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Abstract
Interest in components with detailed structures increased with the progress in advanced manufacturing techniques in recent 
years. Parts with graded lattice elements can provide interesting mechanical, thermal, and acoustic properties compared to 
parts where only coarse features are included. One of these improvements is better global buckling resistance of the compo-
nent. However, thin features are prone to local buckling. Normally, analyses with high-computational effort are conducted 
on high-resolution finite element meshes to optimize parts with good global and local stability. Until recently, works focused 
only on either global or local buckling behavior. We use two-scale optimization based on asymptotic homogenization of 
elastic properties and local buckling behavior to reduce the effort of full-scale analyses. For this, we present an approach 
for concurrent local and global buckling optimization of parameterized graded lattice structures. It is based on a worst-case 
model for the homogenized buckling load factor, which acts as a safeguard against pure local buckling. Cross-modes residing 
on both scales are not detected. We support our theory with numerical examples and validations on dehomogenized designs, 
which show the capabilities of our method, and discuss the advantages and limitations of the worst-case model.

Keywords Structural optimization · Instability · Buckling · Two-scale · Cellular materials

1 Introduction

The ongoing progress in additive manufacturing allows 
structures with fine details to gain increasing focus. Lattice 
structures in particular, both homogeneous and graded, are 
utilized in many applications, e.g., thermal management, 
energy absorption, noise reduction, biomedical engineering, 
etc. (Rahman et al. 2022). Lattice infill is also recognized as 
potentially increasing global buckling resistance of a compo-
nent (Clausen et al. 2016). However, fine features are prone 
to local buckling (Ferrari and Sigmund 2019).

Two-scale optimization (Wu et al. 2021) can be used to 
design such structures without the need to resolve all the 
fine details of the full design in a single setting. The idea of 
this approach started with the work of Bendsøe and Kikuchi 

(1988), in which the design process is divided into two 
scales: the macroscopic scale, which describes the overall 
component, and the microscopic scale, which shows the fine 
details. Bendsøe and Kikuchi bridged the gap between these 
two scales by asymptotic homogenization (Allaire et al. 
1997). This technique yields approximate material proper-
ties of microstructures on the macroscopic scale, which can 
then be used in macroscopic constitutive equations. Choos-
ing a parameterized microstructure, Bendsøe and Kikuchi 
were able to effectively decouple the scales: Prior to any 
optimization procedure a discrete subset of the parameter 
space is chosen and homogenization is conducted for each 
of the microstructures gained from this parameter set. The 
obtained properties are then interpolated in the continuous 
parameter space and the interpolated material model can 
later be reused to solve various optimization problems. This 
technique introduces an interpolation error, but requires less 
computational effort when compared with on the fly homog-
enization, i.e., homogenization performed for each finite ele-
ment in the discretized design domain and for each update 
step of the design during an iterative optimization procedure. 
Moreover the interpolation error can be controlled in a rather 
straight forward way during preprocessing.

Responsible Editor: Ole Sigmund

 * Daniel Hübner 
 daniel.huebner@fau.de

1 Applied Mathematics, Continuous Optimization, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 
91058 Erlangen, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-023-03619-4&domain=pdf
http://orcid.org/0000-0002-1344-2671


 D. Hübner et al.

1 3

163 Page 2 of 20

Though there is exhaustive literature on optimal design 
considering the buckling behavior of structures using 
beam models (Ferrari and Sigmund (2019 and references 
therein), only a relatively small number of publications 
for continuum models exist. The initial problems evolved 
around finding optimal cross-sections for columns of fixed 
length and weight subject to uniaxial compression loads 
(Clausen 1851; Keller 1960; Tadjbakhsh and Keller 1962; 
Huang and Sheu 1968; Khot et al. 1976). Neves et al. 
(1995) were the first to conduct topology optimization 
with respect to buckling based on the method of Bendsøe 
and Kikuchi described above. However, they encountered 
various obstacles in the linear buckling analysis, which is 
stated as an eigenvalue problem (Bendsøe and Sigmund 
2003). This includes localized modes in low-density 
regions and clustering of eigenvalues when approaching 
the final design (Seyranian et al. 1994). Actions to allevi-
ate issues with artificial, low-density modes have been pro-
posed, e.g., different interpolation schemes for the stiffness 
and geometric stiffness matrices (Pedersen 2000; Bendsøe 
and Sigmund 2003) or applying an eigenvalue shift based 
on the last iteration and identifying artificial modes by 
their contribution to the total strain energy (Gao and Ma 
2015). There are also methods for avoiding low-density 
regions such as filtering and projection of the pseudo-
density (Larsen et al. 2018), penalization of intermediate 
values in the objective (Allaire and Francfort 1993; Allaire 
and Kohn 1993), or element removal strategies (Behrou 
et al. 2021; Dalklint et al. 2020; Giele et al. 2021). Clus-
tering of eigenvalues can be prevented by enforcing gaps 
between the eigenvalues (Bendsøe and Sigmund 2003). 
However, a large number of eigenvalues may still have to 
be computed to achieve good convergence (Bruyneel et al. 
2008), which compels the use of efficient eigenproblem 
solvers (Dunning et al. 2016; Ferrari and Sigmund 2020). 
Nevertheless, topology optimization (TO) with respect to 
buckling still currently poses a challenging problem.

More recently, stability requirements have also been 
employed when tailoring microstructures (Neves et  al. 
2002a, b; Thomsen et  al. 2018; Andersen et  al. 2022), 
though models for the buckling of periodic microstructures 
have been investigated for decades. Homogenization theory 
for buckling load factors (BLFs) is well established (Neves 
et al. 2002b; Thomsen et al. 2018), but several challenges 
still arise in this context. Buckling modes can range from 
high-frequency modes with a wavelength shorter than the 
characteristic size of the microstructure to modes that span 
over multiple periods of the microstructure. Floquet–Bloch 
theory can be used to capture the latter in particular (Neves 
2019).

For dehomogenized designs scale effects stemming from 
a finite cell size and effects due to grading of the micro-
structure might appear (Thomsen et al. 2018). Especially 

the latter might lead to an occurrence of undesired buckling 
modes at the boundary of the structure.

The aforementioned works only investigate the buckling 
behavior of a structure on a single scale, either macroscopic 
or microscopic. Even with the ongoing “competition for 
ultimately stiff and strong architected materials” (Andersen 
et al. 2021), these designed materials appear not to have 
been utilized so far in the optimization of components with 
stability requirements.

In this article, we present a two-scale TO approach, where 
we incorporate buckling on both scales individually, but 
neglect cross-modes spanning over both scales. Assuming 
separation of length scales, we use homogenization theory 
to upscale the elastic behavior and buckling stability of a 
periodic lattice that resides on the microscopic scale. On the 
macroscopic scale we search for an optimal lattice grading 
with respect to both local and global buckling. We param-
eterize the lattice by its porosity, precompute homogenized 
properties for a selected set of porosities, and obtain a model 
on the continuous parameter space by piecewise cubic inter-
polation. This model is then used in macroscopic optimiza-
tion problems with the local lattice porosity as design vari-
able. Thus, our method can be classified as a multi-scale 
density optimization approach with a parameterized unit cell 
based on the microstructure porosity (category V/A in Wu 
et al. 2021).

Our contribution is a new approach to integrate the 
upscaled microscopic buckling information into the opti-
mization. From the macroscopic local stress, we obtain 
the buckling response on the microscale via a worst-case 
model, which acts (up to discretization errors) as a safe-
guard against pure microscopic buckling. The worst case 
is realized by reducing the macroscopic local stress to its 
magnitude for reasons of computational effort. This comes 
at the cost of underestimation of predicted critical loads for 
the microstructure.

Recent work by Wang et  al. (2021) is close to our 
approach. However, they deduce local stress constraints 
from the slenderness ratio of the lattice struts, while we 
directly use upscaled microscopic buckling information. 
Our approach has the advantage that essentially arbitrary 
microstructures can be treated, including those for which a 
slenderness ratio could not be uniquely defined.

