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Abstract
This work develops a novel ice detection framework specifically suitable for rotorcraft using computational aeroacoustics and 
Bayesian neural networks. In an offline phase of the work, the acoustic signature of glaze and rime ice shapes on an oscillating 
wing are computed. In addition, the aerodynamic performance indicators corresponding to the ice shapes are also monitored. 
These performance indicators include the lift, drag, and moment coefficients. A Bayesian neural network is subsequently 
trained using projected Stein variational gradient descent to create a mapping from the acoustic signature generated by the iced 
wings to predict their performance indicators along with quantified uncertainty that is highly important for time- and safety-
critical decision-making scenarios. While the training is carried out fully offline, usage of the Bayesian neural network to make 
predictions can be conducted rapidly online allowing for an ice detection system that can be used in real time and in-flight.

Keywords Ice detection system · Aircraft icing · Aeroacoustics · Neural networks · Bayesian

1 Introduction

Rotorcraft possess the capability to vertically take-off and 
land, allowing them to operate in challenging flight condi-
tions where conventional fixed-wing aircraft cannot. Their 
operational environment lends itself to low-level altitudes, 

and many missions are often toward the boundary of the 
flight envelope. Throughout the course of aviation, the 
requirement for flight in poor weather conditions and at 
night has always been a driver for innovation and rotorcraft 
are no exception. In the past, rotorcraft were fair weather 
vehicles with marginal performance; however, now they 
regularly operate in conditions from hot and dry to cold, 
wet, and windy (Padfield 2008). In particular, cold climates 
can potentially leave aircraft susceptible to dangerous icing 
conditions. In-flight icing encounters can jeopardize the 
performance and handling qualities of aircraft and hence 
pose a serious threat to flight safety (Bragg et al. 1986; 
Gent et al. 2000). This threat to flight safety arises as ice 
accretion can rapidly alter aerodynamic lifting surfaces such 
as wings and rotors during flight which are highly sensi-
tive to geometric modifications. Naturally, establishing a 
comprehensive understanding of the fundamental physics 
of aircraft icing is paramount to ensure the reduction of 
ice-related accidents and the progression of safety-critical 
technology.

In 2002, Bragg et al. (2022) critically assessed aircraft 
safety during icing conditions and introduced smart icing 
systems to reduce aircraft accident rates. Their work rec-
ognized that warning the pilot of ice conditions through the 
use of ice detection systems could significantly increase the 
safety of aircraft to either optimize the use of ice protection 
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systems or to avoid icing conditions altogether. Over the past 
two decades, this has led to sustained technological advance-
ments in ice detection systems.

Methods for ice detection on aircraft can be characterized 
as either direct or indirect. The former involves using sen-
sors to detect ice accretion on the airframe or atmospheric 
conditions symptomatic of icing environments, while the 
latter relies on monitoring for a change in response to the 
aircraft state due to icing. Direct methods have received the 
most scientific interest where many novel sensing techniques 
have been developed. One prominent direct strategy entails 
measuring the reaction of a signal or electric field to the 
presence of ice, such as through a surface-generated wave, 
infrared thermography, optical reflectometry, or ultrasonics 
wave techniques. For example, Varadan et al. (1997) pro-
posed producing surface-generated Love waves from piezo-
electric devices and propagating them through a surface. 
As ice accretes, the amplitude and velocity of these waves 
would be altered. Hongerholt et al. (2002) propagated and 
reflected ultrasonic-guided waves on the surface of a wing 
and measured the attenuated amplitude of the reflected 
waves in different mediums for detecting the existence of 
ice. Zhuge et al. (2012) used infrared thermography where 
emitted electromagnetic signals reflected by the surface are 
analyzed for temperature variations. Bassey and Simpson 
(2007) employed optical time domain reflectometry to meas-
ure the dielectric permittivity and volumetric water content 
on the aircraft surface. Schlegl et al. (2015) further used 
capacitive techniques to monitor the presence of dielectric 
substances, leveraging the different electrical properties of 
air, water, and ice. Roy et al. (1998) generated an excitation 
signal and measured the impedance change in the electrodes 
when ice is formed.

Overall, direct ice detection techniques allow for precise 
information regarding the ice location, thickness, and loca-
tion. However, they are largely commercially unproven due 
to preliminary testing not exceeding the laboratory environ-
ment or are unpractical for moving components, making 
their implementation on rotorcraft challenging.

Indirect ice detection approaches are based on compar-
ing the aircraft state to previously established clean states 
and using the difference between the iced and clean aircraft 
states as an indicator for icing. Melody et al. (2000) utilized 
aircraft dynamics as an indicator for icing, which required 
algorithms to identify changes in aircraft performance, 
stability, and control parameters over time based on meas-
urements of the aircraft state variables and control input. 
Deiler and Fezans (2020) introduced a performance-based 
ice detection methodology based on the change in the steady 
flight state, which can be used prior to reaching dynamic 
stall conditions and during steady flight conditions contrary 
to the aircraft dynamics approach. However, a major limita-
tion of using either the dynamics or performance of aircraft 

for ice detection is that the type, location, and thickness of 
ice cannot be determined. Additionally, the detection of ice 
prior to dynamic stall is fundamental to aircraft safety.

