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Abstract
This study investigates the impact of the surrounding free space on the topology optimization (TO) of electro-active poly-
mers (EAPs). It is well understood that, under the application of an electric field, the deformation of an EAP is not solely 
determined by the field distribution within the body, but also by the distribution in the free space surrounding it. This is 
particularly true for electronic EAP, which are emerging as leading candidates for developing artificial muscles. Our study 
specifically focuses on understanding the influence of the free space in the context of density-based TO. We model the free 
space as an extended void region around the design domain. Our numerical experiments focus on EAP actuators and take 
into account their geometrical nonlinear behavior. The results show that incorporating the surrounding free space has a sig-
nificant impact on the performance of the optimized EAPs with low electric permittivity. This makes it essential to consider 
in real-world applications.

Keywords Electro-active polymers · Free space · Topology optimization

1 Introduction

Electro-active polymers (EAP) are a class of smart materi-
als that react to electric stimulation with bulk deformation. 
EAPs are used in soft robots (Lee et al. 2017; Gu et al. 2021), 
artificial muscles (Bar-Cohen 2002; Carpi et al. 2011), and 
in a broad range of industries (Bashir and Rajendran 2018).

Numerous examples of finite-strain-coupled numerical 
models can be found in the literature to simulate EAPs (Yang 
and Batra 1995; Dorfmann and Ogden 2005; Vu et al. 2007; 
Zwecker et al. 2011; Ask et al. 2012; Hossain et al. 2012; 
Skatulla et al. 2012; Büschel et al. 2013; Gil and Ortigosa 
2016). In all of the aforementioned works on EAPs, only 
their material bodies were considered and discretized using 
the finite element method. This is a reasonable approach for 
simulating EAPs with higher permittivity, e.g. piezoelectric 
polymers.

However, in the case of electronic EAPs, where the elec-
tric permittivity is approximately one order of magnitude 
greater than that of vacuum, the electric energy stored in the 
surrounding free space also has a significant influence on 
the behavior of EAP. This influence was studied by Vu and 
Steinmann (2010, 2012) and Steinmann (2011), by consid-
ering the free space through a coupled BEM-FEM method. 
In Pelteret et al. (2016), a mixed variational formulation for 
quasi-incompressible electro-active or magneto-active poly-
mers, which accounts for the influence of the surrounding 
free space was studied. In Steinmann and Vu (2017) the 
computational challenges in the simulation of EAPs were 
presented and the authors concluded that to build a com-
plete picture of what happens inside an EAP, what happens 
outside deserves due attention.

In the recent decades, topology optimization (TO) has 
been increasingly utilized to generate designs based on 
mathematical optimization techniques that go beyond human 
intuition (Sigmund and Maute 2013; Deaton and Grandhi 
2014). TO has been used to optimize electromechanical 
actuators for MEMS application Qian and Sigmund (2013), 
as well as dielectric elastomer actuators by Wang et al. 
(2019) and Chen et al. (2020). In the recent work of Ortigosa 
et al. (2021), TO was applied to optimize EAPs. However, 
in all the aforementioned TO problems, the electric field in 
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the surrounding free space was disregarded. This approach 
is reasonable considering the materials used and the focus 
on optimizing thin film EAPs with an electric field applied 
perpendicular to the film. Nevertheless, there is still a lack of 
research on electronic EAPs where the electric energy stored 
in the surrounding free space also plays a significant role. 
In this study, we specifically consider this class of material. 
Additionally, unlike the previous works that concentrated on 
thin films, our investigation of 2D structures does not involve 
any dimension that is significantly smaller than the others. 
These distinctions allow us to explore the influence of free 
space on the optimized structure.

The layout of this paper is as follows: Sect. 2 introduces 
the essence of nonlinear electro-elasticity with free space. 
Section 3 describes TO for the electro-elastic problem. 
Finally, Sect. 4 illustrates numerical examples where topol-
ogy optimization of EAP is carried out with the considera-
tion of free space. Finally, Sect. 5 provides some concluding 
remarks.

2  Nonlinear electro‑elasticity with freespace

This section presents a brief introduction to the formulation 
and computation of geometrically nonlinear electro-elastic-
ity immersed in the surrounding free space.

