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Abstract
In this work, the surrogate model of the collapse load in terms of the structural morphology is established based on the 
radial basis function (RBF) network, and the form-finding optimization of the fabricated single-layer grid shell aiming at 
the improvement of collapse-resistance capacity is realized. To improve the accuracy of the optimal solution, the density 
function is used to determine the sparse region in the design domain and add new sample points in the sparse region. Avoid-
ing that the optimization is trapped in a poor local optimum, the starting point is updated to approach the global optimum. 
Three types of fabricated single-layer grid shells, including cylindrical surface, free-form surface with symmetric supports, 
and free-form surface with asymmetric supports, are selected for form-finding optimization. The results prove the efficiency 
of the optimization algorithm. The proposed optimization method considers the mechanical properties of assemble joints 
and reflects the mechanical characteristics of the actual structure. It can be used for form-finding optimization and shape 
selection in structural design and thus has engineering significance.

Keywords Fabricated single-layer grid shell · Form-finding optimization · Collapse-resistance capacity · Radial basis 
function network · Structural optimization

1 Introduction

The single-layer grid shell structures are commonly used in 
space structures (Schlaich et al. 2009; Lad et al. 2021) due 
to the advantages of reasonable stress, economical cost, con-
struction convenience, and strong adaptability to complex 
and diverse surfaces. As a kind of shell, the single-layer grid 
shell structure is sensitive to an external load and is prone to 
unstable failure (Zeng et al. 2023). To prevent progressive 
collapse from occurring after local damage, it is necessary 

to investigate the collapse performance and mechanism of 
single-layer grid shell structures. Iskhakov and Ribakov 
(2014) found that buckling is unavoidable for shell struc-
tures through experimental and theoretical investigations 
and proposed a method to prevent brittle shell failure by 
using other dominant failure modes that appear before the 
buckling. Bruno et al. (2016) proposed the equivalent geo-
metric nodal imperfections by introducing local metrics of 
the grid shell geometry for each node and analyzed the rela-
tionship between the apex of the initial imperfect geometry 
and the apex of the deformed shape at collapse. Venuti and 
Bruno (2018) investigated the grid shell sensitivity to the 
flexural stiffness of the boundary arch and the shear stiffness 
of the grid shell with parametric analysis. For a single-layer 
grid shell structure with assemble joints, the joint stiffness 
significantly affects the mechanical behavior of grid shell 
structures (Fathelbab 1987). Thus, it is necessary to con-
sider the effect of joint stiffness when designing or study-
ing fabricated single-layer grid shell structures. Murakami 
(1992) simulated the performance of assemble joints by set-
ting spring elements at both ends of the beam elements and 
studied the effect of the mechanical properties of joints on 
the elastic buckling properties of grid shells under gravity 
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loads. Kato et al. (1998) proposed an analysis model with 
a nonlinear elastoplastic hinge to simulate the mechanical 
properties of joints. The initial imperfection of the struc-
ture, the secondary effect of members, and the mechani-
cal behavior of joints can be considered when studying the 
stability-bearing capacity of a single-layer grid shell. Zhang 
et al. (2022) simulated the mechanical behavior of assem-
ble joints with discrete beam elements and researched the 
collapse-resistance behavior and collapse failure mode of 
the fabricated single-layer grid shell.

By studying the mechanical properties of a fabricated 
single-layer grid shell, the mechanical characteristics and 
failure modes of the structure can be recognized, which can 
be used to guide structural design and avoid structural dam-
age. When designing a single-layer grid shell structure, some 
form-finding optimization methods and topology optimiza-
tion methods can be used to improve structural performance. 
A series of researches on the optimization methods of the 
single-layer grid shell structure with various targets, such 
as lightweight structure, structural stiffness improvement, 
and structural strength improvement have been proposed. 
Tomei et al. (2022) proposed shape grammar for the topol-
ogy optimization of grid shells, which can minimize the 
structural weight. Richardson et al. (2013) demonstrated 
a novel two-phase approach to the preliminary structural 
design of grid shell structures by setting the material mini-
mization and improved structural performance as optimiza-
tion objectives. Rombouts et al. (2019) optimized the shape 
of strained grid shells by minimizing the so-called end-com-
pliance, which is defined as the inner product of the exter-
nal load vector and the resulting displacement vector. Jiang 
et al. (2018) conducted form-finding for grid shells based 
on the potential energy method and the ground structure 
method. To decrease the structural imperfection sensitivity 
of grid shell structures, Liu et al. (2020) reserved a specific 
ratio of the bending strain energy to the total strain energy 
when conducting shape optimization by minimizing the total 
strain energy. Huang et al. (2022) proposed a bending-active 
weaving structure that consists of continuous elastic rods 
and standard joints and conducted lattice optimization to 
reduce the rod curvature.