Another major type of indirect ice detection involves 
using acoustic noise. The acoustics-based techniques are 
particularly relevant for rotorcraft, which bear a character-
istic and largely undesirable feature that is their rotor noise. 
Rotor noise sources are complex and are a combination of 
loading noise, thickness noise, shock noise, blade–vortex 
interaction noise, and broadband noise. However, Cheng 
et al. (2018) recognized the strong correlation between the 
ice-induced surface roughness and the broadband noise level 
suggesting rotor acoustics could be a viable technology for 
rotorcraft ice detection. Chen et al. (2019) further investi-
gated using numerical techniques and an artificial iced notch 
and concurred that the acoustics could be potentially used 
to indicate the formation of ice on a rotor. The experimental 
work from Cheng et al. (2018) used sandpaper to represent 
ice roughness, while the numerical work from Chen et al. 
(2019) used an artificial ice notch based on the experimen-
tal iced surface roughness results of a straight wing from 
the University of Illinois, presented by Broeren and Bragg 
(2005). The first characterization between glaze and rime 
iced noise signals was established by Morelli et al. (2020). 
Their work utilized numerical techniques to simulate the 
accretion of ice on rotors and subsequently the rotor noise 
signature. The results highlighted that glaze ice accretion 
produces noise at a significantly higher frequency caused 
by ice-induced flow separation. In the main, ice detection 
via means of aircraft acoustics is still in the early stages of 
research.

This paper seeks to present a proof-of-concept acoustics-
based ice detection system for rotorcraft through building a 
machine learning (ML) model. While several studies men-
tioned above have investigated using noise as an method 
for ice detection, this work is the first to develop a system 
that predicts the aerodynamic performance (e.g., lift and 
drag coefficients) directly from observed acoustics. In other 
words, we seek to not only state whether icing is present 
or not, but also predict the severity and consequence of the 
icing condition through the aerodynamic performance met-
rics directly useful for aviation and piloting. To achieve this, 
we first utilize numerical techniques to simulate a large data-
set of ice shapes. Next, high-fidelity scale-resolving methods 
are used to solve for the flow field over the iced rotor blades 
and extract their corresponding aerodynamic performance 
indicators. The surface pressure fluctuations are then taken 
from the aerodynamic data and used by an aeroacoustic 
solver to predict the far-field noise levels. Finally, we train 
a ML model to directly map the acoustic noise signal pro-
duced from the ice structures to the aerodynamic perfor-
mance indicators of the aircraft; this “shortcut” can allow 
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predictions to be made at real-time speeds. An overview of 
our overall framework is shown in Fig. 1.

We choose neural network (NN) as our ML model for 
its expressiveness in capturing complex non-linear map-
pings and in particular, Bayesian neural network (BNN) 
that also provides uncertainty quantification (UQ) in the 
ML model and its predictions. Other ML model types may 
also be adopted: for example, Gaussian process is another 
popular choice with built-in UQ, but it lacks scalability 
(covariance matrix inversions become expensive when 
more training data become available) and flexibility (typi-
cally limited for predicting low-dimensional quantities). 
In contrast, NNs are known for their expressiveness and 
ability to handle large datasets. Furthermore, the BNN 
framework can flexibly couple with advanced NN architec-
tures such as convolutional neural networks (CNN) (Lecun 
et al. 1998) and long short-term memory units (LSTM) 
(Hochreiter and Schmidhuber 1997) that are specialized 
in high-dimensional data and time series signals, respec-
tively. Indeed, NNs have already been used for in-flight ice 
detection and identification (Caliskan and Hajiyev 2013) 
albeit not with rotorcraft acoustics. We further highlight 
the critical need to provide UQ for the ML models used 
in such mission- and safety-critical settings—we need to 
know the quality of a ML prediction before using it for 
decision-making. However, performing UQ for a NN is a 
challenging task due to its high number of model param-
eters. A further contribution of our work is then to enable 
UQ computation in BNNs leveraging recently developed 
algorithm of projected Stein variational gradient descent 
(pSVGD) (Chen and Ghattas 2020).

Several limitations of this complex problem do however 
need to be acknowledged. While this methodology is able 
to predict the tonal and broadband noise components of 
iced airfoils, in reality the noise of an operating helicopter 
is highly complex with many different components including 
engine noise and tail rotor noise which would likely pol-
lute the small differences in noise observed by an iced rotor. 

Nevertheless, this is the first step as to understanding if an 
acoustic ice detection system using NN is feasible. To that 
end, if successful the installation on helicopter in operation 
would be possible due to the system being non-intrusive.

In summary, we develop a framework for rotorcraft icing 
detection highlighted by the following key novelty and 
contributions:

• Uses in-flight acoustic measurements to enable predic-
tion of aerodynamic performance for rotorcraft, who can-
not use visual/image observations due to the high-blade 
RPM during operation;

• Enables real-time performance predictions with quanti-
fied uncertainty through advanced ML models of BNNs, 
using a recently developed pSVGD algorithm;

• Uses simulation data that are generated from state-of-the-
art physics-based models rather than empirical models; 
and

• Requires a truly multi-disciplinary approach to combine 
ice formation and growth, turbulent flow aerodynamics, 
aeroacoustics, and ML with UQ.

The structure of the remaining paper is as follows: Sect. 2 
introduces the methodology of the acoustic ice detection 
and the ML using BNNs; Sect. 3 discusses the results of the 
ice prediction, the turbulent flow simulations and acoustic 
prediction, as well as the training of the BNN and the design 
of the ice detection system; and Sect. 4 highlights the con-
cluding remarks of the work.

2  Methodology

The development of a technique for real-time, in-flight aer-
oacoustic ice detection system requires a highly inter-disci-
plinary approach. The methodology used for the prediction 
of in-flight ice accretion, the simulation of the turbulent iced 
flow field and noise prediction, and finally the ML are here-
inafter introduced.

2.1  Icing simulation

The PoliMIce ice prediction toolkit is utilized to simulate a 
large sample of ice shapes required for the ML model train-
ing. The PoliMIce ice prediction framework is described 
in detail in Gori et al. (2015a) and Morelli and Guardone 
(2021) and will subsequently be summarized. A con-
ventional icing simulation structure routinely involves a 
three-stage process which iteratively updates to account 
for unsteady ice accretion. This simulation process is com-
monly known as multi-step ice accretion and is adopted by 
PoliMIce in this work. A schematic of multi-step ice accre-
tion is shown in Fig. 2.

