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Abstract
Most manufacturing processes are inevitably characterized by process tolerances that ultimately affect the way a component 
behaves and complies with the design requirements. These uncertainties determine the real performance of a structure, with 
their impact growing with increasing deviations from the nominal values. This work introduces a simple approach, applicable 
to both static and dynamic cases, to conduct robust structural topology optimization in presence of manufacturing uncertain-
ties. This approach, based on the level set method, makes use of a computationally efficient boundary-perturbation technique 
to describe over- and under-etching errors. Compared to the existing methods, it does not require a frequent re-initialization of 
the level set function, nor does it require a mapping between the etched structures and the nominal one. Moreover, compared 
to the standard case with uniform uncertainty, the technique presented in this work allows dealing with arbitrary spatially 
varying errors without increasing the computational cost.

Keywords  Topology optimization · Level-set · Manufacturing errors · Robust optimization

1  Introduction

While most topology optimization techniques deal with 
deterministic geometries, real structures are usually charac-
terized by a number of uncertainties. These can be caused 
by, e.g., material properties, loading and boundary con-
ditions, manufacturing errors, and others. In cases where 
uncertainties are likely to arise, a structure optimized using 
a deterministic topology optimization approach (Bendsoe 
and Sigmund 2003) will generally lead to sub-optimal per-
formance or, at worst, failure. The aim of Robust Topology 
Optimization (RTO, Beyer and Sendhoff (2007)) is to opti-
mize the required performance measure while minimizing 
its variance due to external uncertainties that might affect 
the structure. Several approaches exist for robust topology 
optimization. These methods are usually classified into 

non-probabilistic and probabilistic, based on how they rep-
resent and manage uncertainties (Beyer and Sendhoff 2007).

Replacing the stochastic quantities with their average 
values (Asadpoure et al. 2011) is arguably the simplest and 
most straightforward probabilistic approach to RTO. On 
the other hand, the most complete probabilistic approach 
would be to take the higher-order statistics into account. For 
instance, Asadpoure et al. (2011) developed a probabilistic 
method, applied to truss structures, to deal with Gaussian 
uncertainties that affect the stiffness matrix, e.g., material 
properties. The aim is to exploit the higher-order statistics to 
obtain a layout that is less sensitive to the considered uncer-
tainty. As an alternative, the Reliability-Based Topology 
Optimization (RBTO) (Kim and Kwak 1996; Kharmanda 
et al. 2004; Allen and Maute 2005) aims at optimizing a 
given performance, while including in the constraint the 
effect of the uncertainty to satisfy a reliability criterion with 
a prescribed confidence level. A much different approach 
is the Risk-Averse Topology Optimization (RATO) (Conti 
et al. 2011; Martínez-Frutos et al. 2018; Martínez-Frutos 
and Ortigosa 2021), which aims at minimizing a risk meas-
ure that somehow quantifies the loss in performances due 
to the uncertainty. However, in presence of non-Gaussian 
uncertainties, or when dealing with manufacturing uncer-
tainties, a probabilistic approach will result in too complex 
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of an analytical formulation to be of practical use for most 
non-trivial problems.

A possible alternative is to resort to a Monte Carlo 
method, where a sufficiently high number of realizations is 
simulated at each step to approximate the statistics (Rubin-
stein and Kroese 2016), thus trading off a higher simulation 
cost with lower analytical complexity. In the field of topol-
ogy optimization, this has been used by Schevenels et al. 
(2011) to optimize structures in the presence of Gaussian 
spatially varying manufacturing errors. However, due to 
the computational complexity involved, it quickly becomes 
prohibitive for problems characterized by a high number of 
design variables.

Another approach is to arbitrarily choose a finite number 
of cases that are reasonably believed to be representative 
of the real behavior of the structure. This allows approxi-
mating the influence of several uncertainties by assigning 
a probability to each possible case. An example of this is 
the multi-load approach, suitable in presence of uncertain-
ties in the load’s position and magnitude. Guest and Igusa 
(2008), for example, applied this concept to truss structures 
subjected to uncertain loads and extended the method to 
consider uncertain nodal locations as well.

In the field of Density-based Topology Optimization 
(DTO) (Bendsøe and Kikuchi 1988; Bendsoe and Sigmund 
2003), Sigmund (2009); Wang et al. (2011b) introduced ero-
sion, intermediate, and dilation filtering stages to model the 
over- and under-etched structures. These projections are used 
for the design of compliant mechanisms and heat conduction 
under a minimum length scale control (see Lazarov et al. 
(2016) for a comprehensive review). Similarly, Andreasen 
et al. (2020) implemented a non-probabilistic worst-case for-
mulation for the compliance minimization problem, whereas 
Wang et al. (2011a); Elesin et al. (2012) applied these pro-
jections to dynamic problems. A modified version of this 
technique can be used to manage Gaussian spatially varying 
manufacturing errors (Schevenels et al. 2011).