The work of Christensen et al. (2022) is similar to ours. 
They fit a Willam–Warnke failure criterion to homoge-
nized data. Different stress types are treated by interpola-
tion, for the relative orientation of the macroscopic stress 
a worstcase approach is used. In our approach, we first 
calculate responses for all stress types and orientations 
from homogenized data, and then compute the worst case 
from those. In that sense our model may be considered 
less flexible with respect to stress types. However, apply-
ing a full interpolation model in lieu of the worst case, it 
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is also possible to integrate the full anisotropic and type 
dependent load factor into our optimization workflow, see 
Remark 1. Other differences are that Christensen et al. 
(2022) employ a two term interpolation scheme to inter-
polate the buckling strength as a function of the relative 
porosity, whereas we use piecewise cubic interpolation. 
Finally, our approach is focusing on sizing problems with 
a lower bound on the lattice density everywhere, while a 
major contribution of Christensen et al. (2022) is the pos-
sibility to allow for void regions in the design while still 
being able to maintain the lower bound on the density of 
the lattice using an auxiliary design field.

In this article, we restrict the analyses to linear elastic-
ity and linearized buckling, though the general idea of the 
method can be extended to non-linear regimes. We also 
limit ourselves to a two-dimensional setting in this article 
to keep notations simple. However, it is straightforward to 
extend our approach to three dimensions. We emphasize 
that our method is applicable to arbitrary, parameterized 
microstructures. As an example, we choose a lattice con-
sisting of equilateral triangles that is parameterized by its 
porosity. More sophisticated geometries and parameteriza-
tions are possible with higher computational effort without 
changing the general method.

The remainder of the article is structured as follows: 
in Sect. 2 we recap the state equations for linear elasticity 
and linearized buckling analysis. Section 3 briefly pre-
sents the main formulas for asymptotic homogenization of 
elasticity modulus and buckling load factors. We describe 
our exemplary microstructure, its parameterization, and 
important aspects for the upscaling process in Sect. 4. 
We present our method for designing a lattice unit cell 
by rounding corners of an equilateral triangle, showing 
finite element convergence on the microscopic scale, and 
obtaining homogenized properties of a lattice. Section 4.1 
provides the novel approach to include the upscaled prop-
erties on the macroscopic scale via the suggested worst-
case model for the homogenized BLF. Section 4.2 dem-
onstrates how to precompute homogenized properties on 
a discretized parameter space and apply an interpolation 
scheme to yield values on the continuous parameter space. 
Section 5 outlines three different two-scale optimization 
problems considering buckling on the macroscopic scale, 
on the microscopic scale and on both scales (without 
cross-modes). Associated numerical examples are pre-
sented in Sect.  6 together with a pre-study, which helps 
to develop a better understanding of the optimized designs. 
A numerical validation on dehomogenized designs is given 
in Sect.  7.1 accompanied by a study on scale separation. 
We examine the impact of the worst-case error closely in 
Sect.  7.2 by means of two numerical examples. Finally, 
we complete with conclusions in Sect. 8.

2  Linear elasticity and buckling analysis

In this section, we briefly recap the state equations for lin-
ear elasticity and buckling analysis on an algebraic level as 
given by Thomsen et al. (2018). For continuous formula-
tions in weak form, interested readers are referred to Neves 
(2019). We assume a linear elasticity setting and linear bifur-
cation buckling condition. This means that the prebuckling 
displacement, stresses, and strains vary linearly with the 
applied load and that the load factor, which indicates stabil-
ity, appears linearly in the bifurcation eigenvalue problem. 
Linear buckling analysis consists of two steps: First, we 
solve the linear elasticity state equation for displacements of 
a structure under a given load. Then, an eigenvalue problem 
is solved, where the eigenvalues correspond to bifurcation 
points, and eigenvectors are interpreted as buckling modes 
of deflection.

Throughout this article, we apply Voigt notation for ten-
sors and assume plane stress conditions.

Let us consider a body 𝛺 ⊂ ℝ
2 and its discretization 

�
▵
=
⋃M

e=1
�e by M finite elements. Then the state equation 

of linear elasticity for �
▵
 reads as (Zienkiewicz et al. 2005):

where u is the sought-for vector of displacements, 
� ∈ (0, 1]M is the pseudo-density field and f  is the applied 
load vector (reference load). The stiffness matrix is given by

with assembly operator denoted by 
⋀

 and number of integra-
tion points Nip . E(�e) is the elasticity tensor, which depends 
on the pseudo-density in element e. Be,k is the strain–dis-
placement matrix of element e evaluated in the kth integra-
tion point and contains derivatives of the finite element’s 
shape functions. The factor

contains the Jacobian determinant det(Je) of element e and 
the integration weight we,k associated with the kth integration 
point of said element.

The buckling equation is given by the eigenvalue 
problem,

and is solved for pairs of eigenvalues �
�
 and eigenvectors 

�
�
 , � ≤ M . Eigenvalues of (4) are also called load factors. 

The critical load, under which buckling occurs, can be com-
puted by multiplying the reference load f  with the smallest 
positive eigenvalue, which is also known as the critical load 
factor or BLF. If the critical load factor is less than or equal 

(1)K(�)u = f ,

(2)K(�) =

M⋀

e=1

Nip∑

k=1

ce,kB
⊤

e,k
E(𝜌e)Be,k

(3)ce,k = det(Je)we,k

(4)(K(�) − �G(�, u(�)))� = 0,
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to one, the structure buckles; otherwise, the structure is sta-
ble with respect to the applied reference load. The stress 
stiffness matrix (or geometric stiffness matrix) (Němec et al. 
2016) in (4) is given by

Again, ce,k includes the Jacobian determinant of element e 
and the integration weight at the kth integration point. The 
average stress in element e is numerically evaluated as

and

is the derivative of the matrix of the shape functions evalu-
ated at integration point xk . Usually, solutions to (4) are con-
sidered ordered according to the absolute value of the load 
factors with �1 as the smallest value and eigenvectors are G
-normalized, i.e.,

In single-scale TO, (6) can lead to artificial buckling modes 
in low density regions (Neves et al. 1995). However, in our 
approach the macroscopic pseudo-density represents the 
local relative lattice volume. Thus, low density regions rep-
resent thin lattice, and modes in such regions are not artifi-
cial, but rather comply with buckling of the lattice.

Following Rodrigues et al. (1995), the sensitivity of an 
eigenvalue with algebraic multiplicity one with respect to 
density �e is given as

Here, w is the adjoint state obtained from the solution of 
the equation

For eigenvalues with multiplicity greater one, the derivative 
of the load factor function does not exist in a strict sense. 
Nevertheless, using (9) still an element of the subdifferen-
tial can be computed (Rodrigues et al. 1995). Alternatively, 
derivations for multiple eigenvalues can be used (Seyranian 
et al. 1994).

Note that G is in general not positive definite, so some-
times a reformulation of the eigenvalue problem (4) to

(5)G(𝝆,u(𝝆)) =

M⋀

e=1

Nip∑

k=1

ce,kB̃e,k𝝈e(ue(𝝆))B̃e,k.

(6)�e(ue(�)) =
1

Nip

Nip∑

k=1

E(�e)Be,kue(�),

(7)B̃e,i,k =
�Ne

�xi
(xk)

(8)�⊤G� = 1.

(9)
𝜕𝛬

𝜕𝜌e
=

[
�⊤

(
𝜕K

𝜕𝜌e
− 𝛬

𝜕G

𝜕𝜌e

)
� − 𝛬w⊤ 𝜕K

𝜕𝜌e
u

]
.

(10)K(�)w = �⊤∇uG(�,u(�))�.

might be beneficial, as K is always positive definite for � > 0

.

3  Asymptotic homogenization

To obtain the mechanical properties of a lattice structure 
on the macroscopic scale, we perform asymptotic homog-
enization. We briefly recall the homogenization formulas 
in the two-dimensional setting, which can be found, e.g., 
in the work of Thomsen et al. (2018). Note that we do not 
perform TO on the microscopic scale, but rather investigate 
given periodic lattice structures. Thus, there is only a finite 
element mesh for the solid material region.

This prevents spurious modes, which typically arise in 
low density regions during TO (Neves et al. 1995). However, 
we might get artificial modes owing to the finite element 
discretization. These modes are usually highly localized and 
can be filtered by setting a threshold on the minimal number 
of nodes that have to exhibit deflection, e.g., 5% of all nodes 
in the finite element mesh.

As we do not perform TO on the microscopic scale and 
are only interested in obtaining the critical load factor of a 
given microstructure, sensitivities are not required here and 
thus clustering of eigenvalues as described in the work by 
Neves et al. (2002a) is not an issue.