Fig. 1  Workflow routes illustrating the physics causation (black 
solid), a traditional inverse problem route that needs to first identify 
the ice profile from acoustic signal and then solve for performance 
indicators (dashed red), and proposed ML model “shortcut” mapping 
(dotted-dash blue). (Color figure onlilne)
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The first stage of the icing framework is to simulate the 
aerodynamic flow field around the region of interest. In 
this work, the SU2 solver is used to compute the aerody-
namic flow field over the wing, with further details of the 
SU2 solver discussed in Sect. 2.2.

The second stage is to simulate the trajectories of super-
cooled water droplets within the flow domain and deter-
mine the collection efficiency and impingement locations. 
An in-house particle tracking code based on a Lagrangian 
framework was developed at Politecnico di Milano and is 
used for the simulation of clouds containing supercooled 
water droplets (Bellosta et  al. 2019). The Lagrangian 
framework permits the modeling of supercooled water 
droplets at an individual particle level. Subsequently, 
fundamental physics such as particle splashing on impact 
can be modeled. Techniques to allow for particle tracking 
in mesh with arbitrary motion and across non-conformal 
boundary interfaces are used within this work to simulate 
clouds entrained within rotorcraft flow fields (Morelli et al. 
2019).

Finally, an icing solver is utilized to predict the rate of 
ice accretion. The in-house code PoliMIce is used for com-
puting the ice accretion (Gori et al. 2015a). The PoliMIce 
software library provides state-of-the-art ice formation mod-
els, including the Myers model (Myers 2001), the modified 
Myers model (Gori et al. 2015b), and the local exact solution 
of the Stefan problem (Gori et al. 2017). Myers introduced 
a rime limit thickness, Bg , as a criterion for the selection of 
the ice regime. The rime ice limit thickness describes the 
condition at which the glaze regime can first appears. If the 
ice thickness B < Bg or Bg < 0 ∶ the rime ice accretion 
law is used, while if the ice thickness B > Bg ∶ the glaze ice 

accretion law is used. The rate of rime ice accretion can then 
be written as

while the rate of glaze ice accretion reads

where the collection efficiency, droplet liquid water con-
tent, and freestream velocity are, respectively, denoted by 
� , LWC , and U∞ . Here, � represents the density of ice which 
depends on the ice regime. Q̇down and Q̇up are the heat fluxes 
exchanged on the ice/water phase change interface. LF is the 
latent heat required for melting ice.

The model used in this work to capture the complex 
experimental ice shapes is the local exact solution of the 
unsteady Stefan problem for the temperature profiles within 
the ice layer in glaze conditions (Gori et al. 2017). The ice 
shapes are then computed using a multi-step approach, 
whereby non-linear ice accretion is accounted for by 
iteratively updating the surface solution on which the ice 
accretes. The efficacy of the approach for predicting ice 
shapes on two-dimensional oscillating airfoils is highlighted 
in Morelli et al. (2020).

2.2  Turbulent flow simulation and noise prediction

SU2 has been developed with the task of solving partial 
differential equations (PDE) and constrained optimization 
problems on general unstructured meshes. The core of the 
suite is a Reynolds-averaged Navier–Stokes (RANS) solver 
capable of simulating the compressible, turbulent flows 
that are representative of many problems in aerospace and 
mechanical engineering. The finite volume method (FVM) 
is applied on arbitrary unstructured meshes using a standard 
edge-based data structure on a dual grid with control vol-
umes constructed using a median-dual, vertex-based scheme. 
Several numerical fluxes like Jameson–Schmidt–Turkel 
(JST), Upwind Roe, and variants of the AUSM schemes are 
implemented and slope limiters enable second-order space 
integration. For time discretization SU2 uses a second-order 
dual-time stepping method with an outer time loop to march 
through the physical time and of an inner loop which is usu-
ally a pseudo-time iteration or a (quasi-)Newton scheme. 
An Arbitrary Lagrangian–Eulerian (ALE) formulation of 
the RANS equations is implemented in SU2 to account for 
unsteady grid motion, in which the convective fluxes are 
adjusted to obtain solutions on arbitrarily moving grids.

In the SU2 suite, of particular relevance to this work are 
the scale-resolving and acoustic prediction capabilities. For 

(1)
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�LWCU∞

�rime

,
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𝜌glazeLF
(Q̇down + Q̇up),

Fig. 2  Multi-step ice accretion simulation
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scale-resolving simulation, the Enhanced Delayed Detached 
Eddy Simulation (EDDES) based on the Spalart–Allmaras 
(SA) turbulence model with a shear-layer adapted (SLA) 
sub-grid scale model (Shur et al. 2015) was used. In addi-
tion, to limit the numerical dissipation in the LES part of the 
EDDES solver, the inviscid flux is computed using the Sim-
ple Low Dissipation Advection Upstream (SLAU2) scheme 
(Kitamura and Hashimoto 2016). The EDDES-SA solver has 
been demonstrated to successfully predict separated flows 
(Molina 2015; Molina et al. 2019), especially those induced 
by icing on the wing leading edge (Molina et al. 2020)

For aeroacoustic prediction, a solid-surface Ffowcs Wil-
liams and Hawkings (FWH) analogy is used. To that end, 
Farassat’s Formulation-1A (F1A) (Farassat 2007) has been 
implemented in the SU2 suite (Zhou et al. 2017; Icke et al. 
2020; Morelli et al. 2022) which computes far-field noise 
from surface pressure fluctuations extracted from a preced-
ing unsteady EDDES-SA simulation.