Methods to deal with load uncertainties are well-estab-
lished in the field of Level Set Topology Optimization 
(LSTO) (Allaire et al. 2002; Wang et al. 2003; Allaire et al. 
2004) as well. For instance, Dunning et al. (2011a) intro-
duced a method, equivalent to the multi-load approach, to 
minimize the expected compliance in presence of uncertain-
ties both in the load’s magnitude and direction. On the other 
hand, Dunning and Kim (2013) proposed the minimization 
of the expected value and the variance of the compliance in 
presence of an uncertain load magnitude.

If we consider the optimization in the case of other 
sources of uncertainties, however, far fewer publications 
exist that make use of a Robust Level Set Topology Opti-
mization (RLSTO) approach. Compared to density-based 
techniques, level-set approaches are intrinsically able to 
model the boundary of the structure without the need for any 

projection filter, thus providing a straightforward method 
to describe manufacturing errors (Chen and Chen 2011). 
Among these are the works of Jang et al. (2012); Andreasen 
et al. (2020), who dealt with the etching problem in a static 
case, and Li et al. (2019), who showed how to tackle the 
maximization of the first natural frequency in presence 
of possible over-etching. These methods make use of the 
signed-distance property to model uniform under-etched and 
over-etched structures using contours of the level-set func-
tion at offset levels. In this sense, a re-initialization scheme 
is required to maintain the signed-distance property, even 
though it may cause problems in the optimization process 
(Jang et al. 2012). Moreover, mapping approaches (Chen and 
Chen 2011; Li et al. 2019) are required to map the perturbed 
domain to the original one.

This paper presents a simple Robust Level Set Topol-
ogy Optimization (RLSTO) approach, based on a worst-case 
formulation, to deal with both uniform and spatially varying 
manufacturing uncertainties, with examples spanning both 
the static (compliance minimization and compliant mecha-
nism) and dynamic (frequency assignment) domains. The 
etching error is treated as an unknown (but bounded) uncer-
tainty, which is characterized by an unspecified probability 
distribution bounded between predefined lower and upper 
values. In order to consider the etching error in the optimi-
zation, this method makes use of two additional structures: 
the reduced (over-etched) and the expanded (under-etched) 
realizations. They are efficiently obtained through the Level 
Set Method (LSM) (Osher and Sethian 1988; Sethian 1999; 
Osher and Fedkiw 2006) by perturbing the nominal inter-
face under a velocity field that represents the manufacturing 
uncertainty, either uniform or spatially varying. Therefore, 
the computational cost associated with both cases is the 
same. In addition, this level-set approach directly relates 
the manufacturing error with the velocity field used for the 
perturbation, thus allowing the description of a variety of 
different etching fields without using any projection filters 
(Sigmund 2009; Wang et al. 2011b; Schevenels et al. 2011). 
By properly defining the perturbing velocity field, there is 
the possibility to apply the etching error only to specific 
regions of the design domain, thus leaving the other ones 
untouched. Moreover, since this method does not rely on 
the signed-distance property, a frequent re-initialization of 
the level-set function is not required, thus further improving 
the overall computational efficiency. In addition, using the 
Least-Squares Interpolation (LSI, Dunning et al. (2011b)) to 
compute the shape sensitivities, the proposed approach does 
not require any mapping between the original and perturbed 
domains (Chen and Chen 2011; Li et al. 2019).

The extension to other physical domains is also straight-
forward, since the method acts on the level-set function 
itself, making it highly independent of the underlying phys-
ics description. It is important to point out that in other 
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physical domains, such as those involving fluid–structure 
interaction, the three realizations may not be sufficient to 
describe the behavior of the structure. Nevertheless, the 
boundary-perturbation technique presented herein still 
applies. In fact, if required, more than three realizations can 
be obtained at a low computational cost, and successively 
combined to formulate an optimization problem more suit-
able to the particular case.

It is worth mentioning that there are other techniques 
(such as polynomial chaos expansion), to perform a robust 
optimization in the presence of manufacturing uncertainties 
(Tootkaboni et al. 2012; Lazarov et al. 2012; Chen and Chen 
2011; Zhang and Kang 2017). These methods are used to 
analytically describe the manufacturing uncertainty field, 
thus allowing the computation of the response statistics and 
their sensitivities. These techniques, however, increase the 
analytical complexity of the problem.

