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Abstract 
The present study analyzes the thermal attribute of conductive, convective, and radiative moving fin with thermal conductivity 
and constant velocity. The basic Darcy’s model is utilized to formulate the governing equation for the problem, which 
is further nondimensionalized using certain variables. Moreover, an effective soft computing paradigm based on the 
approximating ability of the feedforword artificial neural networks (FANN’s) and meta-heuristic approach of global and 
local search optimization techniques is developed to quantify the effect of variations in significant parameters such as 
ambient temperature, radiation-conduction number, Peclet number, nonconstant thermal conductivity, and initial temperature 
parameter on the temperature gradient of the rod. The results by the proposed FANN-AOA-SQP algorithm are compared 
with radial basis function approximation, Runge–Kutta–Fehlberg method and machine-learning algorithms. An extensive 
graphical and statistical analysis based on solution curves and errors such as absolute errors, mean square error, standard 
deviations in Nash–Sutcliffe efficiency, mean absolute deviations, and Theil’s inequality coefficient are performed to show 
the accuracy, ease of implementation, and robustness of the design scheme.

Graphical Abstract
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1  Introduction

Heat transmission is the phenomenon used to explain heat 
transfer from higher temperatures toward lower concentra-
tions (Gireesha and Sowmya 2020). In recent years, the pro-
cess of heat transfer has emerged as the most important sub-
ject in the field of thermal engineering due to the prediction 
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of heat exchanger in variety of circumstances including solar 
collector, gas turbines, radiators in cars, and energy produc-
tion (Alkam and Al-Nimr 1999; Deshamukhya et al. 2018; 
Sowmya et al. 2019; Khan et al. 2021d). The heat exchangers 
or extended surfaces are an integral part of any device that 
generates heat during its working process. They are used to 
increase the heat transfer rate from surfaces cooled by gases 
under natural or forced convection. Usually, heat transfer 
occurs through the mechanisms of conduction, convection, 
and radiation, or a combination of these methods (Ma et al. 
2017; Sun and Li 2020). Many studies on extended surfaces 
have been conducted, and some examples are provided in 
the references (Ye 2017; Ben-Nakhi and Chamkha 2006; 
Khan et al. 2021c; Chamkha et al. 2010). To improve the 
rate of heat transfer, the fins are designed using a porous 
medium such as sintered powder or perforated plates and 
metal sponge so that it can be easily used in critical sys-
tems. The porous heat exchangers are commonly used in 
powerful lasers, spacecraft thermal management systems, 
phased-array radar systems, industrial furnaces, and cata-
lytic-chemical particle beds.

During the course of the last decade, the analysis of 
fins with the purpose of enhancing heat transmission has 
attracted the interest of a great number of researchers. When 
the cross-sectional area of a fin is not very large, there is not 
a significant difference in temperature throughout the cross-
section. Then the only direction in which it undergoes a 
significant change in temperature is the one that corresponds 
to the length of the fin. To put it another way, the temperature 
field over the length of the fin is a one-dimensional field, 
despite the fact that it fluctuates in temperature as it travels 
down the length of the fin. A number of researchers have 
made various contributions toward the development and 
the enhancement in heat transmission of a one-dimensional 
porous structure with thermal conductance. An earlier study 
was conducted by Hung and Appl (1967) to investigate 
how heat is transferred within straight fins with internal 
heat generation. Razelos and Kakatsios (2000) studied 
the radiation effects of rectangular fins, which is quite 
significant in the design of reliable equipment, gas turbines, 
and nuclear plants. Further, the concept of heat transmission 
through porous fins was presented by Kiwan and Al-Nimr 
(2001), which was later improved by using Darcy’s model 
to formulate the mathematical models of heat transfer in 
porous mediums (Kiwan 2007; Kiwan and Zeitoun 2008). 
Heat transfer through a porous fin in a nanofluid subjected 
to convective and radiative environments was examined by 
Baslem et al. (2020). They examined the effect that heat 
transport via convection and radiation had on the fin. They 
concluded that the heat transmission from the fin is greatly 
improved with the use of the Cu-water nanofluid compared 
to Al2O3-water and TiO2-water nanofluids. Taklifi et al. 
(2010) studied the influence of magnetohydrodynamics 

(MHD) on heat transfer in rectangular fin. Their analysis 
indicates that the heat transfer rate decreases by employing 
the effect of MHD near the tip of the fin. Selimefendigil 
and Öztop (2012) predicted heat transport through a square 
cavity in the presence of an adiabatic thin fin using a fuzzy-
based model.

In airborne and space applications, trapezoidal, triangular, 
and concave parabolic features, which result in a lighter 
design, are preferred than rectangular fins of equivalent 
size. This is because these characteristics result in a more 
efficient distribution of the heat over the fin. On the other 
hand, fin structures with a thinner profile are more difficult 
and costly to manufacture (Buonomo et al. 2021; Kiwan 
et al. 2020). In last few decades, several researchers have 
worked in this area by considering different fin profiles to 
improve the heat distribution performance of the fins. Aziz 
and Makinde (2010) examined the entropy generation and 
thermal performance of two-dimensional orthotropic pin fins 
used in advanced light weight heat sinks. The Darcy model 
and the LTE assumption were utilised for the research that 
was conducted by Ndlovu and Moitsheki (2018) on a porous 
pin fin that was subjected to natural convection heat transfer. 
The research conducted by Turkyilmazoglu (2018) focused 
on heat transmission from moving exponential fins that have 
internal heat production. The exact formulae for the thermal 
aspects, such as the distribution of temperature, as well as 
the efficiency, were developed and studied. Fox et al. (1969) 
was among the first to do an analytical study on the heat 
transmission of moving fins in a non-Newtonian fluid. The 
rigorous impact of the Cattaneo-Christov heat flow model 
on thermal conductivity, internal resistance and magnetic 
stagnation of non-Newtonian fluids,has been studied by 
Zhao et al. (2021).

