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Abstract
We present an extension of the projection method proposed by Challis et al. (Int J Solids Struct 45(14–15):4130–4146, 
2008) for constrained level set-based topology optimisation that harnesses the Hilbertian velocity extension-regularisation 
framework. Our Hilbertian projection method chooses a normal velocity for the level set function as a linear combination 
of (1) an orthogonal projection operator applied to the extended optimisation objective shape sensitivity and (2) a weighted 
sum of orthogonal basis functions for the extended constraint shape sensitivities. This combination aims for the best possible 
first-order improvement of the optimisation objective in addition to first-order improvement of the constraints. Our formula-
tion utilising basis orthogonalisation naturally handles linearly dependent constraint shape sensitivities. Furthermore, use 
of the Hilbertian extension-regularisation framework ensures that the resulting normal velocity is extended away from the 
boundary and enriched with additional regularity. Our approach is generally applicable to any topology optimisation problem 
to be solved in the level set framework. We consider several benchmark constrained microstructure optimisation problems 
and demonstrate that our method is effective with little-to-no parameter tuning. We also find that our method performs well 
when compared to a Hilbertian sequential linear programming method.

Keywords Level set method · Topology optimisation · Constraints · Hilbertian projection method

1 Introduction

The field of topology optimisation has enjoyed rapid growth 
owing to improved computing power, new optimisation tech-
niques, and application to a wide range of design problems 
(Bendsøe and Sigmund 2004; Deaton and Grandhi 2013; 
Sigmund and Maute 2013). Classical computational meth-
ods for topology optimisation include density-based methods 
(Bendsøe 1989; Rozvany et al. 1992) in which the design 
variables are material densities of elements/nodes in a mesh, 
and level set-based methods (Wang et al. 2003; Allaire 
et al. 2004) in which the boundary of the shape is implicitly 
tracked as the zero level set of a higher dimensional level 
set function. Conventional level set methods rely on the 
Hamilton–Jacobi evolution equation to update the design 

according to a normal velocity field defined on the boundary 
(e.g. Wang et al. 2003; Allaire et al. 2004). An important 
aspect of these methods is extending the normal velocity 
away from the boundary. To this end, the Hilbertian velocity 
extension-regularisation framework, which is well known in 
the context of level set methods (see discussion by Allaire 
et al. (2021b)), can be used to generate a velocity field that 
guarantees a descent direction and has additional regularity 
(smoothness) over the whole computational domain.

Topology optimisation problems often include mul-
tiple constraints. In density-based topology optimisa-
tion (Bendsøe 1989; Rozvany et al. 1992), the applica-
tion of constraints is usually straightforward and handled 
by the optimisation algorithm (e.g. Method of Moving 
Asymptotes (Svanberg 1987)). In the context of conven-
tional level set-based methods, applying constraints is 
more complicated. The augmented Lagrangian method 
(Nocedal and Wright 2006; Birgin and Martínez 2009) 
is a classical approach for constrained optimisation prob-
lems. It converts a constrained optimisation problem into 
a sequence of unconstrained problems that are a combi-
nation of the classical Lagrangian method and quadratic 
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penalty method. In a level set framework, applying the 
method is straightforward: the shape sensitivity of the aug-
mented Lagrangian is used to inform the normal velocity 
for the Hamilton–Jacobi equation (e.g. Guo et al. 2014; 
Allaire et al. 2016; Cao et al. 2021). However, the dif-
ficulty associated with tuning the accompanying param-
eters is problem dependent and scales with the number of 
constraints (Allaire et al. 2021b). The level set sequen-
tial linear programming method (SLP) (Dunning and 
Kim 2015; Dunning et al. 2015) involves linearising the 
optimisation problem into a number of sub-problems that 
are then solved using a linear programming method (e.g. 
the simplex method (Kambampati et al. 2020)). For level 
set-based topology optimisation, applying SLP is fairly 
straightforward except for implementing appropriate trust 
region constraints (Dunning and Kim 2015). The projec-
tion method (Wang and Wang 2004; Challis et al. 2008) 
projects the objective shape sensitivity onto a space that 
will leave the constraints unchanged and combines this 
with constraint shape sensitivities. This approach has been 
used to successfully design material microstructures sub-
ject to isotropy constraints (Challis et al. 2008) but has not 
been widely adopted in the literature. However, similar 
methods have more recently been proposed in the literature 
by Barbarosie et al. (2020) and Feppon et al. (2020) for 
level set topology optimisation. The projection method 
and these two recent works are examples of general null 
space gradient methods (e.g. Nocedal and Wright 2006).

It is natural to consider methods of constrained optimi-
sation that take advantage of the Hilbertian extension-reg-
ularisation framework. For example, Allaire et al. (2021b) 
recently presented an SLP method in the Hilbertian frame-
work. In this paper we revisit the projection method from 
Challis et al. (2008) and combine it with the Hilbertian 
extension-regularisation procedure. Our method constructs 
an orthogonal basis that spans the set of extended constraint 
shape sensitivities and an orthogonal projection operator that 
projects onto the set perpendicular to the extended constraint 
shape sensitivities. We then define the normal velocity for 
the level set function as a linear combination of the orthog-
onal projection operator applied to the extended objective 
function shape sensitivity and a weighted sum of basis func-
tions for the extended constraint shape sensitivities. This 
normal velocity is naturally extended onto the bounding 
domain and endowed with additional regularity due to the 
Hilbertian extension-regularisation. Whilst our method is 
similar to other recently proposed approaches (Barbarosie 
et al. 2020; Feppon et al. 2020), our formulation utilising an 
orthogonal basis provides significant benefits.

To demonstrate our presented Hilbertian projection 
method we consider several linear elastic microstructure 
optimisation (i.e. inverse homogenisation) problems with 
multiple constraints. The constraints naturally arise under 

the enforcement of symmetries for the effective material 
properties, such as isotropy. Irrespective of optimisation 
method, microstructure optimisation has been used suc-
cessfully for a range of design problems including linear 
elastic materials with extremal properties (e.g. Gibiansky 
and Sigmund 2000; Andreassen et al. 2014), multifunc-
tional composites (e.g. Challis et al. 2008), auxetic materi-
als (e.g. Vogiatzis et al. 2017), piezoelectric materials (e.g. 
Silva et al. 1998; Wegert et al. 2022), and multi-material 
composites (e.g. Zhuang et al. 2010; Faure et al. 2017). In 
this work, we consider maximising the bulk modulus with 
and without isotropy constraints and the design of auxetic 
and multi-phase materials. We compare our Hilbertian 
projection method with a Hilbertian sequential linear pro-
gramming (SLP) method (Sect. 5.3.2, Allaire et al. 2021b) 
and show that the Hilbertian projection method is able 
to successfully handle these optimisation problems with 
little-to-no parameter tuning.

The remainder of the paper is as follows. In Sect. 2, 
we discuss the mathematical background for the level set 
method, Hilbertian extension-regularisation procedure, 
and linear elastic microstructure optimisation. In Sect. 3, 
we formulate the Hilbertian projection method and com-
pare our formulation to the null space method presented 
by Feppon et al. (2020). In Sect. 4, we discuss our numeri-
cal implementation. In Sect. 5, we present and discuss 
the example optimisation problems and results. Finally, in 
Sect. 6, we present our concluding remarks.

2  Mathematical background

In this section we give a brief introduction to the level set 
method for topology optimisation and shape derivatives. 
We then discuss the Hilbertian extension-regularisation 
framework. We conclude by describing linear elastic 
microstructure optimisation for single- and multi-phase 
materials.

