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Abstract
The optimal design of nanoparticles with respect to their optical properties is one of the main foci within nanoparticle tech-
nology. In this contribution, we suggest a new design optimization method in the framework of which the discrete dipole 
approximation (DDA) is used to approximate the solution of Maxwell’s equation in time-harmonic form. In the core of 
the optimization method, each dipole is repeatedly assigned a material property from a given material catalog until a local 
minimum for the chosen design objective is obtained. The design updates are computed using a separable model of the opti-
mization objective, which can be solved to global optimality, giving rise to a sequential global optimization (SGP) algorithm. 
We suggest different types of separable models, among them exact separable models as well as tight approximations of the 
latter which are numerically tractable. The application of the DDA method in the framework of structural design methods 
widens the spectrum of numerically tractable layout problems in optical applications as, compared to finite element based 
approaches, significantly more complex design spaces can be investigated.

Keywords Topology optimization · Material optimization · Sequential global programming · Discrete dipole approximation

1 Introduction

In this paper, a material optimization method for the optimal 
layout of nanoparticles and nanoparticle assemblies with 
respect to a desired optical property is developed. Nanopar-
ticles, as well as colloidal supraparticles, which are specially 
arranged assemblies of nanoparticles, give rise to interest-
ing optical properties and have thus become more and more 

attractive in a wide variety of research fields (Khan et al. 
2019). Especially, the investigation of structural colors and 
their application in industry has become increasingly inter-
esting over the last decade, see, e.g., Zhao et al. (2012); 
Kawamura et al. (2016); Xiao et al. (2017); England et al. 
(2017); Goerlitzer et al. (2018); Wang et al. (2020).

In order to predict optical properties of nanoparticles 
using computers, the underlying electromagnetic scattering 
problem has to be solved (see Fig. 1 for a visualization). 
Therefore, simulation methods are used, which provide 
approximate solutions to the Maxwell’s equations in time-
harmonic form. In the simplest case, i.e., radial symmet-
ric particles, the electromagnetic behavior can be obtained 
from Mie-theory (Mie 1908; Bohren and Huffman 1998). 
The optical scattering properties of assemblies of multiple 
particles can be approximated by the so-called T-matrix 
method (Waterman 1965, 1971; Mackowski 1994). In both 
these approaches, vector spherical wave functions are used 
to describe the electromagnetic fields. While these methods 
are rather efficient and allow to predict properties for rela-
tively large particle assemblies, they are applicable only as 
long as the shape and composition of the individual particles 
in the assembly is sufficiently simple. It is also interesting 
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to note that—to the best of our knowledge—these methods 
have not been used in the context of mathematical optimiza-
tion so far.

In contrast to the Mie- and T-Matrix-based methods and 
their relatives, the finite element method (FEM) allows to 
predict electromagnetic fields for rather arbitrarily composed 
objects. However, in the context of topology optimization, 
typically, a high resolution of the design domain is required 
resulting in large number of unknowns in the FEM prob-
lem. To give an example, if a 3-dimensional object is rep-
resented via its piecewise constant material properties on a 
regular grid, using 105 cells, the boundaries of the object still 
appear rather coarse, while the solution of the correspond-
ing FE system, using standard edge elements, is already 
very demanding with respect to both, computation time 
and memory consumption. The latter is particularly true, as 
in the FEM surrounding material has to be added and the 
absorbing boundary conditions have to be handled, e.g., by 
adding a perfectly matching layer (PML). Thus, a way larger 
domain than the object of interest itself has to be discretized. 
Of course, for a fixed design, adaptive concepts can be used 
to improve the situation; however, this is very involved, if 
the layout changes drastically in the course of the optimiza-
tion. As a remedy, inspired by Monk (2003), in Semmler 
and Stingl (2021), a hybrid finite element approach based 
on both, finite element approximations and superposition of 
vector spherical wave functions, was developed. It allows for 
individual particles of rather arbitrary shape and composi-
tion; however, within the hybrid approach, the electromag-
netic properties of the individual particles are pre-calculated 
in an offline phase. Based on these offline calculations, opti-
mization tasks can be carried out, in which positions and ori-
entations of the predefined particles (described themselves 
by a large number of elements) can be varied. In contrast 
to this, in this article, we are more interested in varying the 

composition of the particles themselves utilizing a genuine 
topology optimization approach. Rather than using the FEM 
method, we suggest to numerically approximate the solution 
of Maxwell’s equations by the discrete dipole approxima-
tion (DDA) (DeVoe 1964; Purcell and Pennypacker 1973; 
Draine and Flatau 1994). The advantage of this choice is 
twofold: first, highly efficient and parallel implementations 
of the DDA method, see, e.g., DDScat (Draine and Flatau 
1994), OpenDDA (Donald et al. 2009), and ADDA (Yurkin 
and Hoekstra 2011), allow simulating the electromagnetic 
behavior of 3D particles using fine design discretizations 
even on high-end desktop computers. And second, the struc-
ture of the complex equation systems obtained from DDA 
can be exploited by the sequential global programming 
(SGP) method recently suggested in Semmler et al. (2018). 
As a consequence, the range of numerically tractable topol-
ogy optimization problems relying on approximate solutions 
of the 3D time-harmonic Maxwell’s equations can be sig-
nificantly extended.

While we use SGP in combination with DDA in this 
paper, design approaches in literature typically combine the 
FEM with the so-called SIMP (solid isotropic material with 
penalization) method, which originally was developed for 
the optimization of elastic structures (Bendsoe and Sigmund 
2004), and in Sigmund and Jensen (2003) applied for the 
first time for complex state systems. The SIMP method is 
based on interpolation between two admissible materials and 
an appropriate penalization scheme which renders undesired 
intermediate material properties unattractive. In the context 
of electromagnetics, the use of this method was first reported 
in Diaz and Sigmund (2010). Generalizations of the SIMP 
idea to more than two admissible materials can be found 
in the literature under the name discrete material optimiza-
tion (DMO), see, e.g., Stegmann and Lund (2005); Hvejsel 
and Lund (2011). The trick is here to essentially allow for 
all convex combinations of the given, finitely many, dis-
crete materials and employ again a scheme which penal-
izes intermediate material choices. The resulting continu-
ous optimization problems are then solved by established 
constrained optimization solvers in a “black box” manner. 
Probably, the most prominent among the utilized solvers in 
the design optimization community is the method of moving 
asymptotes (MMA), see, e.g., Svanberg (1987); Bruyneel 
et al. (2002). In both, MMA and the SGP method, our work-
ing horse in this paper, the original optimization problem is 
approximated by a sequence of simpler problems, in which 
nonlinear functions are approximated by separable models 
which are first-order correct. However, there is an impor-
tant difference: while MMA relies on the convexity as well 
as smoothness of the resulting model problems, both these 
assumptions do not have to hold in SGP. This has two advan-
tages. First, in general, in SGP, we can work with much 
better separable approximations. Indeed, in this article, we 

Fig. 1  Electromagnetic scattering problem where the object Ω is illu-
minated by an incident light. Both, direction/polarization of incident 
light and orientation of the object are characterized by a reference 
coordinate system. For a detailed description of the particular prob-
lem, see Sect. 1.1 in Mishchenko et al. (2006)
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propose the so-called exact separable models along with 
tight tractable approximations. We will demonstrate in the 
numerical section of this article that this can help to escape 
from certain local minima with a poor value for the cost 
function. Moreover, as already indicated above, the ability 
to compute these models is closely related to the choice of 
the DDA approach. Second, design problems with more than 
two materials can be treated in a much more straightforward 
manner, i.e., without using higher dimensional interpolation 
models as used in DMO.

We finally would like to note that applications of mate-
rial optimization methods in the context of electromagnetics 
range from optimal design problems to improve different 
optical properties of nanoparticles and particulate systems 
(Pendry et al. 2006; Andkjær and Sigmund 2011; Semmler 
and Stingl 2021), via the design optimization of nano-
antennas and waveguides (Hassan et al. 2015; Semmler et al. 
2015; Hassan et al. 2020), to inverse problems, where the 
material distribution is reconstructed from the information 
obtained from the scattered electromagnetic field (Colton 
and Kress 2013). The computational approaches for all the 
above examples are based on finite element approximations 
of the solution of the time-harmonic Maxwell’s or Helm-
holtz equations. In literature, there are only a few works 
dealing with dipole-based optimization in the framework of 
electromagnetics. In Zecca et al. (2019), e.g., a DDA-based 
non-self-adjoint variational formulation of electromagne-
tism combined with a gradient-descent method to compute 
a design update is used to optimize different electromagnetic 
devices. Furthermore, for the efficient inverse design of fluc-
tuating thermal sources, based on a reformulation of a stand-
ard DDA approach, called thermal DDA (T-DDA) (Edalat-
pour and Francoeur 2014), an evolutionary lattice design 
approach was proposed in Salary and Mosallaei (2019). 
Manuscripts dealing with pixel-based design optimization in 
the context of electromagnetics using finite difference time 
domain (FDTD) approaches can be found, e.g., in Kecebas 
and Sendur (2021) and Yang et al. (2021). However, most 
of the examples studied in the mentioned papers are two-
dimensional, and therefore, the computational complexity 
is significantly lower compared to the three-dimensional 
examples considered in this manuscript. In particular, even 
in the very few three-dimensional examples, the number of 
design degrees of freedom is orders of magnitude lower than 
in our paper. An, at the first glance, rather similar concept to 
the one we will discuss throughout this paper is developed 
in Boutami and Fan (2019a), Boutami and Fan (2019b) and 
further applied in Boutami et al. (2020) for the optimiza-
tion of photonic devices. Similar as in our approach, design 
updates are carried out in a dipole-by-dipole fashion. How-
ever, the state variable as well as the value of the cost func-
tion are directly updated after each variation of a dipole. 
The advantage of this is that such state updates can be done 

