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Abstract
Buckling is a critical phenomenon in structural members under compression, which could cause catastrophic failure of a 
structure. To increase the buckling resistance in structural design, a novel topology optimization approach based on the bi-
directional evolutionary structural optimization (BESO) method is proposed in this study with the consideration of buckling 
constraints. The BESO method benefits from using only two discrete statuses (solid and void) for design variables, thereby 
alleviating numerical issues associated with pseudo buckling modes. The Kreisselmeier-Steinhauser aggregation function 
is introduced to aggregate multiple buckling constraints into a differentiable one. An augmented Lagrangian multiplier is 
developed to integrate buckling constraints into the objective function to ensure computational stability. Besides, a modified 
design variable update scheme is proposed to control the evolutionary rate after the target volume fraction is reached. Four 
topology optimization design examples are investigated to demonstrate the effectiveness of the buckling-constrained BESO 
method. The numerical results show that the developed optimization algorithm with buckling constraints can significantly 
improve structural stability with a slight increase in compliance.

Keywords Topology optimization · Bi-directional evolutionary structural optimization · Buckling constraint · Structural 
stability · Augmented Lagrangian multiplier

1 Introduction

In the past decades, the development of topology optimi-
zation has been rapidly progressing. Structures with high 
performance and minimum material utilization can be 
achieved by using topology optimization. Most of the early 
works on topology optimization focused on maximizing 
structural stiffness (Bendsøe and Kikuchi 1988; Rozvany 
et al. 1992; Xie and Steven 1993). Later, other effects have 
also been considered by researchers, such as natural fre-
quencies (Huang et al. 2010), multiple materials (Huang 
and Xie 2009; Li and Xie 2021), structural complexity (He 
et al. 2020, 2022), additive manufacturability (Bi et al. 2020, 
2022), and principal stress (Amir 2017; Chen et al. 2021). In 
addition, topology optimization under buckling constraints is 

regarded as a challenging and important topic. The neglect 
of the buckling effect in topology optimization may lead 
to poor stability and unexpected failure of a structure with 
optimum stiffness.

At present, the solid isotropic material with penalization 
(SIMP) method has been commonly used in buckling-con-
strained topology optimization. A typical issue of the SIMP 
material model is the appearance of pseudo buckling modes 
in low-density regions, which would generate incorrect sen-
sitivities and poor convergence in the optimization process 
(Bruyneel et al. 2008). Many researchers have attempted to 
alleviate the difficulties in the eigenvalue-related optimiza-
tion caused by the pseudo-buckling modes. For example, 
Neves et al. (1995) proposed to ignore the stress stiffness of 
the low-density elements. However, Kemmler et al. (2005) 
pointed out that such a cut-off method could lead to non-
differentiable functions. Bendsøe and Sigmund (2004) sug-
gested a smooth version of this approach by employing two 
different material interpolation schemes for stiffness and 
stress stiffness matrices. This approach has been proven 
to be effective in eliminating pseudo buckling modes in 
many studies (Munk et al. 2017; Yi et al. 2019; Dalklint 

Responsible Editor: Ole Sigmund

 * Yi Min Xie 
 mike.xie@rmit.edu.au

1 School of Engineering, Centre for Innovative Structures 
and Materials, RMIT University, Melbourne 3001, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-023-03517-9&domain=pdf
http://orcid.org/0000-0001-5720-6649


 T. Xu et al.

1 3

67 Page 2 of 15

et al. 2021; Ferrari et al. 2021). Besides, Gao and Ma (2015) 
proposed a method that combined the eigenvalue shift and 
pseudo mode identification to avoid the influence of pseudo 
buckling modes.

