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Abstract
This paper presents a topology optimization approach that is innovative with respect to two distinct matters. First of all 
the proposed formulation is capable to handle static and dynamic topology optimization with virtually no modifications. 
Secondly, the approach is inherently a multi-input multi-output one, i.e., multiple objectives can be pursued in the pres-
ence of multiple loads. The input-to-output transfer matrix, say G , is the key ingredient that governs the algebraic mapping 
between applied loads and structural response. In statics G depends on the design variables only, whereas it depends on the 
frequency variable as well in the dynamic case. The Singular Value Decomposition (SVD) of G represents then the core of 
the proposed approach. Singular values are shown to be the gains of the input/output mapping and are used to compute proper 
norms of G that represent the goal functions to be minimized. Singular vectors provide at no extra cost the plant directions, 
i.e., the load combination factors that stress the structure the most. Numerical examples are discussed in much detail and 
open issues object of ongoing investigations are highlighted. A full Matlab code handling the static topology optimization 
problem is provided as an online Appendix to the manuscript. Its extension to the dynamic case may be gathered following 
the formulation proposed in Sect. 5.

Keywords Topology Optimization · Statics · Dynamics · Singular Value Decomposition (SVD) · Matlab

1  Introduction and motivation

Topology optimization is nowadays a mature discipline 
from both engineering and computational viewpoints. A 
systematic view about principles, computational methods, 
and applications was given in the classic book (Bendsøe and 
Sigmund 2003) that dates back some twenty years ago. The 
vast majority of contributions in both static and dynamic 
regimes aim at the minimization of (possibly slightly 

different definitions of) the structural compliance in the 
presence of further goals and/or constraints.

With no aim of completeness, as far as static response is 
concerned stress constraints were investigated in Bruggi and 
Duysinx (2012), Bruggi and Venini (2008), Giraldo-Lon-
dono et al. (2022), and Collet et al. (2017) focused on fatigue 
response, design of compliant mechanisms was tackled in 
Emmendoerfter et al. (2022), whereas Ferrari and Sigmund 
(2020b) and Gersborg-Hansen et al. (2006) addressed heat 
conduction and buckling, respectively. The development 
of fast computational methods was pursued in Andreassen 
et al. (2011) and Ferrari and Sigmund (2020a), whereas the 
advantages of mesh adaptivity were exploited in Salazar de 
Troya and Tortorelli (2018), just to mention a few. The above 
list is by no means complete and reference is made to the 
references therein and to the review paper (Sigmund and 
Maute 2013) for a comprehensive list of contributions and 
applications.

When it comes to dynamic response, a first main subdivi-
sion should be made between time-domain and frequency-
domain approaches. As for time-domain approaches, Min 
et al. (1999) should be cited as a pioneering contribution, 
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Giraldo-Londono and Paulino (2021) represents a milestone 
in that a general approach is presented along with a Matlab 
implementation that fits a more general modular environ-
ment, whereas (Jensen et al. 2014) faces and solves the fun-
damental issue of sensitivity computation. Switching to fre-
quency-domain methods, Olhoff and Du (2016) presents an 
incremental approach for the minimization of the dynamic 
compliance in the presence of prescribed low or high value 
of the excitation frequency, Yang and Li (2014) minimizes 
the dynamic compliance of structures at resonance frequen-
cies in thermal environments, whereas the frequent case of 
harmonic excitation is investigated in Liu et al. (2015).

Given the scenario above, this paper introduces an inno-
vative formulation for the topology optimization of Multi-
Input (i.e., multi-loaded) Multi-Output (i.e., multi-objective) 
structures. The proposed framework includes classic com-
pliance optimization as a representative case but is general 
enough to allow extensions to alternative definitions of com-
pliance as well as to the adoption of other merit functions 
that may be more appropriate for specific applications. The 
main idea behind the proposed approach is to write explicitly 
the input/output transfer matrix, say G , that maps the acting 
loads to the structural response. Using the adopted format, 
the structural response vector (that more often than not goes 
under the name of output vector) can be any linear combi-
nation of the state vector, i.e., it may include any nodal dis-
placement of the discretized structure. Interestingly enough, 
the structural compliance (that is the goal function used in 
nearly all the applications of the literature) may inherently 
be written as a linear combination of those structural dis-
placements where a load is applied (and in fact the loads 
themselves are the coefficients of such linear combination 
as shown in the sequel of the paper). Any optimal design 
pursued herein is the one that minimizes a proper measure 
of “amplitude” of the transfer matrix G . From an engineer-
ing perspective, minimizing such amplitude amounts to 
minimize the effects of the loads onto the structure. It is 
therefore clear that a proper “tool” to assess the amplitude 
of the transfer matrix is the key ingredient to fully define 
the proposed approach. The Singular Value Decomposition 
(SVD) (Brunton and Kutz 2019; Strang 2019) is shown to be 
such a tool and more in that not only it does allow to com-
pute a few matrix norms that represent the needed amplitude 
but also shed some light onto the system response in static 
and dynamic regime as well. The fact that such norms are 
uniquely defined in terms of singular values of G simpli-
fies dramatically the computation of the sensitivities that 
are reduced to the evaluation of the gradients of the singular 
values themselves with respect to the design variables.

The paper is organized as follows. Section 2 introduces 
the properties of the singular value decomposition focus-
ing on its engineering interpretation. The fact that input and 
output singular vectors are mapped onto each other with 

a gain that is the associated singular value is the reason 
why the proposed approach is in a sense the most natural 
to address static and dynamic topology optimization prob-
lems, including the celebrated minimum compliance one. 
The section is concluded by an explicit derivation of the 
transfer matrix in the frequent case of a displacement-based 
FEM discretization. The topology optimization problem is 
presented in Sect. 3 along with a semi-analytic derivation 
of the sensitivities of the transfer matrix entries and of the 
singular values with respect to the design parameters. Such 
sensitivities are needed to apply any gradient-based minimi-
zation scheme including the method of moving asymptotes 
(MMA) (Svanberg 1987) that is used herein in a Matlab 
version made available by Krister Svanberg. The specific 
choice of the output vector that fully defines the objectives 
of the design is made in Sect. 4 wherein attention is paid to 
the compliance or better a few generalized versions of it. The 
extension to the dynamic problem is analyzed in Sect. 5. The 
focus therein is not on the (minimal) modifications needed 
to handle the dynamic case but is conversely on the unifying 
aspects that static and dynamic problems share. A few con-
venient computational remedies that take care of the lengthy 
processes behind the expensive evaluation of system matrix 
norms are highlighted and framed within the Matlab envi-
ronment. Section 6 presents the results of a few numerical 
investigations along with comparisons with similar designs 
obtained via more classical methods (when available). The 
focus is on reporting general lessons that may be learned by 
proper comparisons between all the proposed norms in terms 
of effectiveness and robustness. Concluding remarks and 
need for ongoing investigations are left to Sect. 7, whereas 
the full Matlab code that solves the static topology optimi-
zation problem is given in online Appendix 1. The code is 
provided for completeness and is open for extensions and 
improvements.

2  Singular Value Decomposition 
of the input/output transfer matrix

2.1  General properties of the SVD

Upon recalling that a (generally complex) matrix L is uni-
tary if

where a superposed H denotes conjugate transposition, we 
observe that any complex l × m matrix G admits a singular 
value decomposition (Strang 2019) that reads

where

(1)LH = L−1,

(2)G = U�VH ,
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• U and V are unitary l × l and m × m matrices, respec-
tively;

• � is a l × m matrix that admits the representations 

 where 

 in which r is the rank of G and 

A few developments below are based on the fact that the 
unitary matrices U and V form orthonormal bases for the 
output and input spaces of G , respectively.

