
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2023) 66:175 
https://doi.org/10.1007/s00158-023-03631-8

RESEARCH PAPER

Multi‑fidelity optimization of metal sheets 
concerning manufacturability in deep‑drawing processes

Arne Kaps1   · Tobias Lehrer1,2 · Ingolf Lepenies3 · Marcus Wagner2 · Fabian Duddeck1

Received: 8 March 2023 / Revised: 29 June 2023 / Accepted: 1 July 2023 / Published online: 12 July 2023 
© The Author(s) 2023

Abstract
Multi-fidelity optimization, which complements an expensive high-fidelity function with cheaper low-fidelity functions, 
has been successfully applied in many fields of structural optimization. In the present work, an exemplary cross-die deep-
drawing optimization problem is investigated to compare different objective functions and to assess the performance of a 
multi-fidelity efficient global optimization technique. To that end, hierarchical kriging is combined with an infill criterion 
called variable-fidelity expected improvement. Findings depend significantly on the choice of objective function, highlight-
ing the importance of careful consideration when defining an objective function. We show that one function based on the 
share of bad elements in a forming limit diagram is not well suited to optimize the example problem. In contrast, two other 
definitions of objective functions, the average sheet thickness reduction and an averaged limit violation in the forming limit 
diagram, confirm the potential of a multi-fidelity approach. They significantly reduce computational cost at comparable 
result quality or even improve result quality compared to a single-fidelity optimization.

Keywords  Multi-fidelity optimization · Efficient global optimization · Sheet metal forming · Deep drawing

1  Introduction

Sheet-metal forming is one of the essential manufacturing 
processes for structural and body parts in various indus-
tries, for example, the automotive industry. Essentially, a 
thin metal sheet is plastically deformed into its desired shape 
by means of forming tools. Not only the process of forming 
itself is subject to a number of process parameters, but also 
material and shape parameters of the component influence 
the success of the forming process. Numerical methods such 
as finite element (FE) methods have been developed since 
the 1960s and have been applied in industrial use since about 
the 1980s. An early overview can, for example, be found in 

Makinouchi (1996). More recently, inverse methods have 
been proposed to save computational resources while still 
being able to predict the manufacturability of components 
(Lee and Huh 1997, 1998; Guo et al. 2000). For an overview 
of more recent developments in simulation methods for sheet 
metal forming, interested readers are referred to some of the 
nice review articles on the topic, such as by Ablat and Qat-
tawi (2016) or by Andrade-Campos et al. (2022).

Along with the development of improved simulation 
methods, new optimization methods for structural problems 
were suggested. One common challenge in applying such 
multi-query algorithms to structural problems is the often 
infeasible amount of computational resources required for 
running an FE simulation with every evaluation. Modern 
optimization approaches, such as efficient global optimi-
zation [EGO; Jones et al. (1998)], which were specifically 
designed to reduce the required evaluations, can partially 
solve this problem. The idea of EGO is to first fit a surrogate 
model from the initial design of experiments (DoE). Typi-
cally, a kriging model (Krige 1951; Matheron 1963; Sacks 
et al. 1989) is used due to its inherent error approximation. 
Subsequently, this surrogate model is iteratively improved 
using an infill criterion that determines new sample loca-
tions. The most popular criterion is the originally proposed 
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expected improvement [EI; Jones et  al. (1998)], while 
several other options can be found, for example, in Jones 
(2001). A more detailed review of this type of surrogate-
based optimization is given in Forrester and Keane (2009).

More recently, in an effort to further reduce computa-
tional requirements on the optimization scheme, EGO and 
kriging were extended to so-called multi-fidelity schemes. 
Here, the accurate, high-fidelity simulation model is com-
plemented by some form of low-fidelity model, which is 
usually less accurate but significantly cheaper to calculate. 
In the present work, a multi-fidelity variant of EGO based 
on hierarchical kriging (HK), a multi-fidelity extension to 
kriging suggested by Han and Görtz (2012) and an infill 
criterion called variable-fidelity expected improvement (VF-
EI; Zhang et al. (2018)) is utilized. Interested readers are 
referred to previous work on multi-fidelity surrogate models 
as well as optimization for more information [e.g., Forrester 
et al. (2007); Park et al. (2016)].

Since the 1990s, different optimization approaches have 
also been applied to sheet metal forming. Ohata et al. (1998) 
optimized a two-stage deep-drawing process using three 
design variables in incremental forming simulations. Guo 
et al. (2000) utilized an inverse approach to optimize the 
blank shape for manufacturability. A surrogate-based opti-
mization approach was suggested by Jansson et al. (2005) 
for the design of drawbeads and validated with experimental 
data. Different surrogate-based schemes, including kriging, 
were used to optimize a time-dependent blankholder force 
curve by Jakumeit et al. (2005). An overview of some of 
the earlier applications of optimization schemes to sheet-
metal-forming problems is given by Wifi et al. (2007). More 
recently, a multi-fidelity optimization scheme for drawbead 
design combining both incremental high-fidelity forming 
simulations and a more efficient low-fidelity simulation has 
been proposed by Sun et al. (2010). Although the initial 
work is based on polynomial regression, the authors later 
extended the approach to other metamodels such as kriging 
using an artificial bee colony optimization algorithm (Sun 
et al. 2012).

In the present work, we apply a modern HK-based multi-
fidelity optimization approach to an exemplary problem on 
the manufacturability of a deep-drawn cross-die component. 
We compare three different objective functions, which have 
all been proposed in the literature in a similar form. There 
are two main goals when comparing the performance of 
multi-fidelity algorithms in the context of this work. First, 
the multi-fidelity approach should reduce the overall compu-
tational effort of the optimization process. Second, it should 
not lead to significantly worse results compared to optimiza-
tion using only high-fidelity simulations. We aim to estab-
lish the applicability of a modern multi-fidelity optimization 
approach to sheet metal forming and work out possible dif-
ferences between the objective functions.