Another challenge in buckling-constrained topology opti-
mization is the complexity in sensitivity analysis of buckling 
load factors (BLFs). Buckling analysis based on a non-linear 
equilibrium equation was adopted in a few studies for topol-
ogy optimization (Rahmatalla and Swan 2003; Lindgaard 
and Lund 2010; Lindgaard and Dahl 2013). Despite the 
fact that non-linear analysis provides an accurate descrip-
tion of the buckling phenomenon, the high computational 
cost hinders its widespread utilization in topology optimiza-
tion. To improve the computational efficiency of nonlinear 
analysis, Pedersen and Pedersen (2018) suggested the use of 
non-incremental analysis and proposed a simple sensitivity 
analysis along with recursive redesign. In contrast, linear 
buckling analysis has been commonly employed in topology 
optimization due to its ease of implementation and accept-
able computational cost (Ferrari and Sigmund 2019). The 
stress stiffness matrix in the buckling sensitivity is a func-
tion of design variables and displacement through the stress 
field (Rodrigues et al. 1995). To reduce computational costs, 
Bruyneel et al. (2008) proposed to carry out the sensitivity 
analysis in a simplified way by neglecting the stress state 
variations. However, Luo and Tong (2015) indicated that 
by doing so, the sensitivity analysis of buckling constraints 
was treated in the same way as that of natural frequencies, 
which could cause errors in the optimization process. To 
avoid this issue, sensitivity analysis including the stress vari-
ations was used in more recent studies (Gao and Ma 2015; 
Ferrari and Sigmund 2019; Gao et al. 2020; Zhang et al. 
2022). To overcome the difficulties in setting up buckling 
analysis, Ferrari et al. (2021) presented a 250-line MATLAB 
code that significantly reduced computational costs. Besides, 
BLFs may be non-differentiable when mode switching and 
repeat eigenvalues exist in the optimization process (Seyra-
nian et al. 1994). Thus, a large number of buckling modes 
need to be considered in the optimization problem (Bruy-
neel et al. 2008). To reduce the multiple constraints into a 
single and differentiable one, Huang et al. (2010) took the 
average of the sensitivities of the multiple eigenvalues with 
similar values. In addition, the Kreisselmeier-Steinhauser 
(KS) aggregation function (Kreisselmeier and Steinhauser 
1979) was employed in many studies to approximate the 
maximum buckling constraint (Gao et al. 2020; Ferrari et al. 
2021; Zhang et al. 2022).

The method of moving asymptotes (MMA) algorithm has 
been commonly used to solve buckling-constrained problems 
(Lindgaard and Dahl 2013; Gao and Ma 2015). Besides, Fer-
rari et al. (2021) employed an optimizer called ‘ocUpdate’ 
in which the buckling constraints were incorporated into the 
objective function using a Lagrangian multiplier determined 

by the bisection method. Alternatively, the augmented 
Lagrange multiplier has an additional penalty term, that is, the 
augmentation, which can be adjusted to control the contribu-
tion of the constraints to the overall sensitivity (Otomori et al. 
2015; Wei et al. 2018). To the best of the authors’ knowledge, 
no augmented Lagrangian multipliers have been developed for 
buckling-constrained topology optimization.

This study proposes a novel methodology based on bi-
directional evolutionary structural optimization (BESO) for 
buckling-constrained topology optimization to alleviate the 
impact of pseudo buckling modes. The BESO method ben-
efits from using two statuses (void and solid) for the design 
variables, thus avoiding the numerical problems associated 
with intermediate densities in buckling-constrained optimiza-
tion. The KS function is employed to aggregate multiple buck-
ling constraints into a single one. Furthermore, an augmented 
Lagrangian multiplier is developed for the consideration of 
convergence. Besides, one obstacle to the BESO method is 
that there is no control over the evolutionary rate once the vol-
ume fraction is reached. Therefore, a modified design variable 
update scheme is proposed to solve this problem.

The remainder of the paper is structured as follows. Formu-
las and procedures of the buckling-constrained BESO method 
are introduced in Sect. 2, followed by four numerical examples 
in Sect. 3 to demonstrate the effectiveness of the proposed 
approach. Concluding remarks are given in Sect. 4.

2  Buckling‑constrained BESO method

In this section, the proposed buckling-constrained BESO 
method is introduced. In this method, an augmented Lagran-
gian multiplier is developed to combine the objective func-
tion and buckling constraints. The KS aggregation function is 
used to approximate the maximum buckling constraint so as to 
reduce multiple buckling constraints into a single one. Besides, 
a modified design variable update scheme is proposed to con-
trol the evolutionary rate after the volume fraction is reached.

2.1  Problem statement

The mathematical model for minimizing compliance subjected 
to buckling constraints is stated as

where C is the mean compliance, K and u are the global 
stiffness matrix and the displacement vector, respectively. 
F is the load applied to the structure. vi is the volume of the 

(1)

⎧⎪⎪⎨⎪⎪⎩

Min ∶ C =
1

2
uTKu

Subject to ∶ Ku = F

V(x) =
∑

xivi − V∗ = 0

xi = xmin or 1, i = 1, 2, ..., N.

�1 ≥ �
−
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corresponding element and V∗ is the predefined volume frac-
tion. �1 is the lowest BLF and �

−
 is the prescribed buckling 

constraint. xi is the binary design variable of an individual 
element, which equals to either xmin (void) or 1 (solid).