The rest of the paper is organized as follows. Section 2 
briefly presents the necessary LSM background and the 
deterministic LSTO process, followed by the analytical 
description of our boundary-perturbation RLSTO in the case 
of manufacturing uncertainties. Numerical examples regard-
ing both the static and dynamic domains, including a case in 
which a spatially varying manufacturing error is considered, 
are presented in Sect. 3. The results are then validated in 
Sect. 4 using COMSOL Multiphysics©. Section 5 closes 
with the conclusions.

2 � Level‑set topology optimization

In this Section, we briefly illustrate the level-set method. 
After the initial overview of deterministic optimization, the 
boundary-perturbation RLSTO formulation is presented.

2.1 � Level‑set function

The level-set function (Osher and Sethian 1988; Sethian 
1999; Osher and Fedkiw 2006) is used to implicitly define 
the boundary Γ of a N-dimensional structure as the zero 
contour of a (N+1)-dimensional implicit function Φ (Fig. 1):

where Ω is the region belonging to the structure.
In most problem settings, the level set function Φ is a 

signed-distance function, characterized by a unitary gradi-
ent, so that:

(1)

⎧⎪⎨⎪⎩

Φ(x) ≥ 0, x ∈ Ω

Φ(x) = 0, x ∈ Γ

Φ(x) < 0, x ∉ Ω

2.2 � Deterministic topology optimization

Among the advantages of the LSM are its capability of 
implicitly describing the interface of a structure, the com-
putational convenience of propagating the boundary only 
(instead of the whole domain), and the absence of filtering.

A generic topology optimization problem can be stated 
as,

where g represents the vector of inequality constraints with 
a bound gu.

Problem (3) is solved iteratively by propagating the 
boundary at each step, according to the Hamilton-Jacobi 
equation,

where Vn(x) indicates the optimal velocity field normal to Γ.
At each iteration, the Marching Squares algorithm 

(Lorensen and Cline 1987; Maple 2003) is used to discre-
tize the interface Γ , thus allowing to compute the equiva-
lent area (or volume) fractions in each element. The Finite 
Element Method (FEM) is then applied to compute the 
solution to the structural problem. Here, the structural 
matrices, i.e. stiffness K and mass M, are assembled using 
the ersatz material approximation with a linear interpo-
lation scheme for the material properties (Allaire et al. 
2004; Dambrine and Kateb 2010). Subsequently, the 
Sequential Linear Programming (SLP) formulation (Dun-
ning and Kim 2015) is used to solve the sub-optimiza-
tion problem that allows obtaining the optimal boundary 

(2)|∇Φ(x)| = 1

(3)
minΩ f (Ω)

�.�. g(Ω) ≤ gu

(4)
�Φ(x)

�t
+ Vn(x)|∇Φ(x)| = 0

(a) (b)

Fig. 1   The interface Γ (black boundary) in Fig. 1b is the intersection 
between the level set function Φ and the zero level set (black plane) in 
Fig. 1a. The red regions, where Φ > 0 , belong to the structure. (Color 
figure online)



	 M. Pozzi et al.

1 3

120  Page 4 of 13

velocities Vn(x) . This is done using IPOPT (Interior Point 
OPTimizer, Wächter and Biegler (2006)), an open-source 
library for large-scale nonlinear constrained optimization.

Equation (4) is then propagated in its discrete form,

where i is a grid node, and k is the iteration number. 
Throughout this work, a fixed grid made of unitary square 
elements is used. The Hamilton–Jacobi Weighted Essentially 
Non-Oscillatory method (HJ-WENO, Osher and Fedkiw 
(2006)) is implemented for spatial discretization, whereas 
a Forward Euler approach is used for time discretization.

Finally, the Fast Marching Method (FMM, Osher and 
Fedkiw (2006)) is implemented to extend the boundary 
velocity to a neighboring band of Γ . In this work, the 
level-set function is re-initialized every twenty iterations, 
to satisfy Eq. (2).

In Eq. (5), Δt = 1 is used to satisfy the Courant-Frie-
drichs-Lewy (CFL) condition for numerical stability 
(Osher and Fedkiw 2006):

Throughout this work, �CFL = 0.2 is used.
For the sub-optimization problem, the shape deriva-

tives of f (Γ) and g(Γ) are required. Considering the objec-
tive function, for example,

where sf  is the shape sensitivity of f with respect to a bound-
ary movement. After a discretization of Γ , this becomes:

where li is the length of the portion of the boundary associ-
ated with the i-th boundary point pi , and sf ,i is the shape 
sensitivity of f with respect to a displacement of pi . The 
shape derivatives of g(Γ) are obtained in a similar fashion.