The present work is structured as follows. In Sect. 2, the 
multi-fidelity optimization approach utilizing HK and VF-EI 
is introduced. In Sect. 3, the numerical example studied 
here is presented. The objective functions compared here 
are introduced in Sect. 4 along with the definition of the 
optimization problem. The performance of the algorithms 
is compared and discussed in Sect. 5. Finally, all findings 
are summarized, and an outlook into possible future work 
is given in Sect. 6.

2 � Multi‑fidelity optimization

In the following, the multi-fidelity EGO approach based 
on HK and VF-EI is introduced, which will be used in this 
work. At the top level, this surrogate-based optimization 
scheme can be divided into two parts. First, a design of 
experiments is used to generate design samples to subse-
quently fit the surrogate model. Here, HK is utilized because 
it has been shown to yield better error approximations com-
pared to other multi-fidelity kriging approaches (Han and 
Görtz 2012). Subsequently, adaptive samples are added, 
whereby their location is determined through maximiza-
tion of an infill criterion on the previously created surrogate 
model. Here, VF-EI is applied because it has been shown to 
perform very well in application problems [see, for exam-
ple, Zhang et al. (2018); Ruan et al. (2020)]. A schematic 
representation of the optimization scheme applied here is 
depicted in Fig. 1.

All steps of the outlined process are now explained in 
more detail. The first step as in any population-based opti-
mization scheme is DoE. DoE is an active field of research, 
as there is no unique ‘best’ way to distribute these initial 
samples apart from the rather vague goal of good coverage 
of the design space. Interested readers are referred to one 
of the review articles such as Garud et al. (2017) for more 
information on different DoE methods and quality criteria 
for DoE.

In the present work, an optimal Latin hypercube (OLH) 
approach is used as it shows great performance in lower-
dimensional applications. A Latin hypercube design (LHD) 
is commonly constructed as follows. When looking for N 
samples in d dimensions, each dimension of the design 
space is divided into N bins of equal probability. N cells of 
the total Nd created cells are then randomly selected so that 
each bin of each dimension only contains a single selected 
cell (McKay et al. 1979). Within each selected cell, a single 
sample is placed either in the center or randomly located 
[compare Rajabi et al. (2015)], whereby the former case is 
used here.

Initial Latin hypercube designs may still suffer from prob-
lems, such as correlations. Optimal Latin hypercube (OLH) 
provides a remedy by incrementally improving DoE quality 
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according to a space-filling criterion. In the present work, 
a simulated annealing algorithm consisting of random pair-
wise and coordinate-wise swaps is utilized. New samples are 
always accepted if they improve the space-filling criterion 
and are accepted with a certain probability if they do not 
offer an improvement (Morris and Mitchell 1995). Other 
optimization approaches for OLH include deterministic 
sample selection (Ye et al. 2000) and Enhanced Stochastic 
Evolutionary algorithm as suggested by Jin et al. (2003). An 
overview of more recent developments around OLH can also 
be found in Viana (2015).

The second step of EGO is to fit an initial HK model 
to the d-dimensional objective functions based on the cal-
culated sampling data. Readers are referred to the original 
publications (Krige 1951; Matheron 1963; Sacks et al. 1989) 
as well as more recent textbooks [such as Rasmussen and 
Williams (2005)] for more information on kriging in gen-
eral and the original publication for a detailed derivation of 
the HK predictor (Han and Görtz 2012). The idea of HK is 
to first create a kriging model for the low-fidelity function. 
Therefore, consider a random process for the low-fidelity 
(LF) function

(1)YLF(x) = �0,LF + ZLF(x),

where �0,LF is an unknown constant and ZLF(x) is a sta-
tionary random process. Furthermore, a sample dataset 
(SLF, yS,LF) consisting of mLF samples with input variable 
data SLF ∈ ℝ

mLF×d and the corresponding output yS,LF ∈ ℝ
mLF 

is required.
To predict points based on the random process and the 

sampling dataset, the correlation between sample points is 
modeled through a so-called kernel. Over the years, many 
different kernel functions with varying properties have been 
suggested. Here, a squared-exponential kernel, also called a 
Gaussian radial-basis function (RBF) kernel, is utilized due 
to its smoothness and infinite differentiability:

where �k denotes the kernel length scale that represents the 
hyperparameter(s) of the kriging surrogate model. The ker-
nel function depicted above is called anisotropic because 
there is a separate length scale parameter for each design 
space dimension. In the present work, an isotropic kernel is 
chosen, where the hyperparameter �k = � is a scalar, that is, 
independent of coordinate dimension. Other popular kernel 
function choices can be found in textbooks such as Rasmus-
sen and Williams (2005) or in popular software implemen-
tations of kriging [for example, Pedregosa et al. (2011) or 
GPy (2012)]. Given the sample dataset, the kriging model 
is fitted by running a separate optimization for the kernel 
hyperparameter � . Here, differential evolution (Storn and 
Price 1997) is used due to its simplicity and good global 
search characteristics. However, more advanced approaches 
for hyperparameter optimization have been suggested [see, 
for example, Toal et al. (2008) for more information].

With the representation of the random process, the sam-
pling data, and the kernel function, the low-fidelity predictor 
for a new point x can be written as follows:

where rLF is the correlation vector between the sample data 
and the new point, RLF ∈ ℝ

mLF×mLF represents the correla-
tion matrix between the sample data points and 1 ∈ ℝ

mLF a 
column vector filled with ones.