In general, the algorithms for solving optimization prob-
lems include derivative-based optimization methods and 
derivative-free optimization methods. For derivative-based 
optimization methods, the differential information should 
be provided, or the differential should be approximated 
through the finite difference method. Compared with deriv-
ative-based optimization methods, derivative-free optimi-
zation methods are more open and have more application 
scenarios (Andrew et al. 2009). When optimizing practi-
cal engineering structures, the more detailed information 
reflected by the structural model, the better solution will be 
obtained by the optimizer. For fabricated single-layer grid 

shells, the connection behavior of the assemble joints will 
significantly influence the collapse behavior (Zhang et al. 
2022). Therefore, the connection behavior should be consid-
ered during the optimization process. Besides, the relation-
ship between the objective function (the collapse-resistance 
capacity of the structure) and the design variables (the shape 
of the structure) is provided only in an implicit form. To 
solve this optimization problem, the sequential approximate 
optimization with the radial basis function (RBF) network 
(Nakayama et al. 2002; Kitayama et al. 2011, 2013) is used 
in this paper. The surrogate function of the collapse load in 
terms of the surface shape is established. The line model of 
the structure is established and the coordinates of joints are 
calculated by Grasshopper. In Zhang et al. (2022), both the 
mechanical behavior and physical dimension of the assem-
ble joints were considered with the elementary unit, and 
the refined finite element analysis model of the fabricated 
single-layer grid structure was established. In this paper, a 
form-finding optimization approach for the fabricated single-
layer grid shell structure with the aim of improving collapse-
resistance capacity is proposed. The density function is used 
to determine the sparse region in the design domain and 
improve the accuracy of the RBF network. The starting point 
is updated to avoid the optimizer being trapped in a poor 
local optimum solution and approach the global optimum 
solution. Besides, optimization is conducted on three types 
of fabricated single-layer grid shells to prove the efficiency 
of the proposed optimization algorithm. The proposed opti-
mization method can be used for form-finding optimization 
and shape selection in structural design and thus has engi-
neering significance.

2  Establishment of optimization method

2.1  Establishment of optimization model

The surface morphology of a free-form single-layer grid 
shell can be determined by NURBS (non-uniform rational 
B-spline) curves. Based on the control points, the NURBS 
curve can be built (Fig. 1a and b). The governing equation 
of the curve is as follows:

where P(t) is the function expressing a curve, qi is the coor-
dinate of the control point, and Fi(t) is the weight function 
satisfying 

∑n

i=0
Fi(t) = 1.

The NURBS curves are selected as the section curves 
and the orbital curve, respectively. The NURBS surface is 
produced by the sweeping method (Fig. 1c). The governing 
equation of the surface can be expressed as follows:

(1)P(t) =

n∑
i=0

Fi(t) qi, t ∈ (a, b),
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where P(u, v) is the function expressing a surface, qij is the 
coordinate of the control point, and Fi(u) and Fj(v) are the 
weight functions satisfying 

∑n

i=0
Fi(u) = 1,

∑n

j=0
Fj(v) = 1.

After the shape of the structure is determined by con-
trol points, the grid can be divided with the mapping 
method (Winslow et al. 2008). For the specified x and 
y coordinates, the z-coordinates of the joints can be cal-
culated by (2). Figure 1 shows the determination pro-
cess of structural morphology and joint coordinates of 
a fabricated free-form single-layer grid shell. With the 
joint coordinates, the refined finite element analysis 
model can be established with elementary units, which 
include the connection regions, discrete beam elements, 
and tube (Fig. 1e) (Zhang et al. 2022). The connection 
region is simulated by a rigid bar, which is used to elimi-
nate the influence of joint size. Discrete beam elements 
are selected to simulate the mechanical properties of 
assemble joints between the connection region and tube. 
The properties of discrete beam elements can be adjusted 
based on the assemble joints. The tube is modeled by 
Hughes-Liu beam elements. Finally, the refined finite 
element analysis model can be established by connect-
ing these joints with the elementary units. The collapse 
performance of the structure can be computed using the 
analysis model. And the load when the structural com-
ponents initiate failure has been identified as the critical 
collapse load.

