum of 103 points generated from the random_number() 
intrinsic Fortran function. This loading is scaled using 
cL = 104 in Eq. (25). The analysis is carried out using CLD 
interpolation between the three S-N curves given in Table 2 
for the UD and biax materials. The interpolated S-N curves 
are formed pre analysis and then stored for each non-zero 
entry in the rainflow matrix.

For fatigue evaluation in the foam, only a single S-N 
curve is used with modified Goodman to take into account 
mean stress effects. Also note, that the component-wise 
approach presented in the paper is also applied for evaluat-
ing damage in the foam. It may however yield more accurate 

(42)ℙ4 =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
(x,�)

m̃

s.t. g𝜆 ≥ 2.0

s.t. gU ≤ 1.5

s.t. gD ≤ 0.99

Manufacturing constraints

x ∈ [0, 1]

� ∈ [0, 1]

F

Fig. 19   The main spar model. It is fixed at the root, and loads are distributed between a number of nodes on the webs at the tip. The left figure 
illustrates the density domains and right figure the candidate domains. Measurements are given in meters
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results to apply an isotropic multi-axial fatigue criterion for 
evaluation of the damaging stress. As such, the approach 
for the foam would be equivalent to that applied in Oest and 
Lund (2017) for metal materials.

Fatigue evaluation results in 396,480 damage values. 
These are aggregated using a patch-wise P-norm strategy, 
where damage values are aggregated for each thickness 
domain which is assigned its own designated constraint. The 
problem therefore involve 120 damage constraints. Because 
the adaptive constraint scaling method is dependent on the 
P-value chosen, a rather large value of P = 36 is used to 
get a very accurate measure of the maximum damage for 
the many function values. Note that this is a rather large 
value, however it is chosen based on extensive numerical 
experimentation that indicated stable performance using this 
factor.

The scaling exponent in the inverse P-mean function is 
chosen as s = −0.1 , and PD is chosen as 8. The weighting 
factor cD is changed according to Table 3, the continuation 
of this parameter starts after 200 iterations (or until conver-
gence has been achieved), and is updated after 35 iterations. 
Note that the continuation is applied slowly and the reason 
for this is primarily to keep the stress from rapid increase, 
when changing exponents in the weighting functions. If the 
stress exceed the ultimate strength of the material, it is not 
possible to carry out mean stress correction, causing the 
optimization to stop.

The candidate design variables are initialized with equal 
weighting of x(k=0) = 0.33 , and the density design variables 
are initialized as �(k=0) = 1 . Additionally, a threshold of 
T = 0.1 is used for the thickness move limits and the ply-
drop constraints use S = 1 . Finally, adaptive external move 
limits are capped at 5%.

The optimization converges in 245 iterations, and the con-
vergence behavior is illustrated in Fig. 20. At the first con-
tinuation step, the fatigue constraint becomes significantly 
infeasible. As the damage constraint is formulated using the 
inverse P-mean method, and at this point cD = 1 , the true 
damage is immense. However, as observed, the combination 
of the optimizer and the scaling handles this well. After this 
point, the convergence is more stable, particularly evident 
at the final penalization step applied at the 144th iteration, 
which is barely visible on the convergence plot.

The optimized layup is illustrated in Fig. 21 and the 
distribution of maximum damage components in the spar 
is shown in Fig. 22. The discreteness of the design is at 
Mcnd = 0.325% and Mdnd = 0.973% , thus an almost fully 
discrete design is achieved. The locations of intermediate 
density is observable in Fig. 21. 

The optimized layup is evidently a UD sandwich con-
struction, which is expected as a result of only including a 
flap-wise load case. In a realistic scenario, the structure will 

be subject to loads from multiple directions and an optimiza-
tion under such case will yield a significantly different layup. 
However, such designs are not intuitive as opposed to the 
attained layup, which simplifies the post-optimality analysis, 
the present discussion of the results, and assessment of the 
overall approach.