2.2  Sensitivity analysis

In this study, two distinct material interpolation schemes 
are employed for stiffness and stress stiffness matrices to 
restrain pseudo-buckling modes (Bendsøe and Sigmund 
2007; Huang et al. 2010), which are given by Eq. (2).

where p is the penalty exponent, and E is the Young’s modu-
lus of the solid element. The sensitivity of the compliance 
with respect to the change in the design variable can be 
expressed as

Linear buckling analysis is defined as

where K and G are the stiffness and stress stiffness matrices, 
respectively, and �j and �j are the jth BLF and the corre-
sponding buckling mode vector, respectively. To maximize 
the BLF �j , its inverse value �j shall be minimized, thus 
Eq. (4) can be restated as

�j is the eigenvalue of the above equation, therefore, the 
minimum BLF �1 is equal to 1/max �j = 1/�1 , where

The eigenvectors �j fulfil the orthonormalization condition:

where �jk is Kronecker delta. Then the maximum buckling 
constraint is approximated by the KS aggregation function 
(Kreisselmeier and Steinhauser 1979)

where q is the number of computed eigenvalues. The num-
ber of buckling modes to be considered is dependent on 
the tendency to eigenvalue coalescing of each case. In this 
study, the lowest 12 buckling modes are computed, which 
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seem to be sufficient for the problems considered. � is the 
aggregation factor. In this paper, � is set to 160, which has 
been shown to be appropriate for buckling optimization 
problems considered by Ferrari et al. (2021). To be specific, 
the numerical stability of the KS function is not negatively 
influenced by such a high � value, and a good approximation 
of constrained aggregations can be achieved.

The approximated buckling load factor sensitivity, i.e., 
the derivative form of Eq. (8), is written as (Raspanti et al. 
2000)

where the buckling load factor sensitivity is calculated as

The second term on the right side is the so-called adjoint 
term, and �j is the jth adjoint vector, which can be solved by

The sensitivity of buckling constraints [Eq. (9)] is added 
to the sensitivity of compliance [Eq. (3)] via an augmented 
Lagrangian multiplier Λ . Thus, the overall sensitivity can 
be found as

Therefore, the sensitivity of element i in the BESO tech-
nique can be written as

The augmented Lagrangian multiplier Λ is determined as

where �k is the additional penalty term (the augmentation) of 
the Lagrangian multiplier in the k th iteration of the optimi-
zation. � is the status of buckling constraints. Specifically, 
� = 0 indicates that the buckling constraints have never 
been activated; otherwise, � is switched to 1 once buck-
ling constraints have been activated during the optimization 
process. In this way, the continuity of the multiplier can be 
ensured. �k is updated using the following scheme.
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where � is a predefined update coefficient. �0 = 1 and 
� = 1.03 are set as default values, which have been numeri-
cally tested as suitable for most cases. A smalle r or larger 
value of � can be selected to decrease or increase the update 
step. �� is calculated as �� = � − 1 . Δ�1 is defined as the 
normalized value of the change of �1 over the last two itera-
tions, i.e., Δ�1 =

|||�k1 − �k−1
1

|||∕�k1 . � is an update threshold 
and typically � = 10

−3 is adopted. error ≤ � is the conver-
gence criterion that is introduced in Sect. 2.4. To improve 
computational efficiency and achieve convergence, two cri-
teria and schemes are devised in this study for updating �k . 
When the difference between �1 and �

−
 is large 

( ||𝜆 − 𝜆1
||∕𝜆 > 5% ), the update criterion is relaxed ( Δ�1 ≤ � ) 

and the increment of �k is larger; when �1 is close to � 
( ||� − �1

||∕� ≤ 5% ), the update criterion is tightened ( Δ�1 ≤ � 
and error ≤ � ), and the increment of �k becomes smaller.

The aforementioned sensitivity members shall be aver-
aged by a filter scheme to enforce a mesh-independent solu-
tion (Sigmund and Petersson 1998). The filter scheme is 
determined by generating a circular sub-domain Ωi centred 
at the centroid of the ith element with a radius of rmin . Nodes 
and elements inside the sub-domain Ωi are used to calcu-
late the averaged sensitivity number of the jth element �̃j , 
as given by Eq. (16). The same method was also used by 
(Huang and Xie 2007).

where N denotes the number of the neighbouring elements. 
�ij is the linear weight factor related to the distance ( rij ) 
between the centroids of the centred element j and its neigh-
bouring elements i

where rmin is the filter radius. The sensitivity number is aver-
aged by the previous three historical information for stability 
and convergence concerns. This process is expressed by

where k is the current iteration number. Compared to the 
conventional BESO method, where the sensitivity number is 
averaged by the previous two historical information (Huang 
and Xie 2010), the use of previous three historical sensitivity 

(15)
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⎧
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(18)�̃k
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�̃k
j
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j
+�̃k−2

j

3

values in this study could enhance the stability during the 
optimization process. A further study of the dependence of 
the optimization history on the number of averaged steps can 
be systematically investigated in future research.