2.1.1  The main property

Equation (2) provides the definition itself of singular value 
decomposition but should be further elaborated to gain a 
deeper understanding of the proposed design approach. To 
this goal, both sides of Eq. (2) are right-multiplied by V so 
as to obtain (thanks to the unitary property of V)

that componentwise reads

Equation (5) is the first of the two milestones on which the 
proposed design approach rests (the second one is concerned 
with the concept of matrix norms based on singular values 
that is tackled in the next paragraph). The column vectors of 
U and V , say uk and vk , respectively, represent the output and 
input directions of the system and are dual to each other, i.e., 
if an input vector (load) in the direction of vk is considered, 
the output shall be in the direction of the associated singular 
vector uk . Since ||vk||2 = ||uk||2 = 1 , one has

From an engineering point of view, Eq. (6) is of the utmost 
importance for two reasons:

– The kth  singular value �k is the gain of the matrix G in 
the direction of the k− th input–output singular pair;

– Being singular values sorted in descending order, see 
Eq. (4), the triple (�1, v1, u1), respectively, define the 
maximum gain of the response matrix G and the associ-
ated input and output directions.

� =

[
�1

0

]
, if l ≥ m or � =

[
�1 0

]
, if l ≤ m,

(3)�1 = diag
{
�1, �2,… �r

}
; r = min(l,m),

(4)𝜎 ≡ 𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎r ≡ 𝜎 > 0.

GV = U�,

(5)Gvk = �kuk.

(6)�k(G) = ||Gvk||2 =
||Gvk||2
||vk||2 .

2.2  Singular values and matrix norms

Paragraph 2.1 has introduced the singular value decom-
position of the response matrix as an engineering tool for 
a deeper understanding of the input–output mapping of 
the structure to be designed. Furthermore, singular values 
were shown to be the structural gains coupling each singu-
lar vector pair. Given this scenario, a natural goal function, 
say F  , should enjoy the following two properties: 

1. F  should be a proper norm of the response matrix G 
(and such norm should preferably be induced by an asso-
ciated vector norm);

2. The norm F  should be uniquely defined by the singular 
values (gains) �k.

Three possible such norms are as follows:

• ||G||2 = �1 (the so-called 2-norm) that is in fact the 
supremum of the ratio in (6). The 2-norm satisfies the 
multiplicative property 

 which is a desirable property that shows that the 2-norm 
is a vector-induced one. As shown later in much detail, 
it is appropriate to note that in the dynamic case singular 
values depend on the frequency � , i.e., �1 = �1(�) , and 
the induced norm is defined as sup� = �1(�) . Since a 
sup operator is involved, in dynamics such norm shall 
be named H∞ norm but one should always recall that the 
underlying norm is a 2-norm;

• ||G||N = �1 + �2 +…+ �r that is often referred to as the 
Nuclear norm. All plant’s directions concur to the defi-
nition of the goal function and therefore the frequency 
range wherein the design is effective is expected to be 
wider than the H∞–norm case that however performs 
better as far as maximum peak reduction is concerned;

• ||G||F =

√
�2
1
+ �2

2
+… �2

r  , i.e., the so-called Frobenius 
norm. Although neither is the Frobenius norm an 
induced one nor it enjoys the multiplicative property 
(7), numerical results to follow show that the Frobenius 
norm works properly and is a viable choice when the 
primary goal is the robustness of the response.

To conclude this section with, the following key features 
of the singular value decomposition are worth being 
emphasized:

– the singular values give direct info on the input/output 
gains of the system;

(7)||G1G2||2 ≤ ||G1||2 ⋅ ||G2||2
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– the structure directions Uk and Vk are mutually orthogo-
nal and represent the input–output directions of the sys-
tem;

– unlike eigenvalue-based approaches, the SVD applies 
inherently to non-square structures. Most response matri-
ces G are in fact non-square since the number of inputs 
and outputs are usually different from each other. (There 
is actually no reason why they should be the same).

2.3  The steady‑state input/output response matrix 
G

Aim of this paragraph is to derive the abstract framework 
for the static state and output equations that fits the proposed 
SVD-based design approach. To start off, equations govern-
ing the static response of the structure under optimization 
are written. For the sake of simplicity, reference is made 
hereinafter to a displacement-based finite element discretiza-
tion, but mixed stress–displacement approaches based on the 
Hellinger–Reissner functional or three-field (stress, strain, 
displacement) formulations arising from the Hu–Washizu 
functional might be considered as well. A classical displace-
ment-based equilibrium equation reads

where K is the n × n stiffness matrix, x is the n × 1 column 
vector of the unknown displacements, B is an n × r load 
matrix, and f  is a r × 1 Boolean column vector that dis-
tributes the loads to the appropriate degrees of freedom. 
It should be noticed that constrained displacements and 
dual reactive forces have been ruled out from Eq. (8) so 
that n denotes the number of free degrees of freedom of the 
problem.

The output equation is then used to define the goals of the 
design. Each row of the no × 1 output vector z represents a 
physical quantity of interest for the designer. When compli-
ance minimization is pursued no = 1 so that z is actually a 
scalar quantity. The output equation is eventually written 
as follows:

where C is the no × n output matrix that is responsible for 
the definition of the quantities of interest for the designer.

Upon combining Eqs. (8) and (9), i.e.,

one gets the input–output mapping that reads

(8)Kx = Bf ,

(9)z = Cx,

{
Kx = Bf

z = Cx,

(10)z = CK−1Bf = Gf ,

that is given a classic system representation in Fig. 1 where 
the dependence of G on the design variable vector p has 
been made explicit.

The no × r steady-state (static) transfer matrix eventu-
ally reads

where one should notice that in the frequent case of a single 
load case ( r = 1 ) and a single scalar output ( no = 1 ), as it 
happens, e.g., for compliance minimization of a structure 
acted upon by a single load, G is actually a scalar quantity.

3  G‑based topology optimization

The typical G-based optimal design problem eventually 
reads

where

– (12)1 defines the function F(p) to be minimized. The 
matrix norm being used for each specific problem should 
be specified (see paragraph 2.2);

– (12)2 is the definition itself of the input/output trans-
fer matrix wherein the dependence on the vector of the 
design variables p has been made explicit;

– (12)3 is the standard constraint on the maximum volume 
of the structure. From a computational viewpoint, it may 
be useful to impose also a lower bound to the overall 
volume, i.e.,

 Although not compulsory, in the very first iterations of 
the optimization process a lower bound on the volume 

(11)G = CK−1B,

(12)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
p

F(p) = ��G(p)��

s.t. G(p) = CK−1(p)B

V(p) ≤ Vmax

pmin ≤ p ≤ pmax

,

Vmin ≤ V(p) ≤ Vmax.

Fig. 1  Block representation of the input–output mapping
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may help the numerical solver avoid unfeasible “super-
light” solutions in the design space;

– The inequalities on the design variables in (12)4 are to be 
intended componentwise. As usual, each design variable 
is bounded between zero (void) and one (full material) 
within a standard SIMP idealization (Bendsøe and Sig-
mund 1999).

The optimization problem (12) is solved numerically using the 
method of moving asymptotes (MMA) (Svanberg 1987). To 
this goal the user must provide the current values of the goal 
function and the constraints, along with their sensitivities with 
respect to the design variables. When the objective function 
to be minimized is a matrix norm that depends on its singular 
values, using the chain rule one should therefore provide a 
semi-analytical computation of the sensitivity of the transfer 
matrix and of the singular values with respect to any design 
variable, say pk . This is done below and implemented in the 
Matlab code in online Appendix 1.

3.1  Sensitivity of the input/output transfer matrix

In the most general case assume the input/output matrix G 
depends on the design variable vector p through all its three 
factors, i.e.,

In fact, when, for example, seismic forces are considered, 
one may show that the matrix B does depend on the design 
variable vector p (Venini and Ceresa 2018) and that is why 
the dependence of all the factors in Eq. (13) on p should in 
general be considered. Upon recalling that the derivative of 
the inverse reads

using the product rule, the derivative of G(p) with respect 
to the kth component pk of the design variable vector writes

where the derivative of the stiffness matrix K(p) with respect 
to the design variable pk that appears in Eq. (14) is computed 
semianalytically (Andreassen et al. 2011). When the depend-
ence of G on p is through K only, Eq. (15) reduces to

(13)G(p) = C(p)K−1(p)B(p).