3.1  Linear elasticity

We choose a representative volume element (RVE) Y, which 
is discretized with m finite elements Ye , i.e., Y =

⋃m

e=1
Ye . We 

solve the equilibrium equations on the microscopic scale for 
the Y-periodic fields � j using three test fields f j:

with stiffness matrix K and f j given by

and

nip is the number of integration points and c̃e,k = det(J̃e)w̃e,k 
contains the Jacobian determinant of element e and the inte-
gration weight associated with the kth integration point of 
said element. Further, E0 is the elasticity tensor for the base 
material and 𝝐j are unit strain fields with 𝜖j

i
= 𝛿ij . We note 

that the Y-periodicity is realized by assuming same values 

(11)
(
G(�, u(�)) −

1

�
K(�)

)
� = 0,

(12)K� j = f j, j = 1, 2, 3

(13)K =

m⋀

e=1

nip∑

k=1

c̃e,kB
⊤

e,k
E0Be,k

(14)f j =

m⋀

e=1

nip∑

k=1

c̃e,kB
⊤

e,k
E0𝝐

j.
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for the solutions on opposite sides of Y. The homogenized 
constitutive tensor EH of the microstructure is then given by

3.2  Buckling

The equilibrium equation for buckling on the microscopic 
scale is an eigenvalue problem as in the macroscopic setting 
[cf. (4)] and is solved for pairs of eigenvalues �

�
 and associ-

ated eigenvectors �
�
,� ≤ m:

As in the macroscopic setting, the smallest positive eigen-
value denotes the BLF. G is the microscopic initial stress 
stiffness matrix [cf. (5)]

with

The microscopic initial stress tensor �e describes how the 
macroscopic strain 𝝐 is distributed in unit cell Y. We note 
that (18) already takes stress amplification (see Ferrer et al. 
2021) into account. The macroscopic strain is given as solu-
tion of the macroscopic constitutive equation

and Xe = [�1
e
�2

e
�3

e
] contains the solutions of (12). The 

macroscopic stress �̄� is obtained via (1) and (6). Parameteri-
zation of the lattice geometry and linearity of the buckling 
analysis allows us to precompute homogenized properties. 
Thus, we can avoid solving homogenization problems during 
optimization (cf. Sect. 4.2).

We want to emphasize that the buckling analysis in (4) 
and (16) yields pure global and pure local modes, respec-
tively. In particular, cross-modes spanning over both scales 
and defined as a solution to Eq. (40) in the work of Neves 
(2019), are not detected.

4  Microstructure parameterization 
and upscaling model

In the following section, we present our method to inte-
grate the microscopic BLF into a macroscopic scale opti-
mization problem. The explanation is done for an exem-
plary lattice structure; however, we would like to stress 

(15)EH
i,j
=

1

|Y|

m⋀

e=1

nip∑

k=1

c̃e,k
(
𝝐
i − Be,k𝝌

i
e

)⊤
E0

(
𝝐
j − Be,k𝝌

j
e

)
.

(16)(K − �G(𝝌 , �̄�))𝝋 = 0.

(17)G(𝝌 , �̄�) =

m⋀

e=1

nip∑

k=1

c̃e,kB̃
⊤

e,i,k
(𝝈e(𝝌 , �̄�))i,jB̃e,j,k

(18)𝝈e(𝝌 , �̄�) = E0(I − BeXe) 𝝐(�̄�).

(19)𝝐(�̄�) = (EH)−1�̄�

again that the method can be applied to arbitrary base cell 
topologies. We first demonstrate an approach to obtain the 
homogenized load factors of the lattice.

The exemplary lattice we chose consists of equilateral 
triangles with edge length d, as the principal design of 
our microstructure. The primitive lattice vectors are thus 
given by R

1
= (1, 0)⊤ and R

2
= (1∕2,

√
(3)∕2)⊤ (Fig. 1). 

This design is known in literature to provide good mac-
roscopic buckling strength (Clausen et al. 2016). To get 
a periodic unit cell, we take two of these triangles, which 
together form a parallelogram, including its shorter diag-
onal (see Fig. 1). We parameterize the unit cell by one 
parameter � , which describes the relative volume or one 
minus porosity, respectively. With this parameterization 
the homogenization procedures from Sect. 3  can be writ-
ten using two maps:

(20) assigns each relative volume � a symmetric, positive 
definite homogenized elasticity tensor computed from (15), 
while (21) maps a macroscopic stress and a relative volume 
to the resulting homogenized BLF �(�̄�, �) obtained by solv-
ing (16).

As material parameters, we chose a Young’s modulus 
of 10 Pa and a Poisson’s ratio of 0.3.

Next, we present three aspects that are important for the 
upscaling process: the design of joints of lattice struts, the 
resolution of the finite element mesh on the microscopic 
level, and the number of unit cells in an RVE. We note 
that the latter is automatically covered if a Floquet–Bloch 
approach along with a sufficiently fine discretization of the 
Brillouin zone is used.

(20)EH ∶ (0, 1] → �
3, � ↦ EH(�),

(21)� ∶ ℝ
3 × (0, 1] → ℝ, (�̄�, �) ↦ �(�̄�, �).

d

R1

R2

Fig. 1  Principal design of an equilateral triangular lattice structure 
with highlighted unit cell. The lattice geometry is given by primitive 
lattice vectors R1 and R2 . For our enhanced version, see Fig. 8
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4.1  Rounded corners

A unit cell design with sharp corners where the lattice 
struts meet leads to local stress concentrations at those 
corners. To circumvent this issue, we round the corners 
with circular arcs with radius r, while keeping the overall 
volume of the structure constant (Fig. 2). A lattice with 
rounded unit cells can be seen in Fig. 8.

It turns out that the choice of the radius parameteriz-
ing the arcs has only minor effect on the Poisson’s ratio 
(Fig. 5). The Young’s modulus is affected mainly for 
small relative lattice volume (Fig. 4); for a small vol-
ume, a large radius leads to very thin lattice struts due 
to volume preservation (cf. Fig. 2) and the lattice loses 
stiffness. The impact on the homogenized BLF is more 
significant as can be seen in Fig. 3. For small radii, the 
buckling resistance increases with increasing radius, 
because stress concentrations are avoided, lattice struts 
get better supported, and their relative length to width 
ratio gets smaller. For larger radii, the struts get thinner, 
their length to width ratio increases, and the load fac-
tor decreases. For different volumes, the maximum of 
the smallest BLF is achieved at different radii. The data 
in Fig.  3 suggests that rounding corners with a radius 
depending on the volume leads to good buckling resist-
ance. We note that we only investigated an uniaxial load-
ing with �̄� = (−1, 0, 0) , and the optimal radius might be 
different for other stress situations. To keep things simple, 
we thus decided to use a constant radius of r = 0.05d for 
our subsequent calculations.

4.2  Finite element convergence on the microscale

We discretize the microstructure by triangles with first order 
shape functions. A convergence study with respect to the 

M1

r1

M2

r2

r2

w1

w1

w2

w2

Fig. 2  To prevent stress concentrations, lattice corners are rounded by 
circular arcs, which are defined by a given radius. The figure shows 
the resulting lattice boundary for two configurations with different 
radii r1 and r2 . The arc midpoint M and lattice strut width w are deter-
mined by the radius via geometric calculations, forcing the relative 
volume fraction of the lattice constant
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Fig. 3  Normalized homogenized buckling load factor for 
�̄� = (−1, 0, 0) and different relative volumes as a function of the 
radius of rounded corners. The radius is given relative to a unit cells 
edge length d 
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number of finite elements for homogenization, i.e., on the 
microscopic scale, can be seen in Figs.  6 and 7. In Fig. 7  
the BLF for two RVEs, which contain a different number of 
unit cells, is displayed. This aspect of buckling analysis will 
be explained in the next section.

Observing that the convergence graphs are already very 
flat when approaching 1 million elements and taking into 
account that we want to keep the finite element error in the 
preprocessing small, we opt to choose for all subsequent 
homogenization procedures a discretization, which results 
for a density of � = 0.5 in approximately one million finite 
elements per RVE. Geometries corresponding to lower den-
sities are resolved using same element size but less elements. 
Given this number of finite elements, a single analysis is 
usually completed within a few minutes on a standard work 
station.

This leads to a different number of finite elements per 
unit cell, when changing the number of unit cell repetitions 

within an RVE. However, Fig.  7 shows, that the load factor 
of a 7 × 7 RVE decreases by less than 1% , when the number 
of finite elements is raised from 600, 000 to 2, 400, 000, and 
more importantly, the load factor is larger than the one for an 
RVE with 3 × 3 unit cell repetitions under biaxial loading.