Most UD material is placed in the spar caps to add the 
necessary stiffness and strength for all criteria. A single UD 
layer is also placed in layer 17 at the top region, however 
this is not significantly damaged and its placement is there-
fore attributed to a local minimum. However, if realizing the 
design, a fiber-reinforced material should be placed at the 
innermost layer anyway to protect the core material. Such is 
not enforced in the present approach and the design is there-
fore not directly manufacturable. Nevertheless, the achieved 
layup does give a vastly improved point of departure for 
the designer, that should be able to acquire a valid high-
performing design through relatively few manual modifica-
tions. The alternative parametrization introduced in Sjølund 
et al. (2018, 2019) specifically addresses optimization of 
sandwich constructions by associating the density variable 
to the layer thickness instead of the constitutive matrix. For 
now, fatigue optimization in the context of this parametriza-
tion is left for future work.

In the transition regions, UD is preferred at both inner- 
and outermost layers. The outermost layers (i.e. at zero 
thickness) provides both stiffness to the displacement and 
buckling criteria, and fatigue strength to resist the damage. 
In the innermost layers in-plane shear damage is critical, 
therefore warranting the placement of UD here. For the 
webs, a UD layer is placed around the bottom and top on 
each side. The main purpose of the UD layer is to carry in-
plane shear loading in these regions, and as such the position 
in the layer is arbitrary. It is observed that the shear damage 
is most critical in innermost UD layers (layer 18 in the left 

Fig. 20   Convergence of the main spar problem. The final mass is 46% 
of the initial mass. All constraints are active at convergence
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web and 19 in the right). As such, a single layer may be suf-
ficient to carry the load in the web regions. However, as with 
the spar caps, these layers would be moved to the very top 
and bottom to form a sandwich for manufacturing purposes.

It is interesting to note, that biax is not selected as a 
material in the either the webs or transition regions as this 
material should be superior in in-plane shear loading. The 
reason for this could simply be attributed to reaching a local 
minimum, however, as the material properties are based on 
interpolated values, and not true measured values, this may 
also skew the result.

5.5 � Discussion

Fatigue of laminated composites is complex, and for some 
cases, the model employed in the present is not entirely ade-
quate. Laminated composite structures are inherently multi-
axial due to the material anisotropy, which results in stress-
interaction effects that may potentially accelerate damage. 

The influence of these stress interaction effects on fatigue, 
however, differ significantly depending on the imposed 
loads, and the type of stress interaction, see Quaresimin 
et al. (2010). The approach employed in this work neglects 
stress interaction, and is therefore only appropriate for struc-
tures with a smaller degree of multi-axial stress states. In 
fact, the fatigue evaluation approach is similar to using a 
max stress/strain approach for static failure evaluation. The 
approach is thus appropriate for structures similar to those 
demonstrated in Example 2, 3 and 4 where the structure is 
primarily damaged by a single stress component in most 
areas. Moreover, this approach is commonly used for struc-
tures with stress-interaction effects coupled with appropriate 
safety factors and reduction of Dlim in Eq. (25), due to com-
putational expense of existing multi-axial assessment meth-
ods. Furthermore, the choice of criterion is often based on 
the particular case at hand. A review of these methods can 
be found in Passipoularidis and Brøndsted (2010). The issue 
with these criteria, particularly for optimization purposes, 
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Fig. 21   Candidate material choice and thickness distribution of the 
eight longitudinal patches. Each square represents a circumferential 
patch assigned a density thickness variable. The number of layers in 
each of these patches is given on top of the stack of layers. Therefore, 
if colors are not strictly red or blue, the candidate choice of the layer 

is not fully discrete, and likewise, if the number of layers is not an 
integer, the top layer is of intermediate density. Note also that layers 
are offset from the top, such that the outermost layer is at zero thick-
ness, which is illustrated in cross-section centered in the figure
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is that they are formulated based on fractions of the stress to 
the fatigue strength of which the latter is determined from 
the material S-N curve. This makes the expression a general 
non-linear equation with no explicit solution. Solving such 
equations as part of an optimization problem, significantly 
increases the computational expense. The appropriateness 
of multi-axial criteria in general has also been questioned 
in recent research (Talreja 2023).