2.3  Design variable update scheme

The target volume for the next iteration can be determined 
by adding or deleting elements as

where ER is named the evolutionary volume ratio. Once the 
volume constraint is satisfied, the volume will be kept con-
stant for the subsequent iterations as

Then solid elements are switched from 1 to xmin if the 
following criterion is met

Void elements are switched from xmin to 1 if the following 
criterion is met

where �th is the threshold of the sensitivity number that can 
be determined by the bisection algorithm (Huang and Xie 
2010). However, it should be noted that there is no con-
trol over ER once the volume fraction is reached. This issue 
can lead to problematic designs in constrained optimiza-
tion problems when starting from a design domain that has 
already reached the volume fraction. Therefore, a modified 
scheme is proposed in this study for determining the update 
threshold, which includes three steps as follows.

1. Calculate the percentage of the solid elements ( �s ) that 
have been changed to voids by using the bisection algo-
rithm (Huang and Xie 2010).

2. If the volume does not reach the target volume, or 
�s ≤ ER , skip step 3. Otherwise, the threshold sensitivity 
numbers for removing ( �del

th
 ) and adding ( �add

th
 ) elements 

are recalculated in step 3.
3. Sort the sensitivity numbers of solid elements from low 

to high. �del
th

 is the sensitivity number of the mth element 
ranked in the sorted array, where m is calculated by mul-
tiplying ER and the number of solid elements. Similarly, 
�add
th

 is the sensitivity number of the mth element ranked 
in the sorted sensitivity numbers of void elements (from 
high to low). For example, there are 1000 solid elements 
and 1000 void elements in the design domain, and it is 
assumed that ER = 1% . The sensitivity numbers of solid 
elements are sorted as 𝛼s

1
< 𝛼s

2
⋯ < 𝛼s

1000
 , then �del

th
= �s

10
 . 

(19)Vk+1 = Vk(1 − ER)

(20)Vk+1 = V∗

(21)�̃j ≤ �th

(22)�𝛼j > 𝛼th
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The sensitivity numbers of void elements are sorted as 
𝛼v
1
> 𝛼v

2
⋯ > 𝛼v

1000
 , then �add

th
= �v

10
 . Finally, the solid ele-

ments with sensitivity numbers ≤ �del
th

 are switched from 
1 to xmin , and the void elements with sensitivity numbers 
≥ �add

th
 are switched from xmin to 1.

2.4  Convergence criterion

The optimization process stops when buckling constraints, 
volume constraint and convergence criterion are all satis-
fied. The convergence criterion is defined in terms of the 
change in the objective function as

where k is the current iteration number, � is an allowable 
convergence tolerance, and M is an integer number. In this 
study, M = 5 is employed, denoting that the change in the 
mean compliance over the last 10 iterations is sufficiently 
small, e.g., � = 10

−3 to 10−5.

2.5  Overall procedure

The evolutionary iteration procedure of the presented 
buckling-constrained BESO method is given as follows.

 Step 1. Discretise the design domain, define boundary con-
ditions and assign initial parameters, including volume 
fraction V∗ , evolutionary ratio ER , material penalty 
exponent p , filter radius rmin , buckling constraint � , 
and update coefficient �;

 Step 2. Obtain displacement U and compliance C by static 
analysis;

 Step 3. Obtain the BLFs �j and buckling mode vector �j by 
linear buckling analysis;

 Step 4. Determine the augmented Lagrangian multiplier;
 Step 5. Calculate the sensitivity numbers of all elements;
 Step 6. Improve the sensitivity numbers using the filter 

scheme;
 Step 7. Stabilize the evolutionary process by averaging the 

sensitivity numbers of the past three iterations;
 Step 8. Update design variables by using the proposed 

update scheme;
 Step 9. Return to Step 2 if the volume constraint, buckling 

constraints, or the convergence criterion is not satis-
fied.

(23)
���
∑M

i=1
Ck−i+1−

∑M

i=1
Ck−M−i+1

���∑M

i=1
Ck−i+1

≤ �

3  Numerical examples

In this section, four numerical examples are investigated to 
illustrate the effectiveness of the proposed algorithm. In all 
examples, the parameters are set as E1 = 1 , � = 0.3 , p = 3 , 
and xmin = 10

−6.