4.3  Choice of RVE size

Asymptotic homogenization can only detect high-frequency 
modes, i.e., modes with a wave length that is smaller than 
the size of the RVE. However, buckling modes might span 
over more than one cell. To identify these modes also in a 
homogeneous lattice structure, we encompass more than one 
unit cell in the RVE. That is, the microstructure is consid-
ered Y

�
-periodic, where �2 is the number of unit cells inside 

the RVE. RVEs containing various unit cells can be seen in 
Fig. 8. It is noted that all modes of an RVE with a given 
number � of cell repetitions can also be found using an RVE 
comprised of �� × �� unit cells, where � is an integer num-
ber, e.g., all modes of a 2 × 2 RVE appear also in the analysis 
of a 4 × 4 or 6 × 6 RVE. Using an analogous argument, 
modes with periodicity �

n1
 along R

1
 and periodicity �

n2
 along 

R
2
 for n1, n2 ∈ ℕ are captured using a � × � RVE. Note that 

in practice there is a natural lower bound; this value is given 
by the resolution of the underlying finite element 
discretization.

We observe that especially an RVE with only one unit 
cell results in quite high homogenized load factors. This is 
because the joint of the struts gets locked in rotation due to 
the enforcement of cell periodic deformations. In an RVE 
with more than one cell and in the analysis of dehomog-
enized designs in Sect. 7.1, joints of lattice structures are 
free to rotate (see Fig. 24).

As we are interested in the smallest, i.e., critical, load 
factor of the lattice, we pick the minimal load factor with 
respect to cell repetitions:

(22)�(�̄�, �) = min
�∈ℕ

��(�̄�, �).
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ent finite element discretizations of an RVE with a relative volume of 
30% and 3 × 3 cell repetitions in the RVE
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In practice, one is not able to perform homogenization 
with � ∈ ℕ cell repetitions, but has to resort to � ≤ K with 
an appropriately chosen upper bound K on the number of 
cell repetitions. A practical choice of K can be related to 
the number of cell repetitions in dehomogenization (see 
Sect. 7.1). We would like to stress that for a given cell layout, 
the optimal � ∈ {1, 2,… ,K} cannot, in general, be deter-
mined without testing essentially all choices and might even 
vary for fixed stress �̄� but different volume fractions � . For a 
large number of cell repetitions, using Bloch–Floquet theory 
instead might be more efficient.

We want to remark that the presented method of repeating 
the unit cell within the RVE is analogous to applying Floquet-
Bloch theory with a special discretization of the Brillouin zone 
(see Fig. 9). In Floquet–Bloch theory, periodicity conditions 
for modes � are given as

where i refers to the complex unity, k is the wave vector, and 
y is a location inside a lattice unit cell (Thomsen et al. 2018). 
Rather than solving cell problems with boundary conditions 
(23) for all k ∈ ℝ

2 , in practice a number of k vectors on the 
boundary of the so called irreducible Brillouin zone (IBZ) 
is selected. This corresponds to a discretization of the IBZ.

Now, a 
(

�

n1
,
�

n2

)
-periodic mode with n1, n2 ≤ � corresponds 

to a wave vector, which solves the system

With that, we can plot all wave vectors corresponding to 
modes, covered by our � × � RVEs with � from 1 to K, into 
a Floquet-Bloch diagram with an outline of the IBZ. Doing 
so for K = 7 , we obtain the result depicted in Fig. .

(23)�(y + Rj) = �(y)eik
⊤Rj , j = 1, 2,

(24)
(
R
1

⊤

R
2

⊤

)
k =

2𝜋

𝜅

(
n1
n2

)
.

We emphasize that the worst-case model presented in the 
next Sect. 4.1  is independent of the method that is used to 
obtain the homogenized BLF.

4.4  Worst‑case model

This subsection describes our novel method to integrate the 
microscopic BLF on the macroscopic scale. We stress that it 
is valid not only for our exemplary lattice but for any arbitrary, 
parameterized microstructure.

Due to linearized buckling analysis [(16) to (19)] we get the 
following property for the homogenized load factor:

That is, homogenization can be conducted with macroscopic 
unit stress (in some given norm) and later, the homogenized 
load factor has to be divided by ‖�̄�‖ . It is thus sufficient to 
examine stresses on the unit sphere surface S2 instead of 
the whole three-dimensional stress space (�xx, �yy, �xy) . We 
define

which assigns a homogenized BLF to each unit stress com-
bined with a relative volume.

We use a spherical coordinate system to characterize 
unit stresses on S2 : the zenith reference (z-axis) is the axis 
from the origin through the biaxial compression stress 
� = (−1,−1, 0) and the azimuth reference (x-axis) is the 
axis from the origin through � = (1,−1, 0) (Fig. 10). In this 
coordinate system, biaxial compression and tension stress 
conform to north and south pole, while all pure shear 
stresses rest on the equator. The inclination (or latitude 
if thinking of geographical coordinates) characterizes the 
type of stress: the rotation invariant biaxial compression 
and tension stresses conform to poles, and other special 
types, e.g., uniaxial and shear stresses form circles on 
the unit sphere surface (circle of latitude). The azimuthal 
angle (longitude) describes the rotation of the applied 
macroscopic stress �̄� relative to the RVE. For an additional 
explanation please refer to the video in Online Resource 1.

Common literature reduces the stress space even fur-
ther. Under the assumption of isotropic buckling behavior, 
only biaxial loading without shearing component but vary-
ing the �xx

�yy
-ratio is investigated, or uniaxial loading with all 

possible load orientations relative to the investigated 
microstructure is applied (Bluhm et al. 2020). In contrast, 
we compute the buckling yield surface for the whole unit 
stress surface S2 . Thus, our method is applicable to 

(25)��(�̄�, �) =
1

‖�̄�‖��

�
�̄�

‖�̄�‖ , �
�
.

(26)
�̄� ∶ S2 × (0, 1] → ℝ,

�̄�(�̄�, 𝜌) = min
𝜅∈ℕ

𝜆𝜅(�̄�, 𝜌),

Fig. 9  Wave vectors in the Brillouin zone (see Thomsen et al. 2018), 
which correspond to homogenization with 1 to 7 cell repetitions in 
an RVE. The numbers next to the marked wave vectors represent the 
minimal number of cell repetitions � needed to capture a buckling 
mode with this wave vector according to (23) and (24). Only 7 cell 
problems have to be solved to capture all modes corresponding to the 
marked wave vectors
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arbitrary, parameterized microstructures with isotropic or 
anisotropic buckling properties.

The homogenized load factors for uniaxial compression, 
biaxial compression and shear stress for an RVE with a 
relative volume of 30% and three cell repetitions are shown 
in Fig. 11. We can clearly see that the symmetry of the unit 
lattice cell is reflected in the load factors. The shape of the 
uniaxial loading case matches very well with results by 
Bluhm et al. (2020).

Next, we coalesce all data in a worst-case model. Hav-
ing evaluated homogenized load factors for different cell 
repetitions � ∈ ℕ and all stresses on the unit stress sphere 
�̄� ∈ S2 , i.e., for all stress types and directions, we select 
the smallest BLF with respect to all unit stresses and num-
ber of cell repetitions:

This worst-case model depends only on the local volume 
fraction and no longer on the local stress type or direction. 
We note that in practice the unit sphere is discretized and the 
number of cell repetitions bounded from above. The worst 
case is thus only a worst case with respect to the discretiza-
tion resolution and maximal cell repetitions. We found, how-
ever, that the homogenized BLFs for our exemplary lattice 
cell have high regularity with respect to the stress variable. 
In our case, the minimal homogenized load factor for each 

(27)

�wc ∶ (0, 1] → ℝ,

�wc(�) = min
�̄� ∈ S2,

� ∈ ℕ

��(�̄�, �).

investigated volume fraction occurs for a biaxial compres-
sion stress state, but this might be different for other lattices.