Most of the physical phenomena that emerge in the real 
world, especially the occurrence of heat and mass transfer 
under diverse effects, are well recognized and modeled as 
nonlinear differential equations (Das and Kundu 2020). In 
this regard, various numerical and analytical techniques 
are developed to study the temperature distribution. The 
homotopy perturbation method was adopted by Domairry 
and Fazeli (2009); Cuce and Cuce (2015); Hoshyar et al. 
(2015) to detect the fin efficiency of variable thermal 
conductive longitudinal fin. In order to get the solutions 
to the heat equation describing a rectangular contoured 
circumferential fin, Sarwe and Kulkarni (2021) used the 
idea of the differential transformation approach. The effect 
of environmental temperatures such as convective sink 
temperature, radiative sink temperature, as well as the 
impact of the heat production number on the distribution 
and temperature profile of a convective-radiative 
stationary fin was studied by Pranab KantiRoy using 
Adomain decomposition method (ADM). Tejani et  al. 
(2017, 2019a) proposed an approach called the modified 
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heat transfer search (MHTS). This method combines 
sub-population-based simultaneous heat transfer modes 
such conduction, convection, and radiation. This was 
done in order to investigate the dynamic behaviour of the 
structures and remove vibrations that had not been meant 
to be there. Patel and Meher (2015) have revisted the 
traditional Adomian decomposition method and modified 
the technique by including the adjustment parameters for 
controlling the convergence of solutions to highly nonlinear 
porous structures with different profiles of conductance. 
Similarly, the M. Matinfar, solved the nonlinear unsteady 
mathematical model of the convective-radiative equation 
and a nonlinear convective-radiative-conductive equation 
by adjusting the small parameters �1 and �2 with modified 
variational iteration method and He’s polynomials. The 
homotopy analysis method was applied by Moitsheki et al. 
(2015); Dinarvand and Hosseini (2013) for predicting the 
changes in thermal behaviour of the porous fin with thermal 
conductance. The impact of thermal conductivity with 
magnetic field on straight rectangular fin with insulated 
tip and nanofluid was studied by using the Akbari-Ganji’s 
method (AGM) (Hosseinzadeh et al. 2022). Sobamowo et al. 
(2019) implemented the finite difference method (FDM) to 
examine the impact of compositions of fin materials on 
heat flow rate, temperature distribution, and effectiveness 
of fin truncated with cone shape. These numerical and 
analytical methods have been effectively applied to study the 
solutions of linear and nonlinear stiff problems. But besides 
their advantages, these techniques have several limitations. 
The finite difference (FD) methods are intuitive and easy 
to implement for simple problems. However, FDM may 
easily run into a problem while handling curved/ moving 
boundaries, complicated domains, unstructured grid and 
multiple disjoint manifolds within a problem. On the other 
hand, the requirement of a small parameter is the most 
significant drawback that is associated with the perturbation 
methods. Sometimes the small parameter may also be 
artificially introduced into the equations. The solutions, 
therefore, have a limited range of validity (Şenol et al. 2013). 
Also, numerical solvers such as the Runge–Kutta methods 
are a family of iterative methods used by several researchers 
to approximate the solutions to a variety of differential 
equations. Such methods use discretization to calculate the 
solutions in small steps. Runge-Kutta methods have several 
drawbacks, the most notable of which are that they demand 
a substantial amount of additional computer time compared 
to multi-step approaches of equivalent accuracy and that 
they do not readily produce reliable global estimates of the 
truncation error.

In addition, since the 1950s, there has been substantial 
development of gradient-based techniques, and today there 
are multiple excellent options available for dealing with 
smooth nonlinear issues. These approaches only converge 

to a local minimum point for the objective function since the 
search process that they employ uses only local information 
(functions and their gradients at a place) (Dalla et  al. 
2021). The gradient-based methods estimate the motion 
by analysis of the strong differences in brightness between 
analyzed regions. The disadvantage of such approaches 
is the dependence on noise, occlusions, and discontinuity 
of the function (Starostenko et al. 2005).When traversing 
a parameter space using gradient-based approaches, there 
is a significant risk that the algorithm will become mired 
in a local minimum or maximum (s). This is due to the 
fact that the gradient is always zero at any local minima or 
maxima. To overcome these drawbacks, direct search and 
gradient free techniques are designed that are currently used 
for solving complex multidisciplinary design optimization 
problems (Talgorn et al. 2017; Alarie et al. 2021; Audet and 
Hare 2017). The algorithmic global convergence property 
of mesh adaptive direct search, supported by mathematical 
proof, makes it outperform heuristics in blackbox 
optimization as there is no guarantee/proof that heuristics 
will not converge to a non-minimizer (Audet 2014; Audet 
et al. 2022a). Mesh adaptive direct search is recommended 
to be used in blackbox optimization specially in the case of 
unreliable approximation of gradients (Audet et al. 2022b). 
So, in recent times researchers have focused their attention 
on developing artificial neural networks based evolutionary 
gradient-free techniques that do not require prior information 
about the problem. It is becoming more standard practise 
to use evolutionary computing as a method for resolving 
challenging real-world problems in fields such as industry, 
health, and the defence sector (Erdal et al. 2011; Tejani et al. 
2018; Saka et al. 2016). The special advantages include the 
processes’ flexibility and their capacity to self-adapt on the 
fly in order to search for optimal solutions (Aydoğdu et al. 
2016; Tejani et al. 2019b; Aydoğdu and Saka 2012; Yousif 
and Saka 2021).