In this work, the shape sensitivity of each boundary 
point is computed using the Least-Squares Interpolation 
(LSI, Dunning et al. (2011b)), which weights the ana-
lytical sensitivities, i.e. the derivatives of the objective 
function and the constraints with respect to the area frac-
tions �k . Other methods, such as boundary perturbation 
(Kambampati et al. 2021), are also commonly used.

The algorithm described in the previous paragraphs is 
repeated iteratively until convergence is reached, i.e., all 
constraints are satisfied and the objective function differ-
ence between the last five iterations is sufficiently small.

(5)Φk+1
i

= Φk
i
− ΔtVk

n,i
|∇Φk

i
|

(6)max
{
Vn

}
= �CFL ≤ 1

(7)Δt
�f

�Γ
= Δt ∫Γ

sf VndΓ

(8)
�f

�Γ
≃
∑
i

sf ,izn,ili

2.3 � Robust topology optimization 
through boundary perturbation

This Section describes how to implement the boundary-per-
turbation RLSTO. Assuming a constant uncertainty � along 
the whole boundary, in a direction normal to Γ , it is possible 
to define three structures (Wang et al. 2011b):

•	 Nominal: blueprint structure, without uncertainties;
•	 Expanded or under-etched: a structure whose features are 

thicker than in the nominal case, of a quantity �;
•	 Reduced or over-etched: a structure whose features are 

thinner than in the nominal case, of a quantity �.

In the rest of the paper, these three variations will be denoted 
by the subscripts n, e, and r, respectively. The etching error 
is treated as an unknown-but-bounded uncertainty, with 
upper and lower limits ±� . A possible value for � can be the 
maximum expected deviation, for which 3� is commonly 
used. Note that � is not required to be constant, and a more 
generic uncertainty field �(x) can easily be implemented as 
well. This is investigated in Sect. 3.5.

The boundary propagated during optimization is that of 
the nominal structure. The expansion of the nominal struc-
ture may lead to features merging with each other if they are 
closer than 2� . Conversely, the reduced structure may see 
some very thin ( < 2𝜂 ) features disappear completely.

To obtain the reduced and the expanded structures, Wang 
et al. (2011b); Jang et al. (2012); Li et al. (2019) use the 
cutting method (Fig. 2). Thanks to the unitary gradient prop-
erty of the signed-distance function, the geometries defined 
by the regions where Φ = ±� (instead of the usual Φ = 0 ) 
return the under- and over-etched structures. This method is 

Fig. 2   Illustration of the cutting method. Given a level set function 
(gray), the nominal, reduced, and expanded structures are obtained by 
cutting it with the blue (center), red (top), and green (bottom) planes, 
respectively. (Color figure online)
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used to describe uniform etching errors, and it requires re-
initialization schemes to maintain the signed-distance prop-
erty of the level-set function (Jang et al. 2012). However, 
these schemes may introduce inconsistencies that ultimately 
affect the convergence of the algorithm.

The boundary-perturbation technique presented herein 
allows us to efficiently overcome these limitations. The 
method is illustrated in Fig. 3: the reduced and expanded 
structures are obtained by propagating the nominal bound-
ary, according to Eq. (5), under a normal boundary velocity 
field ±�(x) that represents the manufacturing uncertainty. 
This approach does not require a frequent re-initialization 
of Φ , thus reducing the cost associated with this operation. 
Furthermore, as mentioned above, both uniform and non-
uniform velocity fields can be handled at the same compu-
tational cost. In this way, different etching conditions can be 
straightforwardly managed by properly choosing the velocity 
field �(x) . For instance, the etching error can be applied only 
to particular regions, leaving the others untouched.

After obtaining the three structure realizations, the Finite 
Element Analysis (FEA) can be carried out as usual. Then, 
the properties of the three structures can be combined as 

appropriate to formulate the robust optimal problem. As far 
as this work is concerned, the robust optimization problem 
takes the form of:

where the objective function is a linear combination of the 
costs obtained by analyzing the nominal, the reduced, and 
the expanded structures. The parameters wn , wr , and we are 
weights for the linear combination: their values lie between 
0 and 1, and their sum is equal to 1. In this way, by adjusting 
the weights, the proposed objective function can describe 
different optimization problems. In particular, if wn = 1 , 
wr = 0 , and we = 0 , Problem (9) falls back into Problem (3). 
On the other hand, if wn = 0 , wr = 1 , and we = 0 are used, 
the usual formulation for worst-case compliance minimiza-
tion problems is obtained (Wang et al. 2011b; Andreasen 
et al. 2020).