2.1  The level set method

Level set methods track the boundary of a domain Ω inside 
a bounding domain D ⊂ ℝ

d implicitly via the zero level set 
of a function � ∶ D → ℝ (Sethian 1996; Osher and Fedkiw 
2006). For a domain Ω inside a bounding domain D, the 
level set function � is typically defined as
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Using this definition and assuming that the interface may 
evolve in time, a material derivative of � on �Ω gives

where v is the normal velocity of the interface. In practice, 
the above is solved over the whole bounding domain D 
instead of only on the interface �Ω by extending the velocity 
v away from the boundary. Assuming that the time interval 
(0, T) is small so that the velocity does not vary in time gives 
the Hamilton–Jacobi evolution equation (Sethian 1996; 
Osher and Fedkiw 2006; Allaire et al. 2021b):

where �0(x) is the initial condition for � at t = 0.
It is often useful to reinitialise the level set function as 

the signed distance function dΩ . This ensures that the level 
set function is neither too steep nor too flat near the bound-
ary of Ω (Osher and Fedkiw 2006). The signed distance 
function may be defined as follows (Allaire et al. 2021b):

where d(x, �Ω) ∶= minp∈�Ω |x − p| is the minimum Euclid-
ean distance from x to the boundary �Ω . Several methods 
are available for constructing the signed distance function 
and the reader is referred to Osher and Fedkiw (2006) and 
Allaire et al. (2021b) and the references therein for a detailed 
discussion. In this work we use the following reinitialisa-
tion equation (Peng et al. 1999; Osher and Fedkiw 2006) 
to reinitialise a pre-existing level set function �0(x) as the 
signed distance function:

Here, S is the sign function and Eq. 5 is solved until close 
to steady state. Similar numerical schemes may be used to 
solve for Hamilton–Jacobi evolution and reinitialisation 
(Eqs. 3 and 5).

(1)

⎧
⎪⎨⎪⎩

𝜙(x) < 0 if x ∈ Ω,

𝜙(x) = 0 if x ∈ 𝜕Ω,

𝜙(x) > 0 if x ∈ D�Ω̄.

(2)
��

�t
(t, x) + v(t, x)|∇�(t, x)| = 0,

(3)

⎧⎪⎨⎪⎩

��

�t
(t, x) + v(x)�∇�(t, x)� = 0,

�(0, x) = �0(x),

x ∈ D, t ∈ (0, T),

(4)dΩ(x) =

⎧
⎪⎨⎪⎩

−d(x, 𝜕Ω) if x ∈ Ω,

0 if x ∈ 𝜕Ω,

d(x, 𝜕Ω) if x ∈ D�Ω̄,

(5)

⎧⎪⎨⎪⎩

𝜕𝜙

𝜕t
(t, x) + S(𝜙0(x))(�∇𝜙(t, x)� − 1) = 0,

𝜙(0, x) = 𝜙0(x),

x ∈ D, t > 0.

2.2  Shape derivatives

To find a normal velocity v that reduces some functional 
J(Ω) via solution of the Hamilton–Jacobi equation (Eq. 3) 
we use the notion of shape derivatives. We recall the fol-
lowing useful results from Allaire et al. (2004, 2021b).

Suppose that we consider smooth variations of 
the domain Ω of the form Ω

�
= (I + �)(Ω) , where 

� ∈ W1,∞(ℝd,ℝd) . Then the following definition and 
lemma follow:

Definition 1 (Allaire et al. 2004) The shape derivative of 
J(Ω) at Ω is defined as the Fréchet derivative in W1,∞(ℝd,ℝd) 
at � of the application � → J(Ω

�
) , i.e.

with lim
�→0

�o(�)�
‖�‖ = 0, where the shape derivative J�(Ω) is a 

continuous linear form on W1,∞(ℝd,ℝd).

Lemma 1 (Allaire et al. 2004) Let Ω be a smooth-bounded 
open set and f ∈ W1,1(ℝd) . Define

Then J is differentiable at Ω and

for any � ∈ W1,∞(ℝd,ℝd).

Céa’s formal method (Céa 1986) can be applied to find 
the shape derivative of a functional J that depends on fields 
that satisfy specified state equations (e.g. Allaire et al. 
2004, 2021b). The method relies on defining a Lagrangian 
functional L that satisfies the two following properties: 

1. The state equations are generated by stationarity of L 
under variations of the fields.

2. L is equal to the functional of interest J at the solution 
to the state equations.

Once these properties are satisfied the shape derivative 
of the functional of interest can be found using Lemma 1 
(Allaire et al. 2004).

2.3  Hilbertian extension‑regularisation

To infer a descent direction from J�(Ω) we utilise the 
Hilbertian extension-regularisation method as dis-
cussed by Allaire et al. (2021b). This involves solving an 

(6)J(Ω
�
)(Ω)) = J(Ω) + J�(Ω)(�) + o(�)

(7)J(Ω) = ∫Ω

f dΩ.

(8)J�(Ω)(�) = ∫Ω

div(�f ) dΩ = ∫
�Ω

f � ⋅ n dΓ,
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identification problem over a Hilbert space H on D with 
inner product ⟨⋅, ⋅⟩H : Find gΩ ∈ H such that 

For an unconstrained optimisation problem the resulting 
field gΩ is the extended shape sensitivity that is used to 
evolve the interface with � = �gΩn, where 𝜏 > 0 is suffi-
ciently small.

The Hilbertian extension-regularisation method provides 
two important benefits: it naturally extends the shape sensi-
tivity from �Ω onto the bounding domain D and ensures a 
descent direction for J(Ω) with additional regularity (i.e. H 
as opposed to L2(�Ω) ) (Allaire et al. 2021b). As discussed by 
Allaire et al. (2021b), this may be viewed as an analogue to the 
sensitivity filtering used in density-based topology optimisa-
tion algorithms.

A common choice for the Hilbert space H is H1(D) with 
the inner product

where � is the so-called regularisation length scale (e.g. 
Allaire et al. 2016; Feppon et al. 2019; Allaire et al. 2021a). 
For microstructure optimisation, we use the periodic 
Sobolev space H = H1

per
(D) and use the inner product 

defined in Eq. 10.

2.4  Linear elastic microstructure optimisation

In this section we briefly discuss computational homogeni-
sation and topology optimisation in the context of periodic 
microstructure design.

The state equations for linear elastic homogenisation over a 
domain Ω contained in a representative volume element (RVE) 
D ⊂ ℝ

d under an applied strain field �̄�ij are (e.g. Yvonnet 2019)

where �ij is the stress tensor, �ij = �ij(u) is the D-periodic 
strain field with displacement u , and Cijkl is the spatially 
dependent elasticity tensor. Note that in the above we use 

(9)⟨gΩ,w⟩H = −J�(Ω)(wn) ∀w ∈ H.

(10)⟨u, v⟩H = �2 ∫D

∇u ⋅ ∇v dΩ + ∫D

uv dΩ,

(11)−�ij,i = 0 in Ω,

(12)�ijnj = 0 on �Ω,

(13)�ij = Cijkl�kl,

(14)�ij =
1

2

(
ui,j + uj,i

)
,

(15)
1

Vol(D) ∫Ω

𝜀kl dΩ = �̄�kl,

summation notation for indices and comma notation for 
derivatives.

To compute the homogenised stiffness tensor C̄ijkl of a peri-
odic material, the above state equations are solved over Ω for 
three ( d = 2 ) or six ( d = 3 ) different combinations of macro-
scopic strain fields. These macroscopic strain fields are applied 
by decomposing the strain into the constant macroscopic strain 
field and fluctuation strain field as 𝜀ij = �̄�ij + �̃�ij . The macro-
scopic strain fields are then given by the unique components 
of �̄(kl)

ij
=

1

2

(
𝛿ik𝛿jl + 𝛿il𝛿jk

)
 in k and l. For example, in two 

dimensions, the unique macroscopic strains are �̄�(11)
ij

 , �̄�(22)
ij

 , and 
�̄�
(12)

ij
 . The notation �̃�(kl)

ij
 is used to denote the strain field fluctua-

tion arising from the applied strain field �̄�(kl)
ij

.
In practice, Eqs. 11–15 are solved using a finite element 

method and the weak formulation given here:

Weak form 1 For each unique constant macroscopic strain 
field �̄�(kl)

ij
 , find ũ(kl) ∈ H1

per
(Ω)d such that

where �ij(v) =
1

2

(
vi,j + vj,i

)
.