(14)
�K−1

�pk
= −K−1 �K

�pk
K−1,

(15)

�G(p)

�pk
=

�C

�pk
K−1B + C

�K−1

�pk
B

+ CK−1 �B

�pk
,

,

3.2  Sensitivity of the singular values

Under certain hypotheses of regularity (that we certainly 
supposed to be met hereinafter) direct differentiation of Eq. 
(2) allows to arrive at the following formula for the sensi-
tivity of the generic h-th singular value �h (see also Strang 
2019):

where R indicates the real part of a (possibly) complex 
number.

3.3  Sensitivity of the norm of the input/output 
transfer matrix

Since 2, Nuclear and Frobenius norms of G are uniquely 
defined by its singular values, Eq. (17) coupled to a proper 
usage of the chain rule allows the computation of any norm 
sensitivity in (12)1 . The sensitivity of any of the three norms 
of interest eventually reads

where the second factor at the right-hand-side is given in Eq. 
(17), whereas the first factor is as follows:

4  Compliance definition (revisited 
and extended) and more

As already observed most of the times topology optimiza-
tion aims at the minimization of the compliance. There-
fore, even though the proposed approach may handle 
many different goal functions, a specific derivation of the 

(16)

�G(p)

�pk
= C

�K−1

�pk
B =

= − CK−1 �K

�pk
K−1B

.

(17)
��h

�pk
= R

(
uH
h

�G(p)

�pk
vh

)
,

(18)
�||G||
�pk

=

r∑
h=1

�||G||
��h

��h

�pk
,

(19)

�||G||2
��h

=
��1

��h
= �1h (Kronecker delta)

�||G||N
��h

=
�(�1 +…+ �r)

��h
= 1

�||G||F
��h

=
�h√

�2
1
+…+ �2

r

.
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compliance minimization problem seems to be appropri-
ate. For the sake of simplicity, a lumped parameters system 
is referred to next. However, the adopted formulation is 
general in that it applies to any system such that

– x is the state vector grouping all the generalized displace-
ments emerging from a suitable finite element discretiza-
tion;

– s ⊂ x is the subset of the displacements that is loaded by 
the force vector f  that is the dual of s in the virtual work 
sense.

4.1  Notations

Reference is made to Fig. 2 where the state vector reads

f = {f1, f2} is the set of applied loads and s = {x1, x2} ⊂ x 
is the set of displacements that is dual to f  in virtual work 
sense.

The optimization problem associated to the system in 
Fig. 2 is far from being unique in that different choices of 
load cases and combinations on the input side, see Eq. (8), 
and design objectives on the output side give rise to a wide 
variety of engineering problems of interest as discussed 
below. Each problem fits the framework of Eq. (12) and 
is fully characterized by the stiffness matrix K , the load 
matrix B , and the output matrix C . For the case at hand 
n = 3 and the 3 × 3 stiffness matrix is shared by all possible 
problems. The designer should conversely select the two 
matrices B and C to derive the optimization setting that fits 
better the actual engineering problem to be solved.

4.2  The SISO case: single load case and standard 
compliance minimization

In this case, i.e., the standard compliance minimization in 
the presence of a single load case, no = 1 , r = 1 and one 
writes

(20)x =

⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
,

where it should be noticed that the output vector z reduces 
to a scalar and reads:

i.e., the classical compliance (Andreassen et al. 2011). In 
this SISO case G is a scalar as is the “matrix” of singu-
lar values that reads � = �1 . It should be noted that in the 
SISO case the three cited norms (2, Nuclear and Frobenius) 
coincide.

4.3  The MISO case: two load cases and standard 
compliance minimization

This case is non standard in that r = 2 , i.e., two independent 
load cases are considered, whereas no = 1 , i.e., the output is a 
scalar compliance. One may write

where the output vector is formally the same as the SISO 
one but now the overall compliance C  is the sum of two 
independent ones, say C1 and C2 , respectively, due to the 
loads f1 and f2 , i.e.,

This resembles the multiple load formulation of Sect.5.2 in 
the celebrated paper (Andreassen et al. 2011) by Sigmund 
and co-workers. A further property enjoyed by the MISO 
case should be highlighted. Having two inputs and a single 
output, the singular input matrix V and the singular value 
matrix � may be, respectively, written as

The only non-vanishing singular value �1 gives the plant 
gain, whereas the associated first right (input) singular vec-
tor v1 gives the factors of the linear combination of the two 
loads f1 and f2 that stresses the structure the most, i.e.,

On the opposite side, the second right singular vector v2 is 
associated to the vanishing singular value �2 = 0 . Therefore, 

(21)B =

⎡
⎢⎢⎣

f1
f2
0

⎤
⎥⎥⎦
, f = 1, C =

�
f1 f2 0

�
= BT ,

(22)z = Cx =
�
f1 f2 0

�⎡⎢⎢⎣

x1
x2
x3

⎤
⎥⎥⎦
= f1x1 + f2x2 ≡ C,

(23)B =

⎡⎢⎢⎣

f1 0

0 f2
0 0

⎤⎥⎥⎦
, f =

�
1

1

�
, C =

�
f1 f2 0

�
,

(24)z =
�
f1 f2 0

�⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
= f1x1 + f2x2 = C1 + C2 = C.

(25)V =
[
v1 v2

]
, � =

[
�1 0

]
.

(26)v11f1 + v12f2.

Fig. 2  System, loads, and displacements
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the second input singular vector v2 gives the coefficients of 
the linear combination

to which a null compliance is associated. The crucial role 
played by (26) as far as the optimal topology is concerned 
should be highlighted: as long as the two loads f1 and f2 are 
independent of one another, i.e., when they belong to differ-
ent load cases so that r = 2 , the proposed approach provides 
the designer with an optimal solution that is based on the 
automatic selection of the worst possible load combination 
that is given by the components of v1 and characterized by 
a gain that is �1 . No role is conversely played by the load 
combination (27). Being the system a single output one, i.e., 
�2 = 0 in (25), the rank of G is r = 1 and therefore the plant 
direction v2 is annihilated or, in engineering words, the rel-
evant compliance is zero whenever the two loads f1 and f2 
are combined according to (27).

4.4  The SIMO case: single load case 
and minimization of the compliance vector 
norm

The peculiarity of this (and next) case is its output z . The 
compliance associated to each loaded point, say Ck = fkuk , 
is no longer added to define a unique scalar compliance 
C =

∑
k Ck , but it conversely defines an independent entry 

of the compliance vector z . For the problem at hand r = 1 
and no = 2 and one writes

such that the output vector reads

The rectangular matrix of singular values reads

that means that C1 and C2 are automatically combined 
according to the components of the first output vector u1 , 
i.e.,

and such combination is the one that determines the final 
optimal topology to which the maximum gain �1 is associ-
ated. On the other side, the combination

(27)v21f1 + v22f2,

(28)B =

⎡⎢⎢⎣

f1
f2
0

⎤⎥⎥⎦
, f = 1, C =

�
f1 0 0

0 f2 0

�
,

(29)z =

�
f1 0 0

0 f2 0

�⎡⎢⎢⎣

x1
x2
x3

⎤⎥⎥⎦
=

�
f1x1
f2x2

�
≡
�
C1

C2

�
.

(30)� =

[
�1
0

]
,

(31)u11C1 + u12C2

is associated to a null gain �2 = 0 and is therefore annihi-
lated by the computations. As a matter of fact (31) is the 
SIMO dual of the MISO input combination (26) in that they 
both are the combinations, input and output, respectively, 
that govern and determine the optimal topologies. Likewise, 
(32) and (27) are dual to each other in that none of them 
plays any role toward the computation of the final optimal 
topologies being associated to �2 = 0.