3.1  Compressed column

This example aims to maximize the buckling resistance of 
a compressed column. As shown in Fig. 1a, the rectangular 
design domain is discretized by 240 × 480 elements. Plane 
stress elements are employed, and the thickness is set as 
unity. A downward force F = 1 × 10

−3 is evenly distributed 
over a length of l = b∕15 at the top. The bottom of the design 
domain is fixed.

The stiffness optimization is conducted with b = 1 , 
V∗ = 25% , ER = 1% and rmin = 4 × the element side length. 
The optimized design is shown in Fig. 1b, which appears 
to be a simple column and has the smallest BLF �1 = 0.89 , 
meaning the stiffness design would buckle under the applied 
load.

Therefore, the buckling resistance is improved by maxi-
mizing the lowest BLF �1 . In this case, the sensitivity of the 
BLFs [Eq. (9)] is the only term in the overall sensitivity, and 
the convergence criterion [Eq. (23)] applies to the KS aggre-
gation of the BLFs. Figure 1c shows the evolutionary histo-
ries of the first four BLFs and the corresponding modal 
strain energy ratios rv

j
 (j = 1—4) proposed by Gao and Ma 

(2015) for identifying pseudo buckling modes. rv
j
 is defined 

as the contribution of the modal strain energy (in the jth 
buckling mode) of the element nodes in the void region to 
the total modal strain energy. It can be seen that the modal 
strain energy ratios are very close to zero throughout the 
optimization process, meaning the nodes in the void region 
contribute little to the total modal strain energy, and no 
pseudo-buckling modes occur in the first four buckling 
modes (Gao and Ma 2015). �1 (the blue curve) increases 
from 0.89 to 9.21 with compliance increased by 44.4% from 
8.52 × 10

−6 to 1.23 × 10
−5 . The structural topologies at dif-

ferent iterations are shown in Fig. 1d–i. The initial column 
is separated into two bars connected by thin cross-like bars, 
and the distance between the separated bars is gradually 
increased in later iterations. It can be noticed that a sudden 
drop of �1 occurs at iteration 200 (Fig. 1c), which is due to 
the elimination of thin bars in the upper structure (see the 
bars highlighted by red circles in Fig. 1f). Afterwards, �1 
gradually recovers as the remaining upper bars become 
thicker (see the bars highlighted by the red circle in Fig. 1g). 
The BLF maximization design of the compressed column 
obtained by Ferrari et al. (2021) using the SIMP method is 
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shown in Fig. 1. As can be seen, the geometry of the present 
structure (Fig. 1) is similar to the design of the SIMP method 
(Fig. 1).

3.2  Two‑bar frame

The second example shows the geometrical characteristics 
of the compression and tension members in optimal designs 
obtained with different buckling constraints.

Figure 2a shows the boundary condition and the design 
domain, which is discretized by 90 × 210. Plane stress ele-
ments are employed, and the thickness is set as unity. A 
downward force F = 2 × 10

−2 is spread over a length of 
l = b∕10 at the middle of the right side. The left side of 
the domain is fixed near the upper and lower ends with a 
length of l . b = 1 , V∗ = 20% , ER = 1% and rmin = 2 × the 
element side length are employed in this example. The 
stiffness design is shown in Fig. 2b, consisting of upper 
and lower bars. The first three buckling modes of the two-
bar frame are illustrated in Fig. 2c, coloured from blue to 

red, which corresponds to the logarithm of the normal-
ized strain energy density from low to high. It can be seen 
that the lower bar has a higher level of strain energy as 
a compressed member. On the contrary, the upper bar is 
under tension and has lower strain energy. The lowest BLF 
�1 = 0.89 , which means that the buckling occurs on the 
lower bar at the critical load Fcr = �1 × F = 1.78 × 10

−2.
The buckling-constrained optimization is then carried 

out based on the stiffness design (Fig. 2b). ER is reduced 
to 0.4% for stabilization consideration. The optimized 
designs with increasing buckling constraints � are shown 
in Fig. 3. It can be seen that the material is relocated 
from the upper bar to the lower bar, which is divided into 
two bars connected by thin members to resist buckling. 
Besides, a bar connecting the upper bar and the lower 
bar appears, and it becomes thicker and longer with the 
increase of � (see the bars highlighted by red circles in 
Fig. 3b–f). This bar increases the moment of inertia of the 
global structure and prevents the structure from rotating at 
the junction of the upper and lower bars (near the force).