2.4.1  Single‑phase problems

For single-phase problems (one solid and a void phase), once 
the solution ũ(ij) to Weak Form 1 has been found for each 
unique macroscopic strain �̄�(ij)pq  , the resulting homogenised 
stiffness tensor may be computed via (Yvonnet 2019)

assuming that Vol(D) = 1.
To evaluate Weak Form 1 and the homogenised stiffness 

tensor above, we utilise the ersatz material approximation. 
This method, which is classical in the literature (e.g. Allaire 
et al. 2004), fills the void phase with a soft material so that the 
state equations can be resolved without a body-fitted mesh. To 
this end, for small �void we take

and relax integration to be over D. We can provide a smooth 
approximation to Eq. 18 using a smoothed Heaviside func-
tion H�

(16)
∫Ω

Cpqrs𝜀rs(ũ
(kl))𝜀pq(v) dΩ

= −∫Ω

Cpqrs�̄�
(kl)
rs

𝜀pq(v) dΩ ∀ v ∈ H1
per
(Ω)d,

(17)C̄ijkl(Ω) = ∫Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)�̄�(kl)

rs
dΩ,

(18)Cijkl(x) =

{
Cijkl if x ∈ Ω,

�voidCijkl if x ∈ D ⧵Ω,
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where � is half the length of the small transition region of 
H�(�) between 0 and 1. Equation 18 can then be replaced 
with

It is important to note that the ersatz material approximation 
is consistent (Allaire et al. 2021b). That is, as �void → 0 , the 
approximation becomes exact.

We conclude this section by stating the shape derivative of 
the homogenised stiffness tensor:

Lemma 2 The shape derivative of Eq. 17 is given by

Proof See Appendix 1.

2.4.2  Multi‑phase problems

For multi-phase problems, we utilise the colour level set 
method in which up to 2M phases can be represented by 
the sign of M level set functions (Wang and Wang 2004; 
Allaire et al. 2014a). For example, in the case of four phases 
Ω1,Ω2,Ω3 and Ω4 with two level set functions �1 and �2 , 
we have

We further denote the domains associated with each level set 
function �1 and �2 as D1 and D2 , respectively.

Figure 1 shows an illustration of this case.
In a similar way to Eq. 20 we can interpolate the value of 

the stiffness tensor between these domains via

where Cijkl,� is the elasticity tensor for the phase occupying 
Ω� . In this multi-phase case we have replaced the level set 
functions �1 and �2 with dD1

 and dD2
 denoting their respective 

(19)H𝜂(𝜙) =

⎧
⎪⎨⎪⎩

0 if 𝜙 < −𝜂,
1

2
+

𝜙

2𝜂
+

1

2𝜋
sin

�
𝜋𝜙

𝜂

�
if �𝜙� ≤ 𝜂,

1 if 𝜙 > 𝜂,

(20)Cijkl(�) = Cijkl(1 − H�(�)) + �voidCijklH�(�).

(21)
C̄�
ijkl
(Ω)(�) = ∫

𝜕Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)

× (𝜀rs(ũ
(kl)) + �̄�(kl)

rs
) � ⋅ n dΓ.

(22)

⎧⎪⎨⎪⎩

𝜙1 < 0 & 𝜙2 > 0 if x ∈ Ω1,

𝜙1 > 0 & 𝜙2 < 0 if x ∈ Ω2,

𝜙1 < 0 & 𝜙2 < 0 if x ∈ Ω3,

𝜙1 > 0 & 𝜙2 > 0 if x ∈ Ω4.

(23)

Cijkl(dD1
, dD2

)

= Cijkl,1(1 − H�(dD1
))H�(dD2

)

+ Cijkl,2H�(dD1
)(1 − H�(dD2

))

+ Cijkl,3(1 − H�(dD1
))(1 − H�(dD2

))

+ Cijkl,4H�(dD1
)H�(dD2

),

signed distance functions. This change facilitates shape dif-
ferentiation. Unlike the situation discussed by Allaire et al. 
(2016), periodicity of D ensures that this replacement is 
valid provided the level set functions are reinitialised often. 
Additional care should then be taken regarding the cal-
culation of certain quantities and their shape derivatives. 
Namely, the homogenised stiffness tensor (Eq. 17) becomes

The volume of Ω1 is given by

Similar expressions are used for Ω2 , Ω3 , and Ω4.

(24)
C̄ijkl(D1,D2)

= ∫D

Cpqrs(dD1
, dD2

)(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)�̄�(kl)

rs
dΩ.

(25)VolΩ1
(D1,D2) = ∫D

(1 − H�(dD1
))H�(dD2

) dΩ.

D

D1

φ1 < 0

∂D1φ1 > 0

(a)

D

D2

φ2 < 0

∂D2

φ2 > 0

(b)

D

Ω3{
φ1 < 0,
φ2 < 0

Ω4{
φ1 > 0,
φ2 > 0

Ω2{
φ1 > 0,
φ2 < 0

Ω1{
φ1 < 0,
φ2 > 0

(c)

Fig. 1  An illustration of colour level sets with two level set functions 
and four phases. a and b show the domain D1 and D2 represented via 
the level set function �1 and �2 , respectively. c shows the colour rep-
resentation of Ω1, Ω2 , Ω3, and Ω4 for different signs of �1 and �2
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Integration over the whole cell D in Eqs. 24 and 25 with 
dependence on the signed distance functions differs from 
the single-phase case where integration is over the domain 
Ω occupied by the solid phase (see Eq. 17). Shape differenti-
ability of the signed distance function and a coarea formula 
can be used in this multi-phase case to derive the shape 
derivative. We utilise the “approximate” formula discussed 
by Allaire et al. (2014a). This assumes that the Heaviside 
smoothing parameter � is small and that the principal cur-
vatures of �Ω vanish.

Lemma 3 The approximate shape derivatives of Eqs. 24 and 
25 under variation of the domain D1 by �1 are

where g = H�(dD1
) and

Analogous expressions follow for �2 and Ω2 , Ω3 , and Ω4.

Proof See Appendix 2.

We note that comparisons between the “true” formula, 
“Jacobian-free” formula (zero principal curvatures), and 
“approximate” formula have been discussed for compliance 
elsewhere in the literature (Allaire et al. 2014a, 2016). It 
suffices to mention that Allaire et al. (2016) found that the 
“approximate” formula does not capture the distortion that 
arises due to the ray integration and approximation of the 
principal curvatures in the “true” formula.

3  Hilbertian projection method

The Hilbertian framework yields a descent direction 
� = �gΩn for unconstrained optimisation problems. How-
ever, for constrained optimisation problems such as

the choice of � is more difficult.

(26)

C̄�
ijkl
(D1,D2)(�1)

≈ −∫
𝜕D1

𝜕Cpqrs

𝜕g
(𝜀pq(ũ

(ij)) + �̄�(ij)
pq
)

× (𝜀rs(ũ
(kl)) + �̄�(kl)

rs
) �1 ⋅ n dΓ,

(27)Vol�
Ω1
(D1,D2)(�1) ≈ ∫

�D1

H�(dD2
) �1 ⋅ n dΓ.

(28)

min
Ω∈Uad

J(Ω)

s.t. Ci(Ω) = 0, i = 1,… ,N,

a(u, v) = l(v), ∀v ∈ V ,

In the literature a variety of optimisation methods deal 
with this problem but few of these take advantage of the Hil-
bertian framework. Allaire et al. (2021b) recently presented 
a sequential linear programming (SLP) method in the Hil-
bertian framework. The projection method uses orthogonal 
projections to evolve the design in a direction that aims for 
best possible improvement of the objective functional whilst 
improving the constraint functionals (Challis et al. 2008). 
In the following, we present a Hilbertian extension of the 
projection method for constrained topology optimisation.

3.1  Preliminaries

We proceed by first solving the following set of scalar Hil-
bertian extension-regularisation problems over H for an 
objective functional J(Ω) and constraint functionals Ci(Ω):

Find gΩ ∈ H and �Ωi ∈ H such that

for all i = 1,… ,N, with inner product ⟨⋅, ⋅⟩H and norm 
‖ ⋅ ‖H =

√⟨⋅, ⋅⟩H .
Next we use Gram–Schmidt orthogonalisation to remove 

linearly dependent constraints from the set {�Ωi}
N
i=1

 to obtain 
the set {𝜇Ωp}

N̄
p=1

 , where N̄ ≤ N . We use {�̄�Ωp} to denote the 
corresponding orthogonal basis that spans the set C ⊂ H of 
extended constraint shape sensitivities. The basis {�̄�Ωp} can 
be used to construct an orthogonal projection operator PC⟂ 
that projects the shape sensitivity gΩ onto the set C⟂ perpen-
dicular to the set of extended constraint shape sensitivities. 
We define this operator as

Then, by construction, evolving the level set function 
using normal velocity PC⟂gΩ would to first order improve 
the objective functional J(Ω) whilst leaving the constraint 
functionals Ci(Ω) unchanged. On the other hand, the set of 
basis functions {�̄�Ωp} describes directions that to first order 
improve the constraint functionals Ci(Ω).