2.1  Kinematics and state equations

Consider an EAP B0 immersed in the surrounding free space 
(vacuum) Ω0 in their material configuration at time t0 . Subse-
quently, due to deformation, the EAP and the free space will 
occupy a spatial configuration Bt and Ωt at time t ( t > t0 ), 
as shown in Fig. 1. The transformation of the EAP into the 
spatial configuration is defined by a deformation map � . The 
deformation map is associated with the deformation gradient 
F , which is defined as follows:

Here, ∇X is the gradient operator with respect to material 
coordinates X . The deformation gradient F is associated 
with the Jacobian J and the right Cauchy-Green strain ten-
sor C , which are defined as follows:

We can characterize the quasi-static elastic problem through 
the balance of linear momentum, which can be written as 
follows:

(1)F = ∇X�.

(2)J = det(F); C = F⊤
⋅ F.

Here, the operator Div represents divergence with respect 
to material coordinates X . The jump, denoted by [[∙]] , is 
defined as the difference in the value of (∙) when transi-
tioning from inside the material to the free space outside 
[[∙]] ∶= [∙]+ − [∙]− . The total Piola stress is represented by 
the symbol P , while f 0 denotes the mechanical body force 
per unit undeformed volume in B0 . The term t0 represents 
the applied mechanical traction force per unit undeformed 
area on Γt

0
⊂ Γ0 . The prescribed displacement on Γ𝜑

0
⊂ Γ0 , 

is denoted by � . Further, Γt
0
∪ Γ

�

0
= Γ0 and Γt

0
∩ Γ

�

0
= � . We 

can characterize the electrical problem through the electro-
static Maxwell equations and restrict ourselves to materials 
without free currents and free electric charges, which leads 
to:

where D is the electric displacement vector in Lagrangian 
form and �0 is the free surface charge density on Γ𝜚

0
⊂ Γ0 . 

Furthermore, Faraday’s law results in

where E is the electric field vector in Lagrangian form, � is 
the scalar electric potential and � is the prescribed electric 
potential on Γ𝜙

0
⊂ Γ0 , with Γ�

0
∪ Γ

�

0
= Γ0 and Γ�

0
∩ Γ

�

0
= �.

2.2  Constitutive modeling

Next, to solve the state problem described by Eqs. (3)-(5), 
a constitutive relation is required. To this end, we define 
an appropriate total energy density functional � = �(F,E) 

(3)
DivP + f 0 = 0 in B0 ∪ Ω0;

[[P]] ⋅ N = t0 on Γt
0
;

� = � on Γ
�

0
.

(4)
DivD = 0 in B0 ∪ Ω0;

[[D]] ⋅ N = −�0 on Γ
�

0
,

(5)
E = −∇X� in B0 ∪ Ω0;

� = � on Γ
�

0
,

Fig. 1  Undeformed and deformed configuration of EAP in free space. 
(Color figure online)
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in terms of the unknown deformation map � and electric 
potential � . The total energy density function for the bulk 
material, denoted as �b(F,E) , is defined as:

where � and � are the two Lamé coefficients of the classi-
cal neo-Hookean material law and ndim is the dimension of 
the space. The material constants c1 and c2 are responsible 
for electromechanical coupling and �r is the relative electric 
permittivity of the bulk material.

To model the influence of the free space, we define an 
appropriate energy functional in the free space as:

To ensure that we can interpolate the energy functional of 
the bulk material and the free space in TO, we must consider 
pseudoelastic properties in the functional above. However, to 
minimize the contribution of these properties, we introduce 
a dimensionless coefficient of the order of 10−15, denoted by 
� . In the equation above, C0 represents the fourth-order linear 
elasticity tensor, while �0 = 8.854 × 10−12

F

m
 is the electric 

permittivity of free space.
Furthermore, Ortigosa et al. (2021) noted that the elec-

tromechanical component of the energy functional in Eq. 7 
compromises numerical stability due to the high non-con-
vexity of the functional with respect to the deformation 
gradient tensor F . Therefore, we adopt the stable version 
of the energy functional proposed in Ortigosa et al. (2021). 
This version eliminates the dependence of the electroelas-
tic component on the deformation gradient, resulting in the 
following definition:

 We acknowledge that the simplification in Eq. 8 does not 
accurately account for the Maxwell stress. However, we con-
ducted a comparison of the electric energy density defined 
in Eqs. 7 and 8 for our specific problem setting in Sect. 2.4. 
Our comparison revealed that the difference between the 
two formulations is not significant in our problem setup. 
Therefore, it is reasonable to utilize the numerically stable 
version of the energy function as defined in Eq. 8.