(2)P(u, v) =

n∑
i=0

n∑
j=0

Fi(u)Fj(v) qij, u ∈ (a, b), v ∈ (a, b),
2.2  Basic equations of optimization model

To improve the collapse-resistance capacity by changing the 
structural morphology, the shape control points are taken as 
the design variable and defined as � ∈ ℝn , where � is the 
coordinates of shape control points. In Sect. 3.1 we consider 
the case with n = 1 , while in Sects. 3.2 and 3.3 we set n to 
the number of independent control points.

Taking the coordinates of the control points as the inde-
pendent design variables and structural collapse load as the 
objective function, the mapping from the structural morphol-
ogy onto the collapse load is established with the RBF as

where hl ∶ ℝn
→ ℝ is the lth basis function, m is the number 

of sample points, and �l ∈ ℝ is the weight parameter of the 
lth basis function.

When the Gaussian kernel is used, the basis function can 
be written as follows:

where rl is the radius of the lth basis function, and �l is the 
coordinate of shape control points of the lth sample point.

The variation range of the coordinates of a control point 
is defined as the constraint of the optimization, which is 
�L ≤ � ≤ �U . The shape of the fabricated single-layer grid 

(3)f (�) =

m∑
l=1

�lhl(�)

(4)hl(�) = exp

(
−

(
� − �l

)T(
� − �l

)

r2
l

)
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Fig. 1  Establishment of structural morphology and finite element 
analysis model. a NURBS curve generation based on control points 
b Generation of the section curves and the orbital curve c Genera-

tion of NURBS surface and its control points d Grid generation with 
the mapping method e Joint distribution of single-layer grid shell and 
composition of elementary units
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shell with the optimal collapse-resistance capacity can be 
determined by solving the maximization problem of f under 
this constraint.

2.3  Radius of radial basis function

The radius of the Gauss kernel has a large influence on 
the solution of the optimization problem. When the radius 
value is small, the Gauss kernel value becomes close to zero 
immediately, even at a point near the corresponding sample 
point. In contrast, the Gauss kernel has fat tails when the 
radius has a large value. The radius of the basis function can 
be determined as follows (Nakayama et al. 2002; Kitayama 
et al. 2011):

where dmax represents the maximum distance between the 
sampling points. Supposing that all the design variables are 
equally scaled, the maximum distance can be calculated as 
follows:

where Δd is the regular interval between sample points, 
and K is the number of sample points in one direction. For 
ease of understanding, the relationship among the sampling 
points with two design variables is set as an example, as 
shown in Fig. 2a.

(5)r1 = r2 = ⋯ = rm =
dmax

n
√
nm

(6)dmax =
√
n(K − 1)Δd

The relationship between design variables n and the num-
ber of sample points m can be expressed as follows:

With (6) and (7), (5) can be expressed as follows:

For a good approximation, it is required that r∕Δd → 0 at 
K → ∞ . Besides, the sparseness and density of the sampling 
points are considered. The radius of the lth basis function can 
be calculated individually as follows (Kitayama et al. 2011):

where dl,max in the numerator is the maximum distance 
among these sample points. The denominator of the equa-
tion is related to the number of design variables n and the 
number of sample points m. With different design variables 
n, the relationship between the value of n

√
m − 1 and sam-

ple points number m is given in Fig. 2b. When the number 
of design variables is n = 1, the value of n

√
m − 1 increases 

linearly with the increase of sample points. This will lead to 
the radius of the lth basis function being too small. To avoid 
the situation above occurring, the calculation formula for 
the radius of the lth basis function is modified as follows:

(7)m = Kn

(8)
r

Δd
= n

n−2

2n

(
1 −

1

K

)

(9)rl =
dl,max√
n

n
√
m − 1

(b)(a)

Fig. 2  a Distribution of sampling points with two design variables. b Relationship between the value of n

√
m − 1 and the number of sample 

points with different number of design variables
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2.4  Solution of weights of surrogate model

To solve the optimization problem, the first step is to estab-
lish the surrogate model based on RBF. In other word, 
determination of weight values ωl (l = 1, …, m) is an 
important step to solve the problem. Minimization of the 
difference value E between the true value and the predicted 
value can be formulated as:

where we have

In  th is  express ion ,  � =
[
�1,�2,…�m

]T  and 
yl (l = 1,… ,m) are the true values of the objective function 
at the sample points, and λ is a small positive value (e.g., 
� = 1 × 10−3 ). From the optimality condition of problem (11),

optimal ω can be obtained as follows:

where � =

⎡⎢⎢⎣

h1
�
�1

�
⋯ hm

�
�1

�
⋮ ⋱ ⋮

h1
�
�m

�
⋯ hm

�
�m

�
⎤⎥⎥⎦
, � is the identity matrix, 

and � =
[
y1, y2,… ym

]T
.