With the low-fidelity predictor ŷLF(x) , the hierarchical krig-
ing model can be constructed, which is based on a random 
process representing the high-fidelity function:

�0 is an unknown scaling factor applied to the low-fidelity 
predictor to represent the trend term of the model and Z(x) 

(2)R
(
x(i), x(j)

)
=

d∏
k=1

exp

(
−�k

|||x
(i)

k
− x

(j)

k

|||
2
)
,

(3)

ŷLF(x) = 𝛽0,LF + rT
LF
(x)R−1

LF
(yS,LF − 𝛽0,LF1),

with 𝛽0,LF =

(
1
TR−1

LF
1

)−1

1
TR−1

LF
yS,LF,

and rLF =
[
R
(
x, x(1)

)
, ...,R

(
x, x(m)

)]
∈ ℝ

mLF

,

(4)Y(x) = 𝛽0ŷLF(x) + Z(x).

Fig. 1   Schematic representation of the optimization scheme applied 
in the present work [adapted from Zhang et al. (2018)]
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is a stationary random process. With the high-fidelity sample 
dataset (S, yS) consisting of m samples with input variable 
data S ∈ ℝ

m×d and the corresponding output yS ∈ ℝ
m and 

the kernel function R(x(i), x(j)) as defined above, the HK pre-
dictor for the high-fidelity function is given by

Here, �0 indicates the correlation between high- and low-
fidelity models and F = [ŷLF(x

(1))...ŷLF(x
(n))]T ,∀x(i) ∈ S 

represents the low-fidelity prediction at high-fidelity sam-
ple point. r ∈ ℝ

m and R ∈ ℝ
m×d are defined as introduced 

for the low-fidelity predictor. In the HK predictor, only ŷ(x) 
and r(x) depend on the location of the new point. All other 
factors can be calculated when fitting the model.

Another important quantity that is needed in the later steps 
of the optimization process is the mean-squared error (MSE) 
of the HK prediction. It is written here with respect to �2 , the 
process variance of Z(x)

Based on the initial HK model, several iterations are per-
formed to adaptively improve it until a specific termination 
criterion is reached. The termination criteria will be covered 
below. The location of the new adaptive samples is deter-
mined by optimizing an infill criterion. When considering 
multi-fidelity optimization, there are generally two options 
regarding infill criteria: First, a ‘classic’ single-fidelity infill 
criterion can be chosen. Among them, expected improvement 
which was used by Jones et al. (1998) to introduce EGO, 
remains the most popular. However, several different criteria 
have been suggested over the years [see, for example, Jones 
(2001) or Forrester and Keane (2009) for overviews]. The 
prime disadvantage of this option is that only high-fidelity 
samples can be added adaptively. Therefore, a multi-fidel-
ity infill criterion is utilized here, called variable-fidelity 
expected improvement (Zhang et al. 2018). It is essentially 
a multi-fidelity extension of standard EI and in its formula-
tion is very similar to another criterion called augmented 
EI (Huang et al. 2006). Here, it is favored over the latter 
because it is free of empirical parameters. More discus-
sion on the comparison between these two criteria can be 
found in the original publication suggesting VF-EI. VF-EI 
is defined at location x and fidelity level L as follows:

(5)
ŷ(x) = 𝛽0ŷLF(x) + rT (x)R−1(yS − 𝛽0F)

with 𝛽0 =
(
FTR−1F

)−1
FTR−1yS.

(6)
MSE(ŷ(x)) = 𝜎2

(
1.0 − rTR−1r

+
[
rTR−1F − ŷLF

]2(
FTR−1F

)−1)
.

where u =
ymin−ŷ(x)

s(x,L)
 and ymin is the currently best feasible 

high-fidelity function value. Φ(∙) represents the cumulative 
distribution of the standard normal distribution and �(∙) its 
probability density function. The term s(x, L) denotes the 
uncertainty of the HK model. The previously introduced 
scaling factor between fidelity levels �0 is used here to model 
the uncertainty in high-fidelity prediction caused by the low-
fidelity predictor:

MSE(ŷ(x)) and MSE(ŷLF(x)) are the MSEs of the high- and 
low-fidelity kriging predictors, respectively.

The two summands in Eq. (7) can be identified with 
exploration and exploitation. The first term 

(
ymin − ŷ(x)

)
Φ(u) 

is dominated by the improvement of the solution ŷ(x) 
and, thus, represents exploitation, while the second term 
s(x, L)�(u) represents exploration because it is dominated 
by the uncertainty of the solution s(x, L).

Due to the highly multimodal nature of the EI functions, 
differential evolution (Storn and Price 1997) is selected for 
optimization of the infill criterion in the present work.

Two different criteria are used to determine the end of 
optimization. First, a minimum allowable value is specified 
for the optimized infill criterion. Second, a maximum total 
number of (high-fidelity) objective function evaluations is 
defined. The values of the criteria are problem dependent, 
and are listed below with the definitions of the problems. 
The first criterion can be seen as convergence of the algo-
rithm to an (at least near-) optimal point with little expec-
tation of improvement from adding further samples. The 
other criterion is used to represent budget restrictions on 
optimization run time that are commonly encountered in 
application use cases.

The optimization algorithm, along with a part for DoE, 
is implemented in an in-house Python code from previous 
work by the authors (Komeilizadeh et al. 2022; Kaps et al. 
2022). HK model generation and kernel implementation are 
based on the scikit-learn library (Pedregosa et al. 2011).

3 � Numerical example

Based on the objective functions which are introduced in 
Sect. 4, two different optimization schemes are compared for 
an exemplary numerical problem introduced in the follow-
ing. Here, a cross-die deep-drawing simulation comparable 
to the one studied by Hoque and Duddeck (2021) is used as a 

(7)

