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Abstract
The design of high-performance mechatronic systems is very challenging, as it requires delicate balancing of system dynam-
ics, the controller, and their closed-loop interaction. Topology optimization provides an automated way to obtain systems 
with superior performance, although extension to simultaneous optimization of both topology and controller has been limited. 
To allow for topology optimization of mechatronic systems for closed-loop performance, stability, and disturbance rejection 
(i.e. modulus margin), we introduce local approximations of the Nyquist curve using circles. These circular approximations 
enable simple geometrical constraints on the shape of the Nyquist curve, which is used to characterize the closed-loop per-
formance. Additionally, a computationally efficient robust formulation is proposed for topology optimization of dynamic 
systems. Based on approximation of eigenmodes for perturbed designs, their dynamics can be described with sufficient 
accuracy for optimization, while preventing the usual threefold increase of additional computational effort. The designs 
optimized using the integrated approach have significantly better performance (up to 350% in terms of bandwidth) than 
sequentially optimized systems, where eigenfrequencies are first maximized and then the controller is tuned. The proposed 
approach enables new directions of integrated (topology) optimization, with effective control over the Nyquist curve and 
efficient implementation of the robust formulation.

Keywords  PID feedback control · Closed-loop performance · Local approximation · Robust formulation · SISO · Control 
co-design

1  Introduction

1.1 � Integrated controller‑structure optimization

Many high-tech applications require positioning at both high 
accuracy and high speed, for which motion systems are used. 
These are, for instance, used in semiconductor equipment, 
microscopy, robotics, and medical devices (Munnig Schmidt 
et al. 2011; Oomen 2018). The required speed and accuracy 
in these positioning systems is achieved by feedback control. 
In the quest for more extreme performance, the design of 
motion systems poses a significant challenge.

The final performance and accuracy of such systems 
heavily depend on system dynamics, the controller, and the 
(closed-loop) interaction between the two (i.e. mechatron-
ics). Various complex design problems have been effec-
tively addressed by topology optimization in recent years, 
and the need exists to also apply it to the design of motion 
systems. Although optimization is frequently used in the 
design of feedback controlled systems, it is mostly applied 
in a sequential manner. First, the structure is designed, e.g. 
for maximum eigenfrequencies using topology optimiza-
tion (Ma et al. 1995; Delissen et al. 2022), after which a 
controller is tuned for this structure that achieves system 
requirements, such as high bandwidth, closed-loop stabil-
ity, and disturbance rejection (Munnig Schmidt et al. 2011). 
However, this approach usually leads to sub-optimal system 
performance. High eigenfrequencies are often a character-
istic of good system performance, but it does not mean that 
higher eigenfrequencies always result in a higher bandwidth. 
Therefore, for superior performance of the combined system, 
an integrated approach is required (Fathy et al. 2001; van der 
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Veen et al. 2015, 2017), which is also sometimes referred to 
as control co-design (Garcia-Sanz 2019). Through integrated 
(topology) optimization, the dynamic behavior of the struc-
ture and the controller can both be adapted to accommodate 
each other in a more optimal manner, potentially resulting 
in a better closed-loop performance.

A large portion of existing research on integrated control-
ler-structure optimization is focused on state-feedback con-
trollers in the time domain, which determine their correction 
signals based on the state of the structure (e.g. positions, 
deformations, and/or velocities). The optimal controller in 
this case can be calculated algebraically as the minimizer of 
a linear quadratic control cost function, based on H2 syn-
thesis (a generalization of classic LQ/LQR/LQG theory) 
(Doyle et al. 1989; Anderson and Moore 1989). The result 
is an optimal controller balancing vibration levels and con-
trol effort over time. Most existing methods reformulate the 
integrated controller-structure optimization problem into a 
nested formulation, where an optimal controller is found 
algebraically during each structural design iteration (Haftka 
1990; Fathy et al. 2001). The same linear quadratic cost 
function as the nested controller optimization can be used 
for the outer structural problem (Miller and Shim 1987). 
However, this approach is limited to truss problems with few 
design variables due to its significant computational effort, 
as the solutions are needed of an algebraic Ricatti equation 
and of additional Lyapunov equations for the gradients of 
each design variable. Alternatives in literature are based on 
minimizing combined strain and control energy in a steady-
state setting (Ou and Kikuchi 1996a, b; Molter et al. 2013) 
or other (multi-)objective formulations (Zhu et al. 2002; da 
Silveira and Fonseca 2010). While these are computation-
ally feasible for topology optimization, they do not directly 
relate to the integrated system performance. A more com-
plete overview of different approaches is given in the review 
paper by Allison and Herber (2014).

1.2 � Frequency domain control

In practice, state-feedback and linear quadratic optimal 
controllers in the time domain are rarely used for high-per-
formance positioning systems. For positioning systems the 
tracking error, disturbance rejection, and noise attenuation 
are essential aspects to obtain high-precision. The quantifi-
cation of these effects is difficult in the time domain (Doyle 
1978; Zhou et al. 1996), but can be represented more easily 
in the frequency domain. This is one of the reasons that 
frequency-based proportional-integral-derivative (PID) con-
trollers are the current industry standard (Munnig Schmidt 
et al. 2011).

In order to clearly describe the open challenges for inte-
grated controller-structure optimization in the frequency 
domain, we will first discuss some aspects of classic 

control theory. The influence of disturbances and noise on 
the controlled structure is characterized by the sensitivity 
function S(j�) (Åström and Murray 2008), which is not to 
be confused with the design sensitivities. The sensitivity 
function is the transfer function between external distur-
bance d and output y (Fig. 1), which is dependent on the 
frequency � . Here, the disturbances may, for instance, be 
external loads on the controlled system or motions of the 
measurement frame. The sensitivity function is defined as

with the open-loop transfer function L(j�) = H(j�)C(j�) of 
the controller and plant in series. The amplitude of the sen-
sitivity function |S(j�)| provides a bound on the disturbance 
rejection properties, of which a typical example is shown in 
Fig. 2a. Disturbances are attenuated by the feedback control-
ler if |S(j𝜔)| < 0 dB , but they are amplified if |S(j𝜔)| > 0 dB . 
The controller is able to correct disturbances for frequencies 
below the bandwidth �b , which ideally keeps the sensitivity 
function small at those frequencies and additionally ensures 
a small tracking error. However, the sensitivity function can-
not be lowered indefinitely due to the waterbed effect: lower-
ing the sensitivity function at certain frequencies leads to an 
increase at other frequencies (Munnig Schmidt et al. 2011). 
Therefore, peaks are to be avoided for frequencies above the 
bandwidth to prevent over-amplification of high-frequency 
noise. This is usually done by limiting the maximum value 
of |S(j�)| to, for instance, 6 dB . Further details can be found 
in textbooks on control, e.g. Åström and Murray (2008); 
Munnig Schmidt et al. (2011).

Examples in the literature of integrated optimization 
for PID control are less common than optimization based 
on linear quadratic control. One example is the work by 
Albers and Ottnad (2010), who use a PID controller opti-
mization nested within a structural topology optimization 
based on strain energy minimization. Here, load cases are 
iteratively updated based on the control action. However, 
this approach will not yield optimal performance, since the 
structure is optimized for a minimum strain energy instead 
of the integrated system performance.

(1)S(j�) =
1

1 + L(j�)
,

Fig. 1   Controller and plant placed in a feedback loop, with the aim 
for the output y to track the reference signal r. The correction signal u 
generated by the controller is based on the measured error e. If tuned 
correctly, the closed-loop system is able to reject disturbances d 
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A truly integrated approach is proposed by van der Veen 
et al. (2015, 2017), who optimize feedback controlled struc-
tures for a maximum bandwidth, subject to constraints on 
closed-loop stability and disturbance rejection. For the 
disturbance rejection, constraints are used that explicitly 
limit the sensitivity function |S(j�)| below a certain thresh-
old. Since the sensitivity function is a multi-modal func-
tion (Fig. 2a), a constraint is imposed on each individual 
peak value. The frequencies corresponding to the peak val-
ues cannot be calculated explicitly, so a numerical search 
algorithm must be used to locate the peak values (see, e.g. 
Bruinsma and Steinbuch 1990). Even though the peaks are 
found numerically and as long as the constraints are not 
dependent on the peak frequency, it is possible to calculate 
correct gradient information and use them as constraints in 
an optimization (Giesy and Lim 1993; Venini and Pingaro 
2017; Delissen et al. 2020). A drawback of the approach 
of van der Veen et al. (2015, 2017) is that the number of 
peaks changes during the optimization, depending on the 
controller, the structure, and their interaction. Next to that, 
separate constraints need to be applied to ensure closed-loop 
system stability. As a result, integrated optimization includ-
ing control requirements, such as closed-loop stability and 
disturbance rejection, remains an open challenge.

For further insight into the behavior of the sensitivity 
function |S(j�)| , an alternative interpretation is discussed. 
The sensitivity function can also be interpreted using the 
Nyquist curve of the open-loop transfer function L(j�) , as 
is shown in Fig. 2b. From Eq. 1 can be deduced that the 
reciprocal of the sensitivity function is equal to the distance 
from the Nyquist curve L(j�) to the critical point at −1 + 0j 
in the complex domain (from here on called the −1 point). A 

maximum in the sensitivity function therefore corresponds 
to a minimum distance between the open-loop transfer func-
tion L(j�) and the −1 point. This minimum distance is also 
commonly known as the modulus margin (Åström and Mur-
ray 2008).

Outside structural and integrated optimization, several 
techniques are available which focus on gradient-based 
tuning of controllers using the Nyquist curve, e.g. (Karimi 
and Galdos 2010; van Solingen et al. 2018). These apply 
geometric constraints on the Nyquist curve to enforce sta-
bility and disturbance rejection margins. An advantage of 
constraining the Nyquist curve is an enhanced flexibility 
in limiting both phase as well as amplitude of a transfer 
function, which is otherwise difficult to do. However, this 
approach is not suited for topology optimization, since 
the Nyquist curve L(j�) is sampled using a finite num-
ber of frequencies, where each sampled point has to be 
constrained in the complex domain. This easily results in 
thousands of constraints that each require a computation-
ally costly (dynamic) finite element analysis.