In (14), H is related to the coordinate of control points, 
which reflects the structural morphology. � is the vector of 
collapse loads of the structure. Therefore, by adding new 
sample points, the weight values can be constantly adjusted 
until the function can reflect the actual relationship between 
the collapse load and the structural shape. Then the struc-
tural morphology, which has the optimal collapse-resistance 
capacity, can be determined by finding the largest value of 
f (�) . The initial sample points are selected by the Latin 
hypercube sampling (LHS) (Loh 1996). The number of ini-
tial sample points is related to the number of design vari-
ables, which can be calculated as follows:

(10)

⎧
⎪⎨⎪⎩

rl =
dl,max√
m−1

if n = 1

rl =
dl,max√
n

n
√
m−1

if n ≥ 2

(11)Min: E(�)

(12)
E(�) =

m�
l=1

�
yl −

m�
j=1

�jhj
�
�l

��2

+

m�
l=1

��
2
l

= ‖� −��‖2 + ��T�

= �T(�T� + ��)� − 2�T�� + �T�

(13)∇E(�) = 0

(14)� =
(
�T� + λ�

)−1
�T�

(15)m =
(n + 1)(n + 2)

2

2.5  Density function to determine sparse region 
(Kitayama et al. 2011)

In Sect. 2.4, the method to solve the optimization problem 
has been given. However, there are still two problems. One 
is that the optimal collapse load may possibly have a big 
difference with finite element analysis results, indicating 
that the output results of the RBF network are not accurate. 
The other is that the optimizer may possibly be trapped in 
a poor local optimal solution and prevented from finding a 
better solution. Therefore, the density function (Kitayama 
et al. 2013) is introduced to determine the sparse region and 
add new sample points located in the sparse region. With 
the addition of new sample points, the collapse load output 
by the RBF network becomes closer to the finite element 
analysis result. Besides, to avoid the optimizer output being 
trapped at a poor local optimum, each initial sample point 
is used as the starting point to find a structure with better 
collapse-resistance capacity. Moreover, the starting point is 
updated by the previous optimal result to improve the accu-
racy of the surrogate mode. The optimizer is looped until 
the collapse-resistance value of the output solution can not 
be further improved.

The density function of the sample points is defined as 
follows (Kitayama et al. 2013):

The sparse region in the design variable space can be 
determined by minimizing D(�) , and the points in the sparse 
region can be added as new sample points. The weight vec-
tor �D of the density function can be calculated as follows:

the vector �D is prepared at the sampling points, 
�D = (1, 1,… , 1)T ∈ ℝm.

So far, the form-finding for grid shell structures aiming 
at the improvement of collapse-resistance capacity can be 
realized. The optimization process is shown in Fig. 3. The 
process can be divided into two steps. The first step is the 
establishment of the surrogate model. The surface con-
struction, grid division, and joint coordinates calculation 
of a grid shell are implemented with Grasshopper. The 
mechanical properties of the assemble joints are simulated 
by discrete beam elements, and the physical dimensions 
of the assemble joints are also considered by rigid bars. 
With the refined finite element analysis model, the col-
lapse load of the structure can be calculated. The surrogate 
function of the collapse load in terms of the structural 
morphology is built using the RBF network. The optimum 
shape of the structure can be obtained by solving the maxi-
mization problem of the surrogate function. In the ith loop 

(16)D(�) =

m∑
l=1

�
D
l
hl(�)

(17)�D = (HTH + �I)−1HTyD
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o f  t h e  o p t i m i z e r ,  a n  o p t i m i z a t i o n  r e s u l t (
fi,X