In level-set approaches, to compute the shape sensitivi-
ties of the nominal boundary points, mapping techniques 
are usually implemented to map the perturbed structures 
(reduced and expanded) onto the nominal one. For instance, 
Chen and Chen (2011) successfully applied the continuum 
mechanics large deformation theory to find point corre-
spondence. However, this technique inevitably increases 
the numerical complexity of the problem.

In this work, we show how to compute shape sensitivities 
without using any mapping between the initial and perturbed 
domains. Firstly, the analytical sensitivities are obtained 
through a linear combination of the derivatives of each of 
the three cases, with respect to �k:

After that, the LSI method is used to compute the shape sen-
sitivities of the boundary points of the nominal interface, so 
that each boundary point is associated with a sensitivity that 
considers the contributions of all three structures. Therefore, 
there is no need to map the boundary points of the reduced 
and the expanded structures onto the nominal ones.

3 � Numerical examples

In this Section, we present the results obtained when apply-
ing the boundary-perturbation RLSTO to four different 
problems.

First, a compliance minimization problem is shown. 
Second, the design of a gripper, a compliant mechanism, 
is carried out. Third, a frequency assignment problem is 
presented. This is relevant, for example, for MEMS resona-
tors (Wu et al. 2020) whose resonant frequency should be 

(9)
minΓ wnfn(Γ) + wrfr(Γ) + wefe(Γ)

�.�. gl ≤ g(Γ) ≤ gu

(10)
�f

��k
= wn

�fn

��k
+ wr

�fr

��k
+ we

�fe

��k(a) Uniform velocity field.

(b) Non-uniform velocity field.

Fig. 3   Illustration of the propagation method: the blue, red, and green 
lines represent the nominal, reduced, and expanded structures, respec-
tively. The reduced and expanded structures are obtained according to 
a boundary perturbation whose magnitude is represented by the red 
and green arrows. (Color figure online)
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accurate and precise despite possible manufacturing uncer-
tainties. Fourth, the frequency assignment problem is solved 
under a spatially varying manufacturing error.

The simulation parameters used in the following exam-
ples, as well as the material properties, are presented in 
Table 1.

All the results are obtained using OpenLSTO (Kambam-
pati et al. 2018).

3.1 � Compliance minimization

We start by considering the result of deterministic optimiza-
tion as a baseline for comparison. For the case of minimum 
compliance, the optimal problem can be stated as:

where K is the stiffness matrix, u is the vector of nodal 
displacements, f  is the vector of external forces, C is the 
compliance, and A is the total area fraction of the struc-
ture. In this example, the upper limit of the area fraction 
is Amax = 40% , while the magnitude of the external force 
(Fig. 4a) is equal to 20 kN. Figure 4 shows the problem set-
ting and initial design, while Fig. 5 shows the final (optimal) 
layout of the structure.

We now introduce the manufacturing uncertainties. In a 
compliance problem, the reduced structure is representative 
of the worst-case scenario. For instance, Fig. 6 shows the 
effect of a uniform manufacturing error � = 0.5 mm on the 
nominal structure in Fig. 5. Note that the thinnest parts of the 
deterministic structure (Fig. 5) disappear completely in the 
reduced version (Fig. 6). On the other hand, the expanded 
structure is representative of the best-case scenario, thus it 
is removed from the robust optimization process. This not 
only reduces the computational load but also considers a 
more conservative case.

The robust optimal problem is stated as:

(11)
min C = fTu

�.�. Ku = f

A ≤ Amax

Table 1   Data for the numerical examples

Symbol Value Unit

Width lx 0.2 m
Height ly 0.1 m
Thickness lz 0.01 m
Horizontal resolution nx 160 –
Vertical resolution ny 80 –
Young’s modulus E 72 GPa
Density � 2710 kg/m3

Poisson’s coefficient � 0.3 –

(a) Design space, boundary conditions, and external force.

(b) Initial design.

Fig. 4   Problem setting for the compliance minimization problem

Fig. 5   Optimal solution of the deterministic minimum compliance 
problem, with A

max
= 40% . The final compliance is 40.42 Nm

Fig. 6   Effect of the reduction on the cantilever beam in Fig. 5. Due 
to the uniform manufacturing error � = 0.5 mm, the two thinnest fea-
tures of the nominal structure disappear
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where 0 ≤ w ≤ 1 . If w = 0 , the objective function is equiva-
lent to the one studied in Andreasen et al. (2020); if w = 1 , 
the deterministic case is obtained. The area constraint is 
imposed on the nominal structure.

Figure 7 shows, for example, the results obtained with 
w = 0.5 . Table 2 compares the results obtained in the three 
cases: w = 0 , w = 0.5 , and w = 1 . In particular, note that 
w = 1 leads to the same solution (Fig. 5) obtained by solving 
the deterministic problem (Problem (11)).