If homogenized load factors were obtained via Flo-
quet–Bloch theory (Neves et al. 2002a) instead of using dif-
ferent cell repetitions, (27) would contain a minimization over 
all possible wave vectors k in the Brillouin zone B in lieu of 
cell repetitions:

4.5  Decoupling of micro‑ and macroscale

The parameterization of the unit cell allows for effective 
decoupling of the micro- and macroscopic scales (Bend-
søe and Kikuchi 1988). That is, we discretize the param-
eter space (0, 1] for the relative volume and precompute 
homogenized properties [(elasticity tensor from (15) and 
microscopic BLF from (16)] for the resulting parameter set 
(see also Sect. ). For optimization of structures on the mac-
roscopic scale, we then apply an interpolation model to these 
precomputed properties. In other words, we replace the maps 
EH (20) and � (21) by

where EI and �I are approximations of EH and � , respectively.

(28)
𝜆wc(𝜌) = min

�̄� ∈ S2,

k ∈ B

�̄�k(�̄�, 𝜌).

(29)EI ∶ (0, 1] → �
3, � ↦ EI(�),

(30)�I ∶ ℝ
3 × (0, 1] → ℝ, (�̄�, �) ↦ �I(�̄�, �),

Fig. 10  Representation of unit stresses as a unit sphere surface ( ̄𝝈)xy 
out of plane axis. Special stress types form circles (uniaxial/shear 
stress) or single points (biaxial stress) on the surface. Unit stresses are 
parameterized by spherical coordinates with zenith reference z and 
azimuthal reference x 
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Fig. 11  Homogenized buckling load factors for an RVE with 3 × 3 
unit cell repetitions and a relative volume of 30% . Note the logarith-
mic scaling of the radial axis. The displayed angle is the azimuthal 
angle from the spherical reference coordinate system (see Fig.  10) 
and corresponds to the rotation of the stress around the RVE. The 
symmetry of the unit cell is reflected in the load factors
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To construct �I , we interpolate the worst-case load fac-
tors obtained from (27) with respect to the density variable:

We obtain the worst-case microscopic BLF associated with 
macroscopic stress �̄� by dividing by the norm of this stress 
[see (25)]:

For gradient based optimization, we need a differentiable 
interpolation model. Following Bendsøe and Kikuchi (1988) 
we apply a piecewise interpolation strategy. More precisely, 
we employ piecewise cubic Hermite interpolation (Birkhoff 
et al. 1968) for both, the homogenized elasticity tensor (29) 
as well as the BLF (31). This scheme yields a continuously 
differentiable approximation that is composed of uniquely 
defined cubic polynomials between the provided data points 
and is exact at these points. However, other interpolation 
schemes using, e.g., tangent or RAMP (Rational Approxi-
mation of Material Properties, Stolpe and Svanberg 2001) 
functionals are possible with the downside of lower accu-
racy, especially for high porosity values.

Under the piecewise Hermite approach, EI is constructed 
by individual interpolation of each coefficient of the elastic-
ity tensor. The first order derivatives of the homogenized 
elasticity tensor and homogenized BLF with respect to � 
are approximated by finite differences. For the homoge-
nized load factors, we get numerical issues for high relative 
volumes. For these volumes, the unit cell is very resistant 
to buckling, but the iterative eigenvalue problem solver 
(ARPACK, version 3.7.0 Lehoucq et al. 1998) yields artifi-
cial modes, which are caused by the buckling of individual 
finite elements. Hence, we only interpolate data points below 
60% relative volume. At the boundary of this sample space, 
second-order central finite differences are not available, 
and thus only quadratic polynomials are used in the two 
outer subintervals, i.e., [0, 0.05] and [0.55, 0.6]. For rela-
tive volumes above the chosen threshold of 60% we extrapo-
late using the quadratic function obtained for the subinter-
val [0.55, 0.6]. It is noted, however, that in the optimized 
designs presented in Sect.  microbuckling occurs only for 
significantly lower densities than 60% , like 30% and less. 
The interpolated worst-case model �I

wc
 for the homogenized 

microscopic BLF is shown in Fig. 12. The presented inter-
polation scheme leads to sufficiently differentiable functions 
to perform gradient-based optimization.

The error of the approximated microscopic BLF �I com-
prises several individual errors: the error introduced by 
finite element discretization on the microscopic level to 
solve the homogenization problems, the error arising from 
restriction to the worst case, and the error resulting from the 

(31)�I
wc

∶ (0, 1] → ℝ, � ↦ �I
wc
(�).

(32)�I ∶ ℝ
3 × (0, 1] → ℝ, (�̄�, �) ↦

1

‖�̄�‖�
I
wc
(�).

interpolation. The discretization and interpolation errors can 
easily be controlled by using finer finite element meshes on 
the microscopic scale and finer interpolation grids. Thus, 
the worst-case error has the highest significance. We will 
come back to this when we discuss numerical examples in 
Sect. 7.2.

Remark 1 The worst-case error can be avoided if the worst-
case model (27) and univariate interpolation (31) are 
replaced by a discretization and trivariate interpolation of 
(26) in the combined stress and density space S2 × (0, 1].

In gradient-based optimization context, a continuously 
differentiable interpolation scheme is essential. Possible 
techniques to realize that for this worst-case free approach 
include piecewise cubic Hermite interpolation (Birkhoff 
et al. 1968) or interpolation on sparse grids based on cubic 
B-splines (Valentin et al. 2020). When applying the worst-
case free approach in a three-dimensional setting, due to 
the curse of dimensionality, the differentiable sparse grid 
approach is preferable, as stress has six independent entries 
there, which result in five parameters to represent unit stress, 
requiring interpolation to be carried out in a six dimensional 
space.

5  Sizing optimization

In this section, we formulate two-scale sizing optimization 
problems, which will be solved in Sect. . In contrast to topol-
ogy optimization, where usually a solid/void design is of inter-
est, we vary the local lattice volume fraction between 10% and 
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Fig. 12  Homogenized worst-case buckling load factors and the inter-
polating curve. For high relative volumes, numerical issues arise 
(marked by an o). Thus, only values up to 0.6 are interpolated, and 
quadratic extrapolation is applied above
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100% . This corresponds to a scaling of the width of the lattice 
struts.

We want to achieve structures that are resistant to given 
loadings both with respect to their stiffness and their buck-
ling strength. To maximize buckling strength in our two-
scale approach, we have to take into account buckling of the 
homogenized overall component as well as buckling of the 
microstructure. This leads to a multi-objective optimization 
problem. For a macroscopic domain, discretized by M finite 
elements, it can be stated that in terms of mechanical compli-
ance c, macroscopic load factors �

�
,� = 1,… , L and micro-

scopic BLFs �I
e
, e = 1,… ,M:

The macroscopic load factors are given as solutions of (4) 
and a prediction for the microscopic BLF �I

e
 for each element 

e is obtained from the interpolated worst-case model (32). 
The design variable � represents the local volume fraction of 
the homogenized lattice. Via the homogenization formulas, 
this can be mapped to mechanical properties of a (periodic) 
microstructure, e.g., elasticity tensor (15) and BLF (32), 
which uses (16). g is an aggregating function and Uad is the 
admissible set

We include the first few L ≪ M macroscopic load factors in 
the objective to handle potential mode switching and mul-
tiple eigenvalues. Note that minimization of the compli-
ance corresponds to maximization of its negative value. We 
treat the multi-objective problem (33) with the �-constraint 
method (Mavrotas 2009). In this, a point on the Pareto front 
is obtained by solving the following problem:

with an imposed compliance value c0.
We want to maximize the smallest load factor to achieve 

a good buckling strength and thus choose g̃ to be the min 
function. To get rid of the non-smooth character of the 
latter, we apply a bound formulation of this problem, as 
suggested by Bendsøe and Sigmund (2003),, and end up 
with the following optimization problem:

(33)max
�∈Uad

g
(
−c,�1,… ,�L, �

I
1
,… , �I

M

)
(�).

(34)Uad =

{
� ∈ ℝ

M ∶ �min ≤ �e ≤ 1,

M∑

e=1

�e ≤ V

}
.

(35)
max
�∈Uad

g̃
(
𝛬1,… ,𝛬L, 𝜆

I

1
,… , 𝜆I

M

)
(�),

s. t. c(�) = c0,

(36)max
s∈ℝ,�∈Uad

s,

(37)s. t. �
�
(�) ≥ s, � = 1,… , L,

With the bound formulation we experienced no problems 
with multiple eigenvalues or clustering of eigenvalues in our 
numerical experiments, if L was chosen sufficiently large. 
Alternatively, other formulations like a smooth minimum via 
Kreisselmeier and Steinhauser (1980) could be considered.