Topology optimization has not been done yet using the 
Nyquist curve, although it may offer several advantages. 
There is a straightforward geometrical interpretation of 
disturbance rejection using the open-loop transfer function 
L(j�) as opposed to the sensitivity function |S(j�)| , which 
is in closed-loop. Additionally, the closed-loop stability 
can be directly enforced by preventing encirclements of 
the −1 point (i.e. the Nyquist stability criterion in case of 
a stable open-loop system). This motivates the use of the 
Nyquist curve in controller design.

(a) (b)

Fig. 2   a A typical example of a sensitivity function |S(j�)| . The upper 
limit of 6 dB is indicated in red. b The corresponding Nyquist curve 
of the loop gain L(j�) , with the critical −1 point and modulus margin 

indicated in red. Peaks in the sensitivity function correspond to the 
points of the Nyquist curve closest to the −1 point, as indicated by the 
colored dots
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1.3 � Robust formulation

An important requirement for practical design cases is the 
control on minimum feature size in the design. In topol-
ogy optimization, this is generally done using a density 
filter in combination with a robust formulation (Bendsøe 
and Sigmund 2003; Wang et al. 2011). Erosion and dilation 
operations are performed on the design in order to generate 
multiple perturbed designs. By optimizing the design for 
worst case performance, it is made robust against uniform 
geometric deviations. The robust formulation indirectly 
ensures a minimum feature size in the design, dependent 
on the perturbation amount and the filter radius. Addition-
ally, it helps in obtaining a binary void-solid design without 
intermediate densities, possibly also reducing the appear-
ance of local eigenmodes (Pedersen 2000). A disadvantage 
is that the application of this method requires the solution 
of additional perturbed designs, which in the present set-
ting each require the solution of a computationally costly 
eigenvalue problem. Furthermore, the integrated controller-
structure optimization as proposed by van der Veen et al. 
(2015, 2017) does not allow for aggregation of constraint 
values corresponding to the different perturbations. This is 
due to the fact that the number of peaks (and thus the num-
ber of constraints) may change due to the design perturba-
tions, making it hard to determine which peaks to aggregate. 
The lack of aggregation results in the addition of many new 
constraints for each perturbed design, which all require the 
calculation of eigenmode design sensitivities. Thus, to apply 
the robust formulation to existing integrated optimization 
methods results in an unacceptable increase of computa-
tional effort by at least a factor three.

1.4 � Approach and contributions

In this work, we present two main contributions towards 
integrated controller-structure optimization and application 
to more practical design cases: 

1.	 Local approximation of the Nyquist curve using circles, 
which can be used in gradient-based optimization

2.	 An efficient robust method for dynamic topology opti-
mization problems, that requires negligible additional 
computational effort

These new methods are combined, tested, and demonstrated 
for the integrated controller-structure topology optimization 
of a motion system.

Local approximation of the Nyquist curve In order to 
efficiently influence the shape of the Nyquist curve during 
optimization, local circular approximations are generated 
at each eigenfrequency. Using multiple circular approxi-
mations, the characteristic shape of the Nyquist curve is 

captured by simple geometric features. Finally, by geo-
metric restriction of each circle in the complex domain, 
the global shape of the Nyquist curve can be influenced 
during optimization. This can be used to enforce closed-
loop stability (no encirclements around the −1 point) and 
robustness (minimum distance to the −1 point).

This method avoids the requirement of knowing the 
exact frequencies at peaks in the sensitivity function, or 
equivalently where the Nyquist curve of L(j�) is closest 
to the −1 point. Instead, locally approximated sections 
are used to describe the Nyquist curve close to the peak 
frequencies, which may be constrained away from the −1 
point. Each (flexible) eigenmode in the mechanical model 
exhibits itself as a circle in the Nyquist curve (Fig. 2b), 
which together form its characteristic shape. This also 
prevents issues with a changing number of peaks in the 
sensitivity function, as the absence of a peak corresponds 
to a circle with a radius of zero at the corresponding 
eigenfrequency.

Circles in the Nyquist curve have historically been used 
to identify modal parameters of mechanical systems from 
experimental data (Kennedy and Pancu 1947; Miller 1978). 
Here, the reverse process is exploited by fitting a circle 
related to each eigenfrequency in the dynamic system, using 
the corresponding modal parameters. Local approximation 
models are actively being researched in the field of control, 
where they are used to, for instance, approximate the H∞ 
norm with limited experimental data (see, e.g, Tacx and 
Oomen (2021)). However, to our knowledge the current 
approximation-based approach proposed for integrated con-
troller-structure optimization has not been studied before.

Computationally efficient robust formulation To apply the 
robust formulation to topology optimization with negligible 
additional computational effort, we propose to approximate 
both the eigenfrequencies and eigenmodes of the perturbed 
designs. This is critical, as these are both important to the 
closed-loop behavior of the system. Since the eroded and 
dilated designs are very similar to the nominal design, it may 
be assumed that their dynamic behavior is also very similar. 
After calculation of the eigenmodes of the nominal design, 
approximations of eigenfrequencies and eigenmodes for the 
perturbed designs are constructed from linear combinations 
of the nominal eigenmodes. This avoids solving additional 
eigenvalue problems for the perturbed designs.

The eigenmodes are used to construct a reduced-order 
model for each perturbed design. After this, closed-loop per-
formance is evaluated for each of the reduced-order mod-
els, using the proposed local approximation method of the 
Nyquist curve. The fact that the number of circles does not 
change during iterations allows for aggregation of the con-
straints. Thus, the number of constraints is equal for an opti-
mization with or without robust formulation, which prevents 
calculation of additional eigenmode design sensitivities.
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In this work, the contributions are applied to integrated 
controller and topology optimization with focus on closed-
loop system stability and robustness margins on the dis-
turbance rejection. The research is focused on mechanical 
linear time-invariant (LTI) and single-input single-output 
(SISO) systems, but many aspects can be generalized to a 
multi-input multi-output (MIMO) setting. A PID controller 
with a predefined structure is used for positioning of the 
mechanical system in a single motion direction. Although 
the controller-structure is known, its parameters are tuned 
during optimization. Fixed actuator and sensor locations are 
used in the system and modal damping is assumed. Fur-
thermore, different problem variations are explored, such as 
optimization for position dependency using multiple sensor 
positions (i.e. single-input multiple-output (SIMO)) with 
the same controller and application of the proposed robust 
formulation.

The outline of this paper is as follows. First, in Sect. 2, 
the local approximation of the Nyquist curve using circles 
is explained and demonstrated on an analytical example. 
In Sect. 3, the topology optimization formulation is pre-
sented. Next, in Sect. 4, all modeling aspects are explained 
in detail, including the proposed efficient robust formulation 
for dynamic problems. In Sect. 5, the potential of the pro-
posed methods is demonstrated using numerical examples. 
Finally, discussion and conclusions are given in Sects. 6 
and 7, respectively.

2 � Local approximation of the Nyquist curve

2.1 � Circle parametrization

In this section is explained how the circular-shaped local 
approximations for the flexible eigenmodes in the Nyquist 
curve L(j�) are constructed, based on theory from experi-
mental modal analysis (Kennedy and Pancu 1947; Miller 
1978). Given the transfer function in the Laplace domain 
L(s), the Nyquist curve is obtained with complex frequency 
s = j� , which corresponds to a line along the imaginary axis. 
First, the general transfer function is given by its decomposi-
tion in first-order terms as

with participation factors pi ∈ ℂ , and system poles �i ∈ ℂ . It 
is possible to obtain this decomposition from any representa-
tion of the transfer function, for instance from a state-space 
model as is further explained in Sect. 4.3. For frequencies 
s = j� in the proximity of a system pole �i , the correspond-
ing first-order term is assumed dominant, as its denominator 
becomes small. Therefore,

(2)L(s) =
∑
i

pi

s − �i
,

where the local approximation L̃i(s) consists of a constant 
offset L̆i ∈ ℂ and a single first-order term. The offset L̆i con-
tains the contributions of all remaining first-order terms at 
the frequency of interest and is calculated as

ensuring interpolation of L(jIm
(
𝜆i
)
) = L̃(jIm

(
𝜆i
)
) . An illus-

tration of a local approximation can be seen in Fig. 3.
From experimental modal analysis, it is known that a 

transfer function of the form in Eq. 3 results in a circle in the 
complex domain (Kennedy and Pancu 1947; Miller 1978). 
Its midpoint and radius are calculated, respectively, using

An alternative and simplified proof of these relations, based 
on the theory of generalized circles (Schwerdtfeger 1979), 
is provided in Appendix 1. As the relations are all analyti-
cal, the derivatives can be calculated explicitly, for which 
the equations are given in Appendix 1. By constructing 
local circle approximations for each relevant system pole 
�i , the important features of the Nyquist curve of L(s) can 
be described using simple geometry.

Note that the radius is non-differentiable when ||pi|| = 0 
and additionally approaches infinity when Re

(
�i
)
→ 0 . The 

former case occurs when an eigenmode is not excited by the 
actuator or when it has no deformation at the sensor location. 
The latter case will normally not occur, since the real part of 
a complex pole is a finite negative value for a stable system 

(3)L(s) ≈ L̃i(s) = L̆i +
pi

s − 𝜆i
for s ≈ jIm

(
𝜆i
)
,

(4)L̆i = L(jIm
(
𝜆i
)
) −

pi

jIm
(
𝜆i
)
− 𝜆i

=
∑
k≠i

pk

jIm
(
𝜆i
)
− 𝜆k

,

(5)Xi = L̆i −
pi

2Re
(
𝜆i
) and Ri =

||pi||
2
|||Re

(
𝜆i
)|||
.

Fig. 3   Illustration of one local circle approximation L̃(j𝜔) (in blue) 
fitted to the Nyquist curve L(j�) in grey. The radius R, midpoint X, 
constant offset L̆ , and the interpolatory point L(jIm(�)) are indicated
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with damping. To account for non-differentiability when 
||pi|| = 0 , and thus Ri = 0 , a small perturbation is added as

This ensures differentiability when Ri = 0 by setting a 
(smooth) minimum radius of Rmin.