3.2  Formulation

The Hilbertian projection method can then be formulated as 
follows: For some rate parameter � ∈ ℝ , suppose we choose 
vΩ ∈ H in the deformation field � = �vΩn so that J(Ω) and 
Ci(Ω) decrease via (Challis et al. 2008)

(29)⟨gΩ, v⟩H = −J�(Ω)(vn), ∀v ∈ H, and

(30)⟨�Ωi, v⟩H = −C�
i
(Ω)(vn), ∀v ∈ H

(31)PC⟂gΩ = gΩ −

N̄�
p=1

⟨�̄�Ωp, gΩ⟩H
‖�̄�Ωp‖2H

�̄�Ωp.
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It is important to note that we purposefully pose the former 
requirement as “min possible” so that the objective func-
tional may increase when required to improve constraints. 
Furthermore, linearly dependent constraints in the optimi-
sation problem need to be consistent to ensure that the sec-
ond line of Eq. 32 is well posed. Specifying constraints that 
have linearly dependent shape sensitivities but for which the 
directions of improvement are in contradiction would violate 
this requirement.

In the Hilbertian framework, Eq. 32 may be rewritten 
as

Note that the change in sign comes from the application of 
Eqs. 29 and 30. We choose the following linear combina-
tion for vΩ:

where �p ∈ ℝ are determined using ⟨�Ωp, vΩ⟩H = �Cp for 
p = 1,… , N̄ . This generates a lower-triangular linear system 
of the form

which can easily be solved via forward substitution (Challis 
et al. 2008).

To first order, the first term of Eq. 34 improves the 
objective whilst leaving the constraints unchanged due to 
orthogonality, whilst the second term improves the con-
straints with extended shape sensitivities that contribute 
to the basis {�̄�Ωp} . In the numerical examples, we have 
observed satisfaction of all constraints at convergence 
of the optimisation algorithm, including those that have 
linearly dependent shape sensitivities. The square root 
term of Eq. 34 is included to facilitate a balance between 
improving the objective and constraints.

3.3  Parameters

As discussed by Challis et al. (2008), the rate param-
eter � should be chosen to ensure 1 −

∑N̄

p=1
𝛼2
p
≥ 0 and ∑N̄

p=1
𝛼2
p
≥ 𝛼2

min
 . The new parameter �min then controls the 

balance between improving the objective or constraints. 

(32)

{
J�(Ω)(vΩn) = min possible,

C�
i
(Ω)(vΩn) = −�Ci.

(33)

�⟨gΩ, vΩ⟩H = max possible,

⟨�Ωi, vΩ⟩H = �Ci.

(34)vΩ =

�����1 −

N̄�
p=1

𝛼2
p

PC⟂gΩ

‖PC⟂gΩ‖H +

N̄�
p=1

𝛼p

�̄�Ωp

‖�̄�Ωp‖H ,

(35)𝜆Cp =

p−1�
l=1

𝛼l

⟨�̄�Ωl,𝜇Ωp⟩H
‖�̄�Ωl‖H + 𝛼p‖�̄�Ωp‖H ,

For example, �min = 1 ignores the objective function in 
Eq. 28 and instead solves a constraint satisfaction prob-
lem. As a result, the method only has a single parameter 
�min , whilst � is dictated by the inequalities above. In gen-
eral, we find that �min does not require fine tuning and 
unless otherwise stated we choose �2

min
= 0.1.

3.4  Comparison to null space methods

Our formulation is similar to null space methods recently 
developed by Barbarosie et al. (2020) and Feppon et al. 
(2020), both of which present a similar formulation. In the 
following we discuss some differences between our Hilber-
tian projection method and the null space method proposed 
by Feppon et al. (2020).

Most notably, our formulation makes use of an orthogo-
nal basis for the set of extended constraint shape sensitivi-
ties. This avoids a possibly expensive matrix inversion that 
appears in the algorithm presented by (Feppon et al. 2020). 
Our use of the orthogonal basis also avoids reliance on the 
linear independence constraint qualification (LICQ) condi-
tion (Sect. 2.1, Feppon et al. 2020). Our method therefore 
naturally handles linearly dependent constraint shape sensi-
tivities. Such dependencies often appear in microstructure 
optimisation problems when symmetries are imposed on the 
effective material properties (e.g. Sects. 5.2 and 5.4 below). 
Multi-phase level set-based topology optimisation via the 
colour level set method (Wang and Wang 2004; Allaire et al. 
2014a) can also give rise to such linear dependency (e.g. 
Sect. 5.4 below). The ability of the Hilbertian projection 
method to naturally handle these situations gives the user 
more freedom in how topology optimisation problems are 
posed and avoids additional special treatment of linearly 
dependent constraint sensitivities.

For equality constrained problems when LICQ is satis-
fied, both the null space method (Feppon et al. 2020) and 
our Hilbertian project method give equivalent directions for 
improvement of the objective and violated constraints, up 
to coefficients �p and constant � . However, the method of 
attaining this improvement is quite different. In this work, 
the second term of Eq. 34 is a linear combination of the 
orthogonal basis of the set of extended constraint shape 
sensitivities. The coefficients �p are chosen to improve 
constraints exponentially, as per the second requirement in 
Eq. 33. The null space instead uses a Gauss–Newton direc-
tion for ensuring exponential decay of violated constraints 
(Lemma 2.5 and Proposition 2.6, Feppon et al. 2020). This 
again relies on LICQ and possibly expensive matrix inver-
sion discussed above.

Finally, unlike the null space methods proposed by Bar-
barosie et al. (2020) and Feppon et al. (2020), the Hilber-
tian projection method as formulated above is unable to 
handle inequality constraints. Such an extension could be 
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considered in the future using slack variables or by adopt-
ing the procedure used by either Barbarosie et al. (2020) 
or Feppon et al. (2020). Interestingly, in terms of the total 
length covered to reach the optimum, Feppon et al. (2020) 
found that their dual quadratic programming method for han-
dling inequality constraints yielded equivalent performance 
when compared to the method of slack variables. However, 
using slack variables introduces additional computational 
cost and possibly further parameter tuning (Feppon et al. 
2020). For our implementation this additional cost should 
be small owing to the use of orthogonalisation. As such the 
slack variable method would be an appropriate first recourse 
for implementing inequality constraints within the Hilbertian 
projection method. This would be similar to the approach 
taken by Schropp and Singer (2000).

4  Numerical implementation

In the following we describe the numerical implementation 
of our topology optimisation algorithm. We first discuss 
the resolution of state equations and Hamilton–Jacobi-type 
equations followed by an overview of the optimisation algo-
rithm. We finish with a brief discussion of the Hilbertian 
SLP method which is compared to our presented Hilbertian 
projection method.

4.1  Resolving state and Hamilton–Jacobi‑type 
equations

To solve the state equations and the Hilbertian extension-
regularisation problems we use the finite element package 
Gridap (Badia and Verdugo 2020; Verdugo and Badia 2022) 
in the programming language Julia. In particular, we discre-
tise the periodic domain D ⊂ ℝ

d into nd linear quadrilateral 
(d = 2) or hexahedral (d = 3) elements with element width 
Δx and discretise the level set function at the nodes of the 
triangulation. To reduce computational cost when solving 
the state equations, we remove any elements that are com-
pletely void phase and leave a strip of ersatz material near 
the phase interface. The resulting linear systems for the state 
equations and Hilbertian extension-regularisation problems 
are then solved using a direct method in 2D or a GPU-based 
Jacobi pre-conditioned conjugate gradient method in 3D.

For the Hamilton–Jacobi evolution equation and signed 
distance reinitialisation equation (Eqs. 3 and 5), we use 
standard first-order Godunov upwind finite difference 

schemes (Peng et al. 1999; Allaire et al. 2004; Osher and 
Fedkiw 2006) that have been implemented on GPUs using 
CUDA.jl (Besard et al. 2018). For the Hamilton–Jacobi evo-
lution equation we use ⌊n∕10⌋ or ⌊n∕3⌋ number of time steps 
in two dimensions or three dimensions, respectively. We are 
more conservative in three dimensions because we have less 
elements along each axial direction. For the reinitialisation 
equation we iterate until reaching a stopping condition

where q is the iteration number. In addition, for the sign 
function S we use the common approximation

that applies on a Cartesian grid with square elements of side 
length Δx (Osher and Fedkiw 2006).