2.3  Machine learning using Bayesian neural 
networks

In this section, we first introduce the classical NN (Rosenb-
latt 1958), followed by the BNN (Bate et al. 1998) that cap-
tures the uncertainty of NN model parameters and finally the 
pSVGD (Chen and Ghattas 2020) algorithm used to numeri-
cally constructs a BNN.

2.3.1  Neural networks

A NN is a function f mapping input feature x to output 
target variable y. We write ŷ = f (x) where the hat denotes 
the predicted value from the NN. For illustration, we focus 
solely on densely connected feedforward NNs (also known 
as multi-layer perceptrons), although more advanced NN 
architectures (e.g., convolutional and recurrent NNs) may 
also be adopted within our overall ML framework. The 
hyperparameters that define the NN architecture (e.g., 
number of layers, nodes per layer, and activation functions) 
are selected prior to NN training, and good hyperparameter 

choices can be sought systematically through validation or 
cross-validation. Once the hyperparameters are chosen, 
the NN training then focuses on determining the weight 
and bias parameters of all NN layers. We denote the col-
lection of all such trainable parameters by � . Then, more 
explicitly, we write the prediction under a particular NN 
parameter setting as ŷ = f (x;𝜔)

Given N training points in the form of input–output 
pairs (xT , yT ) = {xn, yn}

N
n=1

 , NN training seeks �∗ that min-
imizes a loss function reflecting the degree of mismatch 
between NN predictions and the true target values for these 
training points. In regression problems, for example, the 
mean squared error (MSE) loss is often used:

This optimization problem is typically solved via gradi-
ent-based algorithms, such as stochastic gradient descent 
(LeCun et al. 2012; Robbins and Monro 1951) or ADAM 
(Kingma and Ba 2015). In any case, the solution to �∗ is 
single valued, and any new prediction made by the trained 
NN at a new input ŷnew = f (xnew;𝜔

∗) would also be single 
valued. No uncertainty information is produced to convey 
the confidence or quality of these estimates that would be 
affected by, for example, how many points were used to train 
the NN and how noisy those training points were. Having 
uncertainty quantification for the model and its predictions 
will be particular important to support safety- and mission-
critical decision-making, such as in icing detection.

2.3.2  Bayesian neural networks

We adopt a probabilistic approach that seeks to produce 
not just a single-valued prediction, but a distribution of 
plausible prediction values. This distinction is demon-
strated in Fig. 3. In particular, we take a Bayesian approach 
and treat � as a random variable with an associated prob-
ability density function (PDF) that reflects the uncertainty 

(3)�∗ = argmin
�

{

1

N

N
∑

n=1

[

f (xn;�) − yn
]2

}

..

(a) Neural network (b) Bayesian neural network

Fig. 3  Illustration of a simple NN and BNN, each with an input layer, two hidden layers, and an output layer. Trainable parameters are depicted 
in red as deterministic values in the NN and as probability distributions in the BNN
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in its values. When new training data become available, 
the PDF and therefore uncertainty of � is updated via 
Bayes’ rule:

where p(� ∣ xT , yT ) is the posterior PDF on the weight 
parameters; p(�) is the prior PDF; p(yT ∣ xT ,�) is the likeli-
hood PDF; and p(yT ∣ xT ) is a normalizing term independent 
of � often known as the model evidence or marginal likeli-
hood. Solving the Bayesian inference problem then consti-
tutes computing or characterizing the posterior p(� ∣ xT , yT ) 
for a given training dataset (xT , yT ) . Once the posterior is 
available, we can propagate its uncertainty to predictions via 
Monte Carlo sampling �(i) ∼ p(� ∣ xT , yT ) and correspond-
ingly produce samples of ŷ(i)new = f (xnew;𝜔

(i)) that represent 
the posterior predictive uncertainty—that is, a distribution 
of plausible prediction values—at any new input xnew.

Solving for the posterior is extremely difficult for NNs, 
since � can easily reach thousands, even millions of dimen-
sion for large NNs intended to model complex scientific 
and engineering processes. While Markov chain Monte 
Carlo algorithms (Gilks et al. 1996; Andrieu et al. 2003; 
Robert and Casella 2004; Brooks et al. 2011) are typically 
used for Bayesian computations for their ability to gener-
ate samples from the exact posterior, these methods do not 
scale well to such high dimensions in practice. In contrast, 
variational inference (VI) (Blei et al. 2017; Zhang et al. 
2019) formulates an optimization problem that seeks the 
best approximation to the posterior from within a class of 
parameterized distributions in lieu of sampling the poste-
rior. If we use q(�;�) to denote the approximate posterior 
with � representing the parameterization of these approxi-
mating distributions (e.g., if the q is from the family of all 
Gaussian distributions, then � is the mean � and covariance 
Σ of a Gaussian) and the VI formulation then seeks �∗ that 
minimizes the Kullback–Leibler divergence (a measure of 
farness between two distributions) from the true posterior to 
the approximate posterior:

Since an optimization task is only concerned with finding the 
single optimum point, it is more scalable to higher dimen-
sions than a sampling task that needs to portray the entire 
landscape of the posterior distribution. Hence, by converting 
a sampling task to an optimization one, VI effectively trades 
off accuracy of posterior representation for scalability, mak-
ing it more suitable for BNNs.

(4)p(� ∣ xT , yT ) =
p(xT , yT ∣ �)p(�)

p(xT , yT )
=

p(yT ∣ xT ,�)p(�)

p(yT ∣ xT )
,

(5)�∗ = argmin
�

DKL

[

q(�;�) ∥ p(� ∣ xT , yT )
]

..

2.3.3  Projected stein variational gradient descent

We focus on two particle-based VI methods: Stein vari-
ational gradient descent (SVGD) (Liu et al. 2016) and pro-
jected SVGD (pSVGD) (Chen and Ghattas 2020). With 
particle representations, these methods are able to capture 
correlation and non-Gaussian structures of distributions 
that the commonly used mean-field Gaussian VI cannot.