2.2 � Analytical example

To demonstrate the principle of the local circle approxi-
mation, a double mass spring damper system is used, as is 
shown in Fig. 4a. To keep the equations simple, no controller 
is used for this example and circles are formed for the plant 
H(s) instead of the loop L(s). The transfer function H(s) for 
this system describes the relation between a force on either 
of the masses to a displacement on either. Mathematically, it 
is the superposition of two second-order systems (Gawronski 
2004; Munnig Schmidt et al. 2011):

Here, undamped eigenfrequencies are denoted Ω1,Ω2 , rela-
tive damping factors �1, �2 , and modal contributions �1,�2 . 
These modal parameters can be calculated from the mass, 
stiffness and damping values of the double mass spring sys-
tem in Fig. 4a and can be positive (e.g. collocated) or nega-
tive (e.g. non-collocated) (Gawronski 2004). This equation 

(6)R̃i =

√
R2
i
+ R2

min
.

(7)H(s) =
�1

Ω2
1
+ 2s�1Ω1 + s2

+
�2

Ω2
2
+ 2s�2Ω2 + s2

.

can be rewritten into a notation using system poles �i and 
their conjugates �i , becoming

where  t he  sys tem po les  a re  ca lcu la ted  as 
�i = −�iΩi + jΩi

√
1 − �i in case of an underdamped system.

The Bode plot of this system in Fig. 4b shows the fre-
quency-dependent amplitude and phase behavior of the 
transfer function H(j�) . Resonances can clearly be observed, 
which are located at the damped eigenfrequencies Im

(
�i
)
 in 

the Bode plot. Alternatively, the transfer function can be rep-
resented in the complex domain by a Nyquist plot, shown in 
Fig. 4c. Looking at the Nyquist plot, the circular shapes can 
clearly be identified, with their apexes with respect to the 
origin coinciding with the damped eigenfrequencies Im(�) . 
Note that the furthest point from the origin can be calculated 
explicitly, as opposed to the distance to the −1 point, which 
cannot be calculated.

Circles cannot be fit directly to the second-order systems, 
therefore the transfer function first needs to be decomposed 
into first-order terms. In this case, this is simply done by 
rewriting Eq. 8 into

with corresponding participation factors

(8)H(s) =
�1

(s − �1)(s − �1)
+

�2

(s − �2)(s − �2)
,

(9)H(s) =
p1

s − �1
−

p1

s − �1

+
p2

s − �2
−

p2

s − �2

,

(a) (b) (c)

Fig. 4   a A double mass spring damper system, which can be 
described using Eq. 7. b Bode plot of the double second-order sys-
tem and c) corresponding Nyquist plot, where the approximated cir-

cles and interpolated points H(jIm
(
�i
)
) are indicated. The parameters 

used are Ω1 = 1.0rad/s , Ω2 = 1.1rad/s , �1 = 0.2kg−1 (collocated), 
�2 = 0.15kg−1 , and �1 = �2 = 0.01
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From the four first-order systems in Eq. 9, only one first-
order system is assumed dominant around each of the excita-
tion frequencies � ≈ Im

(
�i
)
 and � ≈ −Im

(
�i
)
 . Since only 

positive frequencies are of interest, the two approximated 
circles using Eqs. 3-5 can be described with radii and mid-
points being

with constant offsets

Two circles are calculated and overlaid in Fig. 4c, demon-
strating approximation with a close match to the original 
Nyquist curve. The approximation is most accurate for 
frequencies near the interpolation frequency Im

(
�i
)
 . From 

Eq. 11 can be seen that increasing the damping value or 
eigenfrequency would decrease circle radius, and the modal 
contributions �i have a proportional effect on the radii.

When eigenfrequencies are close to each other, they start 
interacting with each other. The mixing of modes results in 
non-circular shapes in the Nyquist curve. At this point the 
approximation in Eq. 3 is unable to fully capture the exact 

(10)pi = −
j�i

2Im
(
�i
) .

(11)Ri =
��𝜒i

��
4𝜁iΩ

2

i

√
1 − 𝜁i

and Xi = H̆i −
j𝜒i

4𝜁iΩ
2

i

√
1 − 𝜁i

,

(12)H̆i = H(jIm
�
𝜆i
�
) +

j𝜒i

2𝜁iΩ
2
i

√
1 − 𝜁i

.

behavior, as the influence of other modes ( H̆ ) is no longer 
(close to) constant. Using the double second-order system, this 
is demonstrated in Fig. 5a for a system with positive modal 
contributions (e.g. in a collocated system). In this case the two 
second-order terms contribute in the same direction and the 
total response is larger than the approximations. The oppo-
site happens when the signs of the modal contributions are 
opposed (e.g. in a non-collocated system), as can be seen in 
Fig. 5b, where the approximated circles are larger than the 
actual response. The two modes compensate each other and 
the total response becomes smaller. These examples are spe-
cifically tuned to show the effect of mode interaction, but these 
extreme cases may be rare to occur in an optimization setting. 
This will be investigated in Sect. 5 using numerical examples.

2.3 � Constraining the Nyquist curve

Using the local circle approximations, the Nyquist curve can 
be parametrized in the complex domain using simple geom-
etry. This is very useful for optimization problems where the 
Nyquist curve must geometrically be constrained in the com-
plex domain.

Distance to a point For instance, the closest distance h from 
a circle to a point � ∈ ℂ is characterized as the distance to the 
midpoint of the circle minus its radius

(13)h(X,R) = |X − �| − R.

(a) (b)

Fig. 5   The Nyquist diagrams and local circle approximations for 
two systems showing mode interaction because of frequencies close 
to each other, at Ω1 = 1.0 rad/s and Ω2 = 1.01 rad/s . The damping 
parameters are �1 = �2 = 0.01 . System input and output can be at 
either of the two masses. a) Interaction with both modal contribu-

tions positive ( �1 = 0.2 kg−1 and �2 = 0.15 kg−1 , e.g.collocated sys-
tem) results in approximation smaller than the actual Nyquist curve. 
b) Interaction with opposed modal contributions ( �1 = 0.3 kg−1 and 
�2 = −0.15 kg−1 , e.g. non-collocated system) results in larger circles 
than the Nyquist curve, as the two modes cancel each other
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To calculate the distance furthest away, the radius is simply 
added instead of subtracted

Distance to a line The shortest distance to a line character-
ized by unit normal direction n ∈ ℂ (with |n| = 1 ) and pass-
ing through the point � can easily be calculated as

Distance to an area By composing distances to lines and 
points, also the distance from a circle to an area can be char-
acterized. For instance, the shortest distance to a wedge-
shaped area bounded by two line sections with normals 
n1, n2 ∈ ℂ intersecting in the point � , is defined as

where the conditions C1 , C2 , and C3 indicate which of the 
three sections (lines or point) is closest to the position of 
X. These functions are mostly smooth and differentiable, 
except when point X coincides with � or at an inflection point 
between two segments. However, these cases will numeri-
cally rarely occur, especially when these are used in con-
straints that serve to keep the point X away from �.

3 � Application to controller‑structure 
optimization

3.1 � Optimization formulation

In a closed-loop controlled system, the interplay between 
controller and structure determines the performance that can 
be achieved. The feedback system consists of a PID control-
ler C(s) and the structure H(s), which contains a rigid body 
mode, placed in a loop, as is shown in Fig. 1.

From an optimization point of view, there is a trade-off 
between performance (bandwidth) and closed-loop stabil-
ity. Stability can be determined by inspecting the closed-
loop poles, which must have a negative real part. Using the 
Nyquist stability criterion, closed-loop stability can also be 
interpreted with the Nyquist curve: for a stable closed-loop 
system, the open-loop curve L(s = j�) must not encircle the 
−1 point (in the current case where the open-loop system 
is stable), which for positive � means that L(j�) keeps the 
−1 point to the left hand side for increasing frequencies 
(Munnig Schmidt et al. 2011). Here, the open-loop transfer 
function is calculated as the controller and plant in series 
L(s) = H(s)C(s).

(14)h(X,R) = |X − �| + R.

(15)h(X,R) = Re
(
(X − �)n

)
− R.

(16)h(X,R) =

⎧
⎪⎨⎪⎩

�X − �� if C1
Re

�
(X − �)n1

�
if C2

Re
�
(X − �)n2

�
if C3

⎫
⎪⎬⎪⎭
− R,

As discussed in the Introduction, the modulus margin 
gives information on how close a system is to instability, 
and it also provides a bound on the influence of disturbances 
on the controlled structure. It is characterized as the closest 
distance of the Nyquist curve L(j�) to the −1 point.

To ensure a closed-loop system which is stable with a 
specified modulus margin, the locally approximated circles 
are used to constrain the trajectory of the Nyquist curve 
L(j�) . Constraints are defined to prevent the circle approxi-
mations, corresponding to the mechanical eigenmodes, from 
entering the wedge-shaped area offset by � around the −1 
point as indicated in Fig. 6. In this way, both stability and 
disturbance rejection are enforced simultaneously by the 
constraints.

Multiple Nyquist curves can be constrained in an opti-
mization, for instance, to account for position-dependent 
dynamics. Many high-tech positioning systems consist of 
motion systems stacked in series to provide positioning 
freedom in additional movement directions or to achieve 
an extended range of motion. Since contactless measure-
ments are often used (e.g, laser interferometry or eddy cur-
rent sensors), a sensor fixed on a measurement frame there-
fore changes position relative to the measured object. As 
the measurement position affects the dynamics, it becomes 
position-dependent (van der Veen et al. 2017). In this work, 
the inclusion of multiple ( Nout ) relative sensor positions is 
therefore also considered. This results in multiple SISO 
control loops, or rather SIMO, each requiring performance 
constraints on disturbance rejection.