4.2  Algorithm overview

In Algorithm 1 we present our optimisation algorithm 
that is based on the theory discussed in Sects. 2 and 3. 
Algorithm 1 is similar to Algorithm 5 presented by Allaire 
et al. (2021b), with the addition of a line search method 
for determining the Courant–Friedrichs–Lewy (CFL) coef-
ficient � for solving the Hamilton–Jacobi evolution equa-
tion (e.g. Allaire et al. 2021a) with time step (Osher and 
Fedkiw 2006)

Note that we omit the indices on � that appear in Algo-
rithm 1 for sake of clarity. In general, the line search method 
helps to remove oscillations in the optimisation history and 
improve convergence. For the stopping criterion we require 
that the current objective value compared to the previous 
five is stationary and that the constraints are satisfied within 
specified tolerances.

The Hilbertian projection method is implemented using 
the package DoubleFloats.jl that gives a machine epsilon 
of roughly 5 × 10−32 . This prevents accumulation of round-
off error when generating the projection operator that can 
affect the optimisation history. All other computations are 
completed in standard double precision.

(36)‖𝜙q − 𝜙q−1‖∞ < 5 × 10−5,

(37)S(�) =
�√

�2 + �∇��2Δx2

(38)Δt =
�Δx

‖vΩ‖∞ .
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Algorithm 1 Optimisation Algorithm
Initialisation: Initialise Ω0 inside a computational

domain D with mesh T and a level set function φ0.
1: Find the initial solution u(ij) to the homogenisation

problem for each unique ε̄(ij).
2: for q = 1, . . . , qmax do
3: Calculate the shape sensitivity of the objective

J(Ωq−1) and constraints Ci(Ωq−1).
4: Solve scalar Hilbertian extension-regularisation

problems for the objective and constraints with
length scale β.

5: Apply the Hilbertian projection method to find
vΩ.

6: for k = 1, . . . , kmax do
7: Solve H-J evolution equation with CFL coef-

ficient γq−1,k to find new domain Ω̄k with
associated level set function φ̄k.

8: Solve reinitialisation equation.
9: Solve state equations for linear elastic

homogenisation and calculate the new
objective Jnew.

10: if Jnew < J(Ωq−1)+ξ|J(Ωq−1)| or γq−1,k <
γmin then

11: Increase the CFL coefficient:

γq,k = min(δincγq−1,k, γmax).

12: Accept the new iteration with Ωq = Ω̄k

and φq = φ̄k.
13: Break inner loop.
14: else
15: Decrease the CFL coefficient:

γq−1,k+1 = max(δdecγq−1,k, γmin).

16: Reject the new iteration and continue loop.
17: end if
18: end for
19: if |J(Ωq) − J(Ωq−j)| ≤ ε1|J(Ωq)|, ∀j =

1, . . . , jmax and |Ci(Ωq)| < ε2 ∀i then
20: return Ωq and φq.
21: end if
22: end for

Table 1 gives the parameter values used for all the optimisa-
tion examples unless otherwise stated in Sect. 5.

4.3  Comparison to sequential linear programming 
(SLP)

We compare the Hilbertian projection method to the Hilbertian 
SLP method presented by Allaire et al. (2021b) (Sect. 5.3.2). 
We make two adjustments to the method. Firstly, to match our 
formulation we replace the inequality constraints with equality 
constraints. In addition, we change the trust region constraints 
for the constraint functionals to be

for i = 1,… ,N  . For several two-dimensional problems 
we find that this choice promotes convergence and better 

(39)��i� ≤ Δx

2‖�i‖H

optimisation results. However, as we will discuss later, 
choosing trust region constraints is not straightforward for 
our example optimisation problems.

We implement Hilbertian SLP by adjusting line 5 of 
Algorithm 1 accordingly. To solve the resulting linearised 
optimisation problem we use the Julia packages JuMP.jl 
(Dunning et al. 2017) and Ipopt.jl (Wächter and Biegler 
2006).

5  Example problems

In the following we give the optimisation results for several 
example problems that have been solved with both the Hil-
bertian projection method and Hilbertian SLP method.

5.1  Example 1: maximum bulk modulus

In this example we consider a bounding domain D = [0, 1]d 
that contains a solid phase and void phase. The solid phase 
is constructed from an isotropic medium with E = 1 and 
� = 0.3 . Subject to a volume constraint Vol(Ω) = 1∕2 , we 
maximise the effective bulk modulus �̄�(Ω) of the material. 
The bulk modulus is a measure of stiffness to volumetric 
strain given by

in two dimensions or

(40)�̄� =
1

4
(C̄1111 + C̄2222 + 2C̄1122)

Table 1  Parameter values used for optimisation examples

Any variation in the parameters from these values will be specifically 
stated in the relevant example problem section

Parameter Value Type

q
max

1000 Max iterations
k
max

10 Max line search iterations
Δx 1/n Mesh spacing
�
void

0.001 Ersatz material coeff
� 1.5Δx Heaviside smoothing
� 4Δx Hilbertian ext.-reg
�2

min
0.1 Hilbertian proj. meth

� 0.5 Hilbertian proj. meth
�
min

0.001 H-J equation
�
max

0.1 H-J equation
�
reinit

0.1 Reinit. equation
� 0.005 Line search
�
inc

 , �
dec

1.1, 0.7 Line search
�
1
 , �

2
0.01, 0.0001 Stopping criteria

j
max

5 Stopping criteria
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in three dimensions. In other words, we seek to solve the 
optimisation problem:

The last line represents the satisfaction of the state equations.
In two dimensions we use a periodic starting structure 

with four equally spaced holes. For three dimensions the 
initial boundary between void and solid material is given 
by a Schwarz P minimal surface. It is well known that in 
two dimensions hole nucleation is not possible under Ham-
ilton–Jacobi evolution (e.g. Allaire et al. 2004). For this 
reason we initialise the two-dimensional optimisation prob-
lems with more holes than required. Topological derivatives 
could be incorporated to rectify this, but this is outside of 
the scope of the current paper. We also note that different 
starting structures could be used provided they are periodic 
and have non-zero stiffness.

Figures 2 and 3 show the starting structures and optimisa-
tion results for two and three dimensions, respectively, for 
both the Hilbertian projection method and SLP. In addition, 
we compare the objective value with the Hashin–Shtrikman 

(41)
�̄� =

1

9
(C̄1111 + C̄2222 + C̄3333

+ 2(C̄1122 + C̄1133 + C̄2233))

(42)

min
Ω∈Uad

− �̄�(Ω)

s.t. Vol(Ω) = 1∕2,

a(u, v) = l(v), ∀v ∈ V .

(HS) upper bound (Hashin and Shtrikman 1963). Table 2 
shows a summary of the results.

In two dimensions both the Hilbertian projection method 
(Fig. 2b, d) and Hilbertian SLP (Fig. 2c, e) perform well, 
converging in 32 and 12 iterations, respectively, at 99.71% 
and 99.51% of the HS bound. In addition, the resulting struc-
tures are geometrically similar and match classical results 
in the literature (Sect. 2.10.3, Bendsøe and Sigmund 2004). 
It is worth noting that no topological changes occur in this 
example.

In three dimensions the Hilbertian projection method 
converges to 99.86% of the HS bound, whilst Hilbertian 
SLP converges to 71.07% of the bound. Over the course 
of the iteration history, topological changes occur for the 
Hilbertian projection method, whilst SLP fails to evolve 
from the initial topology. The resulting structure from the 
Hilbertian projection method matches other classical results 
(Sect. 2.10.3, Bendsøe and Sigmund 2004).

5.2  Example 2: maximum bulk modulus 
with isotropy

In Example 2, we consider the same problem setup as Exam-
ple 1 with the addition of macroscopic isotropy constraints. 
This ensures that the resulting homogenised stiffness tensor 
is invariant under rotation.