Not captured in this model are load sequence effects 
which can affect performance of laminated composites under 
variable-amplitude loading. It has been reported in litera-
ture that interchanging high and low amplitude load blocks 
affects crack evolution and this can negatively impact fatigue 
life, see Paepegem and Degrieck (2002). This is typically 
included by modifying the Palmgren-Miner rule with fit-
ting parameters determined from materials on a particular 
lamina or laminate to improve fatigue accuracy, see e.g. Post 
et al. (2008) and Passipoularidis and Brøndsted (2010) for 
an overview of such criteria.

A different approach to handling damage is using a 
residual stiffness or strength measure. These models are 
phenomenologically based and tend to give more accurate 
results compared with experiments, however they are typi-
cally more much computationally expensive, see Eliopoulos 
and Philippidis (2011) for an example.

Also not taken into account is the influence of load 
frequency. This is particularly important for reinforced 

polymers which are susceptible to thermal and viscoelastic 
effects. With increasing frequency, the material becomes 
more prone to heat generation, which can by itself cause 
failure (Degrieck and Paepegem 2001). Fatigue tests are 
typically carried out at constant frequency and if in-service 
load frequency differs premature failure may occur. As such, 
it is assumed that the load spectrum is applied at the same 
frequency to the optimized structures as that which is used 
when carrying out experiments for determining the S-N 
curves of the material.

The fatigue model applied in this work is empirical, and 
hence requires a lot of experimental data. Accurate data is 
difficult to acquire due to the numerous effects discussed 
influencing fatigue. As a result, the data is typically affected 
by significant scatter, where the derived material parameters 
only account for the trend, see e.g. Mortensen et al. (2023) 
for an example. If desirable, the fatigue strength can be cor-
rected using safety factors to increase the reliability of the 
structure as is typically done for metals (Norton 2014), e.g. 
if a notch is present, the safety factor represents the stress-
rising effect. The data used in this work is generic, due to 
the main objective being developing the fatigue optimiza-
tion approach, and, thus, correcting for scatter has not been 
considered.

The approach is based on preventing any fatigue damage, 
which is a limitation that implies more material is needed 
for fatigue resistance. To push the material further, higher-
fidelity progressive damage models can be applied, which 
allows the occurrence of cracks, but aims at predicting if 
the crack growth becomes unstable. The major drawback 
of these models is the associated high computational cost, 
which limits their use in an optimization contexts. Some 
efforts have been made to make an adaptive model that is 
able to locally define a high-fidelity model during optimiza-
tion, see e.g. Johansen and Lund (2009). The models treated 
are however still rather small, implying the need for further 
improving the computational efficiency of these methods. 
Effort is being made in this area, but in the context of topol-
ogy optimization, see da Costa and Pinho (2023).

This work has adopted the classical approach to handle the 
locality of damage, i.e. a P-norm aggregation approach with 
adaptive constraint scaling as introduced in Le et al. (2010). 
It is well known that adaptive constraint scaling makes the 
problem non-differentiable, and its effect on the optimiza-
tion result is typically difficult to assess a priori. The non-
differentiability is reduced, when convergence is approached, 
as the scaling factor also convergences to a constant value. 
However, the results may be improved by reducing the over-
all influence of the scaling factor. This is realized by using 
a large P-exponent in the P-norm function, as was done in 
Example 4. It is indeed a general observation that the choice 
of the P-exponent affects the final result despite using adap-
tive constraint scaling, and as such, an appropriate value has 

Fig. 22   Distribution of the maximum damage component in the spar. 
The critical component in the spar cap is D(1) , while at the tip in the 
web and transition regions it is D(12) . The sensitivity of fatigue dam-
age is particularly evident in this plot, where it is observed, that the 
damage is not symmetrically distributed in the spar cap due to the 
slight difference in layup of the transition regions
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to be found through numerical experimentation for each con-
sidered problem. Moreover, such aggregation functions are 
mesh dependent, and thus, if changing the finite element mesh 
fidelity, it may be necessary to find a new appropriate P-value.