SVGD is derived by leveraging the relationship between 
the (functional) gradient of objective in Eq. (5) to the Stein 
discrepancy, the latter which can be approximated using 
a set of particles (see Liu et al. 2016 for a detailed deriva-
tion). A gradient descent procedure can then be formed to 
iteratively minimize this gradient, as summarized by

where ��

i
, i = 1,… ,m is the location of the ith particle at 

optimization iteration � , �
�
 is the learning rate that can also 

be adapted with � , and �̂�∗(𝜔) is the update direction. In turn, 
the update direction can be expanded as

with k(⋅, ⋅) being a positive definite kernel. Furthermore, the 
gradient of the true log-posterior in the above equation can 
be evaluated via the sum of gradients of log-likelihood and 
log-prior, since the gradient of the log model evidence with 
respect to � is zero. The overall effect is an iterative trans-
port of a set of particles to best match the target posterior 
distribution p(� ∣ xT , yT ) . One observed drawback to SVGD, 
however, is the tendency for particles to collapse toward the 
mode of the distribution as the dimensionality becomes high 
relative to the number of SVGD particles, thereby (poten-
tially drastically) under-representing the uncertainty (Chen 
and Ghattas 2020).

pSVGD (Chen and Ghattas 2020) aims to address this 
issue by projecting parameters into a low-dimensional 
subspace and conducting the particle-based inference in 
this subspace. This allows inference to take place with a 
much higher particle-to-dimension ratio, which can miti-
gate the posterior collapsing phenomenon from SVGD. 
The specific space selected for projection is a likelihood-
informed subspace (LIS). Components with the greatest 
likelihood-to-prior ratio are identified for inference while 
components with a negligible likelihood-to-prior ratio are 
assumed to be unmodified from the prior and need not be 
inferred directly. In other words, we will focus and work 
in only the subspace where the data can make a significant 
update from prior to posterior. We refer readers to Chen 

(6)𝜔�+1
i

← 𝜔�

i
+ 𝜖

�
�̂�∗(𝜔�

i
),

(7)

�̂�∗(𝜔) =
1

M

M
∑

m=1

[

k(𝜔�

m
,𝜔)∇𝜔�

m
log p(𝜔�

m
∣ xT , yT ) + ∇𝜔�

m
k(𝜔�

m
,𝜔)

]
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and Ghattas (2020) for a detailed derivation and present a 
brief description below.

The LIS is determined by first calculating the 
average (log)-likelihood Hessian −��

[

∇2
�
L
]

 where 
L = log p(xT , yT ∣ �) . −∇2

�
L can be calculated either directly 

via back-propagation of the NN to evaluate the second deriv-
ative or much more inexpensively via the Gauss-Newton 
approximation −∇2

�
L ≈ −(∇�L∇�L

T ) needing only first-
derivative information. Next, we solve the generalized eigen-
decomposition problem:

where �i are the r leading eigenvalues that represent the rela-
tive influence of the likelihood over the prior, �i are the cor-
responding eigenvectors, and Γ−1

0
 is the inverse of the prior 

covariance. Therefore, eigenvalues below a certain threshold 
correspond to components with negligible influence from 
the prior, leaving the prior effectively unchanged. These 
negligible eigenmodes can then be truncated, and the LIS is 
constructed with the surviving eigenvectors corresponding 
to non-negligible eigenvalues. The choice of threshold value 
for truncation is application specific. For lower dimensional, 
mostly linear models, a threshold value O(1) is sufficient. 
For larger, more complex models, a lower threshold value 
may be necessary. The original authors of pSVGD (Chen 
and Ghattas 2020) use a value of 0.01.

With the LIS found, the prior parameters �0 can be 
decomposed into the projected component �r

0
 and the its 

complement �T
0
 (subscript 0 indicates that the decomposition 

is done under the prior distribution). The complement �T
0
 is 

then frozen at the prior projection. The projected component 
of the parameters will be inferred under the low-dimensional 
projected variable � using the same iterative procedure in 
SVGD, where �r = Ψr� . The original full-parameter vari-
able after pSVGD inference can then be reconstructed at 
the end:

Performing Bayesian inference on � instead of � permits a 
much lower-dimensional problem. There is also secondary 

(8)−��

[

∇2
�
L
]

�i = �iΓ
−1
0
�i, i = 1,… , r,

(9)�� = �T

0
+ Ψr��

.

benefit that by truncating to the r components most informed 
by data, the complement components that would otherwise 
be more amenable to fitting to data noise are now regular-
ized, further improving predictive performance.

3  Results

3.1  Ice prediction

The PoliMIce (Gori et al. 2015a) tool kit is utilized for 
generating a large dataset of ice shapes which can subse-
quently be harnessed by the NN model. The icing conditions 
selected are based on the experimental work from Shin and 
Bond (Shin and Bond 1992). They conducted icing exper-
iments in the Icing Research Tunnel (IRT) at the NASA 
Lewis Research Center. Their work studied the repeatability 
of ice shapes on a model wing at a range of temperatures 
varying from 247 to 271K. This work presents the numerical 
predictions of four ice shapes at different temperatures dur-
ing the high-speed conditions for icing validation. The icing 
conditions selected are summarized in Table 1, while the ice 
predictions are presented in Fig. 4. The model used in the 
icing experiments was a straight wing with NACA0012 pro-
file. The ice accretion simulations are consequently assumed 
to be two-dimensional due to the wing model being straight. 
The wing is set at an angle of attack of 4◦ . The duration 
which the wing is exposed to icing conditions last for 420 s. 
The wind tunnel airspeed was approximately M = 0.3 . As 
previously mentioned, a range of different temperatures are 
investigated. The Liquid Water Content (LWC) and Mean 
Volume Diameter (MVD) of the supercooled water drop-
lets is, respectively, 0.55 g/m3 and 20 μm. The numerical 
prediction shown in Fig. 4 are in relatively good agreement 
with the experimental measurements. The ice predictions at 
the lower temperature conditions displayed in Fig. 4a and b 
closely resemble the ice measurements. There are slightly 
greater discrepancies when moving to the higher tempera-
tures as shown in Fig. 4c and d. The numerical predictions 
tend to predict the presence of glaze ice earlier than the 
experiments.