In two dimensions the optimisation problem is given by

Fig. 2  Two-dimensional optimisation results for Example 1: maxi-
mum bulk modulus. For the starting structure a, b and  c  show the 
final structures for the Hilbertian projection method and SLP, respec-

tively, whilst d  and e  show the respective iteration histories. The 
Hashin–Shtrikman upper bound for the bulk modulus is given by the 
dashed black line
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The constraints Ci(Ω) are given by

(43)

min
Ω∈Uad

− �̄�(Ω)

s.t. Vol(Ω) = 1∕2,

Ci(Ω) = 0, i = 1,… , 6,

a(u, v) = l(v), ∀v ∈ V .

(44)
√
4�̄�2 + 8�̄�2C1 = C̄1111 − �̄� − �̄�,

(45)
√
4�̄�2 + 8�̄�2C2 = C̄2222 − �̄� − �̄�,

(46)
√
4�̄�2 + 8�̄�2C3 =

√
2(C̄1122 − �̄� + �̄�),

(47)
√
4�̄�2 + 8�̄�2C4 = 2C̄1112,

where �̄� is the isotropic shear modulus given by

Analogous expressions appear in three dimensions and 
the number of isotropy constraints increases from 6 to 21 
(Challis 2009). It should be noted that the term 

√
4�̄�2 + 8�̄�2 

appears as a normalisation coefficient and is considered con-
stant for the purpose of the shape differentiation. Further-
more, owing to the symmetry of the isotropy constraints the 
extended constraint shape sensitivities have a nullity of two. 
Our method handles these with no special treatment.

To visualise the behaviour of the isotropy constraints 
in the iteration history, we define the effective anisotropy 

(48)
√
4�̄�2 + 8�̄�2C5 = 2C̄2212,

(49)
√
4�̄�2 + 8�̄�2C6 = 2(C̄1212 − �̄�),

(50)�̄� =
1

8
(C̄1111 + C̄2222) −

1

4
C̄1122 +

1

2
C̄1212.

Fig. 3  Three-dimensional optimisation results for Example 1: maxi-
mum bulk modulus. For the starting structure a, b and  c  show the 
final structures for the Hilbertian projection method and SLP, respec-

tively, whilst d  and e  show the respective iteration histories. The 
Hashin–Shtrikman upper bound for the bulk modulus is given by the 
dashed black line

Table 2  Summary of 
optimisation results for Example 
1: maximum bulk modulus

Method d Fig �̄� HS bound Vol Iters

Proj 2 2b, d 0.1854 0.1860 0.5001 32
SLP 2 2c, e 0.1850 0.1860 0.5001 12
Proj 3 3b, d 0.2304 0.2308 0.5000 34
SLP 3 3c, e 0.1640 0.2308 0.5000 43
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Ā to be the sum of squares of the violation of these con-
straints. That is,

For the two-dimensional problem we implement both the 
full set of isotropy constraints as well as the single con-
straint Ā = 0 . We find that the SLP method struggles with 
the full set of constraints. For this reason we instead use 
Ā = 0 as the isotropy constraint for the SLP method. For 
the Hilbertian projection method we find that the full set of 
constraints is more effective. This matches previous litera-
ture (e.g. Challis et al. 2008; Challis 2009).

Figure 4 shows the two-dimensional results for the Hil-
bertian projection method with the full set of constraints 
and single anisotropy measure constraint, and SLP with 
the anisotropy measure constraint. We omit the starting 
structure as this is the same as previously (Fig. 2a). Fig-
ure 5 shows the three-dimensional results for the Hilber-
tian projection method and SLP. Table 3 shows a summary 
of the results for this example.

In two dimensions, the Hilbertian projection method 
performs well for the full set of constraints and the single 
anisotropy measure constraint. The number of iterations 
is markedly lower when using the full set of constraints 
(78 vs. 220). This is unsurprising because including the 

(51)Ā(Ω) =

√∑
Ci(Ω)

2.

individual symmetry constraints enables the projection 
method to improve each constraint separately (Challis 
et  al. 2008; Challis 2009). The final optimisation val-
ues with the full set or single constraint are very similar, 
being 99.68% and 99.69% of the HS bound, whilst the 
final structures are geometrically identical under a periodic 
shift of half the cell edge length along each coordinate 
direction. The resulting structures match other classical 
results (Sect.  2.10.3, Bendsøe and Sigmund 2004). In 
contrast, the SLP method does not manage to reduce the 
measure of anisotropy to zero and reaches the maximum 
number of iterations. However, the final structure obtained 
with SLP (Fig. 4c) is very close to those obtained with the 
Hilbertian projection method (Fig. 4a and b). We suspect 
that SLP fails to converge due to the difficulty associated 
with choosing the trust region constraints.

For the three-dimensional results, we find that the Hil-
bertian projection method with the full set of constraints 
converges in 53 iterations to 99.12% of the HS bound. The 
final structure again matches known results from the litera-
ture (Sect. 2.10.3, Bendsøe and Sigmund 2004). For SLP, the 
optimisation algorithm fails to converge in 1000 iterations 
and the final structure is clearly not optimal.

These results demonstrate that the Hilbertian projection 
method is able to handle a large number of constraints (22 
in 3 dimensions) without requiring any parameter tuning 
of �min or � . In addition, the optimisation histories for the 

Fig. 4  Two-dimensional optimisation results for Example 2: maxi-
mum bulk modulus with isotropy. a–c  show the final structures for 
the Hilbertian projection method with the full set of constraints, sin-
gle anisotropy constraint, and SLP with the single anisotropy con-

straint, respectively, whilst d–f show the respective iteration histories. 
The Hashin-Shtrikman upper bound for the bulk modulus is given by 
the dashed black line. Due to very little change between iteration 600 
and 1000, the upper bound on the x-axis in f has been reduced to 700
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Hilbertian projection method with the full set of isotropy 
constraints (Figs. 4d and 5c) are smooth and converge fairly 
quickly.

5.3  Example 3: auxetic materials

In this example we consider two-dimensional minimum vol-
ume auxetic materials with a Poisson’s ratio of −0.5 . For the 
problem setup, we consider a bounding domain D = [0, 1]2 
that contains a solid phase and void phase. As previously 
mentioned, the solid phase is constructed from an isotropic 
material with E = 1 and � = 0.3.

To obtain an effective Poisson’s ratio �̄� = −0.5 , we require 
that C̄1111 = C̄2222 and prescribe a value to C̄1111 and C̄1122 so 
that the effective Poisson’s ratio �̄� given by

gives the required �̄� = −0.5.
It may be noted that this is similar to the approach taken 

by Vogiatzis et al. (2017). However, they instead minimise a 
weighted sum of the square of the difference between C̄ijkl and 
its prescribed value subject to a volume constraint.

For the purpose of this example we choose C̄1111 = 0.1 , 
which results in C̄1122 = −0.05 . The resulting optimisation 
problem is then

(52)�̄� =
C̄1122

C̄1111

Fig. 5  Three-dimensional opti-
misation results for Example 2: 
maximum bulk modulus with 
isotropy. a and b show the final 
structures for the Hilbertian 
projection method and SLP, 
respectively, whilst c and 
d show the respective iteration 
histories. The Hashin–Shtrik-
man upper bound for the bulk 
modulus is given by the dashed 
black line

Table 3  Summary of 
optimisation results for Example 
2: maximum bulk modulus with 
isotropy

The asterisk denotes failure to converge

Method d Iso. const. type Fig �̄� HS bound Ā Vol Iters

Proj 2 Full set 4a, d 0.1854 0.1860 0.0001 0.5000 78
Proj 2 Aniso. meas 4b, e 0.1854 0.1860 0.0001 0.5000 220
SLP 2 Aniso. meas 4c, f 0.1856 0.1860 0.0363 0.5010 1000*
Proj 3 Full set 5a, c 0.2287 0.2308 0.0001 0.5000 53
SLP 3 Aniso. meas 5b, d 0.1295 0.2308 0.1348 0.5007 1000*
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For this example we use �max = 0.05 and �2
min

= 0.5 . This 
means that the optimiser favours improvement of the con-
straints rather than the objective and does not move too 
quickly to avoid disconnecting in the first few iterations.