(6)

𝜓b(F,E) =
𝜇

2

[
C ∶ I − ndim

]
+ 𝜇lnJ +

𝜆

2
[lnJ]2

+ c1I ∶ [E⊗ E] + c2C ∶ [E⊗ E]

−
1

2
𝜖rJC

−1 ∶ [E⊗ E]

(7)
𝜓f (F,E) =

𝜃

2
[F − I] ∶ C0 ∶ [F − I]

−
1

2
𝜖0JC

−1 ∶ [E⊗ E].

(8)
�f (F,E) =

�

2
[F − I] ∶ C0 ∶ [F − I]

−
1

2
�0[E ⋅ E].

Having defined the energy density functions we can now 
define the total Piola stress P and the referential dielectric dis-
placement D as

Furthermore, the second derivatives of the energy density 
functional yields the constitutive tangent tensor, namely, the 
fourth-order elasticity tensor C , the third-order piezoelectric 
tensor P , and the second-order dielectric tensor � , defined 
respectively as

2.3  Variational formulation in nonlinear 
electro‑elasticity

Here we discuss the variational approach to derive the weak 
form of the governing equations, (3) and (4). To this end, we 
define the total potential energy functional as follows:

The stationary point min
�

max
�

Π ⇒ �Π = 0 defines the equi-
librium solution of the system. To determine the stationary 
point, we take the variation of the energy functional with 
respect to variations �� of the displacement field, resulting 
in:

Similarly, we take the variation of the energy functional with 
respect to variations �� of the electric potential, resulting in

(9)P =
��

�F
and D = −

��

�E
.

(10)
C =

𝜕2𝜓

𝜕F⊗ 𝜕F
P = −

𝜕2𝜓

𝜕E⊗ 𝜕F

� = −
𝜕2𝜓

𝜕E⊗ 𝜕E
.

(11)

Π = Πint − Πext

= ∫
B0

�b dV + ∫Ω0

�f dV

− ∫
B0

� ⋅ f 0 dV − ∫Γt
0

� ⋅ t0dA − ∫Γ
�

0

��0 dA.

(12)

�Π(��) = ∫
B0

Pb ∶ ∇X�� dV

+ ∫Ω0

Pf ∶ ∇X�� dV

− ∫
B0

f 0 ⋅ �� dV − ∫Γt
0

t0 ⋅ �� dA = 0.
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Here, Pb and Pf  represent the total Piola stress obtained 
from the energy density functions of the bulk and free space, 
respectively, as defined in Eq. 9. Similarly, Db and Df  repre-
sent the referential dielectric displacement of the bulk and 
free space as defined in Eq. 9.

In order to solve for the stationary condition in Eq. 12 and 
13, we utilize a Newton–Raphson scheme where we linearize 
�Π with respect to the incremental displacement field Δ� and 
the incremental electric potential Δ� , resulting in the follow-
ing system of equations: 

(13)

�Π(��) = −∫
B0

Db ⋅ ∇X�� dV

− ∫Ω0

Df ⋅ ∇X�� dV

− ∫Γ
�

0

�0�� dA = 0.

(14a)

Δ�Π(��,Δ�) = ∫
B0

∇XΔ� ∶ Cb ∶ ∇X�� dV

+ ∫Ω0

∇XΔ� ∶ Cf ∶ ∇X�� dV,

 Here, the fourth-order elasticity tensor for the bulk and free 
space is denoted by Cb and Cf  , respectively. Similarly, the 
third-order piezoelectric tensor for the bulk and free space 
is denoted by Pb and Pf  , and the second-order dielectric 
tensor for the bulk and free space is denoted by �b and �f  , 
respectively.