For the topology optimization, a density-based formula-
tion is used (Bendsøe and Sigmund 2003). The optimization 
formulation used in this work is stated as

Fig. 6   The constrained area in the Nyquist diagram indicated in red, 
which ensures both closed-loop stability and a modulus margin of � . 
The wedge-shaped area (Eq. 16) is shaded in dark red, which is offset 
with the modulus margin to the lighter shade of red
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where x represents the pseudo-density variables used for 
topology optimization and �b the bandwidth, which is the 
tuning parameter of the PID controller. The number of flex-
ible eigenmodes in the system is equal to N, for each of 
which circular approximations are constrained. The aim is to 
maximize the bandwidth �b of the closed-loop system while 
keeping the volume V below a volume fraction vf of the 
maximum volume Vmax , and simultaneously ensuring the cir-
cle approximations remain outside of the wedge-shaped area 
using the distances hij as defined in Eq. 16. These distances 
are related to the design variables through the radii Rij(x,�b) 
and midpoints Xij(x,�b) of the circular local approximations.

3.2 � Optimization implementation and scaling

As optimizer, method of moving asymptotes (MMA) is used 
(Svanberg 1987). Constraint and objective scaling is critical to 
this method, so the original optimization formulation of Eq. 17 
is reformulated as

where the objective is normalized with the bandwidth at the 
initial iteration �(0)

b
 and a normalized design variable x� is 

used to tune the controller. The constraints on the circles are 
scaled and normalized as

Instead of directly using the bandwidth as a variable, it 
is exponentially scaled between the user-defined bounds 
[�min,�max] as

(17)

min
x,�b

1

�b

,

s.t. V(x) ≤ vfVmax,

hij(x,�b) ≥ � ∀

{
i = 1,… ,N

j = 1,… ,Nout

,

0 ≤ x ≤ 1,

(18)

min
x,x�

100
�
(0)

b

�b(x�)
,

s.t. 10

(
V(x)

vfVmax

− 1

)
≤ 0,

gij(x, x�) ≤ 0 ∀

{
i = 1,… ,N

j = 1,… ,Nout

,

0 ≤ x ≤ 1,

0 ≤ x� ≤ 1,

(19)gij = 10

(
1 −

hij

�

)
.

(20)�b = �min

(
�max

�min

)x�

.

This causes less sensitive behavior for parameter changes at 
low bandwidth, and makes all optimization variables ( x and 
x� ) equally bounded between 0 and 1. The objective function 
is thus an explicit analytical function of the design variable 
x� , hence the design sensitivity analysis is straightforward.

To ensure a feasible initial controller for a given initial 
structure x(0) (uniform densities equal to the volume fraction 
vf ), a separate controller optimization is performed prior to 
the integrated controller-structure optimization. The con-
trol variable x� is found using the formulation of this pre-
optimization, given as

which has its optimum at �(0)

b
 . This value is used as initial 

bandwidth for the integrated optimization given in Eq. 18.

3.3 � Topology optimization parametrization

Since a density-based approach is used, the structural design 
variables x are first filtered using a standard density filter, 
resulting in the filtered design field xf (Bruns and Tortorelli 
2001). The Young’s modulus Ei and density �i of each finite 
element i in the domain E are obtained from the filtered 
design parameters using the following material interpolation

The small minimum design density xmin prevents the stiff-
ness matrix from becoming exactly singular when design 
densities are zero.

The low mass-to-stiffness ratio in Eq. 22 for low den-
sities largely prevents the occurrence of local eigenmodes 
(Olhoff and Du 2005). These are unwanted eigenmodes in 
low density areas, with low corresponding eigenfrequen-
cies. Local modes are further prevented using a flood fill 
algorithm on the design vector x , removing any material that 
is disconnected or very loosely connected to actuator or sen-
sor locations. Elements that are connected to the non-design 
domains through densities lower than 0.2 are recursively 
clipped to the maximum of their neighbors. In an extreme 
case, the disconnection of bodies results in additional rigid 
body modes at frequencies close to zero. These measures 
prevent undesired localized modes, improving the conver-
gence of the optimization.

(21)

min
x�

100
�min

�b(x�)
,

s.t. gij(x�) ≤ 0 ∀

{
i = 1,… ,N

j = 1,… ,Nout

,

0 ≤ x� ≤ 1,

(22)

Ei = E0

(
xmin + (1 − xmin)x

3
f,i

)
∀ i ∈ E,

𝜌i =

{
𝜌0xf,i for xf,i ≥ t

𝜌0
x6
f,i

t5
for xf,i < t

∀ i ∈ E.
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Next, the stiffness and mass matrices are assembled using 
the material properties E and ��� . For this, a grid of bilinear 
quadrilateral finite elements is used, with a full integration 
scheme and a plane strain condition. The assembly is per-
formed as

where K0 and M0 represent element stiffness and (lumped) 
mass matrix, respectively, corresponding to unit material 
properties, and � denotes the matrix assembly operation 
over the entire domain E.

4 � Modeling

4.1 � Mechanical model

This section describes the different steps that are taken to cal-
culate the circle radii and midpoints starting from the finite 
element matrices and the controller parameter. To guide the 
reader, a high-level visual guide of the different calculation 
steps is shown in Fig. 7. Furthermore, the equations to calcu-
late gradients during each step of the optimization are given 
in Appendix 1.

From the mass and stiffness matrices M and K , a reduced-
order model is first constructed using a truncated modal 
decomposition. This model approximates the displacement 
field u(t) by superposition of a number of eigenmodes ���i 
scaled over time with amplitudes qi(t) , denoted as

where � is the projection matrix containing all eigenmodes. 
The eigenfrequencies Ωi and corresponding eigenmodes ���i 

(23)K = �i∈EEiK0 and M = �i∈E�iM0,

(24)
u(t) ≈

N∑
i=0

qi(t)���i = �q(t),

� =
[
���0,���1 … ���N

]
,

are obtained by solving the undamped eigenvalue problem 
for the lowest N + 1 modes

using mass-normalization of the eigenmodes as ���T
i
M���i = 1 . 

The lowest eigenfrequency Ω0 = 0 rad/ms corresponds to the 
rigid body mode for the degree of freedom that is controlled 
by the PID controller.

The projection matrix � is used to obtain the reduced 
equations of motion as

where � is a diagonal matrix containing the eigenfrequen-
cies and � the non-dimensional damping ratio. The unit input 
force vector, as exerted by the actuator, is denoted as f and 
the unit output displacement vectors as measured by the sen-
sors with block-vector G , with Nout columns for each sen-
sor. The input is denoted u(t) and the outputs for all sensor 
positions y(t) , as indicated in Fig. 1. The transfer function 
of the plant becomes

which describes the behavior between the input and Nout 
outputs of the plant in the frequency domain.

4.2 � Controller

A PID controller with additional low-pass filter is used for 
feedback control of the rigid body mode, which is defined 
by the control law

(25)
(K − Ω2

i
M)���i = 0 ∀ i = 0,… ,N,

0 ≤ Ω0 ≤ … ≤ ΩN ,

(26)
�

2q(t) + 2𝜁�q̇(t) + q̈(t) = �
T fu(t),

y(t) = GT
�q(t),

(27)H(s) = GT
�
(
�

2 + 2s�� + s2I
)−1

�
T f,

Fig. 7   Overview of the modeling approach, starting from the control-
ler design variable �b and the finite element system matrices ( K and 
M ), which are dependent on the structural design variables ( x ). The 

flow diagram shows all steps taken in order to calculate the midpoint 
and radius of a circle approximation to the Nyquist curve
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with tuning parameters gain k and bandwidth �b . This is a 
PID controller based on industry standard rules-of-thumb, 
with integral action until �b∕5 , phase lead between �b∕3 and 
3�b , and first-order roll-off beyond 5�b (Munnig Schmidt 
et al. 2011; van der Veen et al. 2015). The Bode plot of this 
controller can be seen in Fig. 8. The bandwidth is used as 
a design variable during the optimization and the gain is 
calculated using

Here, m is the mass of the system and the rigid body mode 
response of the plant is equal to

This ensures that the open-loop gain at the bandwidth 
||L(j�b)

|| = k0 . In current work, the gain value is chosen as 
k0 = 1.1 , which ensures correct interaction between the 
controller and the rigid body mode (Munnig Schmidt et al. 
2011). Note that the method is not limited to this specific 
control law and variations in control behavior and parametri-
zation are possible.

The control law can be rewritten into state-space form

(28)C(s) = k
s +

1

5
�b

s

3s + �b

s + 3�b

5�b

s + 5�b

,

(29)k =
k0

||Hm(j�b)
||
= k0m�

2
b
.

(30)Hm(s) =
1

ms2
.

where Ac∈ ℝ
3×3 , Bc∈ ℝ

3×1 , Cc∈ ℝ
1×3 represent the control-

ler-structure in canonical form (also given in Appendix 1) 
(Skogestad and Postlethwaite 2001). The vector c contains 
the internal state of the PID controller and is of length 3. 
Note that other controller-structures might require a different 
number of internal states.

The open-loop response is obtained by placing the con-
troller (Eq. 31) and plant (Eq. 27) in series, connecting 
the output of the controller to the input of the plant. In 
the form of a state-space model in the time domain this 
becomes

with system matrices (Fig. 7) and state vector

The dimensions of these are A ∈ ℝ
M×M , B ∈ ℝ

M×Nin , 
C ∈ ℝ

Nout×M , and z ∈ ℝ
M , where M = 2N + 5 and Nin = 1 

in the current work. Now the transfer function of the open-
loop gain becomes

which can be used to calculate the open-loop responses 
L(s) ∈ ℂ

Nout×Nin in the frequency domain.

4.3 � Modal decomposition

Before circles can be mapped to the open-loop transfer 
function L(j�) , the transfer function needs to be decom-
posed into first-order terms (Fig. 7). From the state-space 
model (Eq. 34), the poles can directly be obtained by an 
eigen-decomposition of the system matrix A as

where matrix Q∈ ℂ
M×M contains all eigenmodes of the 

(right) eigenvalue problem and matrix �∈ ℂ
M×M has all the 

complex-valued poles �i on its diagonal. Substitution into 
the transfer function of Eq. 34 yields

(31)
ċ(t) = Acc(t) + Bce(t),

u(t) = Ccc(t),

(32)
ż(t) = Az(t) + Be(t),

y(t) = Cz(t),

(33)

A =

⎡
⎢⎢⎣

Ac 0 0

0 0 I

�
T fCc −�

2 − 2𝜁�

⎤
⎥⎥⎦
, B =

⎡
⎢⎢⎣

Bc

0

0

⎤
⎥⎥⎦
,

C =
�
0 GT

� 0
�
, z =

⎡⎢⎢⎣

c

q

q̇

⎤⎥⎥⎦
.