Figure 6 shows the starting structure (Fig. 6a) and opti-
misation results (Fig. 6b and c) for this problem using the 
Hilbertian projection method. We use a periodic starting 
structure with sixteen equally spaced holes. The method 
converges in 61 iterations with a final volume of 0.3159 and 
Poisson’s ratio of − 0.4998. In contrast, SLP fails because the 
optimiser prioritises the objective leading to a disconnected 
solid phase and the algorithm is unable to recover.

5.4  Example 4: multi‑phase materials

For our final example we consider two-dimensional multi-
phase maximum bulk modulus problems with and with-
out isotropy constraints. We consider a bounding domain 
D = [0, 1]2 that contains two solid phases and void. The 
solid phase contained in Ω2 is an isotropic material with 
E = 1 and � = 0.3 , whilst Ω3 contains isotropic material with 
E = 1∕2 and � = 0.3 . The void phase is contained in Ω1 and 
Ω4 . As previously, most void phase is removed from the 
mesh (see Sect. 4) whilst any material close to the interface 
is specified as weak material with E = 10−3 and � = 0.3.

We consider two optimisation problems. The first is maxi-
mum bulk modulus subject to volume constraints on Ω2 and 
Ω3 given by

(53)

min
Ω∈Uad

Vol(Ω)

s.t. C̄1111(Ω) = 0.1,

C̄2222(Ω) = 0.1,

C̄1122(Ω) = −0.05,

C̄1112(Ω) = 0,

C̄2212(Ω) = 0,

a(u, v) = l(v), ∀v ∈ V .

The second is maximum bulk modulus subject to macro-
scopic isotropy constraints and volume constraints on Ω2 
and Ω3 given by

where the constraints Ci are as in Example 2. For SLP, we 
use the single anisotropy constraint and for the Hilbertian 
projection method we use the full set of isotropy constraints. 
For these examples we use �max = 0.05 so that the optimiser 
does not evolve the designs too quickly. It should be noted 
that for the case of only volume constraints the extended 
constraint shape sensitivities have a nullity of one (in �1 ) 
and zero (in �2 ) owing to the structure of the shape deriva-
tives for the volume constraints. For the case of volume and 
isotropy constraints the extended constraint shape sensitivi-
ties have a nullity of three (in �1 ) and two (in �2 ) due to the 
underlying symmetry of the shape derivatives for the volume 
and isotropy constraints. Our method handles these with no 
special treatment.

We initialise with two overlapping level set functions 
that give a starting structure completely comprised of the 
less stiff material ( Ω3 ) and the void phase. Regions of stiffer 
material ( Ω2 ) are readily generated during the optimisation 
via independent evolution of the two level set functions. 
We use a starting structure of four equally spaced holes for 
the optimisation problem without isotropy constraints and 

(54)

min
D1,D2∈Uad

− �̄�(D1,D2)

s.t. VolΩ2
(D1,D2) = 1∕4,

VolΩ3
(D1,D2) = 1∕4,

a(u, v) = l(v), ∀v ∈ V .

(55)

min
D1,D2∈Uad

− �̄�(D1,D2)

s.t. VolΩ2
(D1,D2) = 1∕4,

VolΩ3
(D1,D2) = 1∕4,

Ci(D1,D2) = 0, i = 1,… , 6,

a(u, v) = l(v), ∀v ∈ V ,

Fig. 6  Optimisation results for Example 3: auxetic materials. For the starting structure a, b shows the final structure, whilst c shows the iteration 
history for the Hilbertian projection method. The desired Poisson’s ratio of − 0.5 is given by the dashed black line
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nine equally spaced holes for the problem with isotropy 
constraints.

Figures 7 and 8 show the optimisation results and his-
tory without and with isotropy constraints, respectively. We 
denote the stiff and less stiff material phase by blue and 
green, respectively, whilst the smooth interface is given 
by the dark green overlap. We include the Hashin–Shtrik-
man–Walpole (HSW) upper bound (Walpole 1966) for this 
problem as the black-dashed line in these figures. Table 4 
shows a summary of the results.

For the case of no isotropy constraints, both the Hilber-
tian projection method and SLP converge to roughly 96% 
of the HSW bound, whilst the resulting structures (Fig. 7b 
and c) are geometrically similar apart from the thin inter-
face that presents in the results for the Hilbertian projection 
method. The difference between our results and the theoreti-
cal upper bound is likely due to the use of the approximate 
formula for the shape derivative. Indeed, results from Allaire 
et al. (2014a) showed that the approximate formula yields 
slightly less optimal results than the true or Jacobian-free 
counterpart. The iteration history for the Hilbertian projec-
tion method (Fig. 7d) is fairly smooth, whilst the history for 
SLP (Fig. 7e) moves rapidly at the beginning of the opti-
misation to satisfy the volume constraints and increase the 
objective. As previously noted, this is likely due to the trust 
region constraints that, in this case, need to be chosen to be 
more conservative.

With the addition of isotropy constraints, we again find 
that the Hilbertian projection method works well without 
significant parameter tuning. In 148 iterations, the optimi-
sation algorithm is able to satisfy all constraints and obtain 
a final objective value that is 93.44% of the HS bound. In 
contrast, SLP does not converge within 1000 iterations.

6  Conclusion

In this paper we have presented a Hilbertian extension of the 
projection method for constrained level set-based topology 
optimisation. At its core, the method relies on the Hilbertian 
extension-regularisation method in which a set of identi-
fication problems are solved over a Hilbert space H on D 
with inner product ⟨⋅, ⋅⟩H . This procedure naturally extends 
shape sensitivities onto the bounding domain D and enriches 
them with the regularity of H. For a constrained optimisation 
problem the projection method framework aims for the best 
first-order improvement of the objective in addition to first-
order improvement of the constraints. These requirements 
for the projection method may then be reposed in the Hil-
bertian framework in terms of H and ⟨⋅, ⋅⟩H . We satisfy these 
reposed requirements by defining the normal velocity of the 
level set function as a linear combination of the orthogonal 
projection operator applied to the extended objective shape 
sensitivity and basis functions for the extended constraint 

Fig. 7  Optimisation results for Example 4: maximum bulk modulus 
multi-phase materials without isotropy constraints. For the starting 
structure a, b and c show the final structures for the Hilbertian projec-
tion method and SLP, respectively, whilst d and e show the respective 

iteration histories. The Hashin–Shtrikman–Walpole upper bound for 
the bulk modulus is given by the dashed black line. Note that the vol-
ume constraint for each phase is 0.25
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shape sensitivities. Owing to the Hilbertian extension-reg-
ularisation of shape sensitivities, the chosen normal veloc-
ity is already extended onto the bounding domain D and 
endowed with the regularity of H.

To demonstrate the Hilbertian projection method for 
constrained level set-based topology optimisation we 
have solved several example microstructure optimisation 
problems with multiple constraints. We showed that the 
Hilbertian projection method successfully handled all of 
these optimisation problems with little-to-no tuning of the 
parameter �min that controls the balance between improv-
ing the objective and constraints. The Hilbertian projection 
method also naturally handles linearly dependent constraint 
shape sensitivities. Such linear dependencies often appear 

in microstructure optimisation and multi-phase optimisation 
problems.

We found that our method performs well when compared 
to a Hilbertian sequential linear programming (SLP) method 
(Allaire et al. 2021b). For problems only involving volume 
constraint(s), both methods converged to appropriate opti-
mised microstructures. However, SLP did not successfully 
solve some of the more complex example optimisation prob-
lems. These results demonstrate the capacity of the Hilber-
tian projection method and likely other projection/null space 
methods (e.g. Barbarosie et al. 2020; Feppon et al. 2020) for 
solving constrained level set-based topology optimisation 
problems.