in an efficient manner. On the other hand, the dipole-based 
approach corresponds to a kind of a coordinate-wise descent 
method, which typically leads to a high number of iterations. 
The resulting algorithm therefore seems to be restricted to 
problems with a moderate design resolution. In contrast, in 
our approach, we use the idea of separability to generate 
a model of the objective, which is almost exact as long as 
only individual dipoles are modified, but at the same time is 
a local first-order model, on the basis of which the complete 
design domain can be updated at once. A main advantage 
of this is, that the separable model can be combined with 
gradient-based optimization techniques, which typically 
results in a low number of required (outer) iterations. Addi-
tionally, in contrast to the coordinate-wise descent method, 
the minimization of the separable model can be parallelized 
in a straightforward way. Therefore—in combination with 
DDA—we can consider more complex examples with a way 
finer resolution of the design and computational domain. 
To be concrete, in the papers mentioned above, the design 
degrees of freedom are in the range of up to a few tens of 
thousands, while we consider examples where the design 
domain is discretized into much more than 106 elements. 
Taking the comparably small size of the particles and parti-
cle systems considered in our paper into account, the DDA 
approach provides a very accurate solution to the considered 
state problems. As a consequence, as long as systems are 
studied, for which the magnitude of the refractive index is 
sufficiently small, see, e.g., Table 1 in Yurkin and Hoekstra 
(2007), the accuracy of the state solution provided by the 
DDA method compares to that of high-quality finite element 
approaches, but at the same time, we can allow for a much 
finer design resolution.

Our manuscript is structured as follows: In Sect. 2 a 
framework for multi-material optimization is presented. The 
multi-material optimization is described as a discrete assign-
ment problem with a finite number of available materials. 
Then, a relaxation of this problem is introduced, in which the 
set of admissible materials is expanded to a graph, the nodes 
of which correspond to the originally available materials. 
Moreover, two penalization terms are defined. The first is 
used to penalize undesired materials arising from the relaxa-
tion, while the second penalizes irregularity in the design 
distribution. In Sect. 3, the notion of separable exact and 
separable first-order approximations is introduced. Further-
more, the so-called sequential global programming (SGP) 
is explained for a generic class of optimization problems 
defined on graphs. A special emphasis is given to the solu-
tion of the sub-problems, which require the minimization of 
a separable function over the graph structured set of admissi-
ble materials. Section 4 briefly describes the discrete dipole 
approximation (DDA) approach. In particular, the concept 
of polarizabilities is introduced and the DDA system, a 
complex system of linear equations, is derived. It is further 
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shown how the system matrix depends on materials available 
for optimization. Section 5 deals with separable approxima-
tions of optical property functions and constitutes the heart 
of this article. Based on the Sherman–Morrison–Woodbury 
matrix identity, separable exact models are stated for a wide 
class of objective functions, which depend linearly on the 
solution of the state problem. Then, using an approximation 
for the inverse of the system matrix, separable first-order 
approximations can be obtained, which are close to the exact 
ones. These general results are then used to derive separa-
ble models of important optical property functions. At the 
end of this section, a numerical comparison of the separable 
models with the real objective function and more traditional 
gradient models is presented. To show the applicability and 
capability of the DDA-SGP approach, different test cases 
are discussed in Sect. 6. We start with an academic proof of 
concept example, continue to a multi-material optimization 
problem, in which the material catalog comprises more than 
two admissible materials and—by an appropriately chosen 
objective function—the complete visible spectrum is dis-
cussed. We end with the optimization of a full particulate 
system, more precisely a photonic crystal. We further use the 
last example, to test the performance of the DDA-SGP algo-
rithm when combining sets of dipoles into one design degree 
of freedom. The combination of design variables plays an 
important role, when synthesizability is taken into account.

2  Multi‑material optimization

The main question within multi-material optimization is 
“where to put which material for optimal performance?”. To 
model this, a given design space is subdivided into finitely 
many design elements. Then, to each of these design ele-
ments, a material from a catalog of admissible materials 
can be assigned. If the material catalog consists of only 
finitely many materials, the resulting problem is a discrete 
assignment problem. In practice, the number of design ele-
ments is typically very high, which renders this assignment 
problem too complex to be solved by modern combinatorial 
optimization solvers to global optimality. Rather than this, 
a relaxation of the discrete material catalog is used, allow-
ing also for convex combinations of the given materials. 
Based on this, gradient-based optimization methods can be 
used to find non-trivial locally optimal solutions. The inter-
mediate materials artificially added by this procedure are 
typically undesired. Therefore, these materials are penal-
ized to encourage convergence toward a design consisting 
of material assignments from the original catalog only. This 
idea is shared by the so-called discrete material optimization 
(DMO) methods, see, e.g., Stegmann and Lund (2005); Hve-
jsel and Lund (2011), and the recently developed concept of 

sequential global programming, see Semmler et al. (2018) 
and Sect. 3.

2.1  Discrete assignment problem

We first want to introduce the so-called discrete assign-
ment problem. For this, we divide a given design space Ω , 
describing the geometrical object to be optimized, into a 
finite number of design cells (i = 1,… ,N) . Every cell is 
associated with one of the M materials from a material cata-
log U = {u1,… , uM} (see Fig. 2).

Note that every used material is described by a mate-
rial property. For instance, in the framework of the discrete 
dipole approximation, materials can be characterized by 
their complex refractive indices, see Sect. 4.

Now, let � and UD
ad

 denote the design vector and discrete 
admissible set, respectively, such that

Then, the discrete assignment problem reads as

where J is a real-valued objective function, which can be 
evaluated for each admissible design. For particular choices 
of J in the context of optical properties of nanoparticles, we 
refer to Sects. 5.1 and 5.2.

2.2  Relaxation

To be able to use gradient-based optimization techniques, we 
relax problem (1). For this, we introduce a graph G = (V ,E) 
with vertices v ∈ V  , corresponding to materials u ∈ U and 
edges {e1,… , eNE

} ⊂ V × V  connecting the latter. Here, NE 
denotes the total number of edges in the graph G . We assume 
that every vertex v ∈ V  is at least part of one edge. For an 
exemplary visualization, we refer to Fig. 3.

�i ∈ U (i = 1,… ,N), U
D
ad
∶=U

N .

(1)min
�∈UD

ad

J(�),

Fig. 2  On the left side, the catalog of admissible materials 
U = {u1,… , uM} is visualized. The right side shows the design space 
Ω discretized into a finite number of design cells. In the framework of 
the DDA approach, a material is characterized by its complex refrac-
tive index and the design cells are given by dipoles
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Next, we introduce a parameterization of G . For this, 
it is convenient to use the abbreviation IE∶={1,… ,NE}.

Definition 1 (Parameterization of G ) We call the mapping 
U ∶ IE × [0, 1] → ℂ the parameterization of G if and only if 
(iff) the following hold: 

1. U is twice continuously differentiable with respect to the 
second variable.

2. U is an endpoint interpolation, i.e., 

where e
�
= (v1

�
, v2

�
) is the �-th edge in G and ue1

�

 , ue2
�

 are 
the materials associated with the vertices v1

�
, v2

�
 , 

respectively.
3. For all �, i ∈ IE  and � ∈ (0, 1) ,  q ∈ [0, 1] with 

(�, �) ≠ (i, q) , we have 

Condition 3 of the above parameterization implies that 
the edges of G do not intersect each other. In particular, a 
node of the graph cannot correspond to an interior point 
of an edge.

We can now use this parameterization to define the con-
tinuous version of the admissible set as

Note that our design variable is now parameterized by � and 
� , where � denotes the edge index and � is a continuous vari-
able, sometimes referred to as pseudo-density or grayness. 
Both these names have their origin in topology optimization 
with only two materials, where ‘white’ stands for void or a 
very soft material, while ‘black’ represents a strong material. 
Then, any intermediate choice is termed a ‘gray’ material 
and can be interpreted as a material with adjusted density. 

U(�, 0) = ue1
�

, U(�, 1) = ue2
�

∀� ∈ IE,

U(�, �) ≠ U(i, q).

Uad∶={U(�, �) | (�, �) ∈ IE × [0, 1]}N .

Although there is no such interpretation in optics, we con-
tinue to use the term grayness also here.

Remark 2 In this paper, we simply use linear combinations 
of the properties of the admissible materials, i.e., param-
eterizations of the following type:

Here, ue1
�

, ue2
�

 describe the complex refractive indices of 
materials e1

�
, e2

�
 , respectively. For such a parameterization, 

intermediate choices of � ∈ (0, 1) can be interpreted as alloys 
or composites. Therefore, the above parameterization is 
indeed also physically motivated.