In this study, we have developed and implanted an 
intelligent technique based on metaheuristic approach 
(Tejani et al. 2021; Kumar et al. 2021b) of global and local 
search mechanism to study the temperature distribution in 
conductive-convective-radiative moving rod. Nowadays, 
metaheuristic optimization algorithms have turned out to 
be quite attractive because of their distinct advantages over 
traditional algorithms. They can be easily hybridized and 
broadly implemented to any complex problem that can be 
formulated as optimization problem. For the purpose of 
solving optimization issues, the metaheuristic algorithms 
have been selected because of their ease of use, simplicity, 
ability to avoid reaching a local optimal solution, and 
adaptability to a diverse set of challenges originating from 
a variety of academic fields. In recent years, nature-inspired, 
human-inspired and biological-inspired meta-heuristic 
optimizers have gained the attention of researchers. Some 
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recently developed meta-heuristic techniques include 
artificial hummingbird algorithm (AHA) (Zhao et  al. 
2022), sooty tern optimization algorithm (STOA) (Dhiman 
and Kaur 2019; He et al. 2022), multi-objective plasma 
generation optimizer (MOPGO) (Kumar et  al. 2021a), 
dynastic optimization algorithm (DOA) (Wagan et  al. 
2020), Tiki-Taka algorithm (TTA) (Rashid 2020), color 
harmony algorithm (CHA) (Zaeimi and Ghoddosian 2020), 
arithmetic optimization algorithm (AOA) (Abualigah et al. 
2021). Also, the hybridized stochastic methodologies have 
been used by researchers to study the variety of problems 
arising in various domain of optimization (Kumar et al. 
2021c), thermal engineering (Khan et al. 2022b; Zhu et al. 
2021; Khan et al. 2022a), civil engineering (Huang et al. 
2021; Nguyen et al. 2021; Singh et al. 2022; Cui et al. 2021), 
computational chemistry (Khan et al. 2021e, 2021a), and 
fluid dynamics (Khan et al. 2021b; Tahani et al. 2016). 
These applications have motivated authors to extend and 
incorporated the computational strength of neural networks 
with hybridization of meta-heuristic techniques. The salient 
features of the proposed methodology are summarized as:

•	 This study analyzes the mathematical model of the 
moving hot rod subjected to convective and radiative 
environments with variable thermal conductivity and 
constant velocity. Further, an integrated soft computing 
technique based on the function approximating ability of 
artificial neural networks and the stochastic exploitation 
and exploration search strategies of arithmetic 
optimization algorithm and sequential quadratic 
optimization algorithms are utilized to construct the 
series solutions for different cases of the moving rod.

•	 The proposed FANN-AOA-SQP algorithm is 
implemented in an unsupervised manner to study the 
effect of variations in significant parameters such as 
ambient temperature, radiation-conduction number, 
Peclet number, nonconstant thermal conductivity, and 
initial temperature parameter on the temperature gradient 
of the rod.

•	 The results are validated by comparing the statistics with 
the numerical solutions by Runge-Kutta-Fehlberg method 
and other machine learning techniques. The accuracy of 
the solutions in further dictates by the values of absolute 
errors and performance measures. In addition, the 
proposed FANN-AOA-SQP algorithm is simple to put 
into practice because it only requires the basic settings 
for the parameters and sufficient termination condition 
before execution.

2 � Mathematical formulation

This study explores the heat transfer between the moving, 
convective and radiative hot rod with the surrounding. The 
rod of length L has a constant cross sectional area A, as illus-
trated in Fig. 1 is considered that emerges from a furnace 
or an intermediary heating station at a constant velocity of 
V. The initial temperature of the rod is Ti and is instantly 
exposed to ambient temperature denoted by Tambient . It is 
assumed that Ti is greater than Tambient and that the rod’s 
movement in the environment results in the formation of 
airflow at the rod’s surface. In this scenario, both convec-
tion and radiation heat transfer is occurring simultaneously. 
Radiative heat transmission greatly influences the cooling 
process when there is no forced heat transfer, i.e., only the 
natural convective heat transfer occurs.

In addition to that, it is presumed that the rod is grey in 
colour, and the coefficient of emissivity is thought to remain 
unchanged. The swaying motion and rising temperature 
of the hot rod, as previously stated, provide a steady and 
consistent convective flow around the rod. As a result, the 
heat transfer coefficient, denoted by h, may be thought of 
as being constant over the rod’s surface up to the end of 
the cooling process (Kundu and Yook 2021). The influence 
of temperature on thermal conductivity varies depending 
on whether the material is a metal or a nonmetal. Thermal 
conductivity in metals is mainly owing to the presence of 
free electrons. When the temperature of a pure metal is 
raised, the electrical conductivity of the metal drops. As 
a direct consequence of this, the thermal conductivity is 
very stable. When it comes to alloys, the amount by which 
electrical conductivity shifts is typically just a marginal 
one; hence, the increase in thermal conductivity is typically 
proportionate to the increase in temperature (Sheikholeslami 
and Ganji 2018). Mathematically, the relation between the 
temperature and conduction of heat transfer coefficient is 
defined as Fallah Najafabadi et al. (2021)

(1)k = k0
(
1 −

(
Tambient−T

)
�
)
,

Fig. 1   Schematic view of the hot moving rod
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here k0 is the coefficient of heat transmission by conduction 
at the surrounding temperature, � is variation coefficient of 
thermal conductivity, which may be positive or negative, 
and zero in the case when conduction heat transfer 
coefficient is constant. The heat transfer process of the 
rod begins when it is deposited into the environment. The 
initial unstable and fluctuating condition of heat transport 
is eliminated immediately, leaving behind a significant 
majority of the absorbed energy within the rod, with just 
a minimal amount of energy exiting the rod’s surface via 
convection and radiation. In this work, the temperature 
distribution of the rod is investigated under steady-state 
conditions. Furthermore, the radiation is only being 
emitted from the surface of the moving rod and into the 
surrounding environment, and since the rod is not receiving 
any substantial radiation from the surrounding environment, 
fluctuating radiation sink temperature may be ignored. The 
only direction in which heat is transferred is the x-direction, 
the airflow in the environment around the rod is laminar and 
consistent, and the rod does not experience any volumetric 
or longitudinal expansion while this process is taking place. 
The energy equation of the rod with convective and radiative 
heat transfer moving with constant speed is given as

here T is the temperature of the rod, � is density, � = k0∕�c 
is thermal diffusivity, � is Stefan-Boltzmann constant and 
c is the specific heat capacity. Following dimensionless 
parameters are define to solve 2.

here L denotes the length of the rod and p represents the 
circumference. Using dimensionless variables in Eq. (2) will 
result in following differential equation as Fallah Najafabadi 
et al. (2021)

subjected to the boundary conditions which are defined as

where Pe is Peclet number that shows the dimensionless 
velocity prof i le of the moving rod,  Nr,Nc is 

(2)

d

dx

([
1 + �

(
T − Tambient

)]dT
dx

)

−
hp

k0A

(
T − Tambient

)
−

��p

k0A

(
T4 − T4

ambient

)
−

1

�
V
dT

dx
= 0,

(3)� =
T ambient

Tl
,Θ =

T

Ti
, � =

xL∗

A
, L∗ =

pL

A
,

(4)

d

d�

(
[1 + �(Θ − �)]

dΘ

d�

)
− Nc(Θ − �)

− Nr

(
Θ4 − �4

)
− Pe

dΘ

d�
= 0,

(5)
at � = 0, Θ = 1,

at � = L∗,
dΘ

d�
= 0,

radiative-conductive parameter, and �  is thermal 
conductivity. These parameters are defined as

3 � Design methodology

In this section, the detailed procedure of the proposed soft 
computing algorithm i.e. FANN-AOA-SQP is presented 
that is based on the two phases. Initially, an unsupervised 
fitness function is constructed with FANN modeling in sense 
of mean square error. Further, the optimization procedures 
based on the global search ability of arithmetic optimization 
algorithm and local search mechanism of sequential 
quadratic programming are hybridized to optimize the 
neurons in FANN structure for the series solution of the 
nonlinear temperature distribution model of moving hot rod.