In Sect. 6.2, we look at three variations of this problem: 

(A) We ignore (38), i.e., we maximize buckling on the mac-
roscopic scale with a compliance constraint but do not 
take buckling on the microscopic scale into account 
during optimization.

(B) We drop (37), i.e., we only optimize microscopic buck-
ling under a compliance constraint but disregard mac-
roscopic buckling.

(C) We investigate the problem as given, i.e., we maximize 
buckling on both scales with respect to a given compli-
ance.

We compute a representation of the Pareto optimal set with 
51 Pareto optimized solutions for each case. For this, we 
first compute a solution to the pure compliance minimiza-
tion problem

Then we solve A–C without the compliance constraint (39) 
and evaluate the compliance values cA, cB and cC of the 
resulting designs to get the extreme points on the Pareto set. 
Afterwards, we discretize the intervals [c∗, cA], [c∗, cB] and 
[c∗, cC] equidistantly, e.g., for A

The representation of the Pareto optimal set is then given 
by solutions to A–C with compliance constraint c(�) = c

j

0
 

in (39).

6  Numerical examples

In this section, we present the results of numerical experi-
ments for the two-scale sizing problems stated in Sect. 5. We 
first conduct a pre-study to develop a better understanding 
of later optimized designs. After that, solutions to the multi-
objective optimization problems will be investigated.

To construct the worst-case model, we have to conduct 
buckling homogenization with applied macroscopic stress. 
For this, we discretize the unit stress sphere in a spherical 

(38)�I
e
(�) ≥ s, e = 1,… ,M,

(39)c(�) = c0.

(40)c∗ = argmin
�∈Uad

c(�).

(41)c
j

0
= c∗ + j (cA − c∗)∕50, j = 0,… , 50.
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coordinate system (see Sect. 4.1). We discretize the azi-
muthal angle, which describes the rotation of the applied 
stress around the RVE, with 5◦ steps. Exploiting the sym-
metry of our unit cell, it suffices to investigate the interval 
from 0◦ to 30◦ . For the inclination, which describes the type 
of stress, we choose 11.25◦ steps in the interval [0◦, 180◦) . 
We discretize the relative volume with 0.05 steps and solve 
homogenization problems for four, five, six, and seven cell 
repetitions. We recall that in our examples the upper bound 
on the number of cell repetitions is chosen to roughly match 
the number of cell repetitions in the dehomogenized designs 
(e.g. Fig.  22 or  23). Modes obtained with an RVE consist-
ing of two and three unit cells can also be detected in an 
RVE with six unit cell repetitions. Likewise, the modes for 
an 1 × 1 RVE are covered by all other RVEs (see Sect. 4). 
This leads to 448 cell problems for each chosen relative 
volume and 9408 in total. Note that these simulations are 
independent of each other and can be run in parallel. We 
discretize the microscopic domain by approximately 1 mil-
lion finite elements per RVE for an RVE with 50% volume. 
As already mentioned in Sect. 4, the material properties are 
given by a Young’s modulus of 10 Pa and a Poisson’s ratio 
of 0.3. It is noted that the motivation for the choice of the 
Young’s modulus was an improved numerical behaviour, in 
particular when solving the associated eigenvalue problem 
on the microscopic scale. Conversely, the results are invari-
ant with respect to this choice.

The eigenvalue problems are solved by ARPACK, version 
3.7.0 (Lehoucq et al. 1998). To solve optimization problems, 
we apply SNOPT, version 7.2.8 (Gill et al. 2005), which 
employs a sequential quadratic programming method.

Now, consider the setting shown in Fig. 13, left. A rectan-
gular design domain is subject to a pressure load at the top. 
At the bottom rolling boundary conditions are applied, i.e., 
the degree of freedom in horizontal direction is fixed for all 
nodes at the bottom edge. To prevent rigid body movement, 
the degree of freedom in vertical direction is also fixed for 
the central node at the bottom edge. This corresponds to 
Euler’s case of a slender column with fixed/free boundary 
conditions, for which the buckling load is given by

where L is the length of the column, E is the elastic modu-
lus and I is the planar second moment of area. The design 
domain has a ratio of 1:5.2 and we discretize it with 25 × 130 
bi-linear quadrilateral elements ( Q4 ), which is a sufficient 
resolution for this type of element (compare also Ferrari 
and Sigmund 2019, Fig. 1). Figure 13  shows the optimized 
design of a mechanical compliance minimization with a 
SIMP (Solid Isotropic Material with Penalization) material 
model and a lower physical design bound of 1e−9.

(42)fcrit =
�2

4L2
EI,

6.1  Pre‑study: Endoskeleton versus exoskeleton

Before we look into results of the optimization problems, we 
perform a study to develop a better understanding of later 
optimized designs. As a first step, consider � = 1 on � , i.e., 
solid material everywhere (Fig. 14, left). Assuming plane 
stress conditions, a width and virtual depth of 1 m each, 
length 5.2 m and E = 10 Pa, we get fcrit = 0.076 N from 
(42). This fits well to our numerical result of fcrit = 0.074 N.
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Fig. 13  Left: macroscopic design setting with loadings and bear-
ings. Right: the solution of a standard compliance problem (40) in the 
design domain (dashed)

Fig. 14  Left: buckling mode of a solid column. Center: column with 
weak (gray) material and a solid (black) reinforcement in endoskel-
eton configuration. Right: exoskeleton configuration. The force is 
applied via a stiff plate at the top (red). (Colour figure online)
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Next, we compare this solid column with two struc-
tures that have the same weight each as the solid column: 
weak material ( � = 0.4 ) with either a solid reinforcement 
( � = 1 ) of width 0.5 m centered in the middle (endoskel-
eton, Fig. 14, mid) or a solid reinforcement that flanks 
the weak material at both sides with width 0.25 m (exo-
skeleton, Fig. 14, right). The force is applied at the top 
boundary via a solid plate with an elastic modulus that is 
100 times higher than the solid material. As the weight is 
kept constant, these two structures are wider than the first 
one (their width is 1.75 m). The critical loads are 0.065 N 
and 0.22 N, respectively. Due to a larger second moment 
of inertia, the exoskeleton shows superior macroscopic 
buckling stiffness compared to the endoskeleton. Thus, 
we expect designs that are optimized with respect to mac-
roscopic buckling to exhibit an exoskeleton-like structure.

6.2  Optimization

Next, we investigate the three different multi-objective opti-
mization problems as given in Sect. 5. Let us briefly note 
that we did not run into the problem of switching eigenval-
ues in any of the following examples. The material models 
are given by the interpolation functions from Sect. 4.1  and 
a density filter (Borrvall and Petersson 2001) is applied with 
a radius of 1.6 times the edge length of a finite element for 
regularization purpose. We choose �min = 10% to obtain eas-
ily realizable lattice structures and apply a global volume 
constraint with V = 50% of the design domain’s area.

6.2.1  Pure macroscopic load factor optimization (A)

Ignoring buckling on the microscopic scale, we maximize 
the macroscopic load factor (37). The load factors for dif-
ferent values of the compliance constraint can be seen in 
Fig. 15. As reference, we include the value of a TO with 
power law ( �3 ) and �min = 0.001 . Selected designs are shown 
in Fig. 16. Design A1 results from a compliance minimiza-
tion without considering buckling. Relaxing the compliance 
constraint while maximizing the BLF, we only see a rather 
small improvement of up to 15% in the macroscopic load 
factor. This is due to design A1 having already a rather good 
macroscopic buckling resistance, as it forms an exoskele-
ton. Only in the upper part of the design domain, where the 
loaded edge has to be supported, is this alleviated in favor 
of a typical branching structure. With a larger compliance, 
bound diagonal bars appear ( A2–A4 ), which are known to 
increase macroscopic buckling stability (Bendsøe and Sig-
mund 2003). The lower design bound of �min = 10% is active 
for all designs, see Fig. 15. We conclude from this, that the 
load factor could potentially be larger, i.e., better structures 
could be obtained, if we chose a lower �min . On the other 
hand, for very low �min , the problem would no longer be a 

sizing but rather a TO problem, which would require special 
handling (see, e.g., Christensen et al. (2022).