EIvf (x, L) ={
s(x,L)[uΦ(u) + 𝜙(u)], if s(x, L) > 0

0, if s(x, L) = 0
,

(8)s2(x, L) =

{
𝛽2
0
⋅MSE(ŷLF(x)), L = 0 low-fid

MSE(ŷ(x)), L = 1 high-fid
.
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basis for the optimization problem. An exemplary configura-
tion of the final component is shown in Fig. 2. All tooling 
is modeled as rigid bodies while the sheet blank is made of 
steel. Coulomb friction is assumed between the blank and 
the tools. More detailed information on modeling param-
eters and numerical values can be found in Table 2 in the 
Appendix. An incremental explicit simulation in LS-Dyna 
is utilized for the high-fidelity model. An exemplary high-
fidelity simulation model at the initial time step is shown 
in Appendix Fig. 13. The simulation of deep drawing itself 
consists of multiple process steps. Initially, the punch moves 
into contact with the sheet metal blank. The blank itself is 
pressed to the die by a blankholder. Then, as the punch 
moves further, the deep drawing, i.e., the nonlinear forming 
of the blank into its desired shape, is driven by the differ-
ent contacts between the tools and the blank. Finally, when 
the punch is removed, an elastic springback of the compo-
nent occurs. This last step is not considered in the present 
work because it accounts for dimensional accuracy while 
the focus here lies on formability. For more detailed over-
views of the various details of sheet-metal-forming simula-
tion, readers are referred to the available textbooks on the 
topic, e.g., Banabic (2010). As the low-fidelity model, the 
inverse implicit one-step capability of LS-Dyna based on a 
more coarsely meshed component is utilized. The idea of 
the inverse one-step approach is to use deformation theory 
to calculate stresses, strains, and thicknesses in the formed 
component given the final geometry. A more detailed deri-
vation including the governing equations of the approach 
can be found, for example, in the original publication (Lee 
and Huh 1997). The maximum element size is set to 5 mm 
for the latter, compared to 3 mm for the high-fidelity model. 
The smallest element size after adaptive mesh refinement 
in the high-fidelity model is 0.5 mm. Simulation times for 
high- and low-fidelity simulation models are 10–20 min and 

1–2 min, respectively, when running on eight cores.1 Exact 
values vary also depending the choice of design variables.

For the optimization problem studied here, a total of six 
design variables are selected. All variables and their speci-
fied limits are summarized in Table 1. From the literature, 
the design variables in sheet-metal-forming optimization 
problems can be divided into three categories: geometry 
parameters [see, for example, Guo et al. (2000) or Kishor 
and Kumar (2002)], process parameters [for example, blank 
holding force, Obermeyer and Majlessi (1998)], and mate-
rial parameters. In the present work, the design variables are 
exemplary chosen from all three categories. As geometry 
parameters, the thickness of the initial sheet metal, the slant 
depth of the cruciform, which is equivalent to the drawing 
depth of the process, and the die radius are chosen. The 
Lankford coefficient, which represents the normal anisot-
ropy of the material, is varied as a material parameter. The 
Coulomb friction coefficient and the constant blankholder 
force (BHF) are the two remaining design variables in the 
class of process parameters.

Previous work has shown that it can be beneficial to vary 
the BHF in the forming process [e.g., Jakumeit et al. (2005)]. 
Here, it is kept constant for the sake of simplicity. For the 
same reason, all design variables in this exemplary problem 
are considered continuous, even though, for example, the 
sheet metal thickness or the Lankford coefficient might be 
more realistically treated as a discrete variable.

The design variable values in the present example are 
chosen to be very challenging in the sense that they will 
likely not yield a manufacturable component in the optimiza-
tion. The main reason is that objective functions f1 and f2 are 
not capable of distinguishing manufacturable components 
from each other. Both functions take a constant value of zero 
for manufacturable components. Therefore, manufacturable 
components in the design space would limit the comparabil-
ity between objective functions.

Fig. 2   Exemplary geometry of the cross-die component studied here. 
The definition of slant depth is indicated in white, i.e., design variable 
x
2
 , used here

Table 1   Overview of the design variables specified for the optimiza-
tion problem considered here

Symbol Name Bounds Unit

x1 Sheet thickness [0.8, 1.8] mm
x2 Slant depth [12, 35] mm
x3 Die radius [6, 9] mm
x4 Lankford coeff [0.8, 2.5] –
x5 Friction coeff [0.08, 0.12] –
x6 Blankholder force [130, 190] kN

1  The used LS-Dyna version is R12, runs are performed on an AMD 
Ryzen 9 7950X CPU with 64  GB RAM, running Ubuntu version 
22.04.
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4 � Objective functions

The three different objective functions used to assess the 
formability of a component are introduced in the follow-
ing. All functions are defined here to be minimized dur-
ing optimization. All three functions have been previously 
used, sometimes with slight variations, in the literature. 
Therefore, while the presentation here is kept brief, inter-
ested readers are referred to the various original publica-
tions for further discussion.

The first two objectives make use of the so-called form-
ing limit diagram (FLD). It includes the forming limit 
curve (FLC) representing the onset of localized necking in 
the sheet metal component, as well as a limit curve for the 
onset of wrinkling. Since their first mention in the 1960s 
(Goodwin 1968; Keeler 1968), many different variants 
of FLDs have been studied to remedy some of the initial 
shortcomings such as strain-path effects on the FLC. One 
such example is the extension of FLCs to nonlinear strain 
paths and multi-step forming process by Volk and Suh 
(2013). Readers are referred to previous works reviewing 
the topic in more detail [e.g., Paul (2013) or Obermeyer 
and Majlessi (1998)]. An exemplary FLD used in the pre-
sent work is shown in Fig. 3. Here, the major and minor 
true strains for each element of the deep-drawn sheet metal 
component are plotted against each other. The red line is 
the FLC and the pink line represents the wrinkling limit 
curve (WLC). Each dot represents an element in the simu-
lation model.

The first objective function is based on counting the ele-
ments in the different categories of the FLD. Subsequently, 

the objective function f1 is defined as the share of ‘bad’ 
elements:

where N is the total number of elements. NC , NCR , NW , NWR, 
and NTH represent the number of elements in the crack, crack 
risk, wrinkling, wrinkling tendency, and severe thinning 
categories of the FLD, respectively (compare Fig. 3). This 
approach is somewhat similar to two of the four criteria sug-
gested by Jakumeit et al. (2005).