Fig. 8  Optimisation results for Example 4: maximum bulk modulus 
multi-phase materials with isotropy constraints. For the starting struc-
ture a, b and c show the final structures for the Hilbertian projection 
method and SLP, respectively, whilst d and e show the respective iter-

ation histories. The Hashin–Shtrikman–Walpole upper bound for the 
bulk modulus is given by the dashed black line. Note that the volume 
constraint for each phase is 0.25

Table 4  Summary of 
optimisation results for Example 
4: two-dimensional maximum 
bulk modulus multi-phase 
materials

The asterisk denotes failure to converge

Method Iso. const. type Fig �̄� HSW bound Ā VolΩ2
VolΩ3

Iters

Proj NA 7a, d 0.1469 0.1524 N.A 0.2501 0.2500 61
SLP NA 7b, e 0.1468 0.1524 N.A 0.2500 0.2501 221
Proj Full set 8b, d 0.1424 0.1524 0.0001 0.2500 0.2500 148
SLP Aniso. meas 8c, e 0.1254 0.1524 0.0236 0.2506 0.2497 1000*
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Applying multiple constraints is challenging in level 
set-based topology optimisation owing to the reliance on 
implicitly defined domains. Alongside other recent work 
(Barbarosie et al. 2020; Feppon et al. 2020; Allaire et al. 
2021b), our proposed Hilbertian projection method makes 
significant progress towards improving the capacity of con-
ventional level set-based methods for constrained topology 
optimisation. Furthermore, due to its generality, the Hil-
bertian projection method is not confined to microstructure 
optimisation. It may be applied to any topology optimisation 
problem to be solved in a level set framework, including 
macroscopic or multi-physics problems. Inequality con-
straints could likely be incorporated into the method using 
slack variables. In addition, the method is not confined to 
Eulerian level set methods and can be readily applied to 
Lagrangian or body-fitted level set methods (e.g. Allaire 
et al. 2014b). These extensions could be considered in the 
future work.

Appendix 1

Proof of Lemma 2 We proceed via Céa’s method (Céa 1986): 
suppose we define the Lagrangian L to be

We do not include auxiliary fields as it turns out that the 
problem is self-adjoint.

Under a variation 𝛿ũ(ij) of ũ(ij) with ij ≠ kl , the correspond-
ing variation of L is

where symmetry of material coefficients has been used along 
with integration by parts. Requiring L to be stationary gives 
the state equations for stress under loading �̄�kl

rs
 . In particular, 

allowing arbitrary 𝛿ũ(ij)p  within Ω gives �(kl)
pq,q

= 0 in Ω and 
allowing arbitrary 𝛿ũ(ij)p  on �Ω gives �(kl)

pq
nq = 0 on �Ω.

(A1)

L(Ω, ũ(ij), ũ(kl))

= ∫Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)�̄�(kl)

rs
dΩ

+ ∫Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)𝜀rs(ũ

(kl)) dΩ.

𝛿L

𝛿ũ(ij)
= ∫Ω

Cpqrs𝛿ũ
(ij)
p,q
�̄�(kl)
rs

dΩ

+ ∫Ω

Cpqrs𝛿ũ
(ij)
p,q
𝜀rs(ũ

(kl)) dΩ

= ∫Ω

Cpqrs(�̄�
(kl)
rs

+ 𝜀rs(ũ
(kl)))𝛿ũ(ij)

p,q
dΩ

= ∫Ω

𝜎(kl)
pq

𝛿ũ(ij)
p,q

dΩ

= −∫Ω

𝜎(kl)
pq,q

𝛿ũ(ij)
p

dΩ + ∫
𝜕Ω

𝜎(kl)
pq

nq𝛿ũ
(ij)
p

dΓ

Next, under a variation 𝛿ũ(kl) of ũ(kl) with ij ≠ kl , the cor-
responding variation of L is

where symmetry of material coefficients has been used along 
with integration by parts. Requiring L to be stationary gives 
the state equations for stress under loading �̄�(ij)pq  . It should be 
noted that when ij = kl , we can apply the product rule which 
results in the state equations for stress under a constant mac-
roscopic strain �̄�(ij)pq .

Together, the above results give the state equations for the 
fields ũ(ij) and ũ(kl) , as required.

We also require that the Lagrangian L equals the objective 
at the solution to the state equations. Indeed, at the solution 
to the state equations, we obtain

as required.
The shape derivative of L at fixed ũ(ij) and ũ(kl) can then 

be calculated using Lemma 1 to be

Appendix 2

Proof of Lemma 3 Similarly to Appendix 1, suppose we 
define the Lagrangian L to be

where Cpqrs = Cpqrs(d1
, d2

) . As previously, stationarity of L 
under variations 𝛿ũ(ij) and 𝛿ũ(kl) retrieve the state equations 
and at the solution to the state equations L(Ω) = C̄ijkl(Ω) . 
The given Lagrangian therefore satisfies the requirements 
for Céa’s method.

𝛿L

𝛿ũ(kl)
= ∫Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)𝛿ũ(kl)

r,s
dΩ

= ∫Ω

𝜎(ij)
rs
𝛿ũ(kl)

r,s
dΩ

= −∫Ω

𝜎(ij)
rs,s

𝛿ũ(kl)
r

dΩ + ∫
𝜕Ω

𝜎(ij)
rs
ns𝛿ũ

(kl)
r

dΓ

(A2)L(Ω) = C̄ijkl(Ω)

(A3)

C�(Ω)(�) = L
�(Ω)(�)|ũ(ij),ũ(kl)

= ∫
𝜕Ω

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)

× (𝜀rs(ũ
(kl)) + �̄�(kl)

rs
) � ⋅ n dΓ.

(B4)

L(D1,D2, ũ
(ij), ũ(kl))

= ∫D

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)�̄�(kl)

rs
dΩ

+ ∫D

Cpqrs(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)𝜀rs(ũ

(kl)) dΩ
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Using differentiability of the signed distance function dDi
 

(Lemma 2.4, Proposition 2.5, Allaire et al. 2014a) and the 
chain rule, we have

where d′
Di

 is the shape derivative of the signed distance func-
tion for x ∈ D ⧵ Σ given by

where p�D1
(x) is the projection of a point x onto the bound-

ary �D1 and Σ is the set of points in the skeleton of �D1 
(Definition 2.3, Allaire et al. 2014a).

Using this and the Jacobian-free coarea formula (Corollary 
2.13, Equation 2.15, Allaire et al. 2014a) results in

where g(x) = H�(x).
Finally, the support of H�

�
(x) is |x| < 2𝜂 , so the integral 

over ray�D1
(x) ∩ D is restricted to a tubular region about �D1 

(Allaire et al. 2014a). Therefore, for small � , we may assume 
that

and

where z ∈ ray�D1
(x) ∩ D and y ∈ �D1 . In addition, the deriv-

ative �Cpqrs

�g
(H�(dD1

)) is independent of dD1
 by Eq. 23. Equa-

tion B7 can therefore be written as

Finally, it can be shown using elementary vector calculus 
that

(B5)

C̄�
ijkl
(D1,D2)(�1)

= ∫D

d�
D1
(�1)

𝜕Cpqrs

𝜕dD1

(𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)

× (𝜀rs(ũ
(kl)) + �̄�(kl)

rs
) dΩ

(B6)d�
D1
(x) = −�(p�D1

(x)) ⋅ n(p�D1
(x))

(B7)

C̄�
ijkl
(D1,D2)(�1)

= −∫
𝜕D1

�1 ⋅ n∫ray𝜕D1
(x)∩D

H�
𝜂
(dD1

)
𝜕Cpqrs

𝜕g

× (𝜀pq(ũ
(ij)) + �̄�(ij)

pq
)(𝜀rs(ũ

(kl)) + �̄�(kl)
rs

) dz dΓ

(B8)𝜀pq(ũ
(ij))(z) ≈ 𝜀pq(ũ

(ij))(y)

(B9)dD2
(z) ≈ dD2

(y)

(B10)

C̄�
ijkl
(D1,D2)(�1)

≈ −∫
𝜕D1

�1 ⋅ n
𝜕Cpqrs

𝜕g

(
𝜀pq(ũ

(ij)) + �̄�(ij)
pq

)

×
(
𝜀rs(ũ

(kl)) + �̄�(kl)
rs

)

×

[
∫ray𝜕D1

(x)∩D

H�
𝜂
(dD1

) dz

]
dΓ

which completes this portion of the proof.
For Eq. 25, (Corollary 2.8, Allaire et al. 2014a) and the 

chain rule gives

As previously mentioned, shape differentiability of dDi
 along 

with the Jacobian-free coarea formula gives

The prior approximations then give the result

which concludes the proof.
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H�
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(z)) dz = 1
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Vol�

Ω1
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= ∫D

d�
D1
(�1)H

�
�
(dD1

)H�(dD2
) dΩ
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Vol�
Ω1
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�1 ⋅ n

×
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