(34)L(s) = H(s)C(s) = C(sI − A)−1B,

(35)
AQ = Q�,

A = Q�Q−1
,

Fig. 8   Bode plot of the controller C(j�) , with normalized axes. The 
dotted lines indicate frequencies at 1/5, 1/3, 3, and 5 times the band-
width �b
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Here, the matrix Pi denotes the participation factors of all 
input and output combinations for mode i. The participation 
factors can be calculated as

for a general MIMO system, where the outputs are indexed 
with j and the inputs with k. The current application only 
considers one input, so the last index is omitted. The num-
ber of first-order terms equals the number of state variables 
M = 2N + 5 : two originating from each flexible eigenmode 
included in the reduced-order model, two from the rigid 
body mode, and three from the controller. The negative fre-
quencies are not of interest and the poles corresponding to 
controller and the rigid body mode cannot be approximated 
by a circle. Therefore, N circles are fitted to the flexible 
modes and constrained in the complex domain. With this 
decomposition, the radii and midpoints of the circles can 
now be found using Eq. 5, which is the final outcome of the 
diagram in Fig. 7.

4.4 � Efficient robust formulation

To apply the robust formulation in topology optimization, 
multiple perturbed designs are generated by erosion and 
dilation operations. This is done using the smooth Heaviside 
operator defined as

with the filtered design field xf , resulting in a projected 
design xp (Wang et al. 2011). The parameter � determines 
the edge contrast of the projection and � the amount of dila-
tion or erosion, where a value of � = 0.5 corresponds to the 
nominal design. By choosing multiple different values of � , 
multiple perturbed designs xp(�k) are generated.

However, straightforward analysis of each of these per-
turbed designs (as described in preceding sections) results 
in an additional computational burden, as a reduced-order 
model has to be created for each design. This means that for 
each projected design the eigenvalue problem needs to be 
solved (Eq. 25), which is a very computationally intensive 
step in the analysis.

(36)

L(s) = C
(
sI −Q�Q−1

)−1
B

= CQ(sI − �)−1Q−1B

=

Ns∑
i

Pi

s − �i
.

(37)pijk = [CQ]ji[Q
−1B]ik ∀

i ∈ {1,… ,N}

j ∈
{
1,… ,Nout

}
k ∈

{
1,… ,Nin

}

(38)xp,i(�) =
tanh(��) + tanh(�(xf,i − �))

tanh(��) + tanh(�(1 − �))
∀ i ∈ E,

As an alternative, we propose to approximate the eigen-
frequencies and eigenmodes of the perturbed designs, 
using the reduction basis � with eigenmodes correspond-
ing to the nominal design. This means that only the eigen-
value problem of the nominal design needs to be solved in 
each design iteration and it is assumed that the eigenmodes 
of the nominal model can be used to describe the behav-
iour of the other perturbed designs.

The eigenvalue approximation proceeds as follows: 
using the different perturbed designs xp(�k) , instead of the 
filtered design xf , the corresponding mass Mk and stiffness 
Kk matrices are assembled using Eqs. 22 and 23. Next, the 
eigenvalue problem is solved (Eq. 25) using the mass and 
stiffness matrices corresponding to the nominal design, 
yielding the reduction basis � . Instead of solving addi-
tional eigenvalue problems for the remaining projected 
designs, their system matrices are projected using the 
reduction basis belonging to the nominal design as

Their dimensions correspond to the number of modes in the 
basis, thus K̃k, M̃k ∈ ℝ

(N+1)×(N+1) . These projected matri-
ces are then diagonalized by solving the small eigenvalue 
problem

resulting in

The matrix �k∈ ℝ
(N+1)×(N+1) is a diagonal matrix containing 

the approximate eigenfrequencies of the perturbed design, 
which are in fact Ritz values. The corresponding approxi-
mate eigenmodes are linear combinations of the nominal 
eigenmodes, calculated as �Vk . The system of equations 
for the perturbed designs now be found as

The remainder of the analysis follows the same steps for 
each model as in Fig. 7, so first the controller is added to 
form the open-loop state-space model (Sect. 4.2). This is 
again decomposed into first-order systems by calculating the 
poles and participation factors (Sect. 4.3), after which circle 
approximations are formed for each eigenmode (Sect. 2.1). 
Finally, distances from the circles to the −1 point are calcu-
lated to form constraints. The effect of this approximation 
will be studied in Sect. 5.5.

After the calculation, each perturbed model k has dif-
ferent constraint values gij,k for each of its circles, cor-
responding to mode i and sensor position j. To limit the 

(39)K̃k = �
T
Kk� and M̃k = �

T
Mk�.

(40)K̃kVk = M̃kVk�
2
k
,

(41)V
T
k
K̃kVk = �

2

k
and V

T
k
M̃kVk = I.

(42)
�

2
k
q(t) + 2𝜁�kq̇(t) + q̈(t) = VT

k
�

T fu(t),

y(t) = GT
�Vkq(t).
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number of constraints from the different models, they are 
aggregated using an induced aggregation function (Ken-
nedy and Hicken 2015)

for any constraint f = gij . This function approximates the 
worst-case constraint value (i.e the maximum) between the 
perturbed projections, controlled by the parameter b. For a 
large parameter b this expression approaches the true maxi-
mum. This particular function is chosen because f = fk in 
case all values fk are equal. The robust parameter � intro-
duced in Eq. 38 is increased during the optimization, mean-
ing that for the initial iterations all perturbed designs are 
similar, and so are their constraint values. With this choice 
of aggregation function, the constraint values are not under- 
or over-estimated during the early phase of the optimization. 
The aggregation ensures the number of constraints does not 
increase when using the robust formulation, and thus no 
extra computational effort is required to calculate eigenmode 
design sensitivities (Appendix 1) (Lee 1999).

5 � Results

5.1 � Case and settings

The numerical case that is used to demonstrate the method 
is shown in Fig. 9. To ensure a position-independent system, 
Nout different sensor positions are defined at the measure-
ment surface. Measuring at any of these locations and using 
that signal for feedback control should result in a closed-loop 
stable system with required disturbance rejection.

In Table 1, the settings are listed as used in the optimiza-
tion, where the material properties correspond to those of 

(43)f =

∑
k fk exp(bfk)∑
k exp(bfk)

,

aluminium. Furthermore, the maximum number of design 
iterations is limited to 200 to prevent excessive calculation 
times. For the optimization, MMA is used with default set-
tings. A move limit of 0.05 is used on the design variables 
to prevent large steps and oscillations.

5.2 � Sequential optimization

In order to compare performance, a reference case is pre-
sented based on a sequential optimization. First, the struc-
ture is found by maximization of eigenfrequencies, and sub-
sequently the PID controller is optimized using the proposed 
method (Eq. 21). The optimization formulation used for the 
eigenfrequency maximization is given as

in which gΩ is the objective function, defined as

The superscripted variable g(0)
Ω

 denotes the value at the initial 
design iteration. This formulation maximizes the harmonic 
mean of the first three eigenfrequencies, for which further 
details and sensitivity analysis can be found in, e.g. Ma et al. 
(1995); Delissen et al. (2022).

The resulting structure after optimization of the eigen-
frequencies is shown in Fig. 10 and the subsequent con-
troller optimization is able to achieve a bandwidth of 
1.11 rad/ms . From the Nyquist plot in Fig. 10 can be seen 

(44)

min
x

100
gΩ(x)

g
(0)

Ω

,

s.t. 10

(
V(x)

vfVmax

− 1.0

)
≤ 0,

0 ≤ x ≤ 1,

(45)gΩ(x) =

3∑
i=0

1

Ωi(x)
.

Fig. 9   The case used for the optimizations, which has one rigid body 
mode in vertical direction. The actuator forces (green arrows) act uni-
formly on the non-design domain (black) to the left. The top-right 
non-design domain represents the surface where accuracy is required. 
Here, vertical displacements are measured at Nout different sensor 
locations (blue arrows). The domain is of dimensions 300 × 100mm , 
with an in-plane thickness of 300mm , and is discretized into 
210 × 70 elements

Table 1   Settings as used for the optimization

Symbol Value Description

�min 0.1 rad/ms Minimum bandwidth
�max 10.0 rad/ms Maximum bandwidth
� 0.5 Modulus margin
E0 65GPa Young’s modulus
�0 2.6 ⋅ 10−6 kg/mm3 Material density
xmin 10−7 Min. design density
� 0.01 Damping factor
N 10 Number of eigenmodes
vf 0.3 Volume fraction

2 elements Density filter radius
� 1.0 − 20.0 Robust edge contrast
� 0.5 ± 0.05 Robust cutoff
b 1.0 Aggregation constant
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that the controller satisfies closed-loop stability and distur-
bance rejection requirements. It can also be seen that only 
the sensor position at the tip (position 1) is limiting the 
bandwidth, of which the second eigenmode is touching the 
margin. Therefore, optimizing for different number of sen-
sor positions will result in an equal bandwidth, provided 
the sensor location at the tip is included.

5.3 � Integrated optimization

Using the proposed procedure, integrated optimizations 
are performed for different numbers of sensor positions 
Nout = 1, 3, 6 . The designs and corresponding Nyquist 
plots are shown in Fig. 11. Mechanism-like structures can 
clearly be identified in the designs. The Nyquist plots show 
that all the designs meet the requirements on closed-loop 
stability and modulus margin. However, not all designs 
contain binary zero-and-one densities that can directly be 
interpreted. Especially the design for one sensor position 
( Nout = 1 ) contains large areas with intermediate densities. 
The design with six sensor positions also contains some 
areas with intermediate densities. This might be function-
ally interpreted as a ‘rubber band’ with a specific stiffness 
to tune the system dynamics.

An overview of the achieved performance, as compared 
to the sequentially optimized design, is shown in Table 2. 
All the designs optimized with the integrated approach 
have a bandwidth about a factor 3.5 higher than the design 
optimized for eigenfrequencies. Moreover, the eigenfre-
quencies are significantly lower for the integrated optimiza-
tions, which clearly demonstrates that the system with the 
highest bandwidth does not necessarily need maximized 
eigenfrequencies.