In order to avoid undesired materials (e.g., materials in 
Uad ⧵ U

D
ad

 ), we penalize them in the optimization with a so-
called grayness penalization function Jgray ∶ Uad → ℝ given 
by

with J̃gray ∶ {U(�, 𝜌) | (�, 𝜌) ∈ IE × [0, 1]} → ℝ defined for 
all � ∈ IE by

Due to condition 3 of Definition 1, the above mapping is 
well defined.

Moreover, to get rid of possible artifacts in the final mate-
rial distribution, we introduce the following irregularity 
penalization function Jreg ∶ Uad → ℝ given by

This term penalizes designs � which are not close to a 
smoothed design �� . The smoothed design is computed 
using the filter matrix � given by

with �i chosen such that 
∑N

j=1
�ij = 1 , filter radius R > 0 , �i 

being the position of design element i, and ‖�i − �j‖ describ-
ing the Euclidean distance between design element i and j. 
Such filter matrices are frequently used in topology optimi-
zation, see, e.g., Bourdin (2001).

Together with the grayness function Jgray , we have the 
penalty term

with non-negative scalar weights �1 and �2.

U(�, �) = (1 − �)ue1
�

+ �ue2
�

.

(2)Jgray(�)∶=

N∑

i=1

J̃gray(�i),

J̃gray(U(�, 𝜌))∶=

{
𝜌(1 − 𝜌) 𝜌 ∈ (0, 1)

0 else
.

(3)Jreg(�)∶=‖�� − �‖2
2
.

(4)�ij∶=�i max{0, R − ‖�i − �j‖},

(5)J�1,�2
pen

(�)∶=�1Jgray(�) + �2Jreg(�)

Fig. 3  Examples of graphs for two different sets of admissible mate-
rials. In this case, the graphs are complete, which means that each 
material is connected with every other material by an edge
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3  Sequential global programming

Let us consider the optimization problem

where the objective J is again a real-valued function and Uad 
is a graph structured set of admissible materials formally 
introduced in the previous section.

We start with some definitions, which will be used 
throughout this paper.

Definition 3  (Separable function on ℂN  ) A function 
g ∶ ℂ

N
→ ℝ is called separable on ℂN  , iff there exist 

ḡi ∶ ℂ → ℝ for all i = 1,… ,N such that

Definition 4  (Separable exact model) Let N ∈ ℕ and 
f ∈ C(ℂN ;ℝ) be given. A separable function g ∈ C(ℂN ;ℝ) 
is called a separable exact model of f at (�̃ ∈ ℂ

N) , iff

g(�̃ + 𝛿uei) = f (�̃ + 𝛿uei), ∀�u ∈ ℂ, ∀i = 1,… ,N,

where ei denotes the i-th unit vector in (ℝN).

In general, we can compute a separable exact model of a 
given objective function J by

where �̃ is an arbitrary point. The functions S̃i describe the 
material change in design element i and are given by

where ei is the i-th unit vector. Note that we can always 
define a separable exact model of an objective function in 
this way. However, every evaluation of S requires N evalua-
tions of J, and hence, there is no sense in using S to approxi-
mate J in practice. Fortunately, for a broad class of objec-
tive functions, reformulations of J can be found, which are 
much cheaper to evaluate. We demonstrate this in Sects. 
5.1 and 5.2 for objective functions corresponding to optical 
properties like the extinction cross section and the angular-
dependent scattering magnitude. We further will derive 
close approximations of these separable exact models. We 
call these separable first-order approximations.

Definition 5  (Separable first-order approximation) 
Let N ∈ ℕ and f ∈ C1(ℂN ;ℝ) be given. The function 

min
�∈Uad

J(�)

g(�) =

N∑

i=1

ḡi(�i) ∀� ∈ ℂ
N .

(6)S(�̃;�)∶=J(�̃)(1 − N) +

N∑

i=1

S̃i(�̃;�i),

S̃i(�̃;�i)∶=J(�̃ + (�i − �̃i)ei),

g ∈ C1(ℂN ;ℝ) is a separable first-order approximation of f 
in � ∈ ℂ

N , iff 

1. g is separable,
2. g(�) = f (�),
3. ∇g(�) = ∇f (�).

Note that every separable exact model is always a sepa-
rable first-order approximation. Compared to a standard 
separable first-order model, like a gradient model, the 
separable exact model is still globally correct as long as 
only one degree of freedom is approximated.

The principal idea of the sequential global program-
ming (SGP) approach is to replace the original optimiza-
tion problem by a sequence of sub-problems, in which 
the objective function J is approximated by a separable 
first-order model. Every sub-problem is thus character-
ized by a separable objective, which is minimized over 
the unchanged admissible set Uad . Exploiting this specific 
structure, all sub-problems are solved to global optimal-
ity. It is noted that for this neither convexity of S nor for 
Uad is required.

An outline of the SGP algorithm is provided by Algo-
rithm 1. We start with an admissible initial guess �0 and 
choose some algorithmic parameters: an initial proximal 
point parameter � ≥ 0 , a related update parameter 𝜃 > 1 , 
a constant � ≥ 0 , which is used to decide about the ter-
mination of the inner loop and an outer stopping toler-
ance � ≥ 0 . Then, the algorithm begins with the evaluation 
of the objective function J at �0 . In the inner loop, the 
sub-problem is solved to global optimality. The objective 
of the sub-problem consists of the separable approxima-
tion S at the current iterate �n plus a proximal point term 
�‖�n − �‖pp , which is used to enforce global convergence. 
The global minimizer of the sub-problem is denoted by 
�∗ . Now, the objective function J is evaluated at �∗ while 
the regularization parameter � is incremented by � . Once 
the descent is good enough, the inner loop is stopped, �∗ 
becomes the new iterate and the algorithm continues with 
the outer loop. The overall algorithm terminates if the 
distance of old and new outer iterate is sufficiently small.

Note that the inner loop realizes a globalization strat-
egy: as long as the solution of the sub-problem does not 
provide sufficient descent for the objective of the original 
problem, the parameter � is increased. As a consequence, 
the solution �∗ is pushed closer toward the previous iter-
ate �n.
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For the solution of the sub-problem (cf. inner loop 
of Algorithm 1), we heavily exploit the separable struc-
ture of the model objective S(�n;�) + �‖�n − �‖pp as well 
as the graph structure of Uad : For each design element 
( i = 1,… ,N  ), we loop over all edges e ∈ E of the admis-
sible set. On each edge e, the optimal design �∗

e
 is com-

puted by solving a univariate optimization problem over 
the interval [0, 1]. We then evaluate and store the corre-
sponding cost function value �∗

e
 . Once we have looped over 

all edges, we find the edge e∗ with the smallest function 
value, i.e., �∗

e∗
≤ �∗

e
 for all e ∈ E . The corresponding design 

�∗
e∗

 is then the optimal choice for the i-th design element. 
Thus, we set �∗

i
= �∗

e∗
 . Once the loop over the design ele-

ments is completed, we have found the global minimizer 
�∗ = (�∗

1
,… , �∗

N
)⊤ for our model problem.

In (Semmler et al. 2018, Lemma 4.9), it is proven that 
the inner loop of the above algorithm terminates after a 
finite number of iterations. Furthermore, for a local con-
vergence result in a more general setting, we refer to Theo-
rem 4.10 in Semmler et al. (2018). In Theorem 4.12 in the 
same paper, it is also shown that the final material distri-
bution derived from Algorithm 1 is a first-order optimal 
solution to the objective function J.

Remark 6 

1. In general, the separable function S is non-convex. 
Despite this, the sub-problem in the inner loop of Algo-
rithm 1 is solved to global optimality.

2. The sequential global programming is perfectly paral-
lelizable due to its separability, which means that the 

minimization can be done for each design element inde-
pendently.

4  Discrete dipole approximation

The discrete dipole approximation (DDA) approach, origi-
nally introduced by Purcell and Pennypacker (1973), approx-
imates the solution of time-harmonic Maxwell’s equations, 
see, e.g., Lakhtakia (1992); Draine and Flatau (1994); Kah-
nert (2003). The idea of DDA is to discretize the physical 
problem into N dipoles ( i = 1,… ,N ) with polarizabilities 
�i ∈ ℂ and positions �i . The state variables in DDA are the 
polarizations �i = �i�i for all i, which depend on �i ∈ ℂ

3 , 
the electric field at position �i . The latter can be written as 
the sum of the incident electric field �I,i and further terms, 
encoding interactions with the other N − 1 dipoles. Spelling 
this out for all i = 1,… ,N  we obtain the complex valued 
system of equations

in which �I is a predefined incident beam, see, e.g., (Yurkin 
and Hoekstra 2011, Sec. 4.6), and � ∈ ℂ

3N×3N is the inter-
action matrix. The interaction matrix is made up of 3 × 3 
blocks which are defined as follows:

Here i denotes the imaginary unit, k = 2�

�c
 with wavelength 

� and speed of light in vacuum c, �ij = �i − �j , and rij = ‖�ij‖ 
(cf. (Draine and Flatau 1994, Eq. 6)).