3.1 � FANN modeling

The mathematical modeling of the feedforward artificial 
neural networks for solving the governing model in Eqs. 
(4), (5) is presented in this section. The approximate solution 
of the problem Θ̂(𝜂) in the form of continuous mapping of 
FANN with log-sigmoid ( J(�) = (1 + exp(−�))−1 ) is given as

first and second order continuous derivatives of Eq. (7) are 
defined as

where ã =
[
ã1, ã2, ã3,… , ãk

]
, b̃ =

[
b̃1, b̃2, b̃3,… , b̃k

]
 and 

c̃ =
[
c̃1, c̃2, c̃3,… , c̃k

]
 are the unknown neurons in FANN 

(6)Nc =
hA

pk0
, � = �Tl,Pe =

VA

�p
,Nr =

��T3
l

pk0
.

(7)Θ̂(𝜂) =

k∑
i=1

ãiJ
(
w̃i𝜂 + b̃i

)
=

k∑
i=1

ãi(
1 + e−(w̃i𝜂+b̃i)

) ,

(8)

dΘ̂

d𝜂
=

k∑
i=1

ãi
d

d𝜂
J
(
w̃i𝜂 + b̃i

)

=

k∑
i=1

ãiw̃ie
−(w̃i𝜂+b̃i)

(
1 + e−(w̃i𝜂+b̃i)

)2
,

(9)

d2Θ̂

d𝜂2
=

k�
i=1

ãi
d2

d𝜂2
J
�
w̃i𝜂 + b̃i

�

=

k�
i=1

ãiw̃
2
i

⎛⎜⎜⎜⎝

2e−2(w̃i𝜂+b̃i)
�
1 + e−(w̃i𝜂+b̃i)

�3
−

e−(w̃i𝜂+b̃i)
�
1 + e−(w̃i𝜂+b̃i)

�2

⎞⎟⎟⎟⎠
,
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structure that are to be found during the optimization 
procedure of the unsupervised fitness function which is 
defined as

where EFit−1 and EFit−2 are associated to the ANN models 
of differential equation and the boundary conditions which 
are given as

where Nh = 1,Θm = Θ
(
�m

)
 , and �m = mh . The FANN 

structure for the governing model of moving rod interms 
of input, hidden and output layers is shown through Fig. 2.

(10)EFit = EFit−1 + EFit−2,

(11)
EFit−1 =

1

N

N∑
m=1

(
d

d�m

(
[1 + �(Θm − �)]

dΘm

d�m

)

− Nc(Θm − �) − Nr

(
Θ4

m
− �4

)
− Pe

dΘm

d�m

)
,

(12)EFit−2 =
1

2

(
Θ̂(1) − 1

)2

+
1

2

(
dΘ̂

d𝜂
(L∗) − 0

)2

.

3.2 � Optimization procedure

This section, explains the optimization process of the FANN 
weights in fitness function by operating the integrated 
strength of meta-heuristic computing process based on AOA 
supported with local search strategy of SQP.

Arithmetic optimization algorithm (AOA) is meta-
heuristic technique which is inspired by the application 
of basic mathematical operators such as addition (A), 
subtraction (S), multiplication (M), and division (D) in 
searching the optimal solution for mathematical optimization 
problems (Abualigah et al. 2021). Since, AOA is population-
based gradient-free algorithm so initially, it generates the set 
of random solutions as given in Eq. (13)

Following the initialization process, the search phases of 
exploration and exploitation are selected based on a function 
known as the Math Optimizer Accelerated (MOA) which is 
defined as

(13)X =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1,1 ⋯ ⋯ x1,j x1,n−1 x1,n
x2,1 ⋯ ⋯ x2,j ⋯ x2,n
⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

xN−1,1 ⋯ ⋯ xN−1,j ⋯ xN−1,n
xN,1 ⋯ ⋯ xN,j xN,n−1 xN,n

⎤
⎥⎥⎥⎥⎥⎥⎦

Fig. 2   Construction of FANN architecture for mathematical model of convective, radiative and moving rod
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here tc and TM are current and maximum iteration. Max 
and min represents the MAXIMUM accelerated values of 
MOA. The exploration phase is conditioned by MOA when 
r1 > MOA , where r1 is a random number. The mathematical 

(14)
MOA

(
tc
)

= Min + tc ×

(
Max −Min

tM

)
,

model for the search strategy of multiplication and division 
in exploration phase in modeled as

where � is constant (small integer), xi,j
(
tc + 1

)
 , represents 

the solution and at ith iteration, best
(
xj
)
 shows the best so 

far solution, L Bj, U Bj are lower and upper bounds of jth 
position, and � is the controlling parameter to adjust the 
search process of this phase. To control the range of the 
candidate solution in AOA, another function known as Math 
Optimizer Probability (MOP) is defined given in Eq. (16).

here � is sensitive parameter that reflects the search through 
the iteration. In second phase, the arithmetic operators such 
as addition and subtraction are incorporated to update the 
position of the candidate solution and achieve the optimum 
solution. The searching methodology of different operators 
towards the optimal solution is shown through Fig.  3. 
Mathematically, the exploitation phase is modeled as

(15)

xi,j
(

tc + 1
)

=

⎧

⎪

⎨

⎪

⎩

best
(

xj
)

×MOP ×
((

UBj − LBj
)

× � + LBj
)

, for r2 gt;0.5

best
(

xj
)

÷ (MOP + �) ×
((

UBj − LBj
)

× � + LBj
)

, for r2 lt;0.5

(16)MOP
(
tc
)
= 1 −

(
tc
)1∕�

(
tM
)1∕� ,

Fig. 3   Model for repositioning math operators in AOA in the direc-
tion of the optimum solution (Abualigah et al. 2021)

Fig. 4   Working mechanism of the proposed technique
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the decision on whether to execute A or S is made based 
on the value of r3. When r3 is more than 0.5, the addition 
operator is performed and the subtraction operator is ignored 
until the A completes the task, however when r3 is less than 
0.5 then viceversa occurs. The detailed flow chart of the 
working mechanism of AOA is shown in Fig. 4.