Recent research has presented methods for assessing 
these problems. In Kennedy and Hicken (2015), a new class 
of aggregation methods, termed induced aggregations, is 
introduced. These functions eliminate the mesh-dependency 
problem and provide higher accuracy in estimating the maxi-
mum value. This is evaluated in Lambe et al. (2017), where 
a comparison between classical and induced aggregations is 
carried out. It is here concluded that the induced aggrega-
tions are superior in terms of accuracy, however at the cost 
of reduced computational efficiency. These methods are also 
still dependent on an exponent to control the accuracy, and 
may therefore also need coupling with adaptive constraint 
scaling to limit the non-linearity.

A different strategy is presented in Norato et al. (2022) 
where a maximum rectifier function is used to formulate the 
constraint. It is implemented using a shifted softplus func-
tion with the Kreisselmeier-Steinhauser function. Stress-
constrained topology optimization examples are given in the 
paper and demonstrate the approach is able to consistently 
reach good solutions while keeping the convergence stable. 
The examples however also show, that more iterations to 
convergence are typically needed compared to using adap-
tive constraint scaling. Future studies could concern apply-
ing these methods on the fatigue-based problems demon-
strated in this paper to investigate their effect on the results.

The fatigue optimization problem is difficult to solve and 
this has been underlined in this work. The highly non-lin-
ear fatigue equations and aggregation functions makes the 
already non-convex DMTO-parametrized problems more 
likely to end up in a poor local minimum. This problem can 
be partially alleviated by using continuation, however as dis-
cussed, this does not guarantee a good optimum. Addition-
ally, by increasing the penalization exponents by too much 
can result in stress exceeding the ultimate strength of the 
material, and mean stress correction can hence no longer can 
be carried out. If using continuation, an appropriate scheme 
should therefore be found through, potentially extensive, 
numerical experimentation.

Some methods have been proposed in literature to reduce 
the amount of heuristics. A potential strategy could be auto-
matic continuation as proposed by Rojas-Labanda and Stolpe 
(2015), where the penalization exponents are included as 
design variables in the optimization problem, see also da 
Silva et al. (2023). The benefit of this approach is two-fold 
in this context. First, the selection of appropriate penaliza-
tion factors is removed from the user which can be difficult 
to find. Recall that the degree of penalization depends on 
the number of candidates, and that penalization in DMTO is 

carried out using a product of two weighting functions. Sec-
ondly, it is no longer necessary to solve a series of subprob-
lems, which could improve computational efficiency. There 
is a risk however, that the approach is not explicitly protected 
from causing problems with mean stress corrections, which 
is needed to truly make the approach appropriate.

The results demonstrate the possibility of solving fatigue 
problems of varying difficulty using an SLP-based approach. 
However, the various numerical tests also indicate that the 
linear approximations of the fatigue function occasionally 
yield poor estimations of the true fatigue damage. This 
becomes particularly evident, when the optimizer selects 
new slack variable values for the merit function, where the 
linearized constraint might be feasible, when the true dam-
age is not and vice versa. This causes unintended behavior 
by the optimizer, which e.g. may prioritize feasibility res-
toration in cases where the true damage is feasible but the 
approximation is not. A potential solution could be to use 
optimizers that are better suited for non-linear functions, 
such as SQP or MMA, coupled with auxiliary methods to 
make these methods more suitable for the DMTO problem 
with many linear constraints.

Besides the inaccuracies between the actual constraint 
function and linearized constraint, there are also differences 
between the true damage and the constraint function, that 
has been multiplied the adaptive scaling factor cACS . As a 
result, a constraint that is not feasible may be scaled to be 
so by the factor, which is problematic, when the problem 
is scaled using the inverse P-mean function with cD ≠ 1 , as 
the true damage can be significantly higher, than the small 
infeasibility of the scaled damage. In this work, this is con-
trolled by using a right-hand side of 0.99 with an allowable 
infeasibility limit of ulim = 0.01 in the SLP filter. However, 
as is evident in Example 4, this compromises on the optimal-
ity of the result, as the material is potentially not damaged 
to its limits.