The integrated approach is able to achieve a high band-
width, relatively close to the eigenfrequencies. This can be 
explained using the Bode diagrams in Fig. 12, in which the 
dynamic response of the design optimized for integrated 
performance with Nout = 3 is shown. Fig. 12a shows the 
dynamic response of the plant. The main difference between 
the sequential and integrated optimized design is the fact 
that the integrated design generally has smaller resonance 

Fig. 10   Design and Nyquist plot after maximization of eigenfrequen-
cies and sequential maximization of bandwidth. The sensor loca-
tions are indicated with colors corresponding to the different Nyquist 
curves

(a) (b) (c)

Fig. 11   Resulting designs and Nyquist plots of integrated optimizations using the proposed method, for differentnumbers of sensor positions 
Nout = 1 . For the first two Nyquist plots, the local circle approximations are also shown
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amplitudes. This allows a controller with higher bandwidth, 
since the eigenmode is less dominant. The effect of a con-
troller with a higher bandwidth can be seen in the Bode 
plot of the open-loop system (Fig. 12b). A controller with a 
higher bandwidth adds more gain to the system, hence the 
amplitude of the integrated design is higher than that of the 
sequential design, particularly in the low frequency range 
below the bandwidth. At higher frequencies, the amplitudes 
of the peak frequencies are about the same height in the 
open-loop responses, which is a result of the disturbance 
rejection constraints.

The first eigenmode of the integrated design creates a res-
onance peak with a very small amplitude (Fig. 12a), around 
5.2 rad/ms . This small amplitude means that the actuator is 
unable to ‘affect’ this mode and/or it cannot be ‘seen’ by 
the sensor (i.e. uncontrollable and/or unobservable). For the 
controller it seems as if this mode does not exist, therefore 
it is not limiting bandwidth. Inspecting the mode shapes of 
the integrated designs in Fig. 13, this effect can clearly be 
seen. For some modes, the actuator is virtually at a stand-
still, meaning that the mode is not excited by the actuator. 
For other modes, the location corresponding to the sensor 
is at a standstill, which means the sensor does not measure 
the mode. 

The convergence history of the three designs is shown 
in Fig. 14. Especially the design for Nout = 1 shows signifi-
cant oscillations. In the Nyquist curves of subsequent design 
iterations shown in Fig. 15, the circle corresponding to the 
first eigenfrequency flips its direction. This flipping is caused 

by the actuator or sensor displacement crossing zero and 
changing sign. Since the modes have a very small excita-
tion amplitude (Fig. 13), the controller is able to attain a 
very high gain. A small variation in the design then causes 
a small change in the mode shape, which eventually has a 
large effect on the system, due to the high control gain. The 
designs for 3 and 6 sensor positions exhibit less oscillations 
and a smoother convergence. Due to the addition of multiple 
sensor locations, the complexity of the optimization problem 
is increased and involves more trade-offs, leading to designs 
which are less sensitive to small variations.

5.4 � Comparison with explicit peak constraint

To demonstrate the added value of proposed method, also 
an optimization based on the method of van der Veen et al. 
(2015, 2017) is implemented. First, the frequencies cor-
responding to peaks in the sensitivity function are located 
numerically in each design iteration, after which they are 
used as constraints. Additionally, an explicit constraint 
ensuring closed-loop stability must be added, to prevent the 
Nyquist curve from encircling the −1 point. This is done 
by limiting the (smooth) maximum of all real parts of the 
closed-loop poles below zero, thus ensuring all poles are in 
the left half plane. We refer to the original publications for 
the full description, as our interest here is primarily in the 
comparison with our proposed approach.

(a) (b)

Fig. 12   Bode plots for the plant H(j�) and loop gain L(j�) , comparing the sequentially optimized design with the integrated optimized design 
for Nout = 3 . Only the response of sensor position 1 is shown. The first eigenfrequency is indicated
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The results of the optimization based on the method by 
van der Veen et al. (2017) are shown in Fig. 16. Although 
a structure may be recognized in the designs, the struc-
tural features look rather irregular and contain substantial 
amounts of intermediate densities. The design considering 
one actuator position faces similar convergence issues as the 
proposed integrated optimization (Fig. 11a), where small 
changes in design and mode shape cause oscillations. Next 
to that, the optimization for multiple sensor positions results 
in infeasible designs. During the design iterations, one of 
the Nyquist curves loops around the −1 point, indicating 
closed-loop instability (Fig. 16b, c). In this situation, two 
constraints are conflicting: the stability constraint requires 
the Nyquist curve to pass on the right side of the −1 point, 
but the peak constraint prevents this by requiring the curve to 
stay outside the circular margin. A change of design or band-
width will thus violate at least one of the constraints, making 
it difficult to escape this situation. The proposed method 
does not face these issues, as stability is ensured implicitly 

Fig. 13   Comparison of the first three mode shapes for several designs. The outline of the domain in the undeformed situation is indicated

Fig. 14   Convergence history of the bandwidth for the three integrated 
optimizations

Table 2   Performance overview of the sequential and multiple inte-
grated optimizations

Units: rad/ms Nout Bandwidth Eigenfrequency

�b Ω1 Ω2 Ω3

Sequential 1, 3, 6 1.11 11.5 22.0 26.4
Integrated 1 3.94 5.66 8.08 11.4
Integrated 3 3.86 5.23 8.60 16.4
Integrated 6 3.52 5.70 10.3 14.6

Fig. 15   Nyquist plots showing the oscillatory behavior of integrated 
optimization for Nout = 1
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by the geometric nature of the constraints on the Nyquist 
curve in combination with local circle approximations.

5.5 � Robust formulation

For the application of the robust formulation to the proposed 
integrated optimization, the effect of the robust parameter � 
is studied first. This parameter controls the amount of dila-
tion or erosion of the design. Both the eigenfrequencies and 
the distances from the circle approximations to the −1 point 
change as a function of � , as is shown in Fig. 17. Here, a 
distinction is made between the approximate responses using 
the nominal eigenmodes, as explained in Sect. 4.4, and those 
evaluated exactly, using eigenmodes corresponding to the 
perturbed designs. As can be expected, the error between 
the exact and approximated responses deviates more as the 
design is perturbed further away from the nominal design 
at � = 0.5.

Another observation that can be made in Fig. 17, is the 
fact that the distances to the −1 point are not monotonically 
increasing or decreasing, as is the case for compliance prob-
lems (Sigmund 2009). The lack of a monotonic behavior 
means that the worst-case design is not necessarily coin-
ciding with extreme values of � . In this work, a value of 
� = 0.5 ± 0.05 is used, for which it can be assumed that the 
worst-case performance is likely to be included by evaluat-
ing three designs, at � = 0.45 , 0.5, and 0.55. However, for 
larger perturbations and given the non-monotonic behav-
ior, evaluation of the worst-case performance might require 
more than three designs to be analyzed.

For the robust optimization procedure, the edge contrast 
parameter � is gradually increased from 1.0 to 20.0 during 

(a) (b) (c)

Fig. 16   Resulting reference designs and Nyquist plots of integrated optimizations explicitly constraining the peaks of the sensitivity function 
|S(j�)| , using the method of van der Veen et al. (2015, 2017), for different numbers of sensor positions

Fig. 17   Comparison of the effect of robust parameter � on the eigen-
frequencies (top) and distances from selected circles to the −1 point 
(bottom), for a robust eigenfrequency optimized design. The approxi-
mated response (Eq. 42) is compared with the exact solution (dashed 
lines). A value of � = 20 is used and a filter radius of 5 elements
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design iterations 50-180. Also, a filter radius of 8 elements 
is used to ensure a large minimum feature size.

The resulting designs of the robust integrated optimiza-
tions, using the proposed method, are shown in Fig. 18. All 
designs have clear boundaries between void and material, 
which is a characteristic property of the robust formula-
tion. At some locations, hinges appear with intermediate 
densities to provide a low-stiffness connection. As for their 
performance, the design with one sensor position achieves 
a bandwidth of �b = 3.5 rad/ms , and the two other designs 
a bandwidth of 1.9 rad/ms . A design robustly optimized for 
maximum eigenfrequencies, with similar settings, is found 
to achieve a bandwidth of 1.1 rad/ms . This means the per-
formance increase of robust integrated optimization is still 
significant.

Although the bandwidth of the design with one sensor 
position is very high, its disturbance rejection requirement 
is not met, as can be seen in Fig. 19a. This can again be 
explained by the dynamic response being very sensitive to 
(small) design variations. For the designs optimized with 3 
(Fig. 19b) and 6 sensor locations, the disturbance rejection 
requirements are satisfied for all three design perturbations 
and at all sensor locations.

The convergence properties are also improved using the 
robust formulation, as is seen in Fig. 20. Small oscillations 
are still present, but significantly less than without the robust 
formulation (Fig. 14). A lower final bandwidth is attained for 
all designs, compared to the results from optimizations with-
out the robust formulation. However, this is counterbalanced 

(a)

(b)

(c)

Fig. 18   Resulting designs resulting from robust integrated optimiza-
tions with different numbers of sensor positions

(a)

(b)

Fig. 19   Nyquist plots corresponding to different robustly optimized 
designs. The curves are generated using the approximated reduced 
order models

Fig. 20   Convergence history of the bandwidth for the three robustly 
integrated optimizations
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with an increased robustness against geometric perturbations 
and the added control on minimum feature size.

The time required for this optimization using the approxi-
mated robust formulation is 55 min. The same optimization 
without robust formulation requires 49 min in total. This is 
for a total of 200 design iterations and 3 sensor positions, 
on a standard corporate laptop with an Intel Core i7-6600 
processor. The difference of 6 min (12% extra calculation 
time) is required for the Heaviside projections, approxima-
tion of perturbed eigenmodes, and analysis of the reduced-
order model for the local approximations. This is signifi-
cantly less than the factor 3 that would be required without 
the proposed method approximating the eigenmodes for the 
perturbed designs.