The choice for the polarizability �i is non-trivial, and 
there are several options with radiative corrections avail-
able. Nevertheless, most of them are based on the Clau-
sius—Mossotti polarizability, see, e.g., (Draine and Flatau 
1994, Eq. 1), which is given for the complex refractive index 
u ∈ ℂ ⧵ {±i

√
2} by

where d is the inter dipole spacing. We note that the off-
diagonal part of the system matrix � does not depend on the 
refractive index of the material.

(7)
N∑

j=1

�ij�j = �I,i, i = 1,… ,N,

(8)Aii = �−1
i
13,

(9)
�ij =

exp(ikrij)

r3
ij

((
k2 +

3ik

rij
−

3

r2
ij

)
�ij�

⊤

ij

−
(
k2r2

ij
+ ikrij − 1

)
13

)
, i ≠ j.

(10)�CM(u) =
3d3

4�

u2 − 1

u2 + 2
,
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Based on the solution � of the system �� = �I , we can 
compute different scattering quantities, like the extinction 
cross section, or the total electric field which is the sum of 
the incident electric field and the scattered field, see (Purcell 
and Pennypacker 1973, Eq. 3).

In the material optimization setting, we pursue in this 
article, the system matrix � depends on the choice of the 
material in each design element, i.e., each dipole. We recall 
that the material property in dipole i is described by the 
complex refractive index �i . Therefore, using Eq. (10), we 
can write � for a given design � ∈ ℂ

N as

where �0 is identical to � in all off-diagonal entries but has 
zeros on its diagonal, and �i∶=[e3i−2, e3i−1, e3i] ∈ ℝ

3N×3 for 
all i = 1,… ,N with ej denoting the j-th unit vector in ℝ3N.

In the remainder of this article, we omit the superscript 
“CM”, since we will always use the Clausius–Mossotti for-
mula (10) to characterize the polarizability.

5  Separable approximations

In this section, we consider an objective function of the form

where ℜ maps a complex number to its real part. Here, �(�) 
denotes the unique solution of the following DDA system 
with material assignment �:

For the precise definition of �(�) , we refer to Sect. 4. It is 
readily seen that the cost function J is linear in the state vari-
able � , but a nonlinear function of the design variable � . In 
the following, we present, on the basis of the Sherman–Mor-
rison–Woodbury formula, a separable exact model of the 
function J in Eq. (12). Therefore, we introduce the following 
notation. Let z1, z2 ∈ ℂ , then

As outlined in Sect. 3, using an arbitrary �̃ ∈ ℂ
N , a separa-

ble exact model of J can be written down in a brute force 
manner as

(11)�(�) = �0 +

N∑

i=1

1

𝛼CM(�i)
�i�

⊤

i
,

(12)J(�) ∶= ℜ
(
�⊤�(�)

)
,

(13)�(�)� = �I .

(14)�(z1, z2)∶=�(z1)
−1 − �(z2)

−1.

The following theorem provides a numerically more acces-
sible form of this model.

Theorem 7 (Separable exact model for (13)) Let � ∈ ℂ
3N 

be given, and define S ∶ (ℂN)2 → ℝ for all (�̃, �) ∈ (ℂN)2 
as follows,

where

and 𝛽(�̃i, �i) is given by Eq. (14). Then, the function 
� ↦ S(�̃;�) is a separable exact model according to Defini-
tion 4 of J ∶ ℂ

N
→ ℝ,

where �(�) is the unique solution of the state Eq. (13), and 
�(�) is the unique solution of the adjoint equation,

Proof We just have to show that the model S(�̃;�) satisfies 
the generic Eq. (15). We first compute J(�̃ + (�i − �̃i)ei) for 
the specific form of J given in Eq. (12). From the state Eq. 
(13), we get

and hence

Therefore, we have

Together with

representation (11) implies

(15)J(�̃)(1 − N) +

N∑

i=1

J(�̃ + (�i − �̃i)ei).

S(�̃;�)∶= J(�̃) +

N∑

i=1

ℜ
(
𝛽(�̃

i
, �

i
)�(�̃)⊤�

i
�

i
(�̃, �

i
)�⊤

i
�(�̃)

)
,

(16)Ci(ũ, ui)∶=
(
13 − 𝛽(ũi, ui)B

⊤

i
A(ũ)−1Bi

)−1
,

J(�)∶=ℜ
(
�⊤�(�)

)
,

(17)�(�)� = �.

�(�) = �(�)−1�I

J(�) = ℜ
(
�⊤�(�)−1�I

)
.

J(�̃ + (�i − �̃i)ei) = ℜ
(
�⊤

(
�(�̃ + (�i − �̃i)ei)

)−1
�I

)
.

𝛼(e⊤
j
(�̃ + (�i − �̃i)ei))

−1 =

{
𝛼(�̃j)

−1 j ≠ i

𝛼(�j)
−1 j = i

,
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and thus

The Sherman–Morrison–Woodbury formula yields then

From this we get, using Eq. (16) and the adjoint Eq. (17):

Finally, summing from i = 1,… ,N  and adding the term 
J(�̃)(1 − N) on both sides, we conclude

   ◻

As the explicit computation of the inverse of the DDA 
matrix is typically prohibitive, we further show that we still 
obtain a separable first-order approximation, if we replace the 
matrix �(�̃)−1 in the expression for �i(�̃, �i), i = 1,… ,N 
from Eq. (16) by an arbitrary 3N × 3N-matrix.

Theorem 8  (Separable first-order approximation of (13)) 
Let � ∈ ℂ

3N be given, and define S� ∶ (ℂN)2 → ℝ for all 
(�̃, �) ∈ (ℂN)2 as follows

where

�(�̃ + (�
i
− �̃

i
)e

i
)

= �0 +

N∑

j = 1

j ≠ i

𝛼(�̃
j
)−1�

j
�⊤

j
+ 𝛼(�

i
)−1�

i
�⊤

i

= �0 +

N∑

j=1

𝛼(�̃
j
)−1�

j
�⊤

j
− (𝛼(�̃

i
)−1 − 𝛼(�

i
)−1)�

i
�⊤

i

= �(�̃) − 𝛽(�̃
i
, �

i
)�

i
�⊤

i
,

J(�̃ + (�
i
− �̃

i
)e

i
) = ℜ

(
�⊤

(
�(�̃) − 𝛽(�̃

i
, �

i
)�

i
�⊤

i

)−1
�
I

)
.

J(ũ + (ui − ũi)ei)

= ℜ
(
L⊤

(
A(ũ)−1 + 𝛽(ũi, ui)A(ũ)

−1Bi

⋅
(
13 − 𝛽(ũi, ui)B

⊤

i
A(ũ)−1Bi

)−1
B⊤

i
A(ũ)−1

)
EI

)

= J(ũ) +ℜ
(
𝛽(ũi, ui)L

⊤A(ũ)−1Bi

⋅
(
13 − 𝛽(ũi, ui)B

⊤

i
A(ũ)−1Bi

)−1
B⊤

i
P(ũ)

)
.

J(�̃ + (�i − �̃i)ei)

= J(�̃) +ℜ
(
𝛽(�̃i, �i)�(�̃)⊤�i�i(�̃, �i)�

⊤

i
�(�̃)

)
.

S(�̃;�) = J(�̃)(1 − N) +

N∑

i=1

J(�̃ + (�i − �̃i)ei).

S�(�̃;�)∶=J(�̃)

+

N∑

i=1

ℜ
(
𝛽(�̃i, �i)�(�̃)⊤�i�̃i(�̃, �i)�

⊤

i
�(�̃)

)
,

with � ∈ ℂ
3N×3N arbitrary, and 𝛽(�̃i, �i) defined by Eq. (14). 

Then, the function � ↦ S�(�̃;�) is a separable first-order 
approximation according to Definition 5 of J ∶ ℂ

N
→ ℝ,

in the point of approximation �̃ , where �(�) and �(�) are the 
unique solutions of (13) and (17), respectively.

Proof Due to 𝛽(�̃i, �̃i) = 0 , the sum in the expres-
sion for S�(�̃;�̃) vanishes, and we immediately have 
S�(�̃;�̃) = J(�̃) . Next we look at the first derivative. We 
first provide a derivative formula for � . For this, we 
apply the implicit function theorem �(�̃) to the function 
f (�̃, �) ∶= �(�̃)� − �I . We observe that f (�̃, �) = 0 if and 
only if � = �(�̃) and further

and thus

Together with �(�̃)−1� = �, we get

For the derivative of S�(�̃;�), we have

and thus

(18)C̃i(ũ, ui)∶=
(
13 − 𝛽(ũi, ui)B

⊤

i
FBi

)−1
,

J(�)∶=ℜ
(
�⊤�(�)

)
= ℜ

(
�⊤�(�)−1�I

)

𝜕fk(�̃, �)

𝜕�i
= �k,i(�̃)

𝜕fk(�̃, �)

𝜕�̃i
=

{
−

𝛼�(�̃i)

𝛼(�̃i)
2
�k k ∈ {3i − 2, 3i − 1, 3i}

0 otherwise

𝜕�(�̃)

𝜕�̃i
= −[Jf ,�(�̃,�(�̃))]

−1

[
𝜕f (�̃,�(�̃))

𝜕�̃i

]

=
𝛼�(�̃i)

𝛼(�̃i)
2
�(�̃)−1

3i∑

k=3i−2

ek�(�̃)k.