Manufacturability has only been partially accounted 
for in the present work, since the main contribution is the 
fatigue optimization approach. Additional techniques could 
be adopted with the DMTO framework to reduce post-pro-
cessing work necessary to make the designs manufacturable. 
For instance, if designing a variable-stiffness laminate, the 
filters proposed in the work of Sørensen and Lund (2015a) 
are available to ensure fiber continuity. Multi-level optimi-
zation approaches have also been proposed, where the first 
step typically utilizes lamination or polar parameters to find 
a theoretical optimal laminate (Albazzan et al. 2019; Izzi 
et al. 2020), and manufacturing constraints being explic-
itly accounted for in the second step of the process as the 
theoretical laminate is realized. Future work could consider 
fatigue optimization in such two-level frameworks.
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6 � Conclusion

This work demonstrates a gradient-based framework for 
high-cycle fatigue optimization, simultaneously consid-
ering material and thickness distribution of laminated 
composite structures by use of the Discrete Material and 
Thickness Optimization (DMTO) parametrization. Fatigue 
analysis is performed using the traditional stress-based 
approach, which involves discretizing a variable-amplitude 
load spectrum by rainflow counting, mean stress correc-
tion using constant life diagrams, calculation of cycles to 
failure using S-N curves and accumulation of load combi-
nation damages with Palmgren-Miner’s sum. The DMTO 
approach makes use of multi-phase interpolation laws for 
penalizing intermediate density and achieving 0/1 designs. 
This is coupled with linear constraints for material choice 
and thickness variation constraints, which makes the para-
metrization appropriate for treating the layer-wise com-
position of laminated composites. Furthermore, manufac-
turing constraints are included to enforce, that material is 
always removed from the top, and to restrict the number of 
plies dropped at a time. To make the problem solvable in 
an optimization context, damage scaling is introduced in 
order to alleviate the non-linear dependence of damage on 
stress. Moreover, the qp-method is used to treat singularity 
issues related to stress-based formulations in optimization 
by relaxing the stress-based damage measure. The scaled 
and relaxed damages are then aggregated using a P-norm 
function to have a continuous approximation of the maxi-
mum damage, which is necessary for applying gradient-
based methods. This allows for efficient computation of 
the gradients using expressions derived by adjoint design 
sensitivity analysis. A number of examples are then solved, 
using sequential linear programming coupled with vari-
ous methods, in order to demonstrate the approach. Both 
benchmark and industrially-relevant examples are solved, 
highlighting the potential of designing efficient damage-
resistant composite structures through use of DMTO.

Appendix A: Sensitivity terms

If the two partial damage derivatives of Eq. (30) are 
expanded with all partial derivatives, Eqs. (43) and (44) are 
achieved.
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Here, x represents an arbitrary design variable type, i.e. 
either material x(p,l,c) or density �(d,l) for the DMTO para-
metrization considered. In the following, each of these par-
tial derivatives are given. First, the partial derivative of the 
P-norm function is stated in Eq. (45).

Derivative of inverse P-mean scaled damage with respect to 
candidate material damages is shown in Eq. (46).

Here, s is the scaling exponent, z is the damage component 
and D are candidate damages with superscripts omitted for 
abbreviation. The derivative of interpolated damage with 
respect to material candidate design variables is given in 
Eq. (47).

The derivative of the RAMP weighting function with respect 
to either design variable type is as shown in Eq. (48).

Partial derivative of the damage component with respect 
to the corresponding cycles to failure is given in Eq. (49).

For the derivative of cycles to failure with respect to equiva-
lent stress, see Eq. (50).

Derivative of equivalent stress with respect to amplitude and 
mean components is stated in Eqs. (51) and (52).
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Note that, for abbreviated notation, indices are not included 
- �a and �m have indices (e, l, c, m, z, i) similar to �eqv . Partial 
derivative of the material stress components with respect to 
structural stress components is as shown in Eq. (53).

The partial derivatives of structural stress with respect to 
design variables are shown in Eq. (54).

Here, �w(x)
�x

 denotes the derivative of the weighting function, 
see Eq. (48).
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