4.5  The MIMO general case: two load cases 
and minimization of the compliance vector 
norm

This is the way more general formulation. One has two 
inputs and two outputs, i.e., r = 2 and no = 2 , thus generat-
ing a 2 × 2 transfer matrix G . As for load and output matrices 
one may write

the output vector z being the same as in Eq. (29). In this 
case ( 2 = r > 1 and 2 = no > 1 ), two non-vanishing singular 
values show up and one may write

where �1 and �2 are, respectively, associated to the struc-
ture directions u1 and u2 that maximize and minimize the 
plant gains. In the MIMO case, a comparison between the 
choice of the 2-norm on the one side versus the Nuclear 
and Frobenius norms on the other is appropriate. Being 
r = no = 2 > 1 , no plant direction is annihilated (unlike pre-
vious cases) and both the triples (�1, u1, v1) and (�2, u2, v2) 
contribute to the output response. Being however 𝜎1 > 𝜎2 , 
the first triple plays a more important role than the second. 
That said, the 2-norm is focused on the first triple only, i.e., 
the one that maximizes the plant gain, whereas using the 
nuclear and Frobenius norms all plant directions enter the 
formulation, including those characterized by smaller gains 
( �2 for the case at hand).

5  Dynamic topology optimization fits 
the proposed formulation

By definition itself, the proposed topology optimization 
approach of Eq. (12) may be applied to any system whenever 
the following properties are met: 

(32)u21C1 + u22C2

(33)B =

⎡⎢⎢⎣

f1 0

0 f2
0 0

⎤⎥⎥⎦
, f =

�
1

1

�
, C =

�
f1 0 0

0 f2 0

�
= BT ,

(34)� =

[
�1 0

0 �2

]
,
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1. A transfer matrix G(p) is available that governs the 
input–output mapping of which the dependence on the 
design variable vector p is known;

2. A suitable norm of such matrix G(p) can be computed 
along with its sensitivities with respect to the design 
variables.

When these two properties hold true, the proposed for-
mulation is abstract enough to allow its applicability, no 
matter the specific problem at hand and in particular no 
matter whether the system is static or dynamic. For the 
latter to fit the proposed formulation, a Laplace (Fourier) 
domain setting is adopted wherein the transfer matrix G 
is readily available in an overall algebraic framework. In 
the dynamic case, though, the transfer matrix is no longer 
constant but depends on the Laplace variable s and even-
tually on the frequency � (and this matter shall affect the 
definitions themselves of matrix norms).

5.1  The dynamic transfer function

The more convenient way to arrive at the Laplace-domain 
formulation of the dynamic problem is to start with the 
time-domain state space form and take its Laplace trans-
form. The state space form reads

where a superposed dot indicates time differentiation and

in which

– K , D , M , and I are the stiffness, damping, mass, and 
identity matrices, respectively. In what follows a Ray-
leigh damping is considered such that 

 where � and � are positive constants (small enough not 
to overdamp the system). However, the formulation is not 
limited to Rayleigh damping and any viscous damping 
could be adopted;

– x is the state vector that piles the displacement and 
velocity vectors u and u̇ , respectively;

– z is the output vector that is defined through a proper 
choice of the output matrix C.

Taking the Laplace transform of (35)1 and (35)2 and ruling 
out the Laplace transform of the state vector x one gets the 

(35)
{

Eẋ = Ax + Bf

z = Cx
,

(36)E =

[
I 0

0 M

]
, A =

[
0 I

−K − D

]
, x =

[
u

u̇

]
,

(37)D = �M + �K,

Laplace-domain input/output relationship and the desired 
transfer matrix G(s) , i.e.,

Upon choosing s = i� one gets the frequency response 
matrix that is the dynamic counterpart of the static one in 
(12)2:

The dependence of G(i�;p) on the frequency � ∈ (0,∞) 
calls for a generalization of the three norms previously intro-
duced as discussed below.

5.2  Matrix norm definitions in the dynamic case

The norms in Sect. 2.2 are extended to the dynamic case in 
which G is no longer constant but depends on the frequency � . 
This is done through an operation that is conceptually trivial 
but computationally extremely expensive: the supremum over 
the frequency axis in the H∞ and Nuclear norm cases, a suit-
able integral average in the H2 case. One may write

– H∞ norm: ||G||∞ = sup� �1(�) where again the slight 
change of notation should be noticed. In statics this was 
named a 2-norm in view of the fact that it was defined as a 
ratio between the 2-norm of the output and input vectors. 
In dynamics, such norm is named H∞ since a supremum is 
taken over the frequency axis;

– nuclear norm: ||G||N = sup� �1(�) +… + �r(�);
– the H2-norm is the generalization of the algebraic Frobe-

nius norm to dynamical systems. Unlike the H∞-norm, 
however, such generalization is not performed using a sup 
operator, such as 

 but via an integral average that reads 

However, Eq. (40) is neither practical for computing the 
H2 norm nor its sensitivity. A more viable approach is then 
recalled in Sect. 5.3 below.

(38)
Z(s) =

[
C(sE − A)−1B

]
F

⇓

G(s) = C(sE − A)−1B

.

(39)G(i�;p) = C(i�E − A)−1B.

sup
�

√
�2
1
(�) +… + �2

r
(�),

(40)||G||2 =
√√√√ 1

2� ∫
∞

−∞

r∑
i=1

�2
i
(�)d�.
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5.3  Computing the H
2
 norm and its sensitivity

The first step to compute ||G||2 in the dynamic case is 
to evaluate the contrallability Gramian W that solves the 
generalized Lyapunov equation:

Then, one may show that the following relation holds true 
(Francis 1987):

5.3.1  Semi‑analytic H2‑norm sensitivity

As for the derivative of ||G||2 with respect to the design 
parameter pk , one may write by direct differentiation of 
(42):

in which the derivative of the Gramian W with respect to 
pk may be computed by solving the generalized Lyapunov 
equation one gets by direct differentiation of (41):

where a superposed prime denotes differentiation with 
respect to pk and the pseudo-load S is given as follows:

5.3.2  Finite difference H2‑norm sensitivity

The semi-analytic sensitivity of Eq. (43) calls for the solu-
tion of an additional generalized Lyapunov equation, the 
pseudo-load of which is quite a complex one, i.e., S in 
(45). A fast solver for the generalized Lyapunov equation 
was coded in the Matlab add-on Saak et al. (2022) that 
performs at its best when the B matrix is a “thin” rec-
tangular one, a property that is not enjoyed by S in (45). 
It is therefore more convenient to compute the H2-norm 
sensitivity using a finite difference approximation that also 
involves the solution of a generalized Lyapunov equation. 
The B matrix of the latter, though, is the same as the one 
of the actual system and is therefore ideally suited for the 
code in Saak et al. (2022) to work full throttle.

(41)AWE + EWAH + BBH = 0.

(42)||G||2 =
√

trace (CWCH).

(43)
�||G||2
�pk

=
1

2||G||2 trace

[
C
�W

�pk
CH

]
,

(44)AW�E + EW�AH + S = 0,

(45)S = A�WE + AWE� + E�WAH + EWAH �
.

5.4  The dynamic topology optimization problem

The dynamic topology optimization problem eventually 
writes

that is formally the same as the static one in (12), provided 
the respective definitions of matrix norms (Sect 2.2 versus 
Sect 5.2) and transfer matrices (Eq. 11 versus Eq. 39). A 
few considerations on how to compute the norms and their 
sensitivities when the frequency response matrix depends on 
� are in order. The scope here is to show how these norms 
can be computed using, for example, Matlab, whereas details 
concerning the algorithms themselves are beyond the scopes 
of this paper and may be found in Bruisma and Steinbuch 
(1990) among others.

5.4.1  On the numerical computation of ||G(i!, p)||

Computing any of the three norms of G(i�;p) (for fixed 
p ) represents a formidable computational task. The H∞ 
norm is by far the one that has received more attention by 
the scientific community, mainly because of its relevance 
in the framework of robust control of closed-loop systems 
(Francis 1987). The Matlab function norm (or better its 
version made available in the add-on sss Toolbox 
(MORLab 2017) that works on sparse matrices) may be 
used for this purpose: provided as inputs a suitable ver-
sion of the transfer function G and the flag ��� , the func-
tion norm returns the H∞-norm of G and the frequency at 
which the norm is attained. The latter frequency is needed 
to compute the sensitivities as shown below. Using the 
same function ���� with the flag 2, the Frobenius norm is 
retrieved. However, when the system size is 105 or more as 
is the case of the examples below, all available norm func-
tions become dramatically slow and the very many calls 
required to achieve convergence within an optimization 
session make their usage not convenient if not impracti-
cal. The way out adopted for the simulations to come is a 
sub-optimal strategy described below that applies to the 
Nuclear norm as well for which ad hoc methods are not 
available.