(1)

i
,X

(2)

i
,… ,X

(n)

i

)
 is obtained, where X(1)

i
,X

(2)

i
,… ,X

(n)

i
 

are the z-coordinates of control points calculated by fmin-
con function in Matlab and fi is the collapse load of the 
optimal structure calculated by FEM. The optimization 
result is added as a new sample point. To ensure that the 
optimization result is accurate, the density function is 
introduced to determine the sparse region and add new 
sample points. The relationship between the number of 
new sample points madd and the number of design variables 

n can be expressed as madd = ⌈n∕2⌉ . Looping the optimiza-
tion program until the optimal solutions tend to converge, 
and the collapse load output by the optimizer is close to 
the calculated value of the finite element analysis model. 
At that moment, an accurate surrogate model has been 
e s t a b l i s h e d ,  a n d  a n  o p t i m a l  r e s u l t (
fstep1,X

(1)

step1
,X

(2)

step1
,… ,X

(n)

step1

)
 has also been obtained.

To prevent the optimization result from being trapped in 
a poor local optimum, the second step is used to approach 
the global optimum. Each of the initial sample points that 

Fig. 3  Optimization flow chart
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are used at the beginning of the optimization program is 
adopted as the star ting point. Several outputs 
Y
j
var =

{
y
(1)

j
,y
(2)

j
,… ,y

(mini)
j

}
 can be obtained by restarting the 

optimizer, where mini is the number of initial sample points. 
It is determined whether the maximum function value 
among these outputs is larger than the optimal value in the 
previous loop max

{
Y
j
var

}
> fcurrent , where fcurrent = fstep1 for 

the first loop of step 2, and fcurrent = max
{
Y
j−1
var

}
 for the jth 

loop of step 2 (j ≥ 2) . If there is a point whose function value 
is larger than the previous objective value, it will be used as 
a new sample point and the starting point. Besides, the accu-
racy of the surrogate model is also judged with the same 
termination criteria as in step 1. Looping the optimizer until 
max

{
Y
j
var

}
≤ fcurrent , the structure with better collapse-

resistance capacity is obtained.

3  Numerical experiments

To further illustrate the optimization procedure, form-find-
ing design is conducted on three types of fabricated single-
layer grid shell structures with the proposed shape optimiza-
tion algorithm.

3.1  Example 1: optimization of rise‑span ratio 
of fabricated cylindrical grid shell

For the classical cylindrical grid shell, the rise-span ratio has 
a significant influence on the collapse-resistance behavior 
of the structure. To investigate the optimal rise-span ratio, a 
cylindrical grid shell, 24 m × 36 m with a grid size of 2 m, is 
designed. For the boundary condition, fixed hinge supports 
are arranged longitudinally along both sides of the cylin-
drical grid shell. According to the positions, three types of 
square steel tubes are selected. The material of the tube is 
Q345. Double-ring joints are adopted as connection joints 
(Zhang et al. 2021). The dimensions of tubes and joints 
are given in Table 1. Uniform vertical loads are applied on 
the joints of the structure. Taking the rise-span ratio as the 
design variable, the collapse-resistance capacity of the fab-
ricated cylindrical grid shell is optimized.

Design variable: rise-span ratio X ∈ ℝ

To find the value of the rise-span ratio X when the struc-
ture has the maximum collapse-resistance capacity, the func-
tion between the rise-span ratio X and the structural collapse 
load is established with the RBF network.

Max f (X) =
∑m

i=1
�ihi(X)

Constraint condition: 0 ≤ X ≤ 0.5.
The starting point of optimization: X = 0

During the optimization procedure, the relation curves 
between the structural collapse load and the rise-span ratio 
are shown in Fig. 4. The initial sample points are selected 
using the LHS. With the initial sample points, the surro-
gate function in Fig. 4a is constructed, and its maximum 
point (red point in Fig. 4a) is obtained by the interior-point 
method. New sample points can be added by minimizing 
the density function. With the increase in the number of 
sample points, the surrogate function can reflect the actual 
relationship between the collapse load and the rise-span ratio 
with increased accuracy, and the optimal solutions tend to 
converge. The optimal rise-span ratio is 0.257, and the col-
lapse load of the structure is about 43 kN.

The fabricated cylindrical grid shell with optimal col-
lapse-resistance capacity is shown in Fig. 5a. The solution 
obtained by the optimizer changes with the increase in the 
number of sample points (Fig. 5b). When the number of 
sample points is small, the optimal solution changes drasti-
cally with the increase of sample points. When the number 
of sample points m is larger than 13 (Fig. 5b, dotted line), 
the optimal solutions tend to converge to a certain value. 
Figure 5c gives the collapse loads obtained by the surro-
gate model (red curve) and calculated by the finite element 
analysis model (black curve). After the number of sample 
points is larger than 13 (Fig. 5c, dotted line), the predicted 
value of the surrogate model is close to the simulation value. 
Therefore, for this optimization problem, the number of sam-
ple points should not be less than 13 to output a reliable 
solution.