𝜕J(�̃)

𝜕�̃
i

= ℜ
(
�⊤ 𝜕�(�̃)

𝜕�̃
i

)
= ℜ

( 𝛼�(�̃
i
)

𝛼(�̃
i
)2

3i∑

k=3i−2

�(�̃)
k
�(�̃)

k

)
.

𝜕SF(ũ;u)

𝜕u
i

= ℜ
( 𝛼�(u

i
)

𝛼(u
i
)2
Q(ũ)⊤B

i

(
13 − 𝛽(ũ

i
, u

i
)B⊤

i
FB

i

)−1
B⊤

i
P(ũ)

)

+ℜ
(
𝛽(ũ

i
, u

i
)
𝛼�(u

i
)

𝛼(u
i
)2
Q(ũ)⊤B

i

⋅
(
13 − 𝛽(ũ

i
, u

i
)B⊤

i
FB

i

)−2
B⊤

i
FB

i
B⊤

i
P(ũ)

)
,

𝜕S�(�̃;�̃)

𝜕�i
=ℜ

( 𝛼�(�i)

𝛼(�i)
2
�(�̃)⊤�i�

⊤

i
�(�̃)

)
.
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Now, taking the structure of �i into account, both derivative 
formulae coincide. Finally, the approximation is separable 
by construction.   ◻

The strength of a separable exact model is that—as long 
as we vary only one variable—it is fully correct, even if we 
are far away from �̃ . This is in clear contrast to a typical first-
order model. In order to maintain this property at least in an 
approximate manner, instead of choosing an arbitrary matrix 
� in Eq. (18), we opt for an approximation of �(�̃)−1 , which is 
computationally accessible.

In detail, we suggest using the inverse of the diagonal of 
the original system matrix as an approximation of the inverse 
system matrix, i.e.,

An interpretation of this in terms of a Neumann series is pre-
sented in Appendix B. We further note that the approxima-
tion in Eq. (19) corresponds to a Jacobi preconditioner, as it 
is used in DDA together with an iterative solver to compute 
an approximate solution of the linear system (7), see (Yurkin 
and Hoekstra 2011, Sec. 7.1).

Now, using

and Eq. (19), we observe

Further

and therefore, we have

Based on this argument, we will use the following instantia-
tion of the class of separable models introduced in Theo-
rem 8. In Sect. 5.4, a comparison of this model and more 
simplified once is shown.

(19)�(�̃)−1 ≈ diag(�(�̃))−1.

(
diag(A(ũ))−1

)
ii
= 𝛼(ũi)13,

(20)Ci(ũ, ui) ≈
(
13 − 𝛽(ũi, ui)𝛼(ũi)13

)−1
=

𝛼(ui)

𝛼(ũi)
13.

J(ũ + (ui − ũi)ei)

≈ J(ũ) +ℜ

(
𝛽(ũi, ui)Q(ũ)⊤Bi

𝛼(ui)

𝛼(ũi)
13B

⊤

i
P(ũ)

)

= J(ũ) +ℜ

(
𝛼(ui) − 𝛼(ũi)

𝛼(ũi)
2

Q(ũ)⊤BiB
⊤

i
P(ũ)

)

= J(ũ) +ℜ

(
𝛼(ui) − 𝛼(ũi)

𝛼(ũi)
2

3i∑

k=3i−2

Q(ũ)kP(ũ)k

)
,

S�(�̃;�)∶=J(�̃)

+

N∑

i=1

ℜ

(
𝛼(�i) − 𝛼(�̃i)

𝛼(�̃i)
2

3i∑

k=3i−2

�(�̃)k�(�̃)k

)
.

Corollary 9 Let  � ∈ ℂ
3N  be given ,  and def ine 

S� ∶ (ℂN)2 → ℝ for all (�̃, �) ∈ (ℂN)2 as follows

Then, the function � ↦ S�(�̃;�) is a separable first-order 
approximation according to Definition 5 of J ∶ ℂ

N
→ ℝ,

in the point of approximation �̃ , where �(�) and �(�) are the 
unique solutions of (13) and (17), respectively.

Remark 10  (Generalization to nonlinear functions) 

1. For the objective function J(�)∶=g(�(�)) , where 
g ∶ ℂ

3N
→ ℝ is a nonlinear function, we can in general 

no longer compute a separable exact model. However, 
we can approximate it by a linearization in g, e.g., at 
�̃ ∈ ℂ

N : 

 For the last term, we can now derive again a separable 
exact and first-order model like before.

2. For the objective function J(�)∶=g(�⊤�(�)) , where 
g ∶ ℂ → ℝ is a polynomial and � ∈ ℂ

3N , we can also 
compute a separable exact model as well as a separable 
first-order approximation of the above objective function 
in the same way and with the same properties described 
before. Rather than proving this in general, we refer to 
Sect. 5.2 where this is shown for the angular-dependent 
scattering magnitude which indeed can be written as a 
quadratic polynomial.

In the following, we want to determine separable first-
order approximations for some optical properties, including 
the extinction and angular-dependent scattering magnitude.

5.1  Extinction cross section

The sum of absorption and scattering of light is related to the 
extinction cross section which is—using the terminology of 
Sect. 4—defined by (Draine and Flatau 1994, Eq. 8)

S�(�̃;�)∶=J(�̃)

+

N∑

i=1

ℜ

(
𝛼(�i) − 𝛼(�̃i)

𝛼(�̃i)
2

3i∑

k=3i−2

�(�̃)k�(�̃)k

)
.

J(�)∶=ℜ
(
�⊤�(�)

)
= ℜ

(
�⊤�(�)−1�I

)

J(�) = g(�(�))

≈ g(�(�̃)) + ∇g(�(�̃)) (�(�) − �(�̃))

= g(�(�̃)) − ∇g(�(�̃))�(�̃) + ∇g(�(�̃))�(�).

(21)𝜎ext(�)∶=4𝜋kℑ
(
�̄⊤

I
�(�)

)
,
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where �(�) is the unique solution of the state Eq. (13), and 
ℑ maps a complex number to its imaginary part. It is thus 
readily seen that the extinction cross section is of the form 
of the objective function given in Eq. (12). Therefore, using 
Corollary 9, a reasonable separable first-order approxima-
tion is given as

where �(�) is the unique solution of the adjoint equation

5.2  Angular‑dependent scattering magnitude

Assume in the following that the incident electric field is a 
plane wave given by

where � is the polarization and � the direction of the inci-
dent field, respectively. Furthermore, we assume that the 
polarization is perpendicular to the direction of the incident 
wave, i.e., � ⟂ �.

We are now interested in the proportion of energy that is 
scattered in an arbitrary scattering direction, defined by a 
unit vector � . For that we start with the scattering amplitude, 
see (Yurkin and Hoekstra 2011, Eq. 27), defined as

where �(�) is the unique solution of the state Eq. (13). The 
desired angular-dependent scattering magnitude Csca in 
direction � is then given by

We now define �̃(�) ∈ ℂ
3N×3 as

where (�̃(�))j is the j-th 3 × 3 block in the complex matrix 
�̃(�) and, assume, without loss of generality, that the inci-
dent electric wave has unity amplitude, i.e., ||�I

|| = 1 . Then, 
we can write the angular-dependent scattering magnitude as

(22)

S�,ext(�̃;�) = 𝜎ext(�̃)

+ 4𝜋k

N∑

i=1

ℑ

(
𝛼(�i) − 𝛼(�̃i)

𝛼(�̃i)
2

3i∑

k=3i−2

�(�̃)k�(�̃)k

)
,

�(�)� = �̄I .

�I(�) = � exp(ik� ⋅ �),

F(a, u)∶= − ik3(13 − aa⊤)

N∑

j=1

P(u)j exp(−ikrj ⋅ a),

Csca(a, u) =
4𝜋

||EI
||
2
k2
|F(a, u)|2

=
4𝜋k4

||EI
||
2

||||||
(13 − aa⊤)

N∑

j=1

P(u)j exp(−ikrj ⋅ a)

||||||

2

.

(23)(Ẽ(a))j∶=(13 − aa⊤) exp(−ikrj ⋅ a),

Note that if we consider the scattering in exactly the back 
direction of the incident field ( � = −� ), this is equivalent to 
the so-called backscattering magnitude Bsca (cf. (Virkki et al. 
2013, Eq. 8)), i.e., it holds

Remark 11  (Backscattering magnitude) In the special 
case where the incident wave propagates along the x3-axis, 
i.e., � = (0, 0, 1)⊤ , and we consider the scattering direc-
tion � = −� , �̃ can be written as �̃ = �

x1
I
+ �

x2
I

 , where �x1
I

 , 
�
x2
I

 are the incident electric fields with x1 -, x2-polarization, 
respectively. In Sect. 6.3, we consider this situation, where 
we want to optimize the backscattering magnitude for a pho-
tonic crystal.