The second objective function assessed in the present 
work is based on the average distance of bad elements to 
the respective limiting curves. A very similar approach 
has been originally suggested by Naceur et al. (2004) and 
applied in a multi-fidelity setup by Sun et al. (2010). In 
the present work, the different distances are weighed by 
the area of the respective element [compare Schenk and 
Hillmann (2004)]. The FLC and WLC are defined here as 
black-box functions. Given the values of the major and 
minor true strains of the element e, these functions return 
the points on the curves 𝝐FLC and 𝝐WLC required for the cal-
culation of the distance. For elements within the domain 
of the limiting curve, a vertical distance is calculated. The 
Euclidean distance is utilized for the remaining elements. 
Therefore, the distance function is defined as follows:

𝝐
LC represents the major and minor strains of the point on 

the respective limiting curve (LC), while �LC represents the 
domain of the curve. Therefore, the second objective func-
tion is given by

Here, w is a weighting factor balancing the contributions of 
crack and wrinkling elements. It is set to w = 0.1 following 
the suggestion made in Sun et al. (2010). Initial studies were 
performed for the present application problem with different 
values of w. It was found that the value of w does not have a 
significant impact on the optimization results here; however, 

(9)
f1 =

Nbad

N
, where

Nbad = NC + NCR + NW + NWR + NTH

,

(10)d
�
𝝐
e, 𝝐LC

�
=

� �𝜖e
1
− 𝜖LC

1
�, 𝜖e

2
∈ �LC

‖𝝐e − 𝝐
LC‖2, else .

(11)

f2 = f2,C + wf2,W, where

f2,C =

⎧⎪⎨⎪⎩

∑NC
e=1

d(𝝐e,𝝐FLC)Ae

∑NC
e=1

Ae
, 𝜖e

1
> 𝜖FLC

1

0, else

f2,W =

⎧
⎪⎨⎪⎩

∑NW
e=1

d(𝝐e,𝝐WLC)Ae

∑NW
e=1

Ae
, 𝜖e

1
< 𝜖WLC

1

0, else

.

Fig. 3   Exemplary forming limit diagram for a cross-die component. 
The red line is the FLC and the pink line represents the WLC. Each 
dot represents an element of the simulation model. Blue and yellow 
colors indicate crack and wrinkling risk areas, respectively. Orange 
color shows severe thinning area. The black line marks the limit of 
strain definitions, i.e., �

1
≥ �

2
 . (Color figure online)
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the chosen value provides a nice balance between the two 
contributions. The element area is given by Ae.

The third objective function f3 is the thickness variation 
in the drawn component. This indicator has been widely 
used for many years [e.g., Guo et al. (2000); Naceur et al. 
(2001); Sattari et al. (2007)]. The definition used here is 
very similar to that given by Guo et al. (2000) for the special 
case p = 2:

N represents the number of elements, h0 is the initial con-
stant thickness of the sheet metal, and the elemental sheet 
thickness at the final simulation time step is given by he

t
 . 

This function is intuitive because a decrease in thickness 
during the simulation can lead to necking, while an increase 
in thickness may be correlated with wrinkling. These are the 
two main failure modes in sheet metal forming. In contrast 
to the first two objective functions, this function also allows 
for the comparison of components considered as manufac-
turable. Objective functions f1 and f2 are always zero when 
a component is considered formable, whereas function f3 
is not.

Defining the lower and upper bounds of the j-th design 
variable as x

j
 and x̄j , respectively, (compare Table 1) and 

considering the three objective functions fi(x) introduced 
above, the three optimization problems considered here can 
be formulated as follows:

Here, i will take the values 1, 2, or 3, depending on 
the objective function considered. The formulation fi(x) 
includes the whole simulation workflow, where depend-
ing on the fidelity level and design variable values either a 
high-fidelity or a low-fidelity simulation model is generated, 
evaluated, and the resulting strain field used to calculate the 
respective objective function value.

Termination criteria for this problem are set to 10−5 for 
the infill criterion threshold and 100 for the maximum num-
ber of iterative evaluations of the objective function.

5 � Results

In the following, the optimization results of the optimization 
scheme proposed by Zhang et al. (2018) for the three differ-
ent objective functions on the given deep-drawing problem 

(12)f3 =

(
1

N

N∑
e=1

(he
t
− h0)

2

) 1

2

.

(13a)min
x

fi(x),

(13b)where x
j
≤ xj ≤ x̄j, j = 1, 2, 3, 4, 5, 6 .

are presented separately, discussed, and finally compared. As 
a reference, a single-fidelity optimization technique based 
on kriging, EI, and the high-fidelity simulation model is uti-
lized. The latter is referred to as HF in the following, while 
the multi-fidelity scheme is called MF.

In general, both techniques are evaluated for the quality, 
consistency, and computational requirements of the results. 
Two points are the focus of the present work. First, we assess 
how each objective function performs in the optimizations 
and how the optimization results between different objec-
tive functions differ. Second, we establish whether the pre-
sented multi-fidelity optimization approach shows potential 
for sheet-metal-forming problems.

All high- and low-fidelity simulations are performed on 
the same computer using FE software LS-Dyna distributed 
across eight cores. Each optimization run is repeated ten 
times to ensure the reliability of the assessment. Unless 
explicitly stated otherwise, all objective function values 
listed below are based on the high-fidelity model. For com-
pleteness, the average number of simulation model calls for 
both fidelity level and all objective functions is listed in the 
Appendix Table 3.

5.1 � Objective function f
1

As a first step in assessing the results for objective function 
f1 , convergence and termination criteria are checked. Only 
seven out of the total of 20 optimization runs here terminate 
due to reaching the threshold infill criterion, whereas all 
others run into the maximum number of allowed iterations. 
Three and four of these seven runs occur with the HF and 
MF techniques, respectively. A convergence plot showing 
the best current objective function value over the high-fidel-
ity evaluations is shown in Fig. 4. Each gray curve represents 
repetitions of MF, and each black curve represents HF. The 
diagram shows generally good convergence behavior, indi-
cating that the different termination criteria encountered may 
not be problematic per se. However, it should be noted that 
there are quite a lot of differences between repetitions of 
the same optimization technique. Possible reasons for these 
differences are discussed in the following, after presenting 
the actual optimization results.