Notice that, as opposed to the deterministic case (Fig. 6), 
no features of the robust structure have disappeared during 
the reduction (Fig. 7). In addition, even though the nominal 
compliance Cn is slightly increased, the boundary-perturba-
tion RLSTO with w < 1 leads to a lower reduced compliance 
Cr and a smaller absolute variation ΔC . By using a weight 
w strictly between 0 and 1, both Cn and Cr are included in 
the objective function. On the other hand, using w = 0 , only 
Cr is minimized, meaning that Cn (and consequently ΔC ) 
are not directly considered in the optimization. This could 

(12)

min wCn + (1 − w)Cr

�.�. Knun = f

Krur = f

A ≤ Amax

lead the algorithm to converge to a point of local optimality 
characterized by higher Cr and ΔC . For instance, the values 
of Cr and ΔC obtained with w = 0 are higher than those 
associated with w = 0.5 (Table 2). In the case of Cr being 
more important than Cn , a value of w close to zero should be 
used. In such problems, to avoid the issue of local optimal-
ity, it is either possible to try different initial conditions or 
to slightly increase the value of w.

3.2 � Compliant mechanism

Similarly to the problem in Sect. 3.1, we start by consid-
ering the results of a deterministic case as a baseline for 
comparison. In particular, Fig. 8 shows the problem setting 
and initial design of a gripper. Due to the symmetry of the 
problem, only the bottom half of the mechanism is consid-
ered. The input force (green arrow) is represented by the 
vector f  , whereas the output dummy force (red arrow) is 

(a) Nominal structure.

(b) Reduced structure.

Fig. 7   Result of the boundary-perturbation RLSTO under a uniform 
manufacturing error � = 0.5 mm and w = 0.5 . As opposed to Fig. 6, 
no feature disappears in this case

Table 2   Comparison between the results of the RLSTO under a uni-
form manufacturing error � = 0.5 mm with different weights w 

C
n
 [Nm] C

r
 [Nm] ΔC [Nm]

w = 1.0 40.42 48.75 8.34
w = 0.5 41.08 46.86 5.78
w = 0.0 41.78 48.23 6.45

(a) Design space and boundary conditions. The blue regions
are assumed to be always full. The green and red arrows rep-
resent respectively the input and output forces.

(b) Initial design.

Fig. 8   Problem setting for the design of the gripper mechanism. Due 
to the symmetry of the problem, only the bottom half of the mecha-
nism is shown
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represented by the vector l . In this example, both f  and l 
have unitary magnitude.

The optimal problem takes the form of:

where ME is the mechanical efficiency of the mechanism 
(Lau et al. 2001). The workpiece is modeled as a spring 
(Sigmund 1997) placed in the application point of the output 
dummy force l . Regarding the area fraction constraint, an 
upper limit of 20% is chosen.

The sensitivity of ME is (Lau et al. 2001):

where Ke,k is the stiffness matrix of the k-th element, and � 
is the solution of the adjoint equation

Figure 9 shows the optimal layout along with its reduced 
version.

(13)
max ME

�.�. Ku = f

A ≤ Amax

(14)�ME

��k
=

�
TKe,ku(f

Tu) + (lTu)uTKe,ku

(fTu)2

(15)K� = −l

In presence of a uniform over-etching error � = 0.5 mm, 
some features and hinges of the nominal layout disappear. 
This may lead to a drastic variation in the behavior of the 
mechanism. The RLSTO approach presented in this work 
aims at preventing both these problems. The robust opti-
mization problem is stated as follows:

where the objective function J is the linear combination of 
the mechanical efficiency of the nominal ( MEn ) and reduced 
( MEr ) structures. If w = 1 , this formulation falls back into 
the deterministic one. On the other hand, if w = 0 , only the 
reduced realization is considered, yielding the optimization 
problem used by Wang et al. (2011b).

The results obtained with Amax = 20% and w = 0 are 
reported in Fig. 10. As compared to the deterministic lay-
out (Fig. 9), no features of the robust structure disappear 
in the reduced version.

(16)
min J = wMEn + (1 − w)MEr

�.�. Kiui = f ∀i = n, r

A ≤ Amax

(a) Nominal structure.

(b) Reduced structure.

Fig. 9   Optimal solution of the deterministic mechanism synthesis, 
with A

max
= 20% . Due to a uniform manufacturing error � = 0.5 mm, 

some features of the nominal structure disappears

(a) Nominal structure.

(b) Reduced structure.