3.2.1 � The proposed FANN‑AOA‑SQP algorithm

Metaheuristic algorithms (MA) are a class of high-level 
strategies or heuristics that are used to find, or generate 
a sufficiently good solution to optimization problems 
encountered in a various applications of applied physics 
and mathematics.The AOA algorithm is a metahierarchical 
one, and its drawbacks include poor exploration capabilities 
and a high propensity to settle for local optimal solutions. 
In order, to encounter this drawback, the designed variable 
of FANNs initially with AOA are fed into sequential 
quadratic programming for rapid local convergence. SQP is 
a prominent local search method which has been effectively 
used for solving constrained and unconstrained optimization 
problems with low dimensions. Some recent application of 
SQP includes the prediction of powertrain torque and vehicle 

(17)

xi,j
(
tc + 1

)

=

{
best

(
xj
)
−MOP ×

[(
UBj − LBj

)
× 𝜇 + LBj

]
, r3 < 0.5

best
(
xj
)
+MOP ×

[(
UBj − LBj

)
× 𝜇 + LBj

]
, otherwise

speed (Yang et al. 2021), cost minimization of a hybrid 
photovoltaic, diesel generator, and battery energy storage 
system (Tian et al. 2021), dynamic combined economic 
emission dispatch problem (Gul et al. 2021), robust design 
of power system stabilizers and static VAR compensator 
(Welhazi et al. 2022), and transient control of turbofan 
engines (Wang et al. 2021).

4 � Numerical experimentation 
and discussion

In this section, the proposed methodology (FANN-AOA-
SQP) is implemented on the nonlinear governing model 
of the convective, radiative, and moving rod to study the 
influence of the variation in different parameters (ambient 
temperature, radiation-conduction number, Peclet number, 
nonconstant thermal conductivity, and initial temperature 
parameter) on the temperature distribution of the rod. An 
overview of the problem and different cases based on varia-
tions of the parameters are shown in Fig. 5.

The fitness function given in Eqs (10)–(12) are optimized 
using the design strength of the FANN-AOA-SQP algorithm 
to calculate the approximate solutions. The comparison of 
the statistics, showing the results for the temperature dis-
tribution in moving fin for Nc = Nr = 4, � = 0.2,Pe = 3 
and � = 0.2 obtained by proposed algorithm are compared 
with radial basis function approximation method (RBFM) 

Fig. 5   An overview of the prob-
lem and different cases based on 
changes in physical parameters
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(Fallah  Najafabadi et  al. 2021), Runge-Kutta-Fehlberg 
method and machine learning algorithm such as FNN and 
Levenberg–Marquardt algorithm (Hsiang et al. 2020) as dic-
tated in Table 1. Figure 6 illustrates the solutions’ accuracy 
compared to the state-of-the-art techniques. It is observed 
that results by the FANN-AOA-SQP algorithm overlap the 
numerical solution with absolute minimum errors that lie 
between 10−6 to 10−8.

The influence of physical parameters (Nr,Pe, �,Nc, �) on 
temperature distribution Θ of the moving hot rod are dictated 
in Tables 2, 3, 4 and 5 and graphically demonstrated through 
Fig. 7. It is observed from Fig. 7a and b that the temperature 
distribution of the rod in the passive device reduces when 
the conductive-convective parameter increases, implying that 
the pace at which heat is transferred via the fin is increased, 
and as a result, the efficiency with which the fin transfers 
heat is enhanced. This is due to the fact that convective heat 

transfer occurs when the temperature rises, convective cool-
ing becomes more effective, lowering the fin’s temperatures. 
By extension, a reduction in the value of the fin efficiency 
is produced by increasing the value of the convective-con-
ductive parameter. In addition, the influence in Peclet num-
ber is shown through Fig. 7c. The values of the temperature 
distribution in the fin rise in proportion to the increase in 
the Peclet number. This is expected because, as the Peclet 
number increases, the material moves faster, and the time dur-
ing which the material is exposed to the environment short-
ens. Additionally, the heat loss from the fin surface becomes 
stronger, increasing the temperature of the fin surface. 
Figure 7d depicts the effect of ambient temperature on the 
thermal performance of the heat exchanger. The greater the 
dimensionless ambient temperature, the higher the tempera-
ture in the surrounding area. As a result, heat transfer from 
the fin surface to the surrounding environment is reduced. So, 

Table 1   Comparison of results with radial basis function approximation method (RBFM), Runge–Kutta–Fehlberg method, and machine-learning 
technique such as FNN and Levenberg–Marquardt algorithm

� Solution Absolute errors

RBFM FNN-LM FANN-AOA-SQP RKFM RBFM FNN-LM FANN-AOA-SQP

0.0 1.00004711 0.99966884 0.99999695 1.00000000 4.71082000E−05 3.31156169E−04 3.04890500E−06
0.1 0.88790222 0.89345397 0.89345652 0.89345656 5.55433579E−03 2.58674300E−06 3.27940001E−08
0.2 0.79822750 0.80727280 0.80726970 0.80726900 9.04150754E−03 3.79515600E−06 6.94919000E−07
0.3 0.72657971 0.73601715 0.73601418 0.73601461 9.43490678E−03 2.54011300E−06 4.37278000E−07
0.4 0.66892546 0.67638540 0.67638294 0.67638277 7.45730466E−03 2.62952900E−06 1.67581000E−07
0.5 0.62192928 0.62632454 0.62632199 0.62632195 4.39267235E−03 2.58619100E−06 3.52539999E−08
0.6 0.58319320 0.58462419 0.58462424 0.58462484 1.43163246E−03 6.47788000E−07 5.92566000E−07
0.7 0.55143395 0.55076746 0.55076317 0.55076305 6.70892909E−04 4.40778900E−06 1.15908000E−07
0.8 0.52658713 0.52486976 0.52487350 0.52487436 1.71277349E−03 4.59367100E−06 8.53268000E−07
0.9 0.50983228 0.50786431 0.50786057 0.50786072 1.97156193E−03 3.58925000E−06 1.47996000E−07
1.0 0.50353693 0.50158037 0.50158039 0.50158037 1.95655685E−03 1.74000037E−10 1.10550000E−08