Table 1  Icing conditions based 
on the experimental work at the 
NASA Lewis Icing Research 
Center (Shin and Bond 1992)

Run ID Accretion 
time (s)

Atmosph. 
pressure (Pa)

Freestream 
velocity (m/s)

Outside air 
temperature 
(K)

Liquid water 
content (g/m3)

Mean volume 
diameter (μm)

Rime 1 420 1,01,325 102.82 247.0 0.55 20
Rime 2 420 1,01,325 102.82 262.0 0.55 20
Glaze 1 420 1,01,325 102.82 267.5 0.55 20
Glaze 2 420 1,01,325 102.82 271.0 0.55 20
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Proceeding the icing validation assessment, the sub-
sequent goal of this work was to generate a dataset of ice 
shapes for the NN model. The experimental work from 
Shin and Bond was selected with this in mind. In their 
work they studied the effect of 7 different temperatures 
on the ice shape. Due to the NN model requiring a sig-
nificantly larger dataset, this work increments the tem-
perature by 0.5K to provide 50 samples. Additionally, ice 
shapes at a MVD of 40 μm are simulated to provide 100 
samples in total. The icing conditions used for all the 
samples are summarized in Table 2.
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(a) Rime ice regime 1 at 247.0K.
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(b) Rime ice regime 2 at 262.0K.
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(c) Glaze ice regime 1 at 267.5K.
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(d) Glaze ice regime 2 at 271.0K.

Fig. 4  Comparison of ice predictions with measurements at different temperatures. The ice shape is displayed in non-dimensional form where 
the coordinates, x and y, are normalized by the wing chord length, c 

Table 2  Test matrix to produce sample of rime and glaze ice shapes

Accre-
tion time 
(s)

Atmos-
pheric 
pressure 
(Pa)

Freestream 
velocity(m/s)

Outside 
air tem-
perature 
(K)

Liquid 
water 
content 
(g/m3)

Mean 
volume 
diameter 
(μm)

420 1,01,325 102.82 246 (+0.5)

���������������������→

271
0.55 20, 40
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3.2  Mesh generation

The focus on modeling small-scale vortical structures using 
scale-resolving simulations capabilities in SU2 requires 
three-dimensional grids. An in-house grid generation 
software called uhMesh (Dussin et al. 2009) is utilized to 
automatically generate a three-dimensional mesh from a 
two-dimensional ice shape. This is achieved by extruding 
the ice shape for 1 chord length in the spanwise direction. 
The assumption is that while the ice geometry contains no 
variation in the spanwise direction, the flow does due the 
scale-resolving modeling approach. Simulating a fully three-
dimensional icing dataset of this size would be beyond the 
current hardware capabilities. Additionally, the ice predic-
tion approach based on Myers’ model (Myers 2001) would 
not capture the spanwise variation in the ice shape. To 
capture such three-dimensional roughness in the ice shape 
would require an approach, such as the one suggested by 
Szilder and Lozowski (2018). However this would be highly 
challenging to mesh in order to determine the aerodynamics 
and aeroacoustics of the iced wing.

Figure 5 illustrates the mesh generation for the clean wing 
using this approach. With scale-resolving simulations in 
mind, a boundary layer with a height of approximately 0.5c 
is used to generate a structured region surrounding the wing. 
The boundary layer at the wall is resolved to ensure y+ < 1 
everywhere. The mesh is extruded in the spanwise direction 
for 1 chord length and discretized by 150 elements. The total 
number of elements for each mesh is approximately 16 M 

with it varying by as much as 500k depending on the ice 
shape.

3.3  Turbulent flow simulation and noise prediction 
for different ice shapes

To compare the turbulent flow field and far-field noise fea-
tures of the clean and iced wings, the clean NACA0012 
airfoil as well as a rime- and a glaze-iced airfoils associ-
ated with Rime 1 and Glaze 2 in Table 1 are presented. The 
scale-resolving EDDES-FWH approach outlined in Sect. 2.2 
is used to model the fine-scale turbulent structures induced 
by the ice accretion. With ice detection on rotorcraft in mind, 
the 1c section of the wing is subsequently set to pitch around 
its quarter-chord to represent the cyclic pitching motion of 
a rotor blade in forward flight. While this is a primitive way 
to model a rotor blade in forward flight, it was a require-
ment due to rotorcraft icing simulations requiring fully 
three-dimensional simulations which are computationally 
very costly. The sinusoidal pitching motion of the wing can 
be described by � = 4◦ ± 4◦ and pitching with a frequency 
of 6.0 Hz. The mean angle of attack is consistent with the 
icing experiments presented in Sect. 3.1. A time step of 
Δt = 0.05c∕U∞ = 0.00025 s is used, which results in 666 
time steps within each pitching cycle. The flow statistics and 
acoustics are computed after the 5th pitching cycle, over 10 
pitching cycles.

The instantaneous flow fields at AoA = 4.0◦ on the 
upstroke are visualized by the iso-surfaces of the Q-criterion 

(a) Close-up of the mesh surrounding the wing. (b) Isometric view of the surface mesh.