3.2  Example 2: shape optimization of fabricated 
free‑form single‑layer grid shell with symmetric 
supports

The design region considered in this section is a rectangu-
lar area of 16 m × 24 m. The boundary conditions are the 
fixed hinge supports arranged at the four corners of the 
design region. The structural morphology is determined by 
five NURBS curves and governed by twelve control points. 

Table 1  Dimensions of tubes 
and joints for fabricated 
cylindrical grid shell

Transverse tube 
(mm × mm × mm)

Longitudinal tube 
(mm × mm × mm)

Diagonal tube 
(mm × mm × mm)

Joint specification 
(mm)

240 × 120 × 8 160 × 80 × 6 130 × 65 × 5 d = 32, h = 110
T = 240, R = 320
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The locations of supports and control points are shown in 
Fig. 6a. The grid size is about 2 m. Q345 is adopted for 
the tubes, and double-ring joints are used to connect the 
tubes. The dimensions of the tubes and joints are shown in 

Table 2. Uniform vertical loads are applied on the joints of 
the structure.

The optimization problem can be expressed as follows:

Fig. 4  Surrogate models of col-
lapse load in terms of rise-span 
ratio for the fabricated cylindri-
cal grid shell. a Number of sam-
ple points m = 3 b Number of 
sample points m = 5 c Number 
of sample points m = 15 d Num-
ber of sample points m = 25
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rise-span ratio and collapse load with the number of sample points 

m c Changing curves of collapse loads output by the optimizer and 
calculated by finite element analysis model
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Des ign  va r i ab le s :  X(1),X(2),… ,X(12) ∈ ℝwhere 
X(1),X(2),… ,X(12) are the z-coordinates of shape control 
points.

The variation range of the z-coordinate of the control 
points is no larger than 8 m, which is 0 ≤ X(j) ≤ 8

The starting point of the optimization is a planar shape: 
X(j) = 0 (j = 1,… , 12).

The structural morphology of the fabricated free-form 
single-layer grid shell obtained by the proposed algorithm is 
shown in Fig. 6b. The collapse load of the optimal structure 
is 37.36 kN. Table 3 gives the shape control points of the 
optimal structure. The z-coordinates of control points 1, 2, 
11, and 12 are all between 4.72 m and 4.83 m, the z-coordi-
nates of control points 3, 6, 7, and 10 are all between 4.52 m 

and 4.58 m, and the z-coordinates of control points 4, 5, 8, 
and 9 are all between 7.72 m and 7.82 m. The points with 
similar z-coordinates are located in the symmetric position 
of the structure (Fig. 6a). Thus, the final optimal structure is 
approximately symmetric. By averaging the z-coordinates of 
the control points located at the symmetric position, a sym-
metric structure can be obtained. The collapse load of the 
symmetric structure is 45.24 kN, which increases by about 
20% compared with the asymmetric structure. The reason 
is that the slight difference among the control points at the 
symmetric positions leads to geometric imperfection, which 
weakens the collapse-resistance capacity of the structure.

As mentioned above, the final optimal structure is approx-
imately symmetric. Thus, the structural symmetry is set as 
the constraint condition of the optimization. As shown in 
Fig. 7a, the control points located at symmetric positions 
(same color) have the same z-coordinates. With this con-
straint, the number of design variables changes from twelve 
to three.
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Fig. 6  Fabricated free-form single-layer grid shell. a Distribution of supports and control points b Structure with optimal collapse-resistance 
capacity

Table 2  Dimensions of tubes and joints for fabricated free-form sin-
gle-layer grid shell

Tube dimension (mm × mm × mm) Joint specification (mm)

240 × 120 × 8 d = 32, h = 110, T = 240, R = 320

Table 3  Coordinate of control points for optimal structure

Point number X (m) Y (m) Z (m) Point number X (m) Y (m) Z (m)

1   5.33 0 4.79 7   0.00 16 4.54
2 10.66 0 4.72 8   5.33 16 7.79
3   0.00 8 4.52 9 10.66 16 7.72
4   5.33 8 7.82 10 16.00 16 4.58
5 10.66 8 7.81 11   5.33 24 4.83
6 16.00 8 4.58 12 10.66 24 4.80
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Design variables: X(1),X(2),X(3) ∈ ℝwhere X(1),X(2),X(3) 
are the z-coordinates of shape control points that can change 
independently.