Fig. 6   a, b Illustrates the comparison of solutions and absolute errors in temperature distribution of the moving rod with 
Nc = Nr = 4, � = 0.2,Pe = 3 and � = 0.2
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Fig. 7   Illustration of influence due to changes in different physical 
parameters on the temperature distribution of the moving fin with 
a � = 0.4, � = 1,Nc = 2,Pe = 2 , b � = 1, � = 0.4,Nr = Nc = 2, c 

Pe = 2, � = 1,Nr = Nc = 2, d � = 1, � = 0.4,Pe = 2,Nr = 2, and e 
Nr = Nc = 2, � = 0.4,Pe = 2
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more the ambient temperature less will be the transfer of heat. 
Further, Fig. 8 is plotted to demonstrate the accuracy of the 
approximate solutions obtained by the proposed algorithm for 

different cases of the moving rod. The approximate solution 
for different cases can be generated by using the equations 
given in “Appendix”.

Fig. 8   Illustration of the absolute errors in the solutions of 
FANN-AOA-SQP algorithm for different cases of Eq. (4) with a 
� = 0.4, � = 1,Nc = 2,Pe = 2 , b � = 1, � = 0.4,Nr = Nc = 2, c 

Pe = 2, � = 1,Nr = Nc = 2, d � = 1, � = 0.4,Pe = 2,Nr = 2, and e 
Nr = Nc = 2, � = 0.4,Pe = 2
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Fig. 9   a, b Shows the combine effects of Nc,Nr and Pe on the temperature performance of the rod

Table 2   Statistics of the calculated results for thermal distribution of a wetted porous structure and their corresponding AE obtained by the pro-
posed scheme for variations in radiations parameter with Nc = 2, � = 1, � = 0.4 and Pe = 2

Solutions Absolute errors

Nr = 1 Nr = 2 Nr = 3 Nr = 4 Nr = 1 Nr = 2 Nr = 3 Nr = 4

0.0 0.999993 1 0.999999 0.999998 4.786643E−05 9.468818E−06 8.100852E−06 1.890666E−05
0.1 0.95232 0.941093 0.931675 0.923461 5.650062E−05 3.186095E−05 4.012722E−05 9.771750E−05
0.2 0.909807 0.890034 0.873857 0.86004 1.288105E−06 2.510250E−05 5.673190E−05 1.483477E−04
0.3 0.872055 0.845764 0.824718 0.80706 2.384707E−05 1.156753E−05 1.190149E−05 6.518979E−06
0.4 0.838808 0.807543 0.782985 0.7627 1.900344E−05 7.672769E−06 3.270042E−05 1.068978E−04
0.5 0.809949 0.774896 0.74781 0.725736 4.957698E−06 7.871931E−06 8.748966E−06 3.284028E−05
0.6 0.785501 0.747583 0.718686 0.695405 8.825988E−06 5.125001E−06 2.893456E−05 6.756444E−05
0.7 0.765634 0.725591 0.695413 0.671328 1.313187E−05 6.859307E−06 6.777202E−07 6.451270E−05
0.8 0.750683 0.70914 0.678091 0.653485 4.233063E−06 2.881823E−06 2.655502E−05 2.175318E−05
0.9 0.741163 0.698696 0.667123 0.642213 3.302314E−05 2.712731E−05 5.753817E−06 6.329484E−05
1.0 0.737794 0.695 0.663244 0.638229 1.503751E−05 1.651211E−05 1.118278E−05 3.405407E−05

Table 3   The statistical analysis of the approximated solutions and magnitude of the errors in the results by the designed paradigm for variations 
in conduction parameter with Nr = 2, � = 1, � = 0.4 and Pe = 2

Solutions Absolute errors

Nc = 1 Nc = 2 Nc = 3 Nc = 4 Nc = 1 Nc = 2 Nc = 3 Nc = 4

0.0 0.999998 0.999999 1.000015 0.999999 1.765931E−05 3.267390E−06 4.948946E−05 4.863930E−06
0.1 0.950335 0.941092 0.932628 0.924799 5.538637E−05 6.221897E−06 2.806658E−06 2.454132E−05
0.2 0.907085 0.890033 0.874545 0.860391 4.491420E−05 8.717667E−06 1.097204E−05 5.322621E−05
0.3 0.869432 0.845763 0.824453 0.805191 2.231986E−05 2.739705E−06 1.212480E−05 5.298644E−05
0.4 0.836810 0.807543 0.781420 0.758063 2.959437E−05 2.261680E−05 2.715352E−05 6.466197E−06
0.5 0.808868 0.774896 0.744826 0.718218 2.612840E−05 6.753803E−06 3.227777E−05 3.240068E−05
0.6 0.785445 0.747583 0.714324 0.685176 1.760557E−05 2.547717E−05 3.681993E−05 1.236171E−05
0.7 0.766565 0.725591 0.689832 0.658754 3.673281E−05 2.548095E−05 3.551765E−05 2.083964E−05
0.8 0.752438 0.709139 0.671538 0.639074 4.220622E−06 1.218358E−05 1.160764E−05 1.445326E−05
0.9 0.743477 0.698695 0.659927 0.626600 5.648190E−05 2.977799E−05 2.650398E−05 2.109202E−06
1.0 0.740312 0.695000 0.655815 0.622181 3.198311E−05 1.374518E−05 1.476485E−05 2.533932E−06
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The combined effect of different parameters on the tem-
perature performance at the rod’s tip is shown in Fig. 9. The 
three-dimensional surface plots show that temperature at the 
rod’s tip is maximum when convective and radiative param-
eters are minimum, and Peclet number is maximum. It is 
further noticed that the effect of these critical parameters is 
nonlinear, reflecting the higher temperature dependency on 
Nc and Nr.   