6.2.2  Pure microscopic load factor optimization (B)

In the second optimization problem, we ignore macroscopic 
buckling and instead maximize the smallest microscopic 
load factor of all finite elements (38) subject to a compliance 
constraint. The microscopic BLFs are approximated by our 
worst-case model (32). In Fig. 17, a substantial improvement 
of the load factor can be seen when the compliance constraint 
is relaxed. The optimal solution for the problem without com-
pliance constraint (design B5 ) is a fully homogeneous design 
(see Fig. 18). Design B5 exhibits homogeneous stress under the 
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Fig. 15  Optimized function values considering only macroscopic 
buckling subject to a compliance and a global volume constraint. As 
reference, we include a topology optimization result (TO) for pure 
compliance minimization with �min = 0.001 with compliance 1.10 
Nm and load factor 0.014. Selected designs are shown in Fig. 16
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Fig. 16  Optimized designs for the marked data in Fig. 15. From left 
to right the compliance constraint is relaxed and macroscopic buck-
ling stiffness increases through appearance of reinforcing, diagonal 
structures
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given boundary conditions, which results in a homogeneous 
microscopic load factor. Thus, the further we relax the compli-
ance constraint, the more homogeneous the optimized design 
becomes. First, the branching structure at the top of design 
B1 = A1 is replaced by lattice with high density ( B2, B3 ), then 
the load carrying skeleton vanishes ( B4, B5 ). The jumps in 
the minimal volume in Fig.  17 can be explained by design 
changes and the discretization of the design domain, e.g., 
between B3 and B4 , the solid parts on the left and right edge 
each become one finite element thinner, which leads to a dif-
ferent stress distribution in the whole structure.

6.2.3  Simultaneous optimization of pure macro‑ 
and microscopic load factors (C)

The obtained values for the simultaneous optimization of 
both macroscopic and microscopic BLFs (36)–(39) can 
be seen in Fig. 19. As reference, the values of a TO with 
� = 0.001 are given. To achieve a stiff (small compliance) 
design, thick solid structures are needed. Little material is 
left for the lattice part, which results in low local volume 
and a small minimal microscopic BLF. Hence, only (38) and 
(39) are active and (37) remains inactive. For less restrictive 
(larger) compliance bounds, less solid material is necessary 
and material is redistributed to the lattice region ( C2 ). Thus, 
the microscopic BLF can be improved. When it reaches the 
value of the macroscopic one, (37) becomes active ( C3 ). 
Therefore, raising only the microscopic buckling load factor 
further, i.e., steering towards homogeneous design as in B, 
yields no improvement in the objective, as the macroscopic 
load factor will define the value of the slack variable. For 
this reason, both micro- and macroscopic BLFs are raised 
simultaneously: the first by increasing the lattice density 
especially in the upper region of the design domain and the 
second by stiffening the exoskeleton ( C4, C5).

The decreasing minimal local volume in Fig.  19 for more 
relaxed compliance appears non-intuitive. In Fig. , staircase 
structures on the solid parts can be seen due to discretiza-
tion, see, e.g., C5 . The resulting local stress field allows a 
slightly lower volume for individual finite elements, while 
preserving the microscopic BLF.
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Fig. 17  Optimized function values considering only microscopic 
buckling subject to a compliance and a global volume constraint. The 
optimized designs show increasing minimal local volume (see also 
Fig. 18), which yields better local buckling resistance
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Fig. 18  Optimized designs for the marked data in Fig. 17. Design B1 
equals A1 in Fig. 16. B5 is pure maximization of microscopic buckling 
without compliance constraint and yields a homogeneous design
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Fig. 19  Optimized function values of concurrent load factor maximi-
zation of pure macro- and pure microscopic buckling with compli-
ance and volume constraint (36)–(39). Up to compliance 1.33, only 
the microscopic buckling load factor is active. For higher compliance 
values, the macroscopic buckling load factor dominates. Selected 
designs are shown in Fig. 20
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7  Dehomogenization and validation

In this section, we want to give two distinct comparisons: 
First, we compare the predicted buckling behavior with high-
resolution numerical analyses of dehomogenized designs. 
Second, we validate the worst-case model against a precise 
microscopic load factor evaluation.

7.1  Performance of dehomogenized designs

The number of lattice cells for dehomogenization of opti-
mized results is chosen independently of the finite element 
resolution of the macroscopic model (cf. Fig. 13). To realize 
this, we proceed as follows: first, the optimized density field 
� is interpolated and the number of lattice cells is chosen. 
Then, an evaluation of this field at each lattice cell’s center 
defines the width of the corresponding lattice struts. Note 
that our dehomogenization procedure is volume preserving, 
i.e., all dehomogenized designs have a volume of V = 50% 
of the design domain’s area. Dehomogenized designs are 
shown in Figs.  22 and 23.

7.1.1  Influence of cell size

We compare dehomogenizations with different cell sizes for 
design C4 from Fig. 20.

We investigate different BLFs: the one associated with 
a macroscopic buckling mode, i.e., deflection of the struc-
ture as a whole (low-frequency), and the one associated 

with a microscopic mode, i.e., deflection of the lattice 
(high-frequency). As expected, the predicted macroscopic 
BLF is met better with a higher number of lattice cells (see 
Fig. 21). The microscopic BLF stems from modes at the 
boundary (Fig. 23). These modes cannot be approximated 
well by homogenization theory, which ignores boundary 
effects. We therefore also search for the smallest load factor 
associated with an interior mode, i.e., a mode, that does not 
exhibit deflection at the structure’s boundary (cf. Fig. 23). 
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Fig. 20  Optimized designs for the marked data in Fig. 19. Design C1 
equals A1 in Fig. 16. To increase microscopic buckling resistance, the 
optimizer reduces lattice porosity. No diagonal bars appear as they 
do in the pure macroscopic buckling optimization, since the lattice 
already provides good macroscopic buckling resistance. Due to dis-
cretization, steps can be seen on the solid parts, as marked in C5 by 
white ellipses
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Fig. 21  Dehomogenization of design C4 with increasing number of 
lattice cells. For the interior microscopic load factor, we searched for 
the first buckling mode that has no deflection at the boundary. The 
macroscopic buckling load factor matches our prediction well; the 
microscopic and the interior load factors are better than predicted by 
the worst-case model (cf. Fig. 19)

Fig. 22  Dehomogenization of design C4 with 6 (left) and 12 (right) 
cells in horizontal direction with visualized pre-buckling displace-
ment. The horizontal struts at the top face where the pressure load is 
applied exhibit sag, which is reduced for a higher number of cells
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In order to avoid buckling of the microstructure occurring 
at the structural boundary, a coating strategy as suggested 
by Christensen et al. (2022) may be pursued.

In the considered example, the cell size has almost no 
influence on this interior load factor. This might differ for 
other examples. Zooms for interior microscopic buckling 
modes are given in Fig. 24.

As can be seen in Fig.  21, the compliance tends to 
decrease with smaller cell size. The observed increase for 
22 lattice cells compared to 20 is presumably caused by dis-
cretization effects. Figure  22 shows that the displacement 
under the applied pressure load has a wave shape, where 
horizontal lattice struts at the top face sag between their 
diagonal supports. The more cells we have, the better these 
struts are supported, and thus the compliance is reduced.

7.1.2  Comparison between homogenized 
and dehomogenized designs

Next, we compare the homogenized design C4 with its deho-
mogenized counterpart with 20 cells in a horizontal direc-
tion. For this design, we have a clear separation of length 
scales and only a small homogenization error. The macro-
scopic load factor is determined to be 0.0507 and differs by 
less than 1% from the predicted macroscopic load factor of 
0.0511 in the optimized homogenized design. A gap of 10% 

exists between the interior microscopic load factor of the 
dehomogenized design of 0.0563 and the predicted one of 
0.0511. This is expected, as the predicted microscopic load 
factor is based on our worst-case model, which assumes the 
worst stress type and orientation (see Sect. 4.1). Note that 
the predicted microscopic BLF is smaller than the micro-
scopic BLF, and hence our worst-case model acts as a safe-
guard against pure microscopic buckling in this example. 
Of course, such an observation is generally only valid up to 
remaining discretization and interpolation errors as well as 
the error introduced by homogenization.

7.2  Impact of worst‑case model

Next, we investigate the gap between the load factor pre-
dicted by the worst-case model and the interior load fac-
tor obtained from the dehomogenized design. For all finite 
elements in the lattice region of design C4 , we perform a 
posteriori homogenization by evaluation of (26). We extract 
the local relative volume and create RVEs with appropriately 
chosen numbers of unit cell repetitions. Then, we conduct 
homogenization (Sect. 3) of the BLF with the “real” mac-
roscopic stress taken from the optimized design using (18) 
and (19). The resulting microscopic load factors are shown 
in Fig. 25. The mean relative difference between predicted 
and a posteriori load factor for all of the validated finite ele-
ments is 18% , with a standard deviation of 0.079.