The surface morphology of the fabricated free-form sin-
gle-layer grid shell obtained by the proposed algorithm is 
shown in Fig. 7b. The coordinates of shape control points 
numbered 1, 2, and 3 are 4.54 m, 4.70 m, and 7.79 m, respec-
tively. The collapse load of the optimal structure is 46.18 kN. 
The optimization results with three design variables have 
a similar structural morphology compared with the results 
that set twelve control points as independent design vari-
ables. The collapse loads of the optimal structures obtained 
by these two methods are also similar after the optimal struc-
ture governed by twelve control points is adjusted slightly. 

However, when the number of design variables is three, 
the number of sample points required to obtain the optimal 
structure is greatly reduced compared to the optimization 
with twelve design variables. When there are three design 
variables, the approximate global optimum solution can be 
obtained only by step 1 in Fig. 3. After fifty-six iterations of 
step 1, the final results can be obtained. When the number of 
design variables is twelve, the optimizer output is trapped in 
a local optimum after thirty-four iterations of step 1. Restart-
ing the optimizer with different starting points to approach 
the global optimum is necessary, and the final results are 
obtained after step 2 is looped four times. Therefore, some 
constraints can greatly improve the optimization efficiency 
of the symmetric structure.

NURBS 
curve 2

Section 
curves

NURBS 
curve 3

NURBS  
curve 4

NURBS 
curve 5

Supports

NURBS curve 1
(Orbital curve)

(a)

x

y

1 2 3

Structure at the starting
point of optimization

The structure after 
optimization

(b)

(0,0,0)
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3.3  Example 3. Shape optimization of fabricated 
free‑form single‑layer grid shell 
with asymmetric supports

As shown in Fig. 8, a fabricated free-form single-layer grid 
shell with asymmetric support is selected for shape optimi-
zation. The surface is generated by translating the generatrix 
along the directrix (Fig. 8a). The directrix is generated by 
the control points numbered 1 to 4, and the generatrix is 
generated by the control points numbered 4 to 7. The span 
of the structure is 16 m in the x direction and 24 m in the y 
direction. The boundary condition is fixed hinge supports 
surrounding the structure (Fig. 8b). Square section tubes 
and double-ring joints are selected. The dimensions of tubes 
and joints are given in Table 4. Uniform vertical loads are 
applied on the joints of the structure.

The optimization problem can be expressed as follows:

Des ign  va r i ab l e s :  X(1),X(2),… ,X(7) ∈ ℝwhere 
X(1),X(2),… ,X(7) are the z-coordinates of shape control 
points.

Constraint condition: To make the optimal structure have 
a shape like a strip, the constraints are set as follows: For 
the control points at the end points of the generatrix and 
directrix, the change of the z-coordinate is restricted as 
−4m ≤ X(j) ≤ 4m (j = 1, 4, 7). The variation range of the 
remaining control points is restricted as 0 m ≤ X(j) ≤ 8 m

(j = 2, 3, 5, 6), and the z-coordinates of adjacent control 
points have opposite signs.

The starting point of the optimization is a planar shape: 
X(j) = 0 (j = 1,… , 7).

The coordinates of shape control points in the different 
stages during the optimization process are given in Table 5. 
With the initial sample points, the collapse load of the 
obtained structure shown in Fig. 9 is 69.60 kN, which has 
a large deviation from the finite element analysis results of 
60.83 kN (Fig. 9a). After the 20 iterations, the objective 
value tends to converge to a certain value. The collapse load 
of the obtained structure at the twenty iterations is 62.07 
kN and approximately equals the value calculated by the 
finite element analysis model, which is 61.93 kN (Fig. 9b). 