The results of the optimization of objective function f1 , 
which is based on counting the share of bad elements in 
the FLD are shown in a parallel coordinates plot in Fig. 5. 
The two techniques HF and MF are compared. Each curve 
represents the optimized result of a single optimization run. 
The color scale indicates the value of the objective function. 
Different design variables are listed on the x-axis and their 
normalized ranges on the y-axis. The values of the objective 
function here are mostly in the range between 0.38 and 0.40 
with a total of six exceptions above or below that (see, for 
example, the dark blue curve for HF or the yellow curve for 
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MF). The average best for the objective function is slightly 
lower for HF compared to MF. As this difference is smaller 
than the variation between repetitions of the same technique, 
it is not considered significant here. Interestingly, the values 
of the design variables do not reflect the consistency of the 
objective function results. In fact, x3 is the only variable 
for which a consistent optimal value of around 6.45 mm is 
found. Intuitively, a higher value for the die radius x3 should 
be beneficial to prevent cracks during the drawing process. 
Here, it is lower, because there is a high number of elements 
in the wrinkling range where a lower radius can be better. 
All other design variables vary significantly between differ-
ent repetitions for both optimization techniques.

The fact that both the convergence plot and the results 
show significant variations between repetitions across both 
optimization approaches indicates that the objective function 
itself might be the problem. Recall that the approach for this 
objective was to determine the share of ‘bad’ elements in 
the FLD. This rather naive approach is tempting because it 
is very easy to implement and understand. However, it has 
a number of downsides that could contribute to the incon-
sistent results reported here. First, counting the categorized 
elements neglects the degree to which an element violates, 
for example, the forming limit. In reality, it could make a 
big difference if an element lies barely above the FLC or is 
far beyond. Second, the intermediate categorization of ele-
ments reduces the influence that design variables have on 
the objective function. To illustrate this point, imagine an 
element slightly above the FLC (i.e., in the group of cracked 
elements) in the basis configuration. Now imagine that this 
element is experiencing an increased major strain due to, 
for example, an increase in the blankholder force. Ideally, 
this worsening state should be reflected in some way in the 
value of the objective function. However, for f1 the objective 
value would not change because the element was already in 
the group of cracked elements before. This reduced influence 
of design variables makes any attempt at optimization sig-
nificantly harder. We believe that this insufficient definition 
of f1 is responsible for the inconsistent results reported here. 
It also leads to ‘optimized’ designs which are quite different 
from those found with the other two objective functions, 
which will be presented below.

For completeness, it should be mentioned that the MF 
approach yields on average a time reduction of around 50% 
for optimization compared to HF. The exact numbers can be 
found in Table 4 in the Appendix.

Fig. 4   Objective function f
1
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 5   Objective function f
1
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)
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For the objective function f1 , it can be concluded that 
the optimization technique MF is capable of significantly 
speeding up the optimization process for the present example 
problem without reducing the quality of the results. How-
ever, the objective function itself is not ideally defined for 
optimization because the influence of the design variables 
on the objective function is limited. This leads to very incon-
sistent optimization results, regardless of the technique used.

5.2 � Objective function f
2

The discussion of objective function f2 which is defined 
as the weighted average distance of cracked and wrinkle 
elements to FLC and WLC in the FLD respectively is also 

started with checking termination conditions and conver-
gence. Here, all MF runs and seven of the ten HF runs ter-
minate due to the threshold infill criterion indicating good 
convergence. The remaining three optimizations are termi-
nated after reaching the maximum number of iterations. A 
convergence plot for this objective function in the same style 
as above is shown in Fig. 6. Here, repetitions of the same 
algorithm converge to similar values fairly consistently. In 
addition, the algorithm reaches values close to the final opti-
mum in very few adaptive high-fidelity evaluations. Just to 
recall, the adaptive phase starts after 50 and 20 high-fidelity 
evaluations for HF and MF, respectively.

A comparison of the optimization results between HF and 
MF is shown in Fig. 7. The optimal values of the objective 
function here are consistently between 0.34 and 0.38, with 
only one overall worse value in MF. Optimal objective func-
tion values can also be linked to certain design variable val-
ues. x1 and x2 are at or close to their lower bounds of 0.8 mm 
and 12 mm, respectively. x3 is either at its upper limit 9 mm 
or around 7.5 mm, x4 is consistently at its upper limit 2.5, 
while x5 and x6 vary across their entire range between opti-
mizations. The variation in the latter variables indicates that 
their influence on the objective function is limited. For the 
Coulomb friction coefficient x5 this is less surprising as its 
range was also defined pretty narrowly. For the blankholder 
force x6 , it can be observed that most of the results are in 
the lower half of its range, so the best explanation is that its 
influence diminishes below a certain threshold. Overall, the 
quality of the results between the two optimization methods 
is very similar, although there is slightly more variation with 
MF.

To illustrate the progress made during optimization, two 
designs evaluated during a MF optimization run are cho-
sen representatively. The first is the initial evaluation of the 

Fig. 6   Objective function f
2
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 7   Objective function f
2
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)
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optimization that produces an objective function value of 
2.49 and the second is the optimized evaluation of the same 
optimization with the objective function value 0.35. FLDs 
for these two simulations are depicted in Fig. 8. Significant 
improvements can be seen, particularly with cracked ele-
ments, but also in the wrinkling regime. It should be noted 
here that the optimized result is nevertheless not considered 
manufacturable, which is expected from the definition of 
design variable limits (compare Sect. 3).