Fig. 1  Compressed column example: a boundary conditions; b stiffness design; c evolutionary histories of the first four BLFs and modal strain 
energy ratios; d–i structural topologies at different iterations; and j the optimized topology obtained by Ferrari et al. (2021)
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With the increment of BLFs, the compliance of the buck-
ling-reinforced design is higher than that of the stiffness 
design. The increment of the compliance compared to the 
stiffness design is ΔC = 2.6% when � = 1.50, while ΔC can 
be 43.1% when � = 4.00. The stiffness reduction is mainly 
due to the thinner upper bar as well as the separated and bent 
lower bar in the buckling-reinforced design.

Figure 4 shows the evolutionary history of the compli-
ance and the first four BLFs when � = 4.00 (Fig. 3f). Gen-
erally speaking, �1 smoothly increases and the other BLFs 
gradually get close to �1 . It is noticed that the curves of �1 

and �2 almost overlap at later stage, which is referred to as 
a multimodal case. As mentioned in Sect. 1, the sensitiv-
ity of the multiple BLFs is not unique, so that the non-
differentiable sensitivity may be obtained due to repeat 
eigenvalues and mode switching. Thus, the KS aggrega-
tion function is employed to approximate the maximum 
buckling constraint.

The first twelve buckling modes of the buckling design 
with � = 4.00 (Fig. 3f) are shown in Fig. 5. It can be seen 
that these buckling modes are all real buckling modes, and 
no pseudo buckling modes are observed.

Fig. 2  Two-bar frame example: a design domain and boundary conditions; b stiffness design; and c first three buckling modes. Buckling modes 
are coloured from blue to red, corresponding to the logarithm of the normalized strain energy density from low to high

Fig. 3  Optimized designs of the two-bar frame with various buckling constraints
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Table 1 shows the effect of the predefined update coef-
ficient � on compliance and required optimization iterations. 
When � = 2.0 , by defining � = 1.03 , 29.7% fewer iterations 
with only 0.1% extra compliance increment can be achieved 
compared to the case with � = 1.01 . When � = 3.0 , � = 1.04 
results in 0.7% extra compliance increment but 11.8% fewer 
iterations than � = 1.02 . Larger � leads to a larger �k when it 
is updated, and it means a larger update step of the multiplier 

Λ . As shown in Eq. (12), the overall sensitivity is equal to 
the compliance sensitivity plus the buckling sensitivity mul-
tiplied by Λ . Thus, a larger update step of the multiplier Λ 
leads to a larger contribution of the buckling sensitivity to 
the overall sensitivity. In the design variable update process, 
the criterion of adding/deleting elements is determined by 
the sensitivity value (as shown in Sect. 2.3), which is more 
dependent on the buckling sensitivity when the multiplier 
Λ is larger.

3.3  Hollow square tube

This case shows a hollow square tube under external pres-
sure, as illustrated in Fig. 6a. The width of the cross-section 
b = 1.9 , and the thickness of the tube t = b∕10 . The tube 
length is much larger than the dimension of the cross-sec-
tion, hence plane strain elements are employed. Each side 
of the tube is under a pressure load P = 1.05 × 10

−3 per unit 
area. The cross-section is optimized using the proposed 
algorithm. As the cross-section of the tube is symmetrical, 
to save computational costs, a quarter of the cross-section 
(shaded blue area in Fig. 6a) is used, and the corresponding 
boundary conditions are shown in Fig. 6b. The width of the 
quarter section is b∕2 , which is divided into 250 elements. 

Fig. 4  Evolutionary histories of compliance and first four BLFs when 
�
−
= 4.00

Fig. 5  First twelve buckling modes of buckling design with �
−
= 4.00 . Buckling modes are coloured from blue to red, corresponding to the loga-

rithm of the normalized strain energy density from low to high
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As a quarter model, the vertical degrees of freedom of the 
left edge and the horizontal degrees of freedom of the bot-
tom edge are fixed. The cross-section is designed as a sand-
wich structure, i.e., the inner and outer layers are non-design 
domains, each of which has a thickness of t∕10 (discretized 
using 5 elements), and the core area is the design domain.

Set V∗ = 50% , ER = 1% , and rmin = 6 × the element side 
length for stiffness optimization. The stiffness design and the 
recovered full model are shown in the first row of Fig. 7a and 
b. It can be seen that the optimum designs are oblique sym-
metric due to the even-distributed pressure. The principal 
stress distribution (first row of Fig. 7c and d) also shows the 
symmetric properties of the optimum designs. The lowest 
BLF �1 of the stiffness design is 0.54, corresponding to the 
critical load Pcr = �1 × P = 5.67 × 10