(46)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
p

F(p) = ��G(i�, p)��

s.t. G(i�;p) = C(i�E − A)−1B

V(p) ≤ Vmax

pmin ≤ p ≤ pmax

,
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5.4.2  A viable sub‑optimal approach for computing the H∞ 
and the Nuclear norms of a large scale dynamic 
system

Given a dynamic system with transfer matrix G(i�) , the pro-
posed method for a sub-optimal computation of ||G(i�)||∞ 
and ||G(i�)||N works as follows: 

1. the frequency range of interest, say I� = (�1,�2) , is 
determined and sampled (uniformly or not);

2. a call to the Matlab function sigma is made that returns 
all the singular values of the dynamic system for all fre-
quencies in I�;

3. ||G(i�)||∞ and ||G(i�)||N are, respectively, computed as 
follows: 

The method is only sub-optimal in that the first singular 
value and the sum of all of them might assume larger val-
ues at frequency points that do not belong to the set I� , 
especially if the adopted partition of the frequency axis is 
a coarse one. One may of course refine the approach using 
an adaptive sampling strategy that would allow a closer and 
closer computation of the actual value of the norm. For the 
sake of this paper, this option is not however exploited but 
is left for near-future extensions.

5.4.3  On the computation of the sensitivity of ||G(i!, p)||

If one compares the static and dynamic definitions of G that 
are, respectively, given in Eqs. (12)2 and (46)2 , it is straight-
forward to realize that the static sensitivity formulas in (15) 
and (16) still hold true in the dynamic case provided that

– K is substituted by i�E − A;
– in such formulas, � is no longer a variable but takes on 

the value at which the norm is attained.

6  Numerical results

A few representative numerical results are presented here-
after that are cast in the framework of Sects. 3 and 5 for the 
static and dynamic cases, respectively.

6.1  Software and third party add‑ons

The codes with which all the numerical results were obtained 
are written in Matlab. The full code that solves the static 

||G||∞ = max
�∈I�

�1(�),

||G||N = max
�∈I�

[
�1(�) + �2(�) +… �r(�)

]
.

problem is presented in online Appendix 1 and requires the 
Matlab implementation of the Method of Moving Asymp-
totes (MMA) made available by its creator Krister Svanberg, 
Svanberg (1987). The following add-ons were used for the 
dynamic code:

– Sparse dynamic models (state space and/or transfer 
functions) are not handled in plain Matlab. The sss 
Toolbox (MORLab 2017) allows this useful option 
and extends to sparse systems nearly all functions that 
require full storage in Matlab;

– Fast matrix computations are a pre-requisite of the 
proposed code. The Matrix Equation Sparse 
Solver (M-M.E.S.S) Toolbox (Saak et al. 2022) 
is an ideal tool in this respect, e.g., for solving the gener-
alized matrix Lyapunov Equation (41).

6.2  Problem 1‑Statics

6.2.1  Preliminary considerations

The four possible formulations (SISO, MISO, SIMO, and 
MIMO) are exploited along with the three proposed norms 
(2, Nuclear and Frobenius). It should be outlined that in the 
first three cases (SISO, MISO, and SIMO) r = 1 , i.e., a sin-
gle singular value is non-trivial so that the three norms hap-
pen to be the same and so do the relevant optimal topologies. 
Therefore, for each of the cases SISO, MISO, and SIMO a 
single optimal topology shall be shown that is generated 
using any of the three norms. In the MIMO case, though, 
two singular values are non-trivial and therefore the optimal 
designs do depend on the norm being used. Therefore, for 
the latter MIMO case each design is presented.

6.2.2  General data

The geometry and the loads of the static topology optimiza-
tion problem are shown in Fig. 3. Thanks to the symmetry of 
the structure the half-model in Fig. 3 is used in the computa-
tions using the following numerical data:

– Young modulus: E0 = 1 , Emin = 10−9,
– Poisson ratio: � = 0.3,
– Number of elements in vertical (Y)-direction: 26;
– Number of elements in horizontal (X)-direction: 3 × 26;
– Side length: L = 26 (by this choice a uniform mesh of 

square elements of unit size is generated);
– P = Q = 1 (the load time dependence in Fig. 3 is for use 

in the dynamic example below);
– Volume fraction = 0.5;
– Filter type: density, see Andreassen et al. (2011);
– SIMP penalization factor: 3.
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6.2.3  SISO formulation

Using a SISO formulation the input is given by the two 
forces P and Q that belong to the same load case and the 
output is the overall compliance C  . As shown in Table 1, 
the norms at convergence coincide (as they should), whereas 
the computational times do not. The CPU time is limited and 
smaller than two minutes in all cases, see the convergence 
curves in Fig. 4. The optimal topology is shown in Fig. 5 that 
is the same as the one given by the 88-line code by Sigmund 
and co-workers Andreassen et al. (2011). This does not come 
as a surprise since the problem being solved is the same, 
even though the underlying formulation is different. As for 
the input and output plant directions, in the case of a SISO 
representation both V and U degenerate to the (scalar) unity, 
whereas the singular value is the norm itself.

6.2.4  MISO formulation

In the MISO formulation, the two loads P and Q are 
allowed to vary independently of each other within two 

different load cases. However, a single output compli-
ance is considered that is the sum of the two compliances. 
Table 2 shows norm values and CPU times needed to per-
form the computations. The convergence curves are shown 
in Fig. 10 that exhibits a “nearly” monotonic convergence 
for all the three norms. The optimal topology (shared by 
all the three norms) is shown in Fig. 7. A look at the topol-
ogies in Figs. 5 and 7 shows that, though similar, the two 
designs are different. One may wonder whether this rep-
resents a violation of the superposition principle accord-
ing to which as long as the response is linear the output 
of the sum ( C  due to P and Q acting upon the structure 
simultaneously) is the sum of the outputs ( C = CP + CQ ). 
Of course, no violations, since the structure is not given 
but being defined iteratively, the updates on the design 
variables at each iteration need not to be the same and so 
are the final designs (Fig. 6) .

The input plant direction is given by the singular input 
vector at convergence that reads

However, for MISO systems, the concept of plant direc-
tion is not as important as one may show that the gain 
neither depends on the input magnitude nor on its direc-
tion (Skogestad and Postlethwaite 1996), i.e., V . As shown 
below, the concept of input direction becomes conversely 
crucial in the case of MIMO systems.

(47)V =

[
0.727

0.686

]
.

Fig. 3  Numerical example: full 
and half structure using sym-
metry

Table 1  SISO system results

||C||
2

||C||
N

||C||
F

Norm Values 58.71 58.71 58.71
Elapsed Time (s) 124.2 107.58 131.1
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6.2.5  SIMO formulation

In the SIMO formulation, the two forces P and Q belong 
to the same load case but the overall compliance is split to 
form a 2D output vector z =

[
C1 C2

]T . Table 3 shows norm 
values and CPU time needed to achieve convergence.

Figures 8 and 9 show the convergence paths for the three 
norms and the optimal topology, respectively.

The optimal topology happens to be the same as the 
MISO case and interestingly enough the singular output 
vector reads

that is the same as the input vector of the SIMO case.

6.2.6  MIMO formulation

As anticipated, the MIMO case is the more general one in 
that not only are the two forces P and Q free to vary inde-
pendently of each other within two load cases, but also each 
compliance CP and CQ represents an entry of the 2D output 
vector z . The concepts of plant directions, orthogonality of 
input and output singular vectors, and singular values seen as 
plant gains assume the deepest meaning in the MIMO case. 
Norm values and CPU time needed to achieve convergence 
are displayed in Table 4.