The next step is to solve the linearized system,

for the incremental fields Δ� and Δ� and update the solution 
fields, i.e. �k+1 = �

k + Δ� and �k+1 = �k + Δ�

Remark: We use the open source FE library deal.IIArndt 
et al. (2021a, 2021b) for our implementation. To obtain the 

(14b)

Δ�Π(��,Δ�) = ∫
B0

∇XΔ� ⋅Pb ∶ ∇X�� dV

+ ∫Ω0

∇XΔ� ⋅Pf ∶ ∇X�� dV,

(14c)

Δ𝛿Π(𝛿𝜙,Δ�) = ∫
B0

∇XΔ� ∶ P
⊤

b
⋅ ∇X𝛿𝜙 dV

+ ∫Ω0

∇XΔ� ∶ P
⊤

f
⋅ ∇X𝛿𝜙 dV,

(14d)

Δ�Π(��,Δ�) = −∫
B0

∇XΔ� ⋅ �b ⋅ ∇X�� dV

− ∫Ω0

∇XΔ� ⋅ �f ⋅ ∇X�� dV.

(15)

�Π(��) + �Π(��)

+ Δ�Π(��,Δ�)

+ Δ�Π(��,Δ�)

+ Δ�Π(��,Δ�)

+ Δ�Π(��,Δ�)

= 0,

Fig. 2  Finite element mesh showing the bulk (blue) and the free 
space (white). (Color figure online)

Fig. 3  Distribution of electric potential [V] in the deformed configu-
ration for bulk truncated with free space (left) and only bulk (right). 
Using the black line the difference in the deformation of the top face 
can be visualized. (Color figure online)



On the influence of free space in topology optimization of electro-active polymers  

1 3

Page 5 of 14 187

variation and linearization of the energy density function, 
we use the automatic differentiation tools provided by the 
Sacado library, which is available as part of the Trilinos 
software package. This approach allows us to avoid imple-
menting the terms in Eq. 15 directly. Instead, we obtain them 
through automatic differentiation of the energy functionals 
in Eqs.6 and 7.

2.4  Numerical example

In the first example, we validate our formulation using 
the benchmark problem presented in Vu and Steinmann 
(2010). We consider a square plate with dimensions of 
60 µm × 60 µm, which contains a square hole of dimensions 
30 µm × 30 µm. The free space surrounding the plate has 
dimensions of 120 µm × 120 µm. The lower and upper edges 
of the plate have prescribed electric potentials of −500V  
and 500V, respectively. The setup with the inclusion of free 
space is illustrated in Fig. 2. The constitutive parameters 
for the energy density function in Eq. 6 are taken from Vu 
and Steinmann (2010), with � = 0.05 MPa, � = 0.06 MPa, 
c1 = 0.2�0 , c2 = 2�0 , and �r = 5�0.

To illustrate the significance of the consideration of free 
space in the simulation, we carried out the simulation in 
two setups. In the first setup, the bulk material is immersed 
in free space, and in the second setup, we consider only the 
bulk material. In Fig. 3, we present the electric potential dis-
tribution in the deformed configuration for both setups. The 
magnitude of the maximum displacement in the setup with 
the inclusion of free space is 3.1 µm, whereas without free 
space, it is 2.4 µm, which is 22% less. To get a closer look at 
the difference, in Fig. 4, we plot the displacement along the 
top face. This plot clearly shows that considering free space 
is important, and the results obtained are also in agreement 
with the results in Vu and Steinmann (2010).

In the second example, we demonstrate the complexi-
ties in nonlinear coupled electro-mechanics. We consider 
a linear guiding actuator setup, as shown in Fig. 5. During 
the simulation, we consider different sizes of free space 
truncation, namely, 4 µm, 16 µm, 64 µm, 256 µm, and 
512 µm, as illustrated in Fig. 6a. After solving the prob-
lems with different sizes of free space truncation, we plot 
the electric potential along the diagonal from bottom left 
to top right in Fig. 6b. It is important to note the potential 
distribution on the right side. The relationship between the 
size of free space truncation and the potential at the top 
right of the bulk material is not monotonous. This complex 
behavior motivated our subsequent study on the influence 
of free space size on topology optimization.

Furthermore, we conducted a comparison between the 
electric energy densities in free space as defined by Eqs. 8 
and 9. To evaluate the differences, we introduced a nor-
malized difference metric given by the equation:

For this analysis, we chose a free space truncation of 
256 µm. The visualization of the normalized difference in 
electric energy density is depicted in Fig. 7. Notably, the 

(16)‖Δ𝜓f‖ =

�
1

2
𝜖0[E ⋅ E]

�
−
�
1

2
𝜖0JC

−1 ∶ [E⊗ E]
�

���
1

2
𝜖0[E ⋅ E]

���∞

Fig. 4  Distribution of displacement along the upper edge

Fig. 5  Linear guiding actuator problem setup with L = 60  µm and 
f
out

= 1N
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dissimilarity is predominantly observed near the boundary 
where the potential is prescribed, with the energy density 
difference amounting to only 0.1% . Based on this observa-
tion, it is justified to employ the stable version of the energy 
function defined in Eq. 9.