Fig. 5  Visualization of automated 3D mesh
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colored by non-dimensionalized velocity magnitude, as 
shown in Fig. 6. The effect of leading-edge icing is evident. 
While the clean and rime ice airfoil show mostly attached 
flows over the suction side, detached eddies signifying 
separated flow can clearly be seen in the more severely 
iced (glaze ice) airfoil, where the Q-criterion shows more 
fine-scale, three-dimensional turbulent structures over the 
entire suction side. Note that even though the ice shapes 
are quasi-2D, the resolved turbulent structures by EDDES 
are very much three-dimensional, especially in the glaze ice 
case where the Kelvin–Helmholtz instability is triggered 
immediately past the ice horn and develops quickly into 3D 
turbulence.

The time histories of the lift, drag, and moment coef-
ficients of the rime and glaze ice wings, computed using 
the EDDES-SA simulations are compared in Fig. 7. In the 
case of rime ice, the force and moment coefficients are 

very similar to those of the clean airfoil. Small differences 
between the clean and rime ice only occur at the peaks of the 
values which are associated with the maximum and mini-
mum angle of attack. On the contrary, the glaze ice airfoil 
exhibits significantly deteriorated lift and strongly elevated 
drag, signifying flow separation over a large portion of the 
airfoil suction side. The moment coefficient is also severely 
effected during the glaze ice regime.

This is confirmed by examining the wall shear stress of 
the three cases shown in Fig. 8. Both clean and rime ice 
airfoils show trailing edge separation due to the dynamic 
effect of the upstroke. Surface noise footprints visualized 
by the instantaneous wall pressure fluctuation ( p� = p − p̄ ) 
of the clean, rime, and glaze ice airfoil sections are com-
pared in Fig. 9. The clean and rime ice airfoils exhibit sim-
ilar surface noise footprints. On the other hand, the glaze 
airfoil exhibits a highly irregular noise footprint pattern 

(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Fig. 6  Q-criterion iso-surface for the clean and iced wings colored by non-dimensionalized velocity magnitude, U∕U∞
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with significant spatial frequency content (Fig. 10). One 
may already speculate that the far-field noise signature 
of the glaze ice should be associated with elevated high-
frequency contents. This is confirmed by the far-field noise 
spectra shown in Fig. 11—while the rime ice airfoil shows 
a slight increase of high-frequency noise over the clean 
airfoil, the glaze airfoil has a significantly elevated noise 
level over the entire high-frequency range up to the cut-off. 
Clearly, the more severe the leading-edge ice accretion is, 
the more elevated the high-frequency range of the far-field 
noise tends to be. This can be exploited as a distinguishing 
feature in a machine learning model to build a mapping 
between the far-field noise level and ice shape as well as 
the associated aerodynamic performance of the ice airfoil.

3.4  Machine learning predictions of aerodynamic 
performance under icing conditions

Following Sect. 2.3, we build BNNs to predict aerodynamic 
performance metrics from inputs of acoustic measurements. 
Specifically, the BNN takes input of a compressed principal 

component analysis (PCA) representation of the power spec-
tral density (PSD) of the acoustics time series and predict 
the minimum, mean, and maximum values of the lift, drag, 
and moment coefficients over the duration of the time series 
window. To achieve this, we pre-process the acoustic time 
series in the training dataset by computing the log values 
of PSD for each data signal covering the frequency range 
17–1000 Hz and perform a PCA to find and truncate to only 
the 6 leading components. All PSDs are then projected into 
this lower-dimensional representation. All inputs are then 
standardized using the mean and standard deviation statis-
tics from across all training data simulations. For the output 
variables, we extract from each simulation’s aerodynamic 
time series the minimum, maximum, and mean over the time 
window for CL , CD , and CM , a total of 9 quantities of interest 
(QoIs). Overall, the BNN maps from a 6-dimensional input 
to a 9-dimensional output. The precise architecture is shown 
in Table 3, with one hidden layer of 15 neurons leading to 
a total of 249 model parameters. We purposefully favor a 
small BNN architecture due to the relatively few training 
samples available.

To set up the BNN, the prior p(w) from Eq. (4) is chosen 
to be independent Gaussian wk ∼ N(0, 0.22) , and the likeli-
hood p(yT ∣ xT ,w) is chosen to reflect an additive independ-
ent Gaussian data noise: yk = f (xk;w) + �k, �k ∼ N(0, 0.22) . 
We use 600 particles to perform SVGD and pSVGD for 
our 249-parameter BNN. In order to obtain a robust meas-
ure of predictive performance of the BNN, we perform 
fivefold testing as follows. We divide the overall dataset 
of 93 simulations into fivefolds of 18–19 simulations each. 
Then, 5 BNN models are built where each model is trained 
on 4 of these folds and tested on the remainder fold. This 
allows us to obtain test performance statistics where each 
of the 93 data points gets a chance to play the role of a 
testing point.

Figure 12 presents both the SVGD and pSVGD BNN pre-
dictions, with each panel showing an aggregated result from 
the 5 testing scenarios. Using BNNs, we now have uncer-
tainty information along with predictions. These uncertain-
ties are depicted as error bars (± 1 standard deviation) in the 
plot, which combine both the epistemic uncertainty calcu-
lated via SVGD/pSVGD and the output aleatoric uncertainty 
specified in the likelihood above (i.e., the additive Gauss-
ian data noise �k with �� = 0.2 ). Note that input aleatoric 
uncertainty (i.e., measurement error of the acoustic signal) 
is not considered in this work, and requires further investiga-
tion since they are often not additive independent Gaussian. 
The SVGD and pSVGD results match well overall. pSVGD 
recovers slightly greater uncertainty of around 16% across 
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Fig. 7  Time histories of lift, drag, and moment coefficients of the 
clean, rime, and glaze ice airfoils computing using the EDDES-SA 
simulations
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all predictions compared to SVGD which is amenable to 
underpredicting uncertainty due to particle collapse. The 
reduced dimension from pSVGD is about 80% lower than 
that of SVGD. While pSVGD uses additional approxima-
tion in its eigenvalue truncation, we believe this truncation 
error is outweighed by the benefit from a greater particle-
to-dimension ratio resulting from the dimension reduction, 
leading to an overall more accurate posterior representation 
for pSVGD.