For computational requirements, MF runs on average 
need around 46% less time to terminate than HF. Detailed 
numbers are listed in Appendix Table 4. These results match 
fairly well with previously reported time savings of multi-
fidelity optimization schemes in structural optimization 
problems. Compare, for example, Acar et al. (2020) or Kaps 
et al. (2022) where the authors used multi-fidelity schemes 
in automotive crashworthiness examples.

In conclusion, MF can produce results of comparable 
quality to HF, although they show slightly more variation, 
while significantly reducing the optimization time using the 
objective function f2 in the present example problem. The 
results with this objective are also significantly more con-
sistent than with f1 , indicating that this is a more suitable 
objective function for this type of problem.

5.3 � Objective function f
3

The results of the thickness reduction objective function f3 
are shown in Fig. 9. Here, good values of the objective func-
tion below 0.05 appear to depend on variables x1 , x2 , x5 , and 
x6 being close to their respective lower bounds, while x4 is 
at its upper bound of 2.5 and x3 is in the middle between 
values of 7.5 and 8 mm. We believe that these results are as 
expected when considering the average thickness reduction 
of the component over the deep-drawing process. The values 
of the design variable are also remarkably similar to those 
observed for f2 . The only exception is the friction coeffi-
cient x5 , which is significantly more consistent in its optimal 
values close to its lower boundary for the present objective 
function. Interestingly, for this objective function, the MF 
approach yields better and more consistent results than HF.

Before looking at the run times and more details of the 
comparison, convergence information is reported to ensure 
reliability of the results. For this objective function, all runs 
of the HF method and seven of the ten MF runs terminate 
due to the infill criterion threshold. The other three runs 
reach the maximum number of iterations. This indicates 
good convergence of the algorithms. The full convergence 
plot for all runs, which can be found in Fig. 10, confirms 
this observation.

The FLD for the best result obtained by the MF tech-
nique among all repetitions is shown in Fig. 11. As the 
differences between the repetitions are marginal here, it is 

also representative of other optimized results from the MF 
method. The component depicted here is not considered 
manufacturable (see Sect. 3). However, this FLD confirms 

Fig. 8   Objective function f
2
 : Comparison of two forming limit dia-

grams (FLD) of an early simulation and the optimized result of the 
same optimization run. For the latter, results are also shown mapped 
onto the final geometry. More details on FLDs can be found in Sect. 4
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the remarkable similarity between the results of f2 and f3 
(compare Fig. 12c).

For this objective function, optimizations performed 
with the MF technique need on average about 31% longer 
than HF (detailed values are listed in Appendix Table 4). 
Together with the better and more consistent results found 
with MF, these findings are unexpected. Usually, the aim of 
a multi-fidelity optimization scheme is to reduce computa-
tional effort while not significantly impairing result quality. 
In this case, the opposite happens, making further investiga-
tion of these findings necessary. Several observations can 
be made as to why in this case MF performs better. First, 
looking at the convergence plots (see Fig. 10), HF termi-
nates after fewer high-fidelity evaluations than MF for all 

optimization runs. Usually, the opposite would be expected 
(compare, for example, Fig. 6). Additionally, all HF runs 
terminate due to the infill criterion threshold, indicating that 
the algorithm converged and no significant improvements 

Fig. 9   Objective function f
3
 : 

Parallel coordinates plot com-
paring ten repetitions of the two 
optimization methods. Design 
variable values on the y-axis are 
normalized, actual boundaries 
can be found in Table 1. The 
color scale indicates objective 
function values of the respective 
results (lower is better). (Color 
figure online)

Fig. 10   Objective function f
3
 : Convergence plot for ten repetitions 

of the two optimization methods. Mean of the single-fidelity runs is 
shown as solid black line, multi-fidelity runs as dashed green line. 
The colored areas represent upper and lower bounds. The first 50 and 
20 evaluations are part of the initial design of experiments for HF and 
MF, respectively. (Color figure online)

Fig. 11   Objective function f
3
 : Forming limit diagram of the overall 

best result obtained with MF technique. Results are also shown on the 
component geometry
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are expected. These two observations show that the kriging 
model in HF may not be sufficiently good and that the opti-
mizer may be stuck at a local optimum. For MF, this appears 
to be less of a problem. Apparently, the additional function 
evaluations performed with the low-fidelity model, which is 
then added as a trend term into the HK surrogate model, help 
the optimizer avoid local optima by better resolving them in 
the surrogate model.

Overall, the results for this objective function are sur-
prising, as MF outperforms HF but also requires more 
computation time. The best current explanation is a higher 
quality of the surrogate model in MF avoiding local min-
ima. We believe that more detailed investigations going 
beyond the scope of the present work are necessary here. 
It should also be confirmed whether these results can be 
repeated for different components and/or design variables.

Fig. 12   Box plots comparing 
results of the different optimiza-
tion methods. Each method was 
repeated ten times per objective 
function
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5.4 � Discussion

After presenting the optimization results for all objective 
functions, some points of discussion will be given below.

Boxplots comparing optimization results for all three 
objective functions are shown in Fig. 12. The objective func-
tion f1 is found not to be well suited to optimize the example 
problem chosen here. Both f2 and f3 show good performance 
in the optimization problem. The results between the two 
are remarkably similar. However, the conclusions drawn 
are somewhat more differentiated. The objective function f2 
nicely illustrates the potential of a multi-fidelity optimization 
technique. With very little influence on the result quality, 
it speeds up the optimization by a factor of two in the pre-
sent example. The statistical Wilcoxon rank sum test shows 
that the null hypothesis of equal results for the two meth-
ods holds at a 5% significance level ( U = 51 , p = 0.97 ). For 
the objective function f3 , the same statistical test confirms 
that the null hypothesis of equal results between the two 
methods can be rejected at a 5% significance level ( U = 2 , 
p < 0.001 ). Thus, the multi-fidelity approach even outper-
forms the classic single-fidelity method for this objective, 
while also requiring more time to produce results.