Theorem 12 (Separable exact model for scattering magni-
tude (25)) Let � be the desired scattering direction. Further, 
let �(�) be the unique solution of the state Eq. (13), and �(�) 
denote the adjoint variable solving the adjoint equation

Moreover, let the function Ssca ∶ (ℂN)2 → ℝ be defined for 
all (�̃, �) ∈ (ℂN)2 as follows,

where

and

with 𝛽(�̃i, �i) given by Eq. (14). Then, the function 
� ↦ Ssca(�̃;�) is—according to Definition 4—a separable 
exact model of the angular-dependent scattering magnitude 
from Eq. (24).

Proof For a proof, see Appendix c.   ◻

Again, we obtain a separable first-order model, if we 
replace the inverse DDA matrix �(�̃)−1 in Eq. (27) by an 
arbitrary approximation �.

(24)Csca(�, �) = 4𝜋k4
|||�̃(�)

⊤�(�)
|||
2

.

(25)Bsca(�) = Csca(−�,�).

(26)�(�)� = �̃(�).

Ssca(�̃;�) = Csca(�, �̃)

+ 4𝜋k4
N∑

i=1

(
2ℜ

(
�̃(�)⊤�(�̃)

)
ℜ
(
𝛾i(�̃, �i)

)

+ 2ℑ
(
�̃(�)⊤�(�̃)

)
ℑ
(
𝛾i(�̃, �i)

)
+ ||𝛾i(�̃, �i)||

2
)
,

𝛾i(�̃, �i)∶=𝛽(�̃i, �i)�(�̃)⊤�i�i(�̃, �i)�
⊤

i
�(�̃),

(27)Ci(ũ, ui)∶=
(
13 − 𝛽(ũi, ui)B

⊤

i
A(ũ)−1Bi

)−1
,
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Theorem 13  (Separable first-order model for scattering 
magnitude (25)) Let � be the desired scattering direction. 
Further, let �(�) and �(�) be the unique solutions of (13) 
and (26), respectively. Moreover, let S�,sca ∶ (ℂN)2 → ℝ be 
defined for all (�̃, �) ∈ (ℂN)2 as follows

with

and

where � ∈ ℂ
3N×3N arbitrary, and 𝛽(�̃i, �i) defined by Eq. 

(14). Then, the function � ↦ S�,sca(�̃;�) is—according to 
Definition 5—a separable first-order approximation of the 
angular-dependent scattering magnitude (24) in the point 
of approximation �̃.

Proof The proof can be found in Appendix D and is analo-
gous to the proof of Theorem 8.   ◻

We again approximate the inverse of the system matrix 
�(�̃)−1 in the above matrix function �i(�̃, �i) from Eq. 
(27) using the first element of the Neumann series, which 
yields,

Therefore, we have

where �(�) and �(�) are the unique solutions of (13) and 
(26), respectively. With this expression for �i , we now have a 
separable first-order approximation S�,sca according to Defi-
nition 5 of the angular-dependent scattering magnitude Csca 
given by Eq. (24).

Remark 14 In most applications, not the scattering magni-
tude in a specific direction is of interest, but the scattering 
energy in a predefined segment of an observation sphere, 
which we call the monitor O (see Fig. 4). The correspond-
ing cost function integrates the angular-dependent cross 

S�,sca(�̃;�) = Csca(�, �̃)

+ 4𝜋k4
N∑

i=1

(
2ℜ

(
�̃(�)⊤�(�̃)

)
ℜ
(
�̃�i(�̃, �i)

)

+ 2ℑ
(
�̃(�)⊤�(�̃)

)
ℑ
(
�̃�i(�̃, �i)

)
+ ||�̃�i(�̃, �i)||

2
)

�̃�i(�̃, �i)∶=𝛽(�̃i, �i)�(�̃)⊤�i�̃i(�̃, �i)�
⊤

i
�(�̃),

(28)C̃i(ũ, ui)∶=
(
13 − 𝛽(ũi, ui)B

⊤

i
FBi

)−1
,

Ci(ũ, ui) ≈
𝛼(ui)

𝛼(ũi)
13.

(29)𝛾i(�̃, �i) ≈
𝛼(�i) − 𝛼(�̃i)

𝛼(�̃i)
2

3i∑

k=3i−2

�(�̃)k�(�̃)k,

section over this monitor. The resulting expression can be 
well approximated by Romberg’s quadrature rule as follows:

Here, n is the number of integration points �j on the moni-
tor O , and �j are quadrature weights for all j = 1,… , n . 
Obviously, the right hand side is a linear combination of the 
angular-dependent scattering magnitudes for the directions 
determined by the integration points �j . Consequently, all 
of the above results determined in this section carry over to 
this function. In particular, separable exact and first-order 
models are obtained by computing a weighted sum of sepa-
rable models computed as described in Theorems 12 and 13.

5.3  Separable model for penalization function

In this section, we want to briefly describe how we can 
derive separable models for the grayness and irregularity 
penalization function from Equs. (2) and (3), respectively.

Note that the grayness function Jgray is separable by 
definition.

To derive a separable model for the irregularity penaliza-
tion function Jreg , we can again use Eq. (15). First, we have

with M∶=(F − 1N)
⊤(F − 1N) . The material change in design 

element i for an arbitrary �̃ ∈ ℂ
N is then given by

∫
O

Csca(�, �) d� ≈

n∑

j=1

�j Csca(�
j, �).

Jreg(�) = ‖�� − �‖2
2
= �⊤M�,

Jreg(�̃ + (�i − �̃i)ei)

= (�̃ + (�i − �̃i)ei)
⊤M(�̃ + (�i − �̃i)ei)

= �̃⊤M�̃ + 2(�i − �̃i)�̃
⊤Mei + (�i − �̃i)

2e⊤
i
Mei

= Jreg(�̃) + 2(�i − �̃i)�̃
⊤Mei + (�i − �̃i)

2Jreg(ei).

Fig. 4  Visualization of the scattering problem where all the energy 
scattered in direction of a monitor O , here, a spherical cap, is of inter-
est (cf. Remark 14)
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Therefore, we can conclude that our separable model for the 
irregularity penalization function Jreg is given by

Obviously, the above separable model Sreg is a univariate 
quadratic function.

5.4  Accuracy of separable models

In the following, we want to emphasize the accuracy of the 
proposed separable first-order models with the Jacobi-type 
approximation of the inverse of the DDA system matrix � 
as introduced in Eq. (22) and Theorem 13 with expression 
(29) for �i . For this, we compare for an exemplary setting the 
proposed separable model with the true objective function 
as well as the linear first-order model, i.e., a gradient model, 
which is obviously also separable.

For the comparison of the models, we focus on an indi-
vidual spherical particle with 0.1�m diameter and a wave-
length of 0.6�m . The particle is discretized into approxi-
mately 7 ⋅ 104 active dipoles. The admissible set of materials 
is given by u1 = 1.59 and u2 = 1.59 + 0.6i , which are con-
nected by an edge like it is discussed in Sect. 2.2. Note, that 
these materials will also be used in Example 6.3. The initial 
material distribution is given first by a homogeneous design, 
where each dipole of the sphere consists of the first material. 
We want to discuss the models derived for the extinction 
cross section, see Sect. 5.1, as well as for the backscattering 
magnitude, cf. Sect. 5.2.

For comparison of the models, in the following, the mate-
rial of one single design element, i.e., the polarizability of a 
single dipole, is changed. This means the material property 
for this dipole is gradually changed from u1 (material 1) for 
� = 0 to u2 (material 2) for � = 1 by the interpolation param-
eter � ∈ [0, 1] . Then, for each � on the edge connecting the 
materials, the DDA system is solved in order to get the real 
objective function �ext (Eq. (21)) and Bsca (Eq. (25)), see 
solid blue curves in the top plots in Figs. 5 and 6, respec-
tively. We further point out that the blue curves in the top 
graphs coincide exactly with the answer provided by the 
separable exact models suggested previously in this section. 
Then, to compute the separable first-order approximations 
S�,ext and S�,sca , we compute the DDA solution only in the 
point of approximation ( � = 0 for the left plots, � = 1 for the 
plots on the right) and approximate the function values at all 
� ∈ [0, 1] , cf. solid red curves in the top plots in Figs. 5 and 
6, respectively. Note that for the respective right plots, we 
start with material 2 ( � = 1 ) in the changing dipole. Since 
the separable model for the extinction cross section is almost 

Sreg(�̃;�) = Jreg(�̃)

+

N∑

i=1

2(�i − �̃i)�̃
⊤Mei + (�i − �̃i)

2Jreg(ei).

exact in the considered setting, the blue curve is hidden by 
the red curve. Additionally, the solid yellow curve corre-
sponds to a primitive gradient model. We can see that our 
separable model approximates the behavior of the physical 
objective function quite well, while the gradient model is—
in the case of the backscattering—not approximating the 
true objective function very well.

This gets even worse when penalization of intermediate 
material comes into play. There are two possible ways of 
simple separable first-order models. The naive first one is 
to build a linear model for the objective function including 
the grayness penalization (dashed-dotted yellow curves) and 
the more sophisticated is to have a gradient model for the 
physical part of the objective function and add to this the 
grayness penalization function (dashed yellow curves) which 
is separable by construction, see Eq. (2). 