Fig. 6  Illustration of complexity in electric potential distribution. In a we visualize the size of free space truncation and in b the potential along 
the diagonal is presented. (Color figure online)

Fig. 7  Visualization of the difference in the electrical energy densities 
in free space, as defined in Eq. 16. (Color figure online)

Table 1  Topology optimization parameters

Topology optimization parameters
SIMP penalization p (Eq. 22) 5
Optimality criteria method
Step length 0.02
Line search damping factor 0.2
Line search tolerance 10

−4

Optimization iterations limit 250
Filtering parameters
Filter radius R (Eq. 20) 1.8 µm
Final heaviside projection � (Eq. 21) 30
Heaviside projection � (Eq. 21) 0.5

Fig. 8  Finite element mesh of bulk and free space. (Color figure 
online)
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Fig. 9  This figure displays the linear guiding actuator with domain 
size of L = 60 µm optimized with varying sizes of free space trunca-
tion, as shown in a–f. g provides a visualization of the different trun-

cations of free space considered in the optimization process, while 
h offers a comparison of the optimized structures in terms of their 
shape outline. (Color figure online)
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3  Topology optimization

The goal of TO is to obtain an optimal distribution of EAP 
material to maximize the displacement at an output port, 
while satisfying a given volume constraint. Mathematically, 
the optimization problem is defined as follows:

where � is the variable pseudo-density (design variable), 
l is an indicator vector with values of 1 on the degrees of 
freedom where the displacement has to be maximized, V  is 
the restriction on the allowed volume of the material, �e is 

(17)

min
�

Fcm ∶= −�Γout

�(�) ⋅ l dA

st. Gvol ∶= �
B0

�(X)dV − V ≤ 0

0 ≤ �e ≤ 1 e = 1,… ,Ne,

the pseudo-density corresponding to the e-th finite element, 
and Ne is the number of finite elements (design variables).

Since the pseudo-density � varies continuously from 
void to solid (i.e., from [0, 1]), we interpolate the energy 
density function according to the well-known SIMP 
method (Bendsoe and Sigmund 2003). In our case, we 
interpolate the total energy density functions of the solid 
(Eq. 6) and free space (Eq. 8) to define the interpolated 
energy density function �SIMP as follows:

where p is the penalization parameter, set to 5 in all our 
numerical studies.

Furthermore, to prevent the appearance of checkerboard 
patterns and to overcome the dependency on the mesh size 
in the final design, we have adopted a density filter (Bour-
din 2001; Bruns and Tortorelli 2001). The filtered pseudo-
density ( ̃𝜌 ) is defined as follows:

where �i is a circular neighborhood centered at the center of 
element i which contains all the elements whose center are 
within a radius R.

Due to the use of the radius filter, some intermediate den-
sities may still exist, which can be reduced using a smooth 
Heaviside projection filter (Wang et al. 2011).

(18)
�SIMP(�,F,E) =�

p�b(F,E)

+
[
1 − �p

]
�f (F,E)

(19)𝜌i =

∑
j∈𝜗i

wi

�
xj
�
𝜌j

∑
j∈𝜗i

wi

�
xj
�

(20)wi

�
xj
�
=
R − ‖xj − xi‖

R

(21)𝜌i =
tanh(𝛽𝜂) + tanh

(
𝛽
[
𝜌i − 𝜂

])

tanh(𝛽𝜂) + tanh(𝛽[1 − 𝜂])

Fig. 10  Linear guiding actuator: Evolution of the objective function 
F

cm
 for various free space sizes for domain size of L = 60 µm. (Color 

figure online)

Fig. 11  Linear guiding actuator: 
Potential distribution along the 
diagonal of the bulk material, 
from the bottom left to top 
right, at the end of the optimiza-
tion process for different sizes 
of free space. (Color figure 
online)
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Fig. 12  This figure displays the linear guiding actuator with domain 
size of L = 60 mm optimized with varying sizes of free space trunca-
tion, as shown in a–f. g provides a visualization of the different trun-

cations of free space considered in the optimization process, while 
h offers a comparison of the optimized structures in terms of their 
shape outline. (Color figure online)
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Here, � controls the sharpness of the Heaviside projection, 
and � is the threshold density at which the transition takes 
place. The interpolated energy density function in Eq. 18, 
which utilizes the projected density ( � ), is given by:

(22)
�SIMP

(
�,F,E

)
=�

p
�b(F,E)

+
[
1 − �

p]
�f (F,E).