5 � Performance measures

This section incorporates different performance measures to 
explore the efficiency, stability, and accuracy of the approxi-
mate solutions calculated by the proposed computational 
(FANN-AOA-SQP) algorithm. The performance indices are 
defined in terms of mean absolute deviations (MAD), Theil’s 

inequality coefficient (TIC), root mean square error (RMSE), 
and error in Nash–Sutcliffe Efficiency (ENSE). Mathematical 
relations for these indices are defined as Umar et al. (2020)
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Table 4   Statistics of the calculated results for thermal distribution of a wetted porous structure and their corresponding AE obtained by the pro-
posed scheme for variations in velocity parameter (Pe) with Nr = Nc = 2, � = 1 and � = 0.4

Solutions Absolute errors

Pe = 1 Pe = 2 Pe = 3 Pe = 4 Pe = 1 Pe = 2 Pe = 3 Pe = 4

0.0 1.000001 1.000002 0.999998 1.000000 6.750379E−06 1.377765E−05 8.626292E−06 1.009510E−06
0.1 0.944059 0.952329 0.958877 0.964115 2.496484E−05 2.751508E−05 5.697738E−06 3.616491E−07
0.2 0.894988 0.909815 0.921689 0.931282 1.900408E−05 5.224604E−06 1.945949E−05 2.259382E−05
0.3 0.852201 0.872061 0.888158 0.901300 1.276597E−05 2.228531E−05 4.481846E−06 5.690388E−06
0.4 0.815278 0.838813 0.858124 0.874065 6.334014E−06 1.374461E−05 1.330689E−05 2.661534E−05
0.5 0.783945 0.809953 0.831557 0.849588 9.743473E−06 3.771875E−06 1.060670E−05 7.969113E−06
0.6 0.758057 0.785504 0.808565 0.828014 4.160123E−07 1.272560E−05 1.151443E−05 2.447243E−05
0.7 0.737593 0.765636 0.789427 0.809677 8.486989E−06 6.885369E−06 2.709994E−05 2.477499E−05
0.8 0.722647 0.750683 0.774632 0.795156 3.624936E−06 4.562607E−06 2.938193E−06 1.417513E−05
0.9 0.713430 0.741162 0.764930 0.785372 8.102531E−06 3.977544E−06 5.407609E−05 3.315218E−05
1.0 0.710266 0.737792 0.761395 0.781709 8.774453E−06 1.461179E−06 2.111133E−05 1.798909E−05

Table 5   The statistical analysis of the approximated solutions and magnitude of the errors in the results by the designed paradigm for variations 
in � with Nr = Nc = Pe = 2 and � = 1

Solutions Absolute errors

� = 0.2 � = 0.4 � = 0.6 � = 0.8 � = 0.2 � = 0.4 � = 0.6 � = 0.8

0.0 1.000001 0.999997 0.999992 1.000003 1.206115E−05 1.554676E−06 2.844812E−05 4.983000E−06
0.1 0.934938 0.941091 0.950829 0.968400 5.368228E−05 7.637639E−06 6.012020E−05 2.300215E−05
0.2 0.878037 0.890031 0.908830 0.942108 1.643381E−05 1.581024E−05 3.458689E−07 2.440437E−05
0.3 0.828284 0.845761 0.872940 0.920246 1.648635E−05 1.346863E−05 2.132732E−05 1.478513E−05
0.4 0.785006 0.807541 0.842379 0.902131 3.217766E−06 2.324565E−05 1.082855E−05 1.185446E−05
0.5 0.747812 0.774894 0.816599 0.887242 1.390824E−05 5.198774E−06 2.826995E−06 1.522597E−05
0.6 0.716556 0.747582 0.795253 0.875201 3.337832E−05 1.344821E−05 8.252745E−06 2.595468E−06
0.7 0.691332 0.725590 0.778195 0.865767 2.932649E−05 1.193094E−05 6.203705E−06 1.401837E−05
0.8 0.672463 0.709138 0.765487 0.858839 1.014651E−05 3.174981E−06 2.388131E−06 1.857010E−07
0.9 0.660517 0.698693 0.757421 0.854476 4.681821E−05 8.897335E−06 1.482842E−05 2.186521E−05
1.0 0.656310 0.694998 0.754557 0.852929 5.464326E−05 4.818057E−06 9.302385E−07 6.008371E−06
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where NSE is Nash-Sutcliffe Efficiency and is defined as 
Umar et al. (2020); Khan et al. (2021a)

here Θ̂ and Θ are the approximate and exact solutions for the 
problem. M corresponds to the total number of mesh (grid) 
points, and i denotes the number of current solution points. 
Since the FANN-AOA-SQP algorithm is an unsupervised 
learning strategy, it is important to use these performance 
indices to justify the accuracy of the solutions. For perfect 
modeling of approximate solutions, values of MAD, TIC, 
RMSE, and ENSE approach to zero.

To investigate the stability and durability of the results, 
the design method is executed for 100 times. The solution 

(21)ENSE =|1 − NSE|,

(22)NSE = 1 −
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curves for the temperature distribution in the moving rod 
obtained during each run are plotted through Fig. 10. It is 
concluded that the approximate solutions for different cases 
overlap the numerical solution with 100% accuracy and 
stability. The behavior of fitness value and MAD of solu-
tion in each run is graphically shown through Fig. 11. The 
mean values of fitness function and MAD lies in the range 
of 10−5 to 10−6 and 10−4 to 10−5 , respectively. The detailed 
statistics of the performance indicators in terms of minimum 
value, mean and standard deviations are provided in Table 6. 
Clearly, it can be observed that for each case minimum 
values of fitness function, MAD, TIC, RMSE and ENSE 
lies between 10−8 to 10−9 , 10−6 to 10−7 , 10−4 to 10−5 , 10−5 to 
10−6 , and 10−9 to 10−10 respectively. The global (average) 
values for each case lies around 10−4 to 10−6 . The results of 
ENSE are shown through the boxplots in Fig. 12. It can be 
seen that the upper quartile (maximum values) of boxplots 
for each case lie between 10−6 to 10−7 , which shows that 
the solutions of the proposed technique are accurate and 
stable. The normal distribution curves for the root mean 

Fig. 10   a, b, c, and d Approximate solution obtained by FANN-AOA-SQP algorithm in each run for different cases of moving rod
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square error of the approximate solutions of moving rod with 
� = 0.2,Nr = Nr = 1,Pe = 2 and � = 1 are plotted through 
Fig. 13.