6 � Discussion

In the numerical examples, no issues with severe mode inter-
action and ill-fitting local approximations are encountered 
during the optimizations, which were initially identified as 
potentially harmful for the optimization (Fig. 5). The cur-
rent work is focused on monolithic structures made out of 
metal, with a low damping coefficient � . Mode interac-
tion might increase for applications with higher damping, 
which might lead to issues in convergence. More research 
is required into the effect of damping and mode interaction 
on the optimization.

In some of the designs from the numerical examples 
(Fig. 11), intermediate density values are present. This can 
make the interpretation into solid and void material dif-
ficult from a practical engineering point of view. Partly, 
the intermediate densities might be caused by the fact that 
material penalization is harder for the integrated optimiza-
tion problem than, for instance, compliance minimization 
or eigenfrequency maximization problems. For the latter, 
penalization is straightforward to apply, as more mass means 
a lower eigenfrequency and less stiffness means a higher 
eigenfrequency. For the integrated optimization problem it 
is difficult to make this distinction, as frequencies and modes 
are specifically tuned with respect to the controller behavior. 
As can be expected, application of the robust formulation 
helps in reducing the amount of intermediate densities in the 
designs (Fig. 18). Nonetheless, the reduction of intermedi-
ate densities for complex topology optimization problems 
remains an important topic for research.

In the examples, a discrete number of sensor positions 
is used to account for position-dependent dynamics. How-
ever, position dependency occurs over a continuous line or 
even a surface in reality. The current implementation ensures 
accuracy at several locations, but it does not account for 
any other locations also requiring accurate positioning. Even 

when locations may not be sensed, their accuracy may still 
be important to consider in the design of a motion system.

Moreover, the inclusion of an increasing number of sen-
sor positions leads to a growth in the number of constraints 
for the optimization. As eigenmode design sensitivities are 
required for each constraint, this directly increases com-
putational cost. Therefore, future research should focus on 
methods to include many sensor locations without excessive 
computational cost.

The presented framework potentially allows for fre-
quency-dependent constraints. This could be used, for 
instance, to incorporate more stringent limitations on high-
frequency eigenmodes. Another possibility is to include 
the influence of time delay in the control loop, which has 
a frequency-dependent effect on the phase. Following the 
same approach based on the Nyquist curve could allow for 
consideration of this effect.

In reality, many systems are MIMO, for which the meth-
ods presented in the current work may also be used (e.g. 
sequential loop closing (Skogestad and Postlethwaite 2001)). 
However, for a coupled MIMO system multiple loops inter-
act with each other, which requires further analysis of 
closed-loop behavior. This is done in the method of van der 
Veen et al. (2017), but it requires additional constraints and 
thus significantly more computational time. Efficient exten-
sion to MIMO systems therefore remains an open issue for 
future research.

7 � Conclusion

A novel approach to integrated controller-structure topology 
optimization is proposed, with the aim of optimizing the 
structural design and tuning the controller parameters simul-
taneously for closed-loop system performance. We introduce 
a flexible framework enabling local approximation of the 
Nyquist curve using circles. These allow simple formula-
tion of geometric constraints on the Nyquist curve in the 
complex domain, making them suitable for gradient-based 
optimization. In this manuscript, the approximating circles 
are used to constrain the shape of the Nyquist curve in an 
integrated controller-structure optimization, which enforces 
stability and disturbance rejection properties of the closed-
loop system. The approach is general and can be extended to 
other control objectives or constraints that can be expressed 
by the Nyquist curve.

From the numerical examples, it can be seen that the pro-
posed method is able to greatly improve closed-loop system 
performance. For the studied problem, the state-of-the-art 
method in literature (van der Veen et al. 2015) is not able to 
converge to feasible designs due to conflicting stability and 
disturbance rejection constraints. In the proposed method, 
this problem does not occur as stability and disturbance 
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rejection are ensured simultaneously by geometrical restric-
tion of the local approximations of the Nyquist curve. Using 
numerical examples, the integrated optimization achieves 
improvements up to 350% in terms of bandwidth compared 
to sequential optimization, while ensuring a sufficient modu-
lus margin.

Also position-dependent dynamics is considered, by the 
addition of constraints on multiple SISO Nyquist curves cor-
responding to different sensor positions. Not only does this 
lead to a structure and controller that can be used at each 
of the sensor locations, it also improves convergence prop-
erties of the optimization. Optimizing for only one sensor 
position results in designs that are very sensitive to small 
variations in mode shape around the actuator and sensor 
positions, leading to severe oscillations. By optimizing for 
multiple sensor locations, this detrimental effect is notice-
ably reduced.

Furthermore, a computationally efficient robust formula-
tion is introduced, approximating the dynamics of the eroded 
and dilated designs. It allows for analysis and optimization 
of perturbed designs without significant additional computa-
tional cost, instead of a threefold increase using the conven-
tional approach. The validity of the approximation is demon-
strated for a range of design perturbations. For larger design 
perturbations extra care is required, because non-monotonic 
behavior is observed for the modulus margins, potentially 
resulting in interior worst-cases for robust optimization. 
Using the proposed formulation, the obtained designs are 
more robust against geometric deviations, a length scale is 
imposed, and a positive effect on optimization convergence 
is observed. Furthermore, the approximation-based robust 
formulation is not limited to the current application, but may 
also be used for other types of topology optimization involv-
ing dynamics.

There are several gaps to bridge in order to arrive at real-
world systems with ultimate performance, such as incorpora-
tion of time delay, MIMO control, ensuring accuracy over 
large surfaces, and further reduction of computational effort. 
Despite the remaining challenges, this work provides a step 
forward in computational design methods for next generation 
high-precision motion systems.

Appendix A: Circle in the complex domain

Below, the proof of the relations in Eq. 5 is provided. It 
additionally proves that the single first-order mode approxi-
mation of Eq. 3 describes an exact circle in the complex 
domain. A generalized circle is defined by the parametric 
equation

(46)Aww + �w + �w + D = 0,

with variable w ∈ ℂ , parameters A,D ∈ ℝ , � ∈ ℂ , and ∙ 
denoting the complex conjugate. Depending on the values 
of the parameters, the parametric equation either describes a 
circle or a line (Schwerdtfeger 1979). In case of a circle, its 
midpoint and radius are defined by, respectively

The Nyquist curve is evaluated over a line in the direc-
tion of the imaginary axis as s = j� . This line can be 
described using the generalized circle equation (with A = 0 , 
� = 1 + 0i , and D = 0 ) and using the complex variable s as

The approximated transfer function L̃i(s) of Eq. 3 is a Möbius 
transformation (Schwerdtfeger 1979), which maps the line 
from the s-domain to a circle in the L(s)-domain. The para-
metric equation for the transformed circle can be found using 
the inverse mapping, with the constant offset L̆i removed, as

with the mapped variable w ∈ ℂ . Substituting this into 
Eq. 48 and rewriting, yields the parametric equation of the 
mapped curve as

which can be rearranged to another generalized circle equa-
tion as

Using Eq. 47, the midpoint relative to the offset L̆i and the 
radius, respectively, become

Again adding the constant offset L̆i that was removed in 
Eq. 49, the midpoint of the Nyquist curve L̃i(j𝜔) is obtained 
as

(47)w0 = −
�

A
and R2 =

|�|2
A2

−
D

A
.

(48)s = j� ⇔ s + s = 0.

(49)w = L̃i(s) − L̆i =
pi

s − 𝜆i
⇔ s =

pi + 𝜆iw

w
,

(50)pi + �iw

w
+

pi + �iw

w
= 0,

(51)(�i + �i)ww + piw + piw = 0.

(52)w0,i = −
pi

2Re
(
�i
) and Ri =

||pi||
2
|||Re

(
�i
)|||
.

(53)Xi = L̆i −
pi

2Re
(
𝜆i
) .
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Appendix B: Design sensitivities

The ingredients for the design sensitivities are given in detail 
in this section. The sensitivities are given for a single dis-
tance involving a circle h(X, R). In case a constraint involves 
multiple circles, the sensitivity can be computed by applica-
tion of sum, product, quotient, or chain rule.

This appendix provides the nontrivial terms to obtain the 
design sensitivities of the new responses presented in this 
paper. The design sensitivities of the applied density filter 
are extensively used in topology optimization and can be 
found in the work of Bruns and Tortorelli (2001). Those of 
the material interpolation (Eq. 22) and the finite element 
assembly (Eq. 23) are also extensively used and are trivial 
to derive.

The remaining sensitivities are derived using the flow 
diagram in Fig. 7. Starting point are the system matrices K 
and M , and the control parameters k and �b . The sensitivities 
of each intermediate variable (with respect to circle distance 
h) are calculated using the chain rule, starting at the circle 
parametrization X, R and working our way backward towards 
K , M , k, and �b.

Appendix B.1: Note on complex derivatives

In dealing with complex derivatives, we make use of the 
Wirtinger partial differential operators (Sarason 2007) 
defined for complex variable z = x + jy as

With this choice of partial derivatives, the chain rule for the 
mapping (z ∈ ℂ) → (s ∈ ℂ) → (f ∈ ℝ) can be seen as the 
contribution of two independent variables z and z , becomes

Following Eq. 54, the identities

help in simplifying the chain rule. Since any final objective 
or constraint function used in optimization is f (z) ∈ ℝ , it 
means that

(54)

�

�z
=

1

2

(
�

�x
− j

�

�y

)
,

�

�z
=

1

2

(
�

�x
+ j

�

�y

)
.

(55)
�f

�z
=

�f

�s

�s

�z
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�f

�s

�s

�z
.

(56)�s

�z
=

(
�s

�z

)
and

�s

�z
=

(
�s

�z

)

(57)
�f

�z
=

(
�f

�z

)
.

Using these identities, the chain rule can be simplified when 
mapping (z ∈ ℂ) → (r ∈ ℝ) as

Conversely, the chain rule when mapping (r ∈ ℝ) → (s ∈ ℂ) 
becomes

Note that these definitions are not unique and other varia-
tions can be used as well. For more information on complex 
calculus, the reader is referred to, e.g. Sarason (2007).

Appendix B.2: Local circle approximation

Circle distance

(X,R) → h , Eqs. 13-15
The sensitivity of the radius R is calculated as

respectively, depending on whether the distance is calculated 
as the smallest to or furthest from a feature.