The optimal topologies obtained using the three norms 
are shown in Fig. 11. For the sake of completeness, Fig. 12 
shows the optimal topology one gets using Sigmund’s 
88-line code with the multiload option. The four designs 
are similar but different being based on different optimality 
conditions. The triples (V,U,�) are reported next for the 
four designs at convergence:

(48)U =

[
0.727

0.686

]
,

Fig. 4  SISO formulation—Convergence curves: (Up) 2-norm, (Mid) 
N-norm, and (Bottom) F-norm

Fig. 5  SISO formulation—Optimal topology: 2-norm, N-norm, and 
F-norm

Table 2  MISO system results

||C||
2

||C||
N

||C||
F

Norm Values 42.08 42.08 42.08
Elapsed Time (s) 93.7 111.1 114.4
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• 2-Norm

• Nuclear norm

• Frobenius norm 

• 88-line Sigmund’s code 

As for the dominating plant direction, it is important to high-
light that the first input singular vector v1 (first column of V 
in Eqs. (49), (50), (51), and (52)) has two components that 
are opposite in sign and share a similar amplitude. This was 

V =

[
−0.755 0.666

0.666 0.755

]
, U =

[
−0.755 0.666

0.666 0.755

]

(49)� =

[
94.16 0

0 54.72

]

V =

[
−0.784 0.621

0.621 0.784

]
, U =

[
−0.784 0.621

0.621 0.784

]

(50)� =

[
98.92 0

0 38.22

]

V =

[
−0.771 0.636

0.636 0.771

]
, U =

[
−0.771 0.636

0.636 0.771

]

(51)� =

[
96.81 0

0 41.57

]

V =

[
−0.786 0.618

0.618 0.786

]
, U =

[
−0.786 0.618

0.618 0.786

]

(52)� =

[
100.28 0

0 38.06

]
Fig. 6  MISO formulation—Convergence curves: (Up) 2-norm, (Mid) 
N-norm, and (Bottom) F-norm

Fig. 7  MISO formulation—Optimal topology: 2-norm, N-norm, and 
F-norm

Table 3  SIMO system results

||C||
2

||C||
N

||C||
F

Norm Values 42.08 42.08 42.08
Elapsed Time (s) 93.7 64.18 81.07
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expected because of the cantilevered nature of the beam and 
the position of the two loads (P and Q, respectively, inside 
and outside the beam span). As for the performance of the 
proposed designs, an insight may be gathered by looking 
at Table 5 that grades the presented designs in terms of the 
numerical values of the adopted norms. The following con-
siderations are worth being made:

– as expected each design wins its own competition, i.e., 
any norm is minimized by the formulation that explicitly 
aimed at its minimization (the relevant values are written 
in bold on the diagonal of Table 5);

– minimizing the 2-norm, i.e., the maximum gain �1 of 
the system in the direction of the first input and output 
singular vectors, causes a high penalization on the other 
plant directions. One may in fact see that for the three 
cases Nuclear, Frobenius, and Sigmund, the second (and 
last) singular value is, respectively, equal to 38.22, 41.57, 
and 38.06, i.e., values that are smaller than half the first 
gain �1 . Not so for the 2-norm case for which �2 = 54.72 , 
i.e., a remarkably larger value. As a general guideline, 
the lesson learned is that using a norm that involves the 
maximum singular value only is computationally more 
efficient and inherently leads to the reduction of the 
maximum gain (which is an amazing result). However, 
neglecting the effect of smaller singular values may lead 
to a system response that is poorer overall, especially 
when �2 is close to �1;

– for each of the four designs, a measure of overall per-
formance (the smaller the better) may be computed as 
the SRSS (square root of the sum of the squares) of the 
differences between scored norm values and best norm 
values (eventually scored by other approaches). One gets 
the results shown in Table 6 that again shows that the 
2-norm is an extreme one: the maximum gain is reduced 
the most among all possible design choices but the price 

Fig. 8  SIMO formulation—Convergence curves: (Up) 2-norm, (Mid) 
N-norm, and (Bottom) F-norm

Fig. 9  SIMO formulation—Optimal topology: 2-norm, N-norm, and 
F-norm

Table 4  MIMO system results

||C||
2

||C||
N

||C||
F

Norm Values 94.16 137.14 105.36
Elapsed Time (s) 156.47 171.41 177.35
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Fig. 10  MIMO formulation—Convergence curves: (Up) 2-norm, 
(Mid) N-norm, and (Bottom) F-norm

Fig. 11  MIMO formulation—Optimal topologies: (Top) 2-norm, 
(Mid) N-norm, and (Bottom) F-norm

Fig. 12  Sigmund’s 88-line code solution using the multiload case 
option

Table 5  Norm competition between the four available designs

||C||
2

||C||
N

||C||
F

2-norm design 94.16 148.88 108.91
Nuclear norm design 98.92 137.14 106.05
Frobenius norm design 96.81 138.38 105.36
88-line code based 100.28 138.34 107.26

Table 6  Overall performance of the designs (the smaller, the better)

Perfor-
mance 
index

2-norm design 12.26
Nuclear norm design 4.81
Frobenius norm design 2.93
88-line code based 6.52
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to be paid is a weaker behavior with respect to other pos-
sible merit functions. Eventually, Sigmund’s code design 
(that is not based on an explicit norm minimization as 
other designs do) is shown to be quite a robust one in that 
it performs nicely with respect to all the proposed norms.

6.3  Problem 2‑Statics ‑ High‑Rise Building

6.3.1  Preliminary considerations

The five-story high-rise building shown in Fig.  13 is 
investigated next. The objective is to arrive at an optimal 
bracing structure capable to withstand horizontal environ-
mental actions. This kind of application of topology opti-
mization has been investigated for some fifteen years (see 
Beghini et al. 2012 as one of the most successful strategies 

within this framework). This problem is properly suited to 
test the proposed approach in that its multi-output version 
is a five outputs challenging one. The following four dif-
ferent designs are pursued: 

1. Single-Input Single-Output (SISO);
2. Multi-Input Multi-Output (MIMO), 2-norm;
3. Multi-Input Multi-Output (MIMO), Nuclear norm;
4. Multi-Input Multi-Output (MIMO), Frobenius norm.

The main geometry, mesh, and mechanical parameters are 
as follows:

– number of stories = 5;
– number of elements in horizontal direction = 26 = 64;
– number of elements per story in vertical direction = 

floor(1.2 × 26) = 77;
– maximum volume fraction = 0.40;
– SIMP exponent = 3.0;
– filter minimum length = 2.25;
– filter type: density.

Convergence curves for all the designs are displayed 
in Fig. 14 that show a steep monotonic behavior of the 
MMA-based approach. All the optimal topologies are 
shown in Fig.  15. The SISO-based bracing system is 
shown to be quite a stiff one at the base (and is so up to 
roughly mid-rise). MIMO designs are in general charac-
terized by a more homogeneous material distribution as 
far as the thickness of the diagonal braced is concerned. 
From a manufacturability standpoint, the MIMO design 
using a nuclear norm-based goal function appears to be 
superior with respect to other designs in that a lower and, 
so to speak, “cleaner” bracing layout shows up. The per-
formance of three MIMO designs is assessed in Table 7 
where all the three norms are computed.

6.4  Problem 3 ‑ Dynamics ‑ MIMO Formulation

6.4.1  Preliminary considerations

Attention is focused on the MIMO formulation only that is 
the one that exhibits a more general and structurally richer 
behavior. As for the norms, the H∞ and the Nuclear norms 
are considered since they depend on local evaluations of 
the singular values in such a way that the sub-optimal 
approach introduced in Sect. 5.4.2 may be used. On the 
other side, though conceptually applicable, the usage of 
the H2-norm has not been exploited because of the pro-
hibitive computational cost of the relevant sensitivities, no 
matter the function or approximation being used.