−4 per unit area.
Buckling-constrained optimization is then conducted 

based on the stiffness design with ER = 0.2% , rmin = 3 × 
the element side length, and � = 1.00 . The optimization 
results are shown in the second row of Fig. 7a and b. As 
can be seen, the material is relocated from the corners of 
the tube to the middle of each side (second row of Fig. 7b) 

and from tension members to the compression members 
(Fig. 7c and d). The lowest BLF �1 and the compliance 
increase from 0.54 to 1.00 and 7.47 × 10

−5 to 8.12 × 10
−5 , 

respectively (Fig. 7e).
Figure 8 presents the buckling analysis of stiffness and 

buckling designs. It can be seen that the middle part at 
each side of the stiffness design (first row of Fig. 8) has 
a higher level of strain energy density. However, in the 
buckling-reinforced design (second row of Fig. 8), as the 
material is relocated to the middle of each side, the strain 
energy density distribution is more uniform, and the buck-
ling phenomenon can be well suppressed.

Furthermore, in the fundamental buckling mode of the 
3D model, only in-plane buckling occurs, and no buck-
ling is observed in the longitudinal direction. Therefore, 
an optimized design for preventing buckling in the cross-
section is also of great significance.

Figure  9 shows the buckling-constrained optimiza-
tion when starting from the stiffness design obtained 
with rmin = 3 × the element side length (other parameters 
remain the same). The stiffness design (first row of Fig. 9) 
possesses a better mechanical performance compared to 
that of Fig. 7, i.e., a higher fundamental BLF �1 of 0.85 
and a lower compliance of 7.07 × 10

−5 . The buckling-con-
strained optimization design (second row of Fig. 9) has a 
compliance of 7.27 × 10

−5 and the geometry is slightly dif-
ferent from that obtained when starting from the stiffness 
design with rmin = 6 × the element side length (the second 
row of Fig. 7a and b). The most distinct differences are the 
extra bars in the middle of each side, highlighted by red 
circles in Fig. 9b.

Oscillations can be observed in the history of �1 , 
indicated by red circles in Fig. 9c. While no oscillation 
occurs when starting from the stiffness design obtained 

Table 1  Impact of predefined update coefficient � on compliance and 
computational cost

Buckling 
constraint 
�
−

Predefined 
update coef-
ficient �

Compliance 
increment ΔC 
(%)

�
1 of 

the final 
design

Iterations

2.0 1.01 6.6 2.0 286
1.02 6.4 231
1.03 6.7 201

3.0 1.02 19.7 3.0 394
1.03 19.9 350
1.04 20.4 347

Fig. 6  Boundary conditions of hollow square tube: a full model and b a quarter of cross-section
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with rmin = 6 × the element side (Fig. 7e). The use of the 
stiffness design obtained with a larger rmin as the initial 
design domain for buckling-constrained optimization can 
enhance structural redundancy. A higher level of structural 
redundancy may help prevent the BLF oscillations caused 
by the elimination of structural components during the 
optimization process.

Figure 10 shows the buckling-constrained optimization 
design obtained by starting from a full design domain with 
V∗ = 50% , ER = 1% , rmin = 3 × the element side length, and 
� = 1.00 . The final design has a compliance of 7.43 × 10

−5 
and the geometry (Fig. 10a and b) is similar to that shown 
in Fig. 9. The evolutionary histories of compliance and the 
first two BLFs are shown in Fig. 10c. The volume fraction 
is reached at the 69th iteration and therefore the compliance 

Fig. 7  Results of stiffness design (first row) and buckling-constrained optimization (second row): a a quarter of cross-section; b recovered full 
model; c maximum principal stress ( �

1
 ); d minimum principal stress ( �

2
 ); e evolutionary histories of compliance and the first four BLFs
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changes little in the subsequent optimization process. The 
buckling constraints are activated at the 42nd iteration when 
𝜆1 < 𝜆 and satisfied at the last (116th) iteration. Slight oscil-
lations can be observed in the evolutionary history of �2 in 
Figs. 7e, 9c and 10c (and �3 in 7e). The amplitude between 
two consecutive iterations is within 0.2, and such small 
amplitudes have no harm to the KS aggregation of BLFs and 
the stability of the optimization process. Besides, it can be 
seen that the result of the buckling-constrained optimization 
is dependent on the structural property of the initial design. 
In this case, the buckling-constrained design has the lowest 
compliance when starting from the stiffness design obtained 
with rmin = 3 × the element side length.