Posterior predictive expectation of the absolute and 
normalized root-mean-square error (RMSE) (i.e., poste-
rior-averaged RMSE) for each QoI by the pSVGD model 
are shown in Table 4, showing good agreement with the 

true target values. However, we draw caution to interpret-
ing these results, since BNNs are not meant to minimize 
error directly (error is not its loss function) but rather to 
accurately capture the uncertainty in the NN as justified 
by the available training data at hand. As such, while it 
is still valuable to understand the error performance from 
these BNNs, one must be careful to not judge these models 
based on error alone.

In general, we also observe rime ice predictions to 
achieve lower error and lower uncertainty than glaze ice 
predictions, which matches our intuition where generally 
more complex aerodynamic flows are caused by the more 
severe glaze icing conditions. These trends are shown in 

(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Fig. 8  Skin friction coefficient, C
F
x

 , for the clean and iced wings
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Fig. 13 where we gather histograms of the prediction errors 
and uncertainty across all testing scenarios. Figure 14 fur-
ther presents the posterior predictive distributions for CD , 
CL , and CM QoIs between a specific rime ice case and a spe-
cific glaze ice case, illustrating an overall good agreement 
with the predictive distributions and the true target values, 
and the greater uncertainty in predicting under glaze than 
rime ice.

(a) Clean.

(b) Rime ice regime. (c) Glaze ice regime.

Fig. 9  Instantaneous pressure fluctuations, p′ , for the clean and iced wings
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Fig. 10  Time history of the pressure fluctuations, p′ , for the clean and 
iced wings

Fig. 11  Far-field sound spectra of the clean NACA0012, rime, and 
glaze ice airfoil sections computed 20c below the center of rotation of 
the pitching airfoil
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4  Conclusion

This work introduces an original methodology for develop-
ing a Bayesian neural network acoustic ice detection system. 
The acoustic signatures generated by different iced wings 
are harnessed to predict their aerodynamic performance. 
An inter-disciplinary methodology is adopted to develop 
the Bayesian neural network acoustic ice detection system. 

Table 3  BNN architecture

Layer Name Type No. of 
neurons

Activation Fcn

1 Input Dense 6 –
2 Hidden Dense 15 Swish
3 Output Dense 9 Linear

Fig. 12  Predicted versus true values for all QoIs, using SVGD (top 
row) and pSVGD (bottom row). The two sets of results overall match 
well with each other. More specifically, pSVGD recovered approxi-
mately 16% more of the Bayesian predictive uncertainty relative to 

its SVGD counterpart that is amenable to underpredicting uncertainty 
due to particle collapse. pSVGD also achieved 80% dimension reduc-
tion of the parameter space compared to SVGD

Table 4  The posterior predictive expectations of the normalized 
and absolute RMSE for the pSVGD model (i.e., posterior-averaged 
RMSE)

Normalized errors are calculated based on transforming the true test 
target values and predictions by the mean and standard deviation 
of the true training target values, which in turn can be interpreted 
roughly as percent error

QoI Normalized error Absolute error

C
D
 min 0.16 0.0044

C
D
 max 0.08 0.0052

C
D
 mean 0.20 0.0037

C
L
 min 0.20 0.0140

C
L
 max 0.08 0.0142

C
L
 mean 0.21 0.0104

C
M

 min 0.14 0.0048
C
M

 max 0.06 0.0058
C
M

 mean 0.11 0.0030
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The PoliMIce toolkit is utilized to predict a test matrix of 
iced airfoils. The aerodynamics and aeroacoustics associ-
ated with the iced airfoils are, respectively, solved in SU2 
using high-fidelity EDDES scale-resolving simulations and 
the FWH-F1A approach. A Bayesian neural network is then 
trained using projected Stein variational gradient descent 
to provide (1) mapping from observed far-field broadband 

noise levels to predictions of aerodynamic performance indi-
cators and (2) uncertainty information reflecting the neu-
ral network’s confidence in its predictions. While the icing 
simulation, aeroacoustic prediction as well as the construc-
tion of Bayesian neural network model all require potentially 
extensive computational resources in the offline phase, the 
prediction of aerodynamic performance indicators based on 
measured far-field noise level can be obtained rapidly in the 
time-critical online phase in-flight.

To the best of our knowledge, this work is the first to 
employ high-fidelity aeroacoustic simulations to develop 
correlations between aerodynamic performance and far-
field noise level of iced airfoil sections via machine learning 
techniques. That being said, it should also be noted that the 
current work as-is only serves as a proof-of-concept study. 
It is clear that the pitching wing considered in this study is 
a highly simplified representation of the complex rotorcraft 
icing problem. Various noise sources such as those from tail 
rotors and engines, as well as rotor–fuselage interaction must 
be taken into account and differentiated in developing an 
ice detection system using the multi-disciplinary framework 
proposed in the current work.

Fig. 13  MSE of the posterior predictive distributions (left) and stand-
ard deviation of the posterior predictive distributions (right) averaged 
over all QoIs. The predicted QoIs are normalized to allow direct com-
parison and averaging

Fig. 14  Comparison of posterior predictive distributions for a test sample of rime ice (top row) and glaze ice (bottom row) for C
D
 (left), C

L
 

(center), and C
M

 (right). Ground truth target values are indicated with triangles
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