Furthermore, the volume constraint in Eq. 17 must also con-
sider the projected pseudo-density �.

In addition, when the design is geometrically symmet-
ric, we apply an additional projection-based symmetric 
constraint based on the method proposed by Vatanabe et al. 
(2016). This constraint helps to maintain the symmetry of 
the optimized solution, which can be affected by finite preci-
sion errors in floating-point computations.

3.1  Sensitivity analysis and design update

The sensitivity analysis is performed using an adjoint 
method. The steps to perform adjoint sensitivity analysis 
involving electro-elastic problems are detailed in Ortigosa 
et al. (2021). Based on the computed sensitivities, the design 
is updated using an optimality criteria method (OCM), as 
described in Bendsoe and Sigmund (2003).

4  Results

In this section, we present the results of our study on the 
influence of free space on the optimized design. We provide 
two benchmark examples: (a) linear guiding actuator and 
(b) gripper actuator. We increase the size of the free space 
truncation considered in the computation and observe its 
impact on the optimized design.

The material parameters used to define the energy func-
tional in Eqs. 6 and 8 are common for all examples and are as 
follows: � = 0.1 MPa, � = 0.05 MPa, �0 = 8.854 × 10−12

F

m
 , 

c1 = 0.2�0 , c2 = 2�0 , �r = 5�0 , and � = 10−15 . The optimiza-
tion parameters are also common for all examples and are 
listed in Table 1.

In our implementation of the OCM (Bendsoe and Sig-
mund 2003), we set the lower Lagrange value as 0, and 
initialize the upper Lagrange value as 1. In subsequent 
iterations, the upper Lagrange value is set as 10 times the 
Lagrange value from the previous iteration. In the smooth 
Heaviside projection filter (Eq. 21), we initialize � = 1 and 
keep it unchanged until iteration 100. After that, we update 
�i = 1.04 × �i−1 until we reach the value of � indicated in 
Table 1.

4.1  Linear guiding actuator

The first example we consider is a linear guiding actuator. 
When an electric potential difference of 20 V is applied, 
the actuator maximizes the displacement at the output port 
uout in the horizontal direction against a reaction force of 
f out = 1 N applied by a body being pushed. The problem 

Fig. 13  Linear guiding actuator: Evolution of the objective func-
tion F

cm
 for various free space sizes for domain size of L = 60 mm. 

(Color figure online)

Fig. 14  Gripper actuator problem setup with L = 60 µm and f
out

= 1

N
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setup is illustrated in Fig. 5, where the length L = 60 µm in 
our study.

We discretize the truncated free space with a coarser 
mesh, as illustrated in Fig. 8. The use of a coarser mesh 
improves the numerical performance. Furthermore, the finite 

elements of the free space are not included in the optimiza-
tion design space, and thus, do not require any special treat-
ment in the topology optimization routine.

To investigate the impact of free space on the optimized 
design, we conducted TO for the linear guiding actuator 

Fig. 15  This figure displays the gripper actuator optimized with vary-
ing sizes of free space truncation, as shown in a–f. g provides a visu-
alization of the different truncations of free space considered in the 

optimization process, while h offers a comparison of the optimized 
structures in terms of their shape outline. (Color figure online)
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while considering different sizes of free space truncation in 
the computation. The sizes considered were 0.5L = 30 µm, 
L = 60 mum, 2L = 120 µm, 4L = 240 µm, and 6L = 360 µm, 
as shown in Fig. 9g.

In Figs. 9a–f, we present the results of TO for different free 
space truncations. It is observed that the consideration of free 
space significantly affects the optimized structure. This dif-
ference is clearly visualized in Fig. 9h, where we use a shape 
generation algorithm (Dev et al. 2022) to extract the outline 
of the structure. The optimized structures converge as we 
increase the free space truncation, with the difference in the 
optimized structure being minimal for free space sizes of 4 
times (240 µm) and 6 times (360 µm) the bulk dimension. This 

convergence is also evident in the evolution of the objective 
plot in Fig. 10. Finally, we note that the difference in the objec-
tive value for free space size of 0 and 6L (360 µm) is 9.98%.