3.4  L‑Shape beam

This case shows the buckling-constrained topology optimi-
zation of a long L-shape beam subjected to a linear load on 
the edge. As shown in Fig. 11a, the height of the section 
shape h = 1 , and the thickness t = 0.4 × h . The length of 
column is much larger than the height, and the plane strain 
elements are used. The top surface of the column is fixed, 
and a linear load q = 3 × 10

−3 per unit length is applied to 
the edge. As shown in Fig. 11b, the section shape is used as 
the design domain, and the height and the width are discre-
tized using 300 elements, respectively. The force is spread 
on a length of h∕20 on the right edge to avoid stress concen-
tration near the load point.

The first row of Fig. 12a shows the stiffness design, which 
is obtained by using V∗ = 40% , ER = 1% , and rmin = 10 × 
the element side length. The maximum and the minimum 
principal stress distributions (Fig. 12b and c) show the ten-
sion and compression members of the structure. It can be 
seen that the members on the left and bottom are in compres-
sion, while those in the middle and on the top right side are 
in tension. The lowest BLF of the stiffness design is only 
0.30, and the critical load qcr = �1 × q = 9 × 10

−4 per unit 
length.

To obtain a design with higher buckling resistance, the 
buckling-constrained optimization is carried out using 
ER = 0.2% , rmin = 3 × the element side length, and � = 1.00 . 
The obtained results are shown in the second row of Fig. 12. 
It can be seen that the material is transferred from the tension 
members to the compression members, and the moments of 
inertia of compression members are larger, leading to better 
buckling resistance.

Figure 13 shows the first four buckling modes of the 
stiffness design (first row) and the buckling-reinforced 
design (second row). The buckling phenomenon is 
observed in the compression members from both designs. 
The stiffness design exhibits a more localized buckling 
effect, whereas the buckling design exhibits a more global 
buckling effect. For instance, buckling occurs on multi-
ple bars simultaneously in the first buckling mode ( �1 ), 
and the strain energy density distributes more evenly in 
buckling design. Compared to the stiffness design, the 
compliance of the buckling design increases by 4.2%.

Fig. 8  First four buckling modes of stiffness design (first row) and buckling-constrained optimization (second row). Buckling modes are col-
oured from blue to red, corresponding to the logarithm of the normalized strain energy density from low to high
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The numerical examples show that stiffness designs 
may exhibit poor stability in practical applications. In 
comparison, the proposed topology optimization with the 
consideration of buckling constraints can greatly improve 
the buckling resistance of a structure with only a small 
increase in compliance.

4  Conclusions

In this study, a novel buckling-constrained topology optimi-
zation algorithm is developed based on the BESO method. 
An augmented Lagrangian multiplier is proposed to inte-
grate buckling constraints into the objective function. A 
design variable update scheme is developed to control the 
evolutionary rate when the volume fraction is reached. Four 
topology optimization designs are presented to show the 
validity and effectiveness of the proposed algorithm. Based 
on the numerical results, the main conclusions are summa-
rized as follows.

(1) By using the proposed augmented Lagrangian multi-
plier, the contribution of the buckling sensitivity to the 
overall sensitivity can be controlled by the augmenta-
tion � , which is adjusted based on a user-defined coef-
ficient � . A larger � can save the required number of 
iterations but slightly increase the compliance.

(2) With the implementation of the augmented Lagrangian 
multiplier, the modified design variable update scheme 
and the enhanced stabilization scheme, excellent stabil-
ity and convergence can be obtained from the proposed 
optimization process.

Fig. 9  Results of the stiffness design obtained with rmin = 3 × the ele-
ment side length (first row) and buckling-constrained optimization 
(second row): a a quarter of cross-section; b recovered full model; 
and c evolutionary histories of compliance and first two BLFs

Fig. 10  Buckling-constrained optimization of the square tube when 
starting from a full design domain: a a quarter of cross-section; b 
recovered full model; and c evolutionary histories of compliance and 
first two BLFs
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Fig. 11  Boundary conditions of the L-shape beam: a full model and b cross-section

Fig. 12  Results of stiffness design (first row) and buckling-constrained optimization (second row): a final solution; b maximum principal stress 
( �

1
 ); and c minimum principal stress ( �

2
)
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(3) The lowest BLF �1 of the hollow square tube is 
improved from 0.54 to 1.00 with a small increment of 
compliance (8.7%). �1 of the L-shape beam is increased 
from 0.30 to 1.00 while the compliance is increased by 
only 4.2%.

This study contributes to the knowledge of buckling-
constrained topology optimization by providing a novel 
algorithm and a series of numerical examples. As most 
current studies associated with buckling-constrained opti-
mization focus on 2D examples, further research should 
extend the algorithm into 3D to solve more practical 
engineering problems. Experimental investigations on 
the buckling and post-buckling behaviour of structural 
components are needed to confirm the effectiveness of the 
algorithm in real engineering applications.
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