Fig. 10   Result of the boundary-perturbation RLSTO under a uniform 
manufacturing error � = 0.5 mm and w = 0 . As opposed to Fig. 9, no 
feature disappears in this case
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3.3 � Deterministic frequency assignment

The goal is to assign a prescribed value to the first angular 
frequency �0 of a structure fixed at both ends. The optimal 
problem is stated as:

where K is the stiffness matrix, M is the mass matrix, the 
target frequency is �0,target = 16000� rad/s ( f0,target = 8 kHz), 
and X is the corresponding mode shape. The structure is 
subjected to a maximum area fraction Amax = 50%.

Provided that the mode shapes are mass-normalized, the 
first constraint—the characteristic equation—can be removed 
using the adjoint method with the Lagrange multiplier �:

Under the assumption of mass-normalized mode shapes, the 
derivative of the first natural frequency with respect to the 
area fraction �k is (Bendsoe and Sigmund 2003):

(17)
min

(
�0 − �0,target

)2
�.�.

(
−�2

0
M + K

)
X = 0

A ≤ Amax

(18)� =
�0 − �0,target

�0

X

where Ke,k and Me,k are respectively the element stiffness and 
mass matrices of the k-th element.

Figure  11 shows the problem setting and the initial 
design, whereas the optimal design is shown in Fig. 12.

3.4 � Robust frequency assignment

Under a deterministic frequency assignment setting, there is 
no control over the variability of the natural frequencies with 
respect to small topology perturbations. Thus, even a small 
shape change can lead to large eigenfrequencies variations. 
Table 3 shows the impact of manufacturing uncertainties 
( � = 0.5 mm) on the first natural frequency of the geometry 
obtained through a deterministic optimization (Fig. 12).

A RLSTO approach allows to minimize this effect. The 
problem formulation becomes:

where �0,n , �0,r , and �0,e are respectively the first natural 
frequency of the nominal, reduced, and expanded structure. 

(19)
��0

��k
=

XT
(
−�2

0
Me,k + Ke,k

)
X

2�0

(20)

min w
(
�0,n − �0,target

)2
+

1−w

2

(
�0,r − �0,target

)2
+

1−w

2

(
�0,e − �0,target

)2
�.�.

(
−�2

0,i
Mi + Ki

)
Xi = 0 ∀i = n, r, e

A ≤ Amax

(a) Design space and boundary conditions.

(b) Initial design.

Fig. 11   Problem setting for the frequency assignment problem

Fig. 12   Optimal solution of the deterministic frequency assignment 
problem, with A

max
= 50%

Table 3   Effect of a uniform manufacturing error � = 0.5 mm on the 
natural frequency of the structure shown in Fig. 12

f [kHz] Δf∕f  [-]

Nominal structure 8.00 –
Reduced structure 7.87 − 1.53%
Expanded structure 8.11 + 1.44%
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The target frequency is once again �0,target , and the area con-
straint is enforced on the nominal structure.

Figure 13 shows the optimal design obtained through 
the RLSTO method, while the numerical results are shown 
in Table 4. The average deviation from the nominal case is 
reduced to 0.39% (with a worst-case deviation of 0.47% ), as 
opposed to 1.49% in the deterministic case (with a worst-case 
1.53% variation). The optimizer converges to a solution with 
no holes inside the structure (pockets). Intuitively, having a 
lower value of the perimeter reduces the variation of the matri-
ces M and K following a perturbation, thus reducing the overall 
eigenvalue variation.

3.5 � Robust frequency assignment in presence 
of a non‑uniform manufacturing error

We show how the method can be adapted to cases where 
the over- and under-etching uncertainties are not constant. 
For our example problem, we define an etching error that is 
radially distributed in space (shown in Fig. 14):

which is scaled by the maximum absolute error �max.

(21)�(x, y) = �max

√
(x − lx∕2)

2 + (y − ly∕2)
2

√
(lx∕2)

2 + (ly∕2)
2

For simplicity and ease of comparison, we consider the 
same problem setting above (Sects. 3.3 and 3.4). The robust 
optimal solution is shown in Fig. 15. The results of the opti-
mizations presented above are summarized in Table 5.