Furthermore, the plots in the bottom row of Figs. 5 and 6 
show the absolute error of the considered models compared 
to the true objective function. We can see that in all cases, the 
model error in our separable first-order approximation (see 
red curves in the bottom row of the plots) is several orders of 

Fig. 5  We visualize the accuracy of the derived separable approxima-
tions for an exemplary setting described in Sect. 5.4. The plots cor-
respond to the extinction cross section (see Eq. (21)), and describe 
the setting where we start with � = 0 in the left column and � = 1 
in the right column for the changing dipole. For the top plots, we 
have Solid lines: models without grayness penalization; dashed 
lines: models with grayness penalization; dashed-dotted lines: linear 
model for objective function including grayness penalization func-
tion. The bottom plots show the model error of our separable model, 
the linear model, and the linear model for the objective function 
including grayness penalization. It is seen that in all cases, the chosen 
separable model provides a very tight approximation of the objective 
function over the full design interval. This is in sharp contrast to typi-
cal first-order approximations, which provide tight approximations 
close to the expansion point only
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magnitude lower compared to the error in the linear models 
(see yellow curves in the bottom row of the plots). Obviously, 
the error in the linear model for the objective function includ-
ing grayness penalization is the worst, see yellow dashed-
dotted lines. Note that the errors of the models with grayness 
penalization (the dashed blue and dashed red curves in the 
upper row plots) are the same as the errors of the models 
without penalization; therefore these are not displayed again.

6  Examples

To illustrate the presented framework, we discuss in this sec-
tion three different examples. The first example is an academic 
proof of concept example, where our material catalog consists 
of two artificial materials. We also show the optimization of 
this example on a high-performance computing (HPC) envi-
ronment and point out the corresponding benefits. Last but not 
least, we will test our SGP method against the MMA method 
(Svanberg 1987).

The purpose of the second example is twofold: On the one 
hand, we want to discuss a multi-material optimization prob-
lem with more than two admissible materials. On the other 
hand, we demonstrate that we can consider a full spectrum of 
wavelengths, rather than an individual one.

In our last example, we consider the minimization of the 
backscattering magnitude for a photonic crystal. Here, we first 

optimize each dipole of one particle in the system separately. 
In a further step, we show how we can combine some sets of 
dipoles/design elements in our model. Using this, we are able 
to assign only one material property to each individual particle 
and to enforce that during optimization the material properties 
of each particle remain completely homogeneous. Then, the 
third step is to investigate the effect of grayness penalization 
to avoid undesired materials.

Note that in the following, every used material is character-
ized by its complex refractive index u. Unless otherwise stated, 
we set �1 = 0 and �2 = 0 in the penalty term (5), which means 
that there is no grayness or irregularity penalization.

The presented SGP approach was implemented in MAT-
LAB ver. R2020a as well as in a C++ library for highly paral-
lel computations. For the solution of the DDA system, we used 
the open-source project ADDA (Yurkin and Hoekstra 2011) 
for the MATLAB implementation, and OpenDDA (Donald 
et al. 2009) for our C++ code.

6.1  Academic example

The objective in this optimization example is to reduce the 
extinction cross section as defined in Eq. (21) of a ball with 
0.35�m diameter at a wavelength of � = 0.4�m . The particle is 
illuminated by an unpolarized plane wave which propagates in 
x3-direction. The background medium surrounding the object 
is chosen to be vacuum ( ub = 1.0 ). The material catalog con-
sists of two artificial materials:

At first, the object is uniformly discretized with a dipole 
spacing d = 3.5nm , which results in a total number of around 
5.4 ⋅ 105 active dipoles—this is at the same time the number 
of optimization variables we have to handle in our optimi-
zation model. We start with a particle where each dipole 
consists of the second material. So, the initial material dis-
tribution is given by �0

i
= u2 for all i = 1,… ,N.

For this setting, the initial extinction cross section is 
computed to be �ext(�0) = 0.4480�m2 . Since the initial 
material distribution is homogeneous (only material 2) 
and the particle is a sphere, we can also use Mie-theory 
to compute optical properties, from which we obtain 
�ext(�

0) = 0.4415�m2 . Increasing the resolution up to 
a corresponding dipole distance of d = 0.875nm , the 
DDA method provides an objective function value of 
�ext(�

0) = 0.4431�m2 . This is in nice correspondence with 
the Mie prediction.

To minimize the extinction, we ran our DDA-SGP 
approach for different resolutions and initial designs �0 . 
The corresponding convergence graphs, showing the 
history of the objective function values, are displayed 
in Fig. 7. We note that one SGP iteration means that we 

u1 = 1 + 1i and u2 = 2.

Fig. 6  We visualize the accuracy of the derived separable approxima-
tions for an exemplary setting described in Sect. 5.4. The plots corre-
spond to the backscattering magnitude (see Eq. (25)). Function values 
for the different models are shown in the top row, while error plots 
are presented in the bottom row. For a detailed description of the 
meaning of the colors and the line style used in each plot, we refer to 
the caption of Fig. 5
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have to solve one times the state and the adjoint equation. 
Therefore, in one major iteration, we have to solve the 
DDA system twice (cf. Algorithm 1).

Table 1 shows the final extinction cross section for dif-
ferent resolutions. Comparing the function values for the 
different solutions, we can observe that our method is not 
sensitive with regard to the chosen resolution as long as it 
is sufficiently fine. Additionally, the result appears to be, for 
this problem, independent of the initial material distribution. 
This means that the SGP algorithm finds stable local optima.

The optimized material distribution for the problem 
with d = 3.5nm is shown in Figure 8, where the material 
distribution for the first and second material is visualized 
separately.

Additionally, we want to investigate, if the visibility of the 
optimized particle (computed here via the extinction cross 
section) is reduced for the entire spectrum of visible light. 
For this, we use the final material distribution �∗ from Fig. 8 
( d = 3.5nm ) and compute, using the DDA method, the cor-
responding extinction cross section for a large number of 
wavelengths in the interval [0.4�m, 0.8�m] . Figure 9 shows 
the initial spectrum for the material distributions where each 
dipole consists of material u1 or u2 , respectively, as well as 
for the optimized material distribution �∗ . We can see that 
the design derived from the optimization of only one wave-
length ( � = 0.4�m ) behaves also quite good for the whole 
wavelengths range: the extinction is significantly reduced 
for all wavelengths in the visible spectrum. This observa-
tion is not too surprising, as the material parameters were 
chosen to be wavelength independent. Finally, we would 
like to note that still a better result could be obtained, if we 
would optimize for all wavelengths in the desired interval 
simultaneously.

Note that the above optimization was done on a single 
desktop computer, with 8 Intel Xeon E3-1245V6 processors, 
each with 4 cores, and a total of 32GB of RAM. On this 
computer, we cannot benefit that much from the separabil-
ity/parallelizability of our model and algorithm. Neverthe-
less, we could go down to a dipole spacing, i.e., the distance 
between two adjacent dipoles, of 3.5nm.

Fig. 7  Convergence history of the objective function for the academic 
example (see Sect.  6.1) for different resolutions and initial material 
distributions

Table 1  The final objective 
function value of the academic 
optimization example (see 
Sect. 6.1) for different 
resolutions

d ∕ nm �
ext
(�∗) ∕ �m2

7.0 0.1770
3.5 0.1752
1.75 0.1742
0.875 0.1727

Fig. 8  Final material distribution for the academic example 
(Sect.  6.1) with a dipole distance of 3.5nm; left: material 1; right: 
material 2

Fig. 9  Extinction spectra for the material distributions where each 
dipole consists of material u1 or u2 , respectively, as well as for the 
optimized design �∗ for the academic optimization example (see 
Sect. 6.1)
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As pointed out already in Sect. 3, the SGP approach is 
based on the concept of separability. As a consequence, 
the optimization can be carried out independently for each 
dipole. As also the DDA solver, we were using itself is 
designed for the use on parallel architectures, we decided 
to develop a version of our software that can be used in 
a high-performance environment. To demonstrate its effi-
ciency, we have run the same problem as before with a much 
higher resolution on the Emmy Cluster from the Regional 
Computing Center at the Friedrich-Alexander-Universität 
Erlangen-Nürnberg (FAU) in Germany. Doing so, we were 
able to discretize the design domain with a dipole spacing of 
0.875nm, which is already in the range of a few atomic dis-
tances ( ≈ 0.1nm ). This resulted in a total number of around 
3.3 ⋅ 107 active dipoles (see Fig. 10 for the final material 
distribution), which is about 64 times more than we were 
able to use on the desktop PC.

Furthermore, in Table 2, wall-clock times as well as 
times for the optimization used on the personal computer 
and the HPC environment are given. Since both, the DDA 
code and the code for the sub-problem solution in the opti-
mization can be fully parallelized on the HPC environ-
ment, the calculations are way faster than on our single 
desktop computer. Obviously, the most time is needed for 
solving the state and adjoint problem, which means for 
solving the DDA systems. The time for optimization on 
both machines is only a minor part of the total time. This 
can be partly explained by the computational complexity 
formulae for both these steps, which are O(NT log(NT )) 
for DDA (and also the adjoint), assuming a constant num-
ber of iterations for the iterative solver, see, e.g., Yurkin 
et al. (2006) and Yurkin (2016), and O(N) for the solution 
of the optimization sub-problem, where N is the number 
of design dipoles and NT  is the total number of dipoles 
including the “inactive” ones.