Next, the sensitivities of the midpoint X ∈ ℂ are cal-
culated as

for the distance to a point (Eq. 13) or as

for the distance to line (Eq. 15).
Circle parametrization

(p,L�, �i) → (R,X) , Eq. 5
Partial derivatives of the participation factor p ∈ ℂ can 

be calculated as

The sensitivity �h
�X

 can be calculated using the complex chain 
rule in Eq. 55.
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Next, the variable L̆ (Eq. 4) is directly substituted into 
Eq. 5. This leaves the sensitivities of the interpolation point 
L� = L(jIm

(
�i
)
) ∈ ℂ , which are simply

Finally, the partial sensitivities of the system pole �i ∈ ℂ are

Note that L� also depends on �i , for which a second contribu-
tion is calculated below in Eq. 70.

B.3 Open‑loop response

Open-loop response

(A,B,C, �i) → L� , Eq. 34
From here on, we will switch to the matrix form of 

the sensitivities to calculate the contributions of different 
inputs and outputs of the system simultaneously. The matrix 
L(jIm

(
�i
)
) = L� ∈ ℂ

Nout×Nin contains the various open-loop 
responses from different inputs to outputs.

Using the solution U and adjoint solution Y , calculated as

the sensitivities can be calculated. First of the system matrix 
A as

in which the sensitivity with respect to a matrix is a matrix 
whose entries are 

[
�h

�A

]
ij
=

�h

�Aij

 . The modal decomposition 

basis Q also depends on the system matrix A , so the second 
contribution to this sensitivity is given below in Eq. 77.

Secondly, the sensitivities of the input matrix B and out-
put matrix C are

(64)

�X

�L�
= 1,

�X

�L�

= 0,

�R

�L�
= 0,

�R

�L�

= 0.

(65)
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��i
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4Re
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��i
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��i
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4Re
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)|||Re
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(66)
U =

(
jIm

(
�i
)
I − A

)−1
B ∈ ℂ

M×Nin ,

Y = C
(
jIm

(
�i
)
I − A

)−1
∈ ℂ

Nout×M ,

(67)
�h

�A
= Re

(
YT �h

�L�

UT

)
∈ ℝ

M×M ,

(68)
�h

�B
= Re

(
YT �h

�L�

)
∈ ℝ

M×Nin ,

Besides L� , the participation factors Pi also depend on B and 
C , for which the sensitivity contributions are given below 
in Eq. 72.

Finally, the sensitivity of the system pole �i (the second 
contribution, next to the one given in Eq. 65) is calculated as

in which the operation A ∶ B =
∑

i

∑
j AijBij is a double 

contraction.

Appendix B.4: Participation factor

Participation factor

(Q,B,C) → Pi , Eq. 37
To simplify the notation of sensitivities, the following 

notation is used here:

Using this notation, Eq. 37 can be rewritten as Pi = Cqiq̂
T

i
B.

The sensitivity contributions (the second contribution 
besides Eq. 68) of the input matrix B and output matrix C 
can be calculated using

Here, the outer product is defined as A = u⊗ v ↔ Aij = uivj.
The sensitivities with respect to mode qi and q̂i (which is 

in fact the left eigenmode) are calculated as

Since qi and q̂i are related to each other through Q−1 , the 
sensitivities with respect to the matrix Q can now be cal-
culated as

This is a combination of the adjoint for 𝜕h
𝜕q̂i

 and then adding 
�h

�qi
 in the correct column (i).
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B.5 Modal decomposition

Modal decomposition

A → (�i,Q) , Eq. 35
Following the approach of Lee (1999), the eigenvector 

and eigenvalue sensitivities can be calculated using the 
adjoint method. Here again the matrix

contains the sensitivities of the eigenmodes in its columns.
First the adjoint saddle-point problem needs to be solved 

for each modal pair (�i, qi) , which is denoted

This needs to be done for all eigenmodes with �h
�qi

≠ 0 and/
or �h

��i
≠ 0 . Now the sensitivity with respect to the system 

matrix is calculated as

This is the second contribution, besides the one given in 
Eq. 67. Note that these sensitivity calculations are only valid 
with eigenmode normalization as qTq = 1.

B.6 Mechanical model

Open-loop state space

(�,�,Ac,Bc,Cc) → (A,B,C) , Eq. 33
The matrices �h

�A
 , �h
�B

 , and �h
�C

 are divided into partitions 
such that they match the division in Eq. 33:

The row and column sizes in this division are equal to 
(3,N + 1,N + 1) . Using this division, the sensitivities with 
respect to the input variables can be calculated as

(75)
�h

�Q
=
[

�h

�q1

�h

�q2
…

�h

�qM

]

(76)
[
AT − �iI − qi
−qT

i
0

] [
��� i

�i

]
=

[
�h

�qi
�h

��i

]
.

(77)𝜕h

𝜕A
=

M∑
i=1

−Re(𝜅𝜅𝜅 ⊗ q) ∈ ℝ
M×M .

(78)

�h

�A
=

⎡⎢⎢⎢⎣

�h

�A11

�h

�A12

�h

�A13
�h

�A21

�h

�A22

�h

�A23
�h

�A31

�h

�A32

�h

�A33

⎤⎥⎥⎥⎦
,

�h

�B
=

⎡⎢⎢⎢⎣

�h

�B1
�h

�B2
�h

�B3

⎤⎥⎥⎥⎦
,

�h

�C
=
�

�h

�C1

�h

�C2

�h

�C3

�
.

(79)
�h

�Ac

=
�h

�A11

∈ ℝ
3×3,

Modal analysis

(K,M) → (�,�) , Eq. 25
The modal sensitivities are calculated again using the 

adjoint method of Lee (1999), but now for a generalized 
eigenvalue problem with symmetric system matrices ( K and 
M ). First the adjoint saddle-point system needs to be solved 
for each modal pair (Ωi,���i) , which is a time consuming step 
as the size of this problem is (Ndof + 1) × (Ndof + 1) , where 
Ndof is the number of unknowns in the finite element analy-
sis. The adjoint problem is given as

Using the solution pairs (�i,���i) the sensitivities with respect 
to the structural design variables xj can be calculated as

The sensitivities �K
�xj

 and �M
�xj

 include the material interpolation 
and density filtering.

Appendix B.7: Controller

Controller

(k,�b) → (Ac,Bc,Cc) , Eq. 28
To represent the control law in Eq. 28 as a state-space 

model, the controllable canonical form is used, which results 
in the following matrices

(80)
�h

�Bc

=
�h

�B1

∈ ℝ
3×Nin ,

(81)
�h

�Cc

= fT�
�h

�A31

∈ ℝ
(N+1)×3,

(82)�h

��
= fCc

(
�h

�A31

)T

+G
�h

�C2

∈ ℝ
Ndof×(N+1),

(83)
�h

��
= −2�

�h

�A32

− 2�
�h

�A33

∈ ℝ
(N+1)×(N+1).

(84)
[
K − Ω2

i
M −M���i

−���T
i
M 0

] [
���i
�i

]
=

[
�h

����i
1

2Ωi

�h

�Ωi

]
.

(85)�h

�xj
=

N∑
i=0

−���T
i

�K

�xj
���i +

(
Ω2

i
���i +

�i

2
���i

)T �M

�xj
���i.

(86)
Ac =

⎡
⎢⎢⎣

0 1 0

0 0 1

0 − 15�2
b

− 8�b

⎤
⎥⎥⎦
, Bc =

⎡
⎢⎢⎣

0

0

1

⎤
⎥⎥⎦
,

Cc =
�
k�3

b
8k�2

b
15k�b

�
.
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Now the sensitivities with respect to the control parameters 
can simply be calculated as

Further sensitivity calculations (e.g. the dependency of k on 
�b , Eq. 29) are straightforward.

Appendix B.8: Robust formulation

For the robust formulation, we start with the sensitivities �h

�Wk

 
(with Wk = �Vk ) and �h

��k

 , which are equal to, respectively, 
�h

��
 (Eq. 82) and �h

��
 (Eq. 83) that were derived earlier.

The sensitivities of the linear combination factors ( Vk ) 
used to combine the different eigenmodes are calculated as

Yet another eigenvector adjoint system is constructed for the 
robust modal decomposition of Eq. 41 as

Here, vi denotes the ith eigenvector of the system, which are 
normalized as vT

i
M̃vi = 1 . The different eigenvectors are the 

columns of Vk , thus

Using the solution pairs (�i,���i) the sensitivities with respect 
to the reduced-order matrices K̃ and M̃ can be calculated as

Both the projection operation (Eq. 39) and the linear com-
bination of eigenvectors ( Wk = �Vk ) contribute to the sen-
sitivities with respect to � with

(87)
�h

��b

= − 30�b

�h

�Ac,32

− 8
�h

�Ac,33

(88)
+ 3k�2

b

�h

�Cc,1

+ 16k�b

�h

�Cc,2

+ 15k
�h

�Cc,3

,

�h

�k
=�3

b

�h

�Cc,1

+ 8�2
b

�h

�Cc,2

+ 15�b

�h

�Cc,3

.

(89)
�h

�Vk

= �
T �h

�Wk

.

(90)
[
K̃ − Υ2

i
M̃ − M̃vi

−vT
i
M̃ 0

] [
𝜇𝜇𝜇i

𝛽i

]
=

[
𝜕h

𝜕vi
1

2Υi

𝜕h

𝜕Υi

]
.

(91)Vk =
[
v0 ⋯ vN

]
and

�h

�Vk

=
[

�h

�v0
⋯

�h

�vN

]
.

(92)𝜕h

𝜕K̃
=

N∑
i=0

−𝜇𝜇𝜇i ⊗ vi ∈ ℝ
(N+1)×(N+1),

(93)𝜕h

𝜕M̃
=

N∑
i=0

(
Υ2

i
𝜇𝜇𝜇i +

𝛽i

2
vi

)
⊗ vi ∈ ℝ

(N+1)×(N+1).

Now, finally the large eigenvector system is solved again 
(Eq. 84) and the sensitivities with respect to the design vari-
ables xj are calculated as
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