Compared to the case with a uniform etching uncertainty 
(Table 3), the radial etching error produces a higher varia-
tion in the natural frequency of the deterministic structure 

Fig. 13   Result of the boundary-perturbation RLSTO applied on a fre-
quency assignment problem in the presence of a uniform manufac-
turing tolerance � = 0.5 mm with w = 0.8 . To be compared with the 
deterministic design in Fig. 12

Table 4   Effect of a uniform manufacturing error � = 0.5 mm on the 
natural frequency of the structure shown in Fig. 13

To be compared with the much larger frequency variations obtained 
in the deterministic case, Table 3

f [kHz] Δf∕f  [-]

Nominal structure 8.00 –
Reduced structure 7.97 −0.47%
Expanded structure 8.03 +0.31%

0

0.15

0.3

0.45

0.6

0.75

 [m
m

]

Fig. 14   Heat map of the radial manufacturing uncertainty described 
by Eq. (21) with �

max
= 0.75 mm. The accuracy is higher at the center 

of the design domain, while it gradually degrades while moving 
closer to the boundaries

Fig. 15   Result of the boundary-perturbation RLSTO applied on a 
frequency assignment problem under a radial manufacturing error 
(Fig. 14 and Eq. (21)) with �

max
= 0.75 mm and w = 0.8 . To be com-

pared to the deterministic design in Fig. 12

Table 5   Effect of a radial manufacturing error (Fig. 14 and Eq. (21)) 
with �

max
= 0.75 mm

f [kHz] Δf∕f  [–]

(a) Effect on the deterministic structure shown in Fig. 12. The aver-
age frequency deviation is 2.12%.

Nominal structure 8.00 –
Reduced structure 7.83 − 2.11%
Expanded structure 8.17 + 2.13%
(b) Effect on the robust structure shown in Fig. 15. The average 

frequency deviation is 0.99%.
Nominal structure 8.00 –
Reduced structure 7.92 − 1.09%
Expanded structure 8.08 + 0.88%
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(Table 5a). Nevertheless, the Boundary-Perturbation RLSTO 
can still reduce the frequency deviation in both the over- and 
under-etched structures. In fact, the target natural frequency 
is still matched, and the average frequency variation has 
been more than halved (from 2.12% to 0.99% ). Comparing 
the layouts shown in Figs. 12 and 15, the latter has thicker 
features close to the boundaries, where the error is higher, 
but is left mostly unchanged close to the center of the design 
domain, where the error goes to zero.

4 � Validation of the numerical examples

In this Section, the previously obtained layouts (Sect. 3) are 
validated using COMSOL Multiphysics©. The geometry is 
discretized using an unstructured body-fitted mesh of trian-
gular elements. The plane stress approximation is used along 
with a geometrically linear formulation. After enforcing the 
boundary conditions, a static step is used to compute the 
deformed configurations under the external load, whereas 
the natural frequencies are computed by solving an eigenfre-
quency step. The deformed configurations of the structures 
obtained in Sects. 3.1 and 3.2 are reported respectively in 
Figs. 16 and 17. The mode shapes of the structures shown 
in Sects. 3.3, 3.4, and 3.5 are shown in Fig. 18.

In Table 6, the results obtained with OpenLSTO pre-
sented in Sect. 3 are compared with those obtained from 
COMSOL Multiphysics© simulations. The maximum dis-
crepancy between COMSOL Multiphysics© and OpenLSTO 
for the case of compliance minimization, gripper optimi-
zation, and frequency assignment are 2.70%, 1.47%, and 
0.22%, respectively.

5 � Conclusion

In this paper, a new RLSTO formulation that can deal with 
manufacturing uncertainties was introduced. The method 
makes use of two additional structural realizations—
expanded and reduced—which can be efficiently obtained 
through the Level Set equation. Linear combinations of the 
three structures can then be used to define both the objective 

function and the problem sensitivities, without the need for 
any mapping technique.

The effectiveness of the approach was shown by applying 
it to two different classes of problems: static and dynamics. 
In particular, the compliance minimization problem and the 
synthesis of a gripper mechanism make it easy to compare 
the method to the existing ones. For the dynamic case, two 
variations (uniform and non-uniform etching conditions) of 
the problem were presented, to demonstrate the generality 
of this approach.

Since this method relies on the LSM and the LSI, no 
additional effort is required to compute the sensitivities 
expressions, meaning that this approach does not affect the 
analytical complexity of the optimal problem. Therefore, 
in the future, this method could be easily adapted to con-
sider other physical phenomena, even multi-physics ones. 
If required by the specific problem, more than three realiza-
tions could be used to obtain alternative formulations, more 
suitable for cases other than the compliance minimization 
(stress-related problems or fluid domain optimizations). 
Through the boundary-perturbation technique, the additional 
structures can be obtained with a low computational cost, 
by changing the velocity field used to perturb the nominal 
level-set function.

Fig. 16   Deformed configuration of the structures shown in Sect. 3.1 
(compliance minimization)

Fig. 17   Deformed configuration of the structures shown in Sect. 3.2 
(gripper optimization)

Fig. 18   Target mode shapes of the structures shown in 
Sects. 3.3, 3.4, and 3.5 (frequency assignment)
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