Table 4  Dimensions of tubes and joints for fabricated free-form sin-
gle-layer grid shell with asymmetric supports

Tube dimension (mm × mm × mm) Joint specification (mm)

150 × 75 × 5 d = 18, h = 45, T = 160, R = 200

Table 5  Coordinates of shape 
control points in the different 
stages during the optimization 
process

Optimization with initial sample points Solution after twenty itera-
tions

Final solution

Control point X (m) Y (m) Z (m) Control point Z (m) Control point Z (m)

1   0.00 24 − 2.08 1 − 1.35 1 − 0.87
2   0.00 16    6.79 2    7.25 2    6.01
3   0.00 8 − 4.90 3 − 5.59 3 − 6.37
4   0.00 0    3.32 4    2.04 4    3.53
5   5.33 0    7.50 5    6.95 5    7.60
6 10.66 0 − 7.16 6 − 5.87 6 − 7.83
7 16.00 0    3.29 7    2.74 7    2.99

Structure at the starting 
point of optimization

The structure after 
optimization

The structure after 
optimization

Structure at the starting 
point of optimization

The structure after 
optimization

Structure at the starting 
point of optimization

(a) (b) (c)

Fig. 9  Morphology of the optimal structure in the different stages during the optimization process. a Morphology of the optimal structure with 
initial sample points b Morphology of the optimal structure after the optimizer run twenty loops c Final optimal structure
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The collapse-resistance capacity can not be further improved 
because the optimizer is trapped in a local optimum. The 
optimizer is restarted by using each initial sample point as 
the starting point. It is found that the maximum function 
value output by the optimizer is 66.76 kN, which is larger 
than the previously obtained value. Thus, the optimal output 
is added as a new sample point. With the z-coordinates of 
the control points as the starting point, the accuracy of the 
surrogate model is verified and improved. Loop step 2 of the 
optimizer until the collapse-resistance value of the output 
solution can not be further improved. The final solution is 
shown in Fig. 9c, and the collapse load of this structure is 
68.24 kN.

4  Conclusions

This article proposes a novel form-finding method with 
sequential approximate optimization to improve the col-
lapse-resistance capacity of fabricated single-layer grid 
shells. The establishment of line models, the generation of 
grids, and the calculation of coordinates of joints are realized 
by Grasshopper. The elementary unit is established, which 
consists of connection regions, discrete beam elements, 
and a tube. The physical dimension of the assemble joint is 
considered with rigid bars, the discrete beam elements are 
used to simulate the mechanical behavior of assemble joints, 
and the tube is established with beam elements. With the 
elementary unit, the refined finite element analysis model 
is established. The surrogate model of the collapse load in 
terms of the structural morphology is established with the 
RBF network. Form-finding aiming at improving collapse-
resistance capacity is realized by solving the maximization 
problem of the surrogate model. The method is practical for 
shape optimization and selection during structural design. 
The following conclusion is mainly obtained.

(1) The surrogate model of the collapse load in terms of 
the structural morphology is established with the RBF 
network, and form-finding aiming to improve collapse-
resistance capacity is realized. The refined finite ele-
ment analysis model considering both the mechanical 
behavior and physical dimension of the assemble joints 
is used in the optimization. The refined model accu-
rately reflects the actual structural response (Zhang 
et al. 2022) and ensures that the optimal solution has 
strong practicality.

(2) The density function is introduced to judge the sparse 
region and select new sample points located in the 
sparse region (Kitayama et al. 2011). By adding new 
sample points, the output result keeps approaching to 
the finite element result. Besides, to avoid the optimizer 
output being trapped at a poor local optimum, each ini-

tial sample point is used as the starting point to find a 
structure with enhanced collapse-resistance capacity. 
Moreover, the starting point is updated by the previous 
optimal result to improve the accuracy of the surrogate 
mode. The optimizer is looped until the collapse-resist-
ance value of the output solution can not be further 
improved.

(3) The optimization process has visually been presented 
by solving the rise-span ratio optimization problem. 
When the number of sample points is small, the opti-
mal solution output by the optimizer changes drasti-
cally with the increase of the number of sample points. 
When the number of sample points is larger than 13, 
the obtained solution tends to converge. Besides, the 
collapse loads obtained by the surrogate model and cal-
culated by the finite element analysis model are similar. 
The example proves the reliability of the termination 
criteria.

(4) Shape optimization has been carried out on the fabri-
cated free-form single-layer grid shells with symmetric 
and asymmetric supports. For the one with the sym-
metric supports, the optimization results with three 
design variables considering symmetry in the structural 
morphology have a similar structural morphology com-
pared with the results that set twelve control points as 
independent design variables. However, the number of 
sample points required to obtain the optimal structure 
is greatly reduced if the symmetry is set as a constraint 
condition. Besides, with the increase in the number of 
design variables, it is difficult to find the global optimal 
solution only by generating sample points using the 
density function. It is necessary to update the starting 
point to approach the global optimal solution.
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