Fig. 13  Five-story high-rise building domain
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6.4.2  General data

Geometry and loads are the same as Problem 1. As for 
the Young modulus E0 = 1000 and Emin = 10−9 are used, 
whereas the mass density parameters are chosen as �0 = 10−3 
and �min = 10−6 and a Rayleigh damping matrix is intro-
duced that reads

The number of elements in vertical and horizontal directions 
are given as 25 and 3 × 25 , respectively.

6.4.3  H∞‑norm formulation

The optimal topology one gets by minimizing the H∞-norm 
of the MIMO transfer matrix G(i�) is shown in Fig. 16, 
whereas Fig. 17 shows the path of the MMA scheme toward 
convergence. The chattering pattern displayed by the conver-
gence curve is not due to numerical difficulties encountered 
along the path by the optimization routine. It is conversely 
due to the fact that, as explained below in more detail, the 
first singular value �1(�) exhibits two very close points that 
are competing to realize the overall maximum, i.e., the H∞

-norm. The design switches back and forth between the two 
points along an overall converging path. Eventually the two 
designs coalesce and convergence is achieved.

Figures 18 and 19 shade some light on the complexity of 
the dynamic response of a Multi-Input Multi-Output system 
(even the simplest of such type, i.e., a 2-input 2-output struc-
ture as the one under investigation) and allow a deeper and 
rationale understanding of the overall optimization process. 
Remarkable features emerging from Fig. 18 are as follows:

– Toward the evaluation of ||G(i�)||∞ , i.e., sup� �1(�) , 
a competition between two frequencies takes place to 
assess the one at which the norm itself is attained. This 
should be considered a general outcome of minimizing 
the H∞-norm. In fact such an approach is focused on min-
imizing the supremum of �1 (the maximum of the first 
singular value) over the frequency axis. Design changes 
are therefore sharply localized in the frequency range 
where the current maximum is being attained, whereas 
no care is taken of the dynamic response at frequen-
cies far apart at which the magnitude of the response is 
allowed to increase. When such an increase leads to a 
response amplitude that falls closer and closer to the one 
where the H∞-norm is currently attained the competition 
starts. In general, one can conclude that designs based on 
the minimization of the H∞-norm are likely to be multi-
modal ones as a result of this inherent feature;

(53)D = 0.04M + 0.03K.

Fig. 14  Convergence curves: in top-down order: SISO, MIMO 
(2-norm), MIMO (Nuclear norm), and MIMO (Frobenius norm)

▸
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– it is well known that classical eigenvalue optimization 
may be affected by the eigenvalue crossing phenom-
enon, i.e., a crossing between different eigenvalue tra-
jectories in the design space that leads to the annoying 
non-differentiability of the min−max eigenvalue prob-
lem. A similar behavior shows up in Fig. 18 where a 
singular value crossing takes place at 4.0 rad/s. Such 
crossing takes place at a minimum point so that the 
proposed procedure is not affected by the phenomenon. 

However this may not always be the case and an issue 
may arise in general so that further investigations in the 
near future are planned on this topic.

Fig. 15  Optimal topologies: left to right: SISO, MIMO (2-norm), 
MIMO (Nuclear norm), and MIMO (Frobenius norm)

Table 7  Norm competition between the three available designs

||C||
2

||C||
N

||C||
F

2-norm design 0.909 1.055 0.943
Nuclear norm design 0.926 1.013 0.940
Frobenius norm design 0.939 1.048 0.921

Fig. 16  minH∞-norm formulation - Optimal topology

Fig. 17  MIMO formulation - H∞-norm convergence curve

Fig. 18  H∞-norm formulation - Variation of the two singular values 
�
1
(�) and �

2
(�)

Table 8  H∞-norm formulation. 
Key points of the frequency 
response amplitude plot (see 
Fig. 19)

Point Frequency 
[rad/s]

Amplitude

P
11

3.76 0.645
P
12

3.77 0.152
P
21

3.77 0.152
P
22

4.49 0.689
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Switching to the amplitude of the frequency response, 
reference is made to Fig. 19 where the points in Table 8 are 
highlighted. First of all one should observe that the two points 
P12 and P21 govern the mutual compliance, i.e., the (ampli-
tude of the) displacement of B when the loaded point is A and 
viceversa. The fact that P12 = P21 is a version of the Max-
well–Betti reciprocal work theorem applied to the dynamic 
case in a harmonic load framework. Interestingly enough, not 
only are the two amplitudes the same, but also the frequen-
cies at which maximum points are attained coincide. As for 
the overall system dynamics, the singular value crossing at 
� = 4 rad/s and the competition between the two maximum 
points find their motivation and confirmation in Fig. 19 where 
one may see that the amplitude of the compliance of the two 
loads (points P11 and P22 ) is quite similar as are the relevant 

frequencies �P11
= 3.76 rad/s and �P22

= 4.49 rad/s. From a 
quantitative point of view, the singular value decomposition of 
G(i�) for all the frequencies above read as follows: 

1. � = �P11
= 3.76 rad/s 

2. � = �P22
= 4.49 rad/s 

3. � = �P12
= � = �P21

= 3.77 rad/s. 

6.4.4  Nuclear norm formulation

The optimal topology one gets by minimizing the Nuclear 
norm of the MIMO transfer function G(i�) and the 

(54)U11 =

[
−0.058 + 0.940i − 0.198 + 0.271i

0.119 − 0.313i − 0.7556 + 0.563i

]

(55)�11 =

[
0.695 0

0 0.286

]

(56)V11 =

[
−0.942 + 0.000i − 0.335 + 0.000i

0.320 − 0.099i − 0.900 + 0.278i

]

(57)U22 =

[
0.059 − 0.045i 0.914 + 0.391i

−0.878 − 0.473i 0.001 + 0.074i

]

(58)�22 =

[
0.6932 0

0 0.165

]

(59)V22 =

[
−0.175 + 0.000i 0.985 + 0.000i

0.932 − 0.319i 0.166 − 0.057i

]

(60)

U12 =

[
−0.017 + 0.942i − 0.190 + 0.276i

0.109 − 0.317i − 0.747 + 0.5748i

]
,

(61)�12 =

[
0.694 0

0 0.289

]
,

(62)V12 =

[
−0.942 + 0.000i − 0.335 + 0.000i

0.319 − 0.103i − 0.897 + 0.289i

]
.

Fig. 19  H∞-norm formulation - Frequency response amplitudes—
Top: from P (input 1) to outputs 1 ( u

A
 ) and 2 ( u

B
)—Bottom: from Q 

(input 2) to outputs 1 ( u
A
 ) and 2 ( u

B
)

Fig. 20  min Nuclear norm formulation—Optimal topology
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convergence curve are shown in Figs. 20 and 21, respec-
tively. In Fig. 21 no oscillations show up and this is a first 
indicator of a structural response dominated by a single 
mode. This is confirmed by the singular value curves dis-
played in Fig. 22 wherein an innocuous low-amplitude cross-
ing takes place at about � = 5 rad/s. In fact the second gain 
(maximum of the second singular value) is smaller that half 
the larger gain that takes place at � = 3.98 rad/s that there-
fore governs the entire system dynamics.

Figure 22 shows the variations of the singular values 
�1(�) and �2(�) and their sum �1(�) + �2(�) with respect 
to the frequency �.

Outstanding features emerging from Fig.  22 are as 
follows:

– the Nuclear norm, i.e., the maximum value of 
�1(�) + �2(�) is 0.8789 and is attained at � = 3.98 . 
Using a goal function that depends on both the singular 
values causes design updates to spread their effect over 
a wider frequency range, at least as wide as (�P11

,�P22
) , 

see also Table 9. This seems to be the main reason why 
the amplitude of the second singular value is kept small 
and a single-mode design is ended up with, unlike the H∞

-norm-based design that was a multi-modal one;
– Not only is the dynamic response dominated by a single 

mode but also a similar behavior is exhibited by the two 
inputs. Upon comparing the upper and lower amplitude 
curves in Fig. 23, one concludes that the plant is domi-
nated by the first input, i.e., P, whereas the second input 
Q has a nearly negligible effect.