The objective functions f1 and f2 are not capable of distin-
guishing manufacturable components from each other. This 
issue is avoided in the present work through the definition of 
the optimization problem. Also, it may not be so relevant in 
practical applications where the main priority is obtaining a 
manufacturable component. However, in other contexts, such as 
fitting machine learning models, it could be a challenge. Another 
possible problem that was observed here is the mesh depend-
ency, especially of objective functions f1 and f2 . The values of 
these functions change if the exact same component is meshed 
differently. In the present work, this is not a concern because 
all high-fidelity models are meshed the same way. The low-
fidelity models used for the MF approach are only utilized as a 
trend term in the HK surrogate model and, thus, are not directly 
included in comparisons. However, this should be considered 
in other applications.

6 � Conclusions

In the present work, an exemplary cross-die deep-drawing 
optimization problem is investigated with respect to different 
objective functions and the use of a multi-fidelity efficient 
global optimization technique. For the former, three different 
objective functions are defined, all of which have been pre-
viously applied in the literature at least in slightly modified 
form and primarily for single-fidelity techniques. For the 
latter, a multi-fidelity efficient global optimization scheme 
based on hierarchical kriging and variable-fidelity expected 
improvement is proposed here, which has been successfully 

used in various fields of applications such as fluid mechanics 
or automotive crashworthiness.

Two of the three objective functions are based on forming 
limit diagrams that are commonly used in sheet metal forming 
to determine the manufacturability of components. The first is 
based on naively counting elements of different classifications 
and minimizing the share of bad elements. The second function 
is defined as minimizing the average violation of the forming 
and wrinkling limit curves for critical elements. The third objec-
tive function to be minimized is the average thickness reduction 
in the component during the deep-drawing process.

The first objective function is found to be hard to consist-
ently optimize with both the multi-fidelity and a reference 
single-fidelity efficient global optimization method. The lim-
ited influence of design variables on the objective function 
is identified as one of the main reasons. The second objec-
tive function shows consistent result quality across the two 
optimization techniques and highlights the capability of the 
multi-fidelity scheme to speed up computation times by a 
factor up to two. The time gains observed here match well 
with results previously reported for multi-fidelity optimiza-
tions in other fields of application. The third objective func-
tion shows surprising results in that the multi-fidelity tech-
nique delivers better and more consistent results compared 
to the single-fidelity reference approach while also increas-
ing the computation times by a factor of approximately 1.3. 
The currently most likely explanation is the better predictive 
quality of the surrogate model due to the overall higher num-
ber of objective function evaluations in multi-fidelity com-
pared to the single-fidelity technique. However, we believe 
that these last results warrant a more detailed investigation, 
which could be interesting for future work.

In addition to that, we believe that it is interesting to fur-
ther expand the use of multi-fidelity optimization schemes in 
the field of sheet metal forming. On the basis of the results 
of the present work, we found a number of additional ideas 
that we believe to be interesting for future work.

•	 A number of improvements to the multi-fidelity approach 
used here have been suggested, which should also be 
applied to a sheet-metal-forming problem to assess their 
potential in this field of application.

•	 Similarly, a number of different multi-fidelity optimization 
techniques have been suggested which should be compared 
against other in a sheet-metal-forming problem.

•	 The results presented here should be confirmed on larger 
and more complex deep-drawing components.

•	 Objective functions based on forming limit diagrams 
cannot distinguish manufacturable components. This 
might lead to challenges for the optimizer in more real-
istic problems. An effort should be made to adapt these 
functions as they are quite intuitive and easily under-
standable for a human.
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Appendix

See Tables 2, 3, 4, and Fig. 13. 

Table 2   Cross-die deep-drawing 
problem: modeling and material 
properties used to model the 
steel component

*refers to input file keywords of the FE software LS-Dyna
HF incremental (high-fidelity) simulation, LF inverse (low-fidelity) simulation

Parameter Symbol Value

Component width 290 mm
Component depth 120 mm
Young’s modulus E 205 GPa
Poisson’s ratio � 0.3
Mass density � 7850 kg m−3

Yield strength �y 160 MPa
Lankford coefficient R Design variable
Material model (LS-Dyna) *MAT_037
1D plasticity Hockett–Sherby

�0 160 MPa
A 600 MPa
C 0.91
n 0.518

Element formulation Belytschko–Lin–Tsay (HF)
Fully integrated (LF)

Contact formulation *CONTACT_FORMING_ONE_WAY​
(LS-Dyna; HF) *CONTACT_DRAWBEAD
Coulomb friction � Design variable

Table 3   Overview of the average number of simulation model calls 
for different objective functions and optimization methods

Each optimization run is repeated ten times. The results are reported 
as mean and standard deviation (SD). The abbreviations MF and HF 
refer to the multi-fidelity and baseline single-fidelity optimization 
techniques, respectively

Obj Method High-fidelity calls Low-fidelity calls

f1 HF 144.8 (SD 10.7) –
f1 MF 85.8 (SD 41.9) 100.0 (SD 0.0)
f2 HF 101.5 (SD 33.6) –
f2 MF 47.7 (SD 24.7) 103.9 (SD 3.2)
f3 HF 58.8 (SD 4.0) –
f3 MF 88.1 (SD 26.2) 100.7 (SD 0.6)

Table 4   Overview of the optimization run times for different objec-
tive functions and optimization methods

Each optimization run is repeated ten times. The results are reported 
as mean and standard deviation (SD) of the run times in seconds, 
rounded to the nearest 100. The abbreviations MF and HF refer to 
the multi-fidelity and baseline single-fidelity optimization techniques, 
respectively

Objective Method Run time (s)

f1 HF 150,900 (SD 13,700)
f1 MF 75,900 (SD 25,900)
f2 HF 83,000 (SD 27,200)
f2 MF 44,600 (SD 19,400)
f3 HF 53,600 (SD 3000)
f3 MF 70,400 (SD 16,500)
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