In Fig. 11, we present the potential distribution along the 
diagonal of the design domain to further examine how the con-
sideration of different sizes of free space influences the potential 
distribution inside the design domain (bulk). Here, we observe 
a convergence in potential distribution for a free space size of 4 
times ( 240� m) and 6 times (360 µm) bulk dimension.

Next, we consider the same problem setup as shown in 
Fig. 5, but on a larger scale, to investigate whether the influence 
of free space remains consistent for larger domain sizes. To 
achieve this, we set L = 60 mm and maintain an electric poten-
tial difference of 20 kV. Consequently, the truncated free space 
sizes are now 0.5L = 30 mm, L = 60 mm, 2L = 120 mm, 
4L = 240 mm, and 6L = 360 mm, as depicted in Fig. 12g.

The TO results for different free space truncations are pre-
sented in Figs. 12a-12f. It is evident that there are no signifi-
cant differences in the geometry of the designs as the domain 
size increases. This can be clearly observed by comparing the 
extracted shape in Fig. 12h with the shape extracted from a 
smaller domain in Fig. 9h. Furthermore, this similarity is also 
apparent in the evolution of the objective shown in Fig. 13. 
Based on these findings, we can conclude that the influence 
of free space is independent of the domain size.

4.2  Gripper actuator

The next example we studied is a gripper actuator. When actu-
ated with an electric potential of 20V, the actuator arms at 
the output port, uout , move towards each other in the vertical 
direction against a reaction force f out = 1 N applied by a body 
being gripped. The problem setup is illustrated in Fig. 14 and 
L = 60 µm in our study.

We conducted a similar study as the previous example to 
investigate the influence of free space on the optimized struc-
ture. We considered different sizes of free space truncation in 
the computation and presented the results of TO in Fig. 15a–f. 
It can be observed that the variations in the topologies con-
verge as we increase the size of free space truncation. This 
convergence is best visualized in Fig. 15h, where we presented 
the outline of the structures. The convergence of the design is 
also reflected in the evolution of the objective plot in Fig. 16. 
The differences in the design are due to the variation of the 
potential distribution inside the bulk when different sizes of 
free space are considered. To further examine the variation 
of the potential distribution inside the bulk, we plotted the 
potential along the diagonal of the design domain in Fig. 17 
for different truncation of free space. An important observation 
is the convergence in the variation as we increase the size of 
truncation of free space. In our case, we observed the conver-
gence of potential distribution for free space sizes of 4 times 
( 240� m) and 6 times (360 µm) of bulk dimension. Finally, 

Fig. 16  Gripper actuator: Evolution of the objective function F
cm

 for 
various free space sizes. (Color figure online)

Fig. 17  Gripper actuator: Potential distribution along the diagonal of 
the bulk material, from the bottom left to top right, at the end of the 
optimization process for different sizes of free space. (Color figure 
online)
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the difference in the objective without considering free space 
and with a free space size of 6 times (360 µm) that of bulk 
dimension is 24.77%.

5  Conclusion

In our study, we investigated the impact of the surrounding 
free space on the structural optimization of EAPs (EAPs). 
We modeled the free space as the void region in density-
based TO. We increased the size of the free space considered 
for computation and observed the results of TO. Although 
there may not be significant visual differences when consid-
ering the free space, there are differences in the performance. 
Considering that these materials will be used as actuators, 
for example in biomedical devices, these differences might 
play an important role. Thus, we propose that the considera-
tion of free space has an impact on the optimized structure. 
To accurately capture the influence of free space, we recom-
mend considering a free space that is at least 6 times the size 
of the bulk material under consideration. Furthermore, we 
investigated to assess whether the influence of free space 
remains consistent as the domain size increases. Our obser-
vations revealed that the influence of free space is indeed 
independent of the domain size.

The consideration of free space also plays an important 
role in magneto-active polymers. Furthermore, the influence 
of free space on shape optimization and stress constraints 
has not been studied yet, and this could be explored using a 
sequential optimization approach (Dev et al. 2022; Stank-
iewicz et al. 2022). This constitutes the direction for future 
works.
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