To summarize with, (at least for the problem at hand) 
using the nuclear norm leads to a single-mode design 
wherein one load determines much of the structural 
response, whereas the other is nearly annihilated by the 
design itself. These features are not shared by the H∞

-norm-based design that puts all its efforts against the 
overall peak response.

The single modality of the structural response is further 
confirmed by the singular value decomposition of G for 
� = �P11

 , � = �P22
 , and � = �P12

 . In all cases, the second 
(and last) gain �2 is much smaller than the largest gain �1 
as shown below: 

1. � = �P11
= 3.97 rad/s 

2. � = �P22
= 4.01 rad/s 

(63)U11 =

[
−0.104 + 0.837i − 0.519 + 0.140i

0.091 − 0.5300i − 0.824 + 0.182i

]
,

(64)�11 =

[
0.645 0

0 0.087

]
,

(65)V11 =

[
−0.843 + 0.000i − 0.537 + 0.000i

0.537 − 0.025i − 0.843 + 0.040i

]
,

Fig. 21  MIMO formulation— Nuclear norm convergence curve

Fig. 22  Nuclear norm formulation - Variation of the two singular val-
ues �

1
(�) and �

2
(�)

Table 9  Nuclear norm 
formulation. Key points of the 
frequency response amplitude 
plot (see Fig. 23)

Point Frequency 
[rad/s]

Amplitude

P
N

3.98 0.879
P
11

3.97 0.563
P
12

4.01 0.339
P
21

4.01 0.339
P
22

6.36 0.301
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3. � = �P12
= � = �P21

= 3.97, rad/s. 

(66)U22 =

[
−0.130 + 0.279i 0.839 + 0.449i

−0.217 + 0.927i − 0.295 − 0.087i

]
,

(67)�22 =

[
0.274 0

0 0.034

]
,

(68)V22 =

[
−0.307 + 0.000i − 0.952 + 0.000i

−0.931 − 0.195i 0.301 + 0.063i

]
,

(69)U12 =

[
0.026 + 0.845i − 0.515 + 0.144i

0.010 − 0.535i − 0.824 + 0.187i

]
,

7  Conclusions and need for further 
investigations

A novel unifying approach has been presented that allows to 
handle static and dynamic topology optimization using the 
very same formulation (and computer code). The singular 
value decomposition of the input–output transfer matrix G 
along with the selection of suitable matrix norms (defined 
uniquely in terms of its singular values) to be used as goal 
functions represent the key ingredients of the proposed 
approach wherein static and dynamic frameworks are iden-
tical. Computing G , its norms and its sensitivities in the 
static and dynamic cases are the main focus of the paper that 
is completed by in-depth numerical investigations wherein 
general features of the resulting designs are highlighted. The 
full Matlab code that solves the static problem is provided 
in online Appendix 1 and may be readily extended to cover 
the dynamic case by properly implementing the details given 
in Sect. 5.

Ongoing investigations are concerned with the following 
topics that are mainly focused on the improvement of the 
dynamic topology optimization approach:

• The number of states of the dynamic systems investi-
gated herein is about twenty thousands, whereas just few 
poles govern the dynamic response of the system. Using 
reduced order models seems therefore the more natural 
way to cope with dynamic accuracy and reduction of 
CPU time;

• Using reduced order models opens the way to the poten-
tial issue of computing the sensitivities. In fact reduced 
order models are in general black boxes that do not allow 
design variables at the element level to hold their physi-
cal meaning. A possible way out is the adoption of par-
ametric reduced order models that are currently being 
investigated;

• The H∞-norm approach was shown to lead to multi-
modal solutions characterized by a competition between 
candidate design points at different frequencies. The 
numerical minimization scheme is therefore likely to be 
trapped in between the two points exhibiting an overall 
chattering behavior. The adoption of proper filters that 
allow a fast choice among the two points is the remedy 
being exploited to solve such problem;

(70)�12 =

[
0.641 0

0 0.088

]
,

(71)V12 =

[
−0.845 + 0.000i − 0.535 + 0.000i

0.534 − 0.027i − 0.844 + 0.043i

]
.

Fig. 23  Nuclear norm formulation - Frequency response ampli-
tudes—Top: from P (input 1) to outputs 1 ( u

A
 ) and 2 ( u

B
)—Bottom: 

from Q (input 2) to outputs 1 ( u
A
 ) and 2 ( u

B
)
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• There are such applications as, for example, building 
engineering wherein structures should be designed to 
withstand static and dynamic load combinations at the 
same time. The former are often determined by perma-
nent and variable vertical loads, whereas earthquakes 
represent the driving loads of the latter. It is therefore 
planned to extend the proposed approach using goal 
functions that are convex combinations of the purely 
static and dynamic ones;

• Finally a few words of the robustness issue (both in 
statics and dynamics). It is planned to adopt some non-
probabilistic uncertainty models similar to what is done 
in the framework of robust control of uncertain systems. 
By doing so, one operates on a class of systems (and not 
on a single one) in a worst-case scenario framework;

To conclude with, it is planned to use some Application 
Programming Interface (API) to link the Matlab code to a 
general purpose finite element software so as to apply the 
proposed approach to (nearly) real-world structural and 
industrial applications.

Appendix A Matlab code

A.1 Brief explanation of the code

Other than the method of moving asymptotes for which ref-
erence is made to Svanberg (1987), the code consists of four 
files that are briefly commented on below. In principle, only 
lines where the user is supposed to provide an input (via a 
specific choice of a proper parameter) are commented. The 
code itself is thoroughly commented to ease the use and 
the overall understanding of the reader. Furthermore, data 
structures and the like are based on (Andreassen et al. 2011) 
to which the reader and the user are addressed for further 
details.

A.1.1 main

• Lines 15-18: ITYPE: a single line should be left uncom-
mented to select the problem under investigation (SISO, 
MISO, SIMO, MIMO);

• Lines 20-22: INORM: a single line should be left uncom-
mented to select the matrix norm to be used (2, Nuclear, 
Frobenius).

A.1.2 initialize_mma

This file and the following one are standard files that are 
needed to run the MMA Svanberg (1987). Parameters to be 
set by the user are as follows:

• Line 25: maxoutit: maximum number of iterations of 
the MMA;

• Line 26: kkttol: tolerance to exit the MMA.

A.1.3 start_mma

This file and the previous one are standard files that are 
needed to run the MMA Svanberg (1987). The file calls the 
function compliance_stat that returns goal function, 
constraints and relevant gradients. A verbose mode is set 
(but can be changed by the user) that at each iteration pro-
vides the following:

• Line 32: current values of iteration, goal function and 
volume constraint;

• Line 33: the current topology is plotted.

A.1.4 compliance_stat

This function is the core of the proposed approach. No 
action is expected to be taken by the user. However, a few 
comments are given below (in addition to the ones reported 
in the file itself).

• Lines 19-31: matrices B and C (respectively named 
Bstate and Cstate in the code) are computed once 
for all at the first iteration and boundary conditions 
applied;

• Lines 33-35: the stiffness matrix is updated;
• Lines 37-39: the factors CK−1 and K−1

B in Equation (16) 
are computed;

• Lines 41-49: the transfer matrix G in Equation (11) is 
determined, its Singular Value Decomposition com-
puted, Equation (2), and relevant singular values sorted 
in descending order (and consequently the associated left 
and right singular vectors);

• Lines 51-53: the factors uH
h
CK

−1 and K−1
Bv

h
 are com-

puted as needed by plugging Equation (16) into Equation 
(17);

• Lines 55-64: the goal function is computed that is the 
norm ||G|| selected by the user via INORM;

• Lines 66-87: the gradient of the goal function is com-
puted by plugging into the chain rule in Equation (18) the 
formulas in Equations (19) and (17). One should notice 
that the parfor command (parallel for) available in 
Matlab is used to speed up the computations;

• Lines 89-end: volume constraints are computed and rel-
evant filters applied (see again (Andreassen et al. 2011)).
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