6 � Conclusion

This paper investigates the thermal performance and heat 
transfer of the convective, radiative and moving rod with 
thermal conductivity by developing a met-heuristic driven 
approach based on the approximating computational ability 
of neural networks. Furthermore, the feedforward network is 
optimized by combining global and local search mechanisms 
such as Arithmetic optimization algorithm and sequential 
quadratic programming. The proposed FANN-AOA-SQP 
algorithm is implemented to study the rod’s temperature 
distribution behavior by varying critical parameters 
(radiation parameter Nr , conduction parameter Nc , ambient 

temperature � , Peclet number Pe and thermal conductivity 
� ). The results demonstrate that increase in Nc , Pe and Nr 
causes an increase in the temperature of the rod. In addition, 
the increase in velocity parameter (Pe) from 1 to 2 causes an 
increase in the temperature up to 7 to 10%.

Further, the design algorithm’s accuracy, stability, and 
effectiveness are established by calculating the errors based 
on MAD, TIC, RMSE, ENSE, and AE. The values of these 
errors are approaching to zero, reflecting the perfect mod-
eling of the solution compared to the other techniques avail-
able in the latest literature. The results and graphical analysis 
illustrate that the proposed approach is accurate and reliable 
in calculating solutions to complex real-world problems.

In the future, the author aims to extend the proposed meta-
heuristic technique to solve high-dimensional problems, 
especially partial differential equations and fractional 
differential equations about complex problems such as 
epidemiology and population study, magnetic resonance 

Fig. 11   a, b, c, and d Shows the behaviour of values of fitness function and mean absolute deviation by varying Nr,Nc, � and Pe during 100 
independent execution of the design algorithm
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Fig. 12   a, b, c, and d Results of ENSE obtained by FANN-AOA-SQP algorithm during multiple runs for variations in critical parameters

Fig. 13   Normal distribution curves for root mean square error in the solutions of the proposed technique for Nr = 1 = Nr with � = 0.2,Pe = 2 
and � = 1 . Black line shows the minimum value
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electrical impedance tomography, image inpainting, google 
mobility data to predict COVID-19 in Arizona, and prostate 
tumor growth under intermittent hormone therapy.

Appendix

Analytical expressions for the approximate solutions for 
Nr = 1, 2, 3, 4 with � = 1, � = 0.4,Pe = 2,Nc = 2.

Analytical expressions for the approximate solutions for 
Nc = 1, 2, 3, 4 with � = 1, � = 0.4,Pe = 2,Nr = 2.
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Analytical expressions for the approximate solutions of 
Pe = 1, 2, 3, 4 with � = 1, � = 0.4,Nr = Nc = 2.
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Analytical expressions for the approximate solutions of 
� = 0.2, 0.4, 0.6, 0.8 with Pe = 2, � = 1,Nr = Nc = 2.
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1+e−(−1.912946787560�−2.646487482227)
+

1.766415918623

1+e(−0.058173416653�−1.166779973996)

+
1.550609866723

1+e−(0.128182557220x−0.985102247883)
+

5.691161109220

1+e−(−0.342633523414�−0.407424968978)

+
−1.538122866466

1+e−(−2.404212320455�−2.107965202164)
+

32.958478543652

1+e(−1.802112580628�−3.972260831035)

+
1.542667449233

1+e−(0.937061313882�−3.559710057918)
+

−2.900316627244

1+e−(0.133571942108�−0.975914348535)
,

(A14)

Θ(�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

−1.111076945924

1+e−(−1.219749571488�−0.221330398503)
+

−1.201927299972

1+e−(0.967208794649�−0.904717750898)

+
13.645185283690

1+e−(−2.948087635852�−5.054746827468)
+

1.143789269027

1+e(0.296687742611�−0.326336879992)

+
0.943932248193

1+e−(−1.743896145916�−0.734847901139)
+

1.294998242580

1+e−(−1.080951130967�−0.633667318097)

+
0.159638946195

1+e−(1.561969466343�+1.571780193139)
+

−2.076385341372

1+e(−0.311928231850�−3.797867169826)

+
0.630202579653

1+e−(0.370673088136�+0.734673440429)
+

3.395839494015

1+e−(2.616401814548�−6.154809519902)
,

(A15)

Θ(�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.739610430026

1+e−(−1.604896776388�−0.739559941731)
+

0.393314479289

1+e−(0.145045979505�−0.194907129034)

+
−1.650413371969

1+e−(0.310080869587�−1.984570924656)
+

0.196124137971

1+e(0.276333660732�−0.141438884880)

+
0.141168236757

1+e−(0.326702774792�−0.155157215080)
+

−1.952031926853

1+e−(1.628877830988�−4.941519544420)

+
0.206954577700

1+e−(0.276301097483�−0.159151839371)
+

77.829990745035

1+e(−2.634872738873�−6.628381131366)

+
5.436193560530

1+e−(2.716751742751�−6.844575036172)
+

1.059044460482

1+e−(0.023579591639�−0.354410865023)
,

(A16)

Θ(�) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

0.293243581386

1+e−(−1.922816247792�−0.141514802019)
+

0.220070557690

1+e−(−0.023451791134�+0.013431411599)

+
−3.371963852712

1+e−(1.198910649668�−7.077946204310)
+

0.322051785039

1+e(−0.376938234033�+0.045276581898)

+
0.180677627453

1+e−(0.240346794270�+0.074908745480)
+

0.278377329709

1+e−(−0.238009071233�+0.029355987840)

+
8.091210083932

1+e−(−2.404742277837�−4.267535154433)
+

0.247874459227

1+e(1.621813111073�+0.044924173335)

+
0.232414371342

1+e−(−0.055515398530�+0.009064800456)
+

6.264609304470

1+e−(3.294591488970�−8.861691812633)
,
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