The marked element in Fig. 25   complies with the center 
of the interior microscopic mode in the dehomogenized 
design. For this element, the a posteriori homogenized BLF 
is 0.0578, which differs less than 3% from the interior micro-
scopic load factor of the dehomogenized design. This rather 
small difference demonstrates that homogenization is a valid 
tool for predicting microscopic buckling behavior.

The a posteriori homogenized BLF for the mentioned ele-
ment is 13% larger than predicted by the worst-case model. 
This can be explained by Fig. 11. The macroscopic stress 
for the chosen finite element, which is extracted from the 
macroscopic analysis, is uniaxial and acts in vertical direc-
tion. Thus, the a posteriori load factor corresponds to the 
point on the uniaxial curve at 90◦ , which is 15% larger than 
the biaxial value.

Fig. 23  Different buckling modes for design C4 dehomogenized with 
8 lattice cells (cf. Fig. 21). Left: first macroscopic mode. Center: first 
microscopic mode. Right: first interior mode

Fig. 24  Zoom of first interior buckling mode of design C4 dehomoge-
nized with 8 (left), 12 (middle) and 16 (right) lattice cells (cf. Fig. 21)



Two‑scale optimization of graded lattice structures respecting buckling on micro‑ and…

1 3

Page 17 of 20 163

7.2.1  Example with tension, compression, and shear stress

In the previously considered example, we mostly observe 
uniaxial compression stress. Next, we want to examine an 
example with compression, tension, and shear stress. For 
this, consider the setting shown in Fig. 26: a bow-tie shaped 
domain is fixed at the left edge in both degrees of freedom. 
At the right edge, movement in a horizontal direction is pre-
vented and a force is pulling downwards.

We simulate the behavior of a homogenized lattice 
with a constant relative local volume, i.e., �e = 0.5 for all 
e = 1,… ,M . This leads to pure shear stress in the center 
of the domain, marked by C, uniaxial tension stress in the 
regions marked with A, and uniaxial compression stress in 
regions marked with B.

In Fig.  27 we see, that the microscopic buckling load 
factor, which is obtained from our worst-case model, has 
its minimal value in regions A and B where the highest 
stress occurs. This highlights a drawback of the worst-case 
approach: the model does not use any information on the 
direction or type of stress. For example, it does not distin-
guish between macroscopic compression and tension stress, 
which are extreme examples of different stress types. This is 
because it is based on a minimization over all unit stresses 
and only depends on the local volume fraction and local 
stress magnitude but not on stress type or direction [cf. (27)]. 
As for our exemplary lattice, the computed (positive) load 
factors for compression stress are consistently smaller than 
for tension stress (see also Christensen et al. 2022, Fig. 3) 
for a confirmation of this observation) and BLFs will always 
be underestimated by the model in regions of tension stress. 
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Fig. 25  Left: microscopic buckling load factor predicted by the 
worst-case model. Right: visualization of a posteriori homogenized 
microscopic buckling load factor. Load factors are thresholded at 0.1. 
The marked finite element in the upper region corresponds roughly to 
the center of the mode from Fig. 24. The a posteriori homogenized 
buckling load factor of this element is 13% larger than predicted and 
differs less than 3% from the dehomogenized design

Fig. 26  Setting for shear stress example, consisting of homogenized 
lattice with 50% porosity. The color shows the norm of the resulting 
mechanical stress. Region C exhibits shear, region A uniaxial tension, 
and region B uniaxial compression stress
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Fig. 27  Microscopic buckling load factors obtained via our worst-
case model
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This results in higher lattice volume fraction than actually 
necessary to prevent local buckling at these locations. Due 
to this expendable lattice over-sizing, microscopic buckling 
is not observed at the corresponding locations for the deho-
mogenized design, although predicted by the worst-case 
model.

As in the previous example, we conduct a posteriori 
homogenization with the “real” macroscopic stress taken 
from the simulated design in Fig. 26. Figure  28 shows that 
in the region of compression stress (B), the error of the pre-
diction is quite low, but in the region of tension stress (A), 

the worst-case model clearly underestimates the actual load 
factor. For an exemplary finite element in the marked region 
C, the predicted BLF is 0.100, while the homogenized value 
is 0.154. Thus, this element actually has 50% higher buckling 
strength than predicted by the worst-case model. This can be 
explained by Fig. 29. The load factor for shear stress at 45◦ , 
which is the acting stress in the inspected element, is around 
50% larger than the load factor for biaxial stress, on which 
our worst-case model is based. This explanation also leads 
to a simple a priori error estimate for the worst-case model: 
if we know the type of stress, the error is bounded by the 
difference between the maximal load factor on the curve for 
the specific stress type and the load factor for biaxial stress.

For this last example, we showed a homogeneous design 
with non-homogeneous microscopic BLF. In a simultaneous 
optimization of both macro- and microscopic buckling (cf. 
problem C in Sect. 5), only the microscopic constraint is 
active as the structure exhibits a comparatively high macro-
scopic BLF. Optimization with respect to only microscopic 
buckling (problem B) leads to non-homogeneous lattice with 
homogeneous microscopic BLF. For this optimized design, 
similar deviations in the predicted worst case versus the a 
posteriori BLF have been found in regions that exhibit shear 
stress.

We recall that our worst-case model acts (up to discre-
tization errors) as a safeguard against pure microscopic 
buckling. The possibly excessive underestimation of the 
microscopic BLF can lead to oversized lattice struts. This 
can be overcome by replacing the worst-case approach with 
other interpolation models, e.g., a C1-Interpolation in the 
three-dimensional parameter space (�, �̄�)|�̄�∈S2 . However, this 
comes with additional computational effort for the worst-
case model and, as mentioned in Remark 1 in Sect. 4.1, 
requires sophisticated interpolation schemes if the proposed 
method is applied for three-dimensional structures, as the 
parameter space will become higher dimensional.

8  Conclusion

We presented a method to perform two-scale optimiza-
tion of lattice structures while accounting for buckling 
on both scales using asymptotic homogenization. Based 
on a parameterization of our chosen lattice structure, we 
obtained homogenized elastic and buckling properties. We 
constructed a worst-case model for the homogenized BLF 
(Sect. 4.1). Both elastic and buckling characteristics were 
upscaled by individual, continuously differentiable interpo-
lation models. We provided numerical examples for opti-
mization of only macroscopic or microscopic buckling and 
simultaneous optimization of both.
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Fig. 28  Left: microscopic buckling load factors obtained by a poste-
riori homogenization with the “real” macroscopic stress. Right: rela-
tive difference of load factors predicted by the worst-case model com-
pared with a posteriori load factors. The center region C is subject to 
pure shear stress and has a predicted load factor, which is 50% smaller 
than the one obtained by a posteriori homogenization
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Fig. 29  Homogenized buckling load factors for an RVE with 3 × 3 
unit cell repetitions and a relative volume of 30% (cf. Fig.  11). In 
region C of our example (Fig. 26), we have shear stress acting at an 
angle of 45◦ . The buckling load factor for this stress situation (marked 
by a circle) is around 50% larger than the one for biaxial compression 
stress
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We demonstrated that our method to obtain homog-
enized properties is equivalent to a special discretization 
of the Brillouin zone in Floquet–Bloch theory. We showed 
that rounding corners can have a considerable influence 
on the buckling strength of lattices, as it prevents stress 
concentrations.

We compared the performance of optimized designs pre-
dicted by the worst-case model with their dehomogenized 
counterparts. Compliance and macroscopic buckling were 
predicted very well; the predicted microscopic BLF was con-
servative. We explained the reason for a possible underesti-
mation and how this can be avoided by replacing the worst-
case model by interpolation in the whole parameter space. A 
posteriori homogenization matched dehomogenized results 
quite well. This shows that homogenization is a viable tool 
to upscale the buckling behavior of lattice structures.

Although we limit ourselves to a two-dimensional setting 
in this article, an extension to three dimensions is straight 
forward. Further research could include the combination 
of lattice, solid, and void design in optimization problems 
while accounting for manufacturing constraints.
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