With the DDA-SGP approach implemented in a HPC 
environment we can further, for example, increase the 
number of incident directions, or compute a lot of more 

wavelengths in a spectrum in parallel, i.e., we can also 
refine the resolution in the wavelength range. Furthermore, 
the usage of the high-performance computing library can 
also be interesting for large particle assemblies, as studied 
in Sect. 6.3.

Remark 15 We also performed experiments where we used 
the irregularity penalization introduced in Eq. (3) to get rid 
of the ring in the final design from Fig. 8 computed with 
d = 3.5nm . Therefore, we have chosen �2 = 5.0 ⋅ 10−6 in 
Eq. (5) with filter radius R = 0.014 in Eq. (4). As a result, 
we obtained essentially the same material distributions as 
before, but the ring was “smoothed out.” Comparing the cor-
responding value of the objective function, which amounted 
to �ext(�∗reg) = 0.1801�m2 with the one without irregularity 
penalization (see Table 1), we could observe a relatively 
small difference. We concluded from this that the ring struc-
ture in the above designs is of minor importance.

We finally want to use our academic optimization exam-
ple to compare the presented SGP approach with the well-
known MMA algorithm. For that, we take the example 
described in detail in the beginning of Sect. 6.1 with a dipole 
distance of d = 7nm . We perform two different experiments. 
First, no grayness penalization is used throughout the opti-
mization process (i.e., �1 = 0 ). The convergence history 
of the objective function for both solvers is visualized in 
Fig. 11 (solid lines). We see, that MMA converges much 
slower than our SGP approach. When we stopped MMA 
after 200 iterations, the computed function value was still 
far away from the value found by SGP. The gap between 
MMA and SGP gets even larger, when we consider gray-
ness penalization, i.e., the grayness penalization function 
(2) is now added to the objective function with a weight of 
�1 = 10−5 (cf. Eq. (5)). Comparing the convergence history 
of the cost function (see dashed lines in Fig. 11), we see 

Fig. 10  Final material distribution for the academic example 
(Sect. 6.1) with a dipole distance of 0.875nm; left: material 1; right: 
material 2

Table 2  The wall-clock time spent for solving the academic optimiza-
tion example (see Sect. 6.1) as well as the time for optimization (= 
accumulated wall-clock time for solving all sub-problems) for differ-
ent resolutions on the desktop computer (PC) and the HPC environ-
ment is presented

Note that the examples on the PC were run in a serial fashion, while 
on HPC, we used parallelization on 100 cores for d = 7.0nm , 200 
cores for d = 3.5nm , 400 cores for d = 1.75nm , and 800 cores for 
d = 0.875nm

d ∕ nm # active Total time∕ s Optim. time∕ s

dipoles PC HPC PC HPC

7.0 6.6 ⋅ 104 826.4 79.1 28.7 0.7
3.5 5.4 ⋅ 105 9341.2 410.1 275.6 2.5
1.75 4.2 ⋅ 106 – 1867.7 – 7.9
0.875 3.3 ⋅ 107 – 9374.5 – 29.8



Multi‑material design optimization of optical properties of particulate products by discrete…

1 3

Page 17 of 25 5

that, while SGP finds still a good local optimum close to the 
one without penalization, the function value for the design 
computed by MMA is now much worse. In order to under-
stand this situation a bit better, we had a closer look at the 
iteration history in both cases. For SGP, we found that in all 
but two iterations a fully ‘black-and-white’ solution was gen-
erated, i.e., no intermediate material properties were used. 
Beyond that, checking the projected gradient, we found that 
each of these points is Karush-Kuhn-Tucker (KKT) points. 
That means, SGP has visited in total 9 KKT points until it 
stopped, thereby permanently improving the value of objec-
tive functions. Quite contrary to this, MMA approached a 
KKT point (also ‘black-and-white’) with a rather poor func-
tion value after a little bit more than 10 iterations and was 
not able to escape from this anymore. The reason why SGP 
can cope much better with the situation is the way better 
approximation, which is used in the sub-problems: while in 
MMA, even a (locally) concave function is approximated by 
a convex model, in SGP the concave character is maintained. 
Thus, thanks to the global solution strategy applied for the 
solution of the sub-problem, SGP has the chance to escape 
from poor local minima.

6.2  Multi‑material example

The purpose of this example is to demonstrate the ability of 
our approach to treat a multi-material optimization problem 
with a material catalog consisting of more than two admis-
sible materials. Moreover, we discuss in more detail the opti-
mization for a whole range of wavelengths.

Again, we focus on the optimization of the extinction 
cross section given by Eq. (21), but in this case for a wave-
length spectrum ranging from 0.4�m to 0.7�m . We want 
to minimize on the left part of the extinction spectrum and 
maximize on the right. Therefore, our objective function is 
the numerical approximation of the weighted mean value in 
the visible range of light given by

with

and

We consider a sphere with 0.3�m diameter which is illumi-
nated by a x1-polarized incident plane wave propagating in 
positive x3-direction. As medium for the background, we 
choose ethanol with ub ≈ 1.36 . The three admissible materi-
als are given by silica, titanium dioxide, and goethite, with 
wavelength-dependent complex refractive indices u1 , u2 , and 
u3 , respectively. For the corresponding complex refractive 
indices, we refer to Malitson (1965) for silica, and DeVore 
(1951) for titanium dioxide. For goethite, see Appendix A.

The graph structured set of admissible materials is visu-
alized in Fig. 12. Note, that we consider a complete graph, 
which means that each node is connected by an edge with 
every other node.

In this case, we choose a dipole spacing of d = 1.5nm , 
such that we have about 4.2 ⋅ 106 active dipoles. We start 
with a material distribution where all dipoles consist of a 
homogeneous mixture of 50% silica and 50% titanium diox-
ide, which would mean that we are for all design elements 
on edge e1 with intermediate value � =

1

2
 (cf. Fig. 12). With 

this, the initial material distribution in each design element 
i is given by

and the corresponding initial objective function value is 
J(�0) = 1.2050�m3 . Furthermore, homogeneous designs 
for the catalog materials lead to the following function 
values: J(u1�) = 0.0245�m3 , J(u2�) = −0.6721�m3 , and 
J(u3�) = 0.29147�m3 . Here, � is a vector of size N with all 
entries equal to 1. Fig. 13 shows the initial spectra for dif-
ferent initial material distributions.

The DDA-SGP approach yields the following results. If 
we choose �1 = �2 = 0 in Eq. (5) (no penalization), then we 

(30)J(�) =

19∑

j=0

�(�j)�ext(�j, �),

𝜂(𝜆) =

{
1 𝜆 < 0.55𝜇m

−1 𝜆 ≥ 0.55𝜇m
,

�j = 0.4�m + j
0.3�m

19
, for j = 0,… , 19.

(31)�0
i
(�) =

1

2
u1(�) +

1

2
u2(�),

Fig. 11  Comparison of the SGP and the MMA method. Shown is the 
convergence history of the objective function for the academic exam-
ple (see Sect.  6.1) with d = 7nm . Solid lines: optimization without 
grayness penalization; dashed lines: optimization with grayness 
penalization ( �1 = 10−5)
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obtain the final material distribution shown in Fig. 14. We 
denote this by �∗ . We can observe that there are some unde-
sired geometric artifacts at the boundary of the materials. 
In order to improve on this, we activated the irregularity 
penalization term (3) in the cost function.

In detail, we choose the parameters �2 = 10−6 in Eq. (5) 
and R = 0.006 in the filter matrix (4). The corresponding 
optimized design is given in Fig. 15 and denoted by �∗

reg
 . We 

note that to compute �∗
reg

 , we again started the optimization 
with the initial homogeneous material distribution given in 
Eq. (31).

In Fig. 16, the initial and optimized spectra are shown. 
The corresponding convergence histories of the cost function 
are given in Fig. 17. The final objective function values are 
given by J(�∗) = −0.8308�m3 and J(�∗

reg
) = −0.8254�m3 . 

We can see that the penalization of irregularity does not 
significantly affect the spectrum as well as the corresponding 
function value, but the design looks much better since most 
of the artifacts are smoothed out. 

6.3  Optimization of a photonic crystal

In this example, we want to investigate how our model 
works for particle assemblies. We consider a photonic 
crystal, that is an ensemble of several nanoparticles, with 

the following properties. We have a system with 7 layers of 
closed packed spherical particles, each with a diameter of 
0.05�m , that are arranged in a hexagonal pattern. In each 
layer, we consider around 10 by 10 particles which are 

Fig. 12  Graph structured 
admissible set of materials for 
the multi-material optimization 
example, see Sect. 6.2

Fig. 13  Initial spectra for different initial material distributions �0 for 
the multi-material optimization problem, see Subsection 6.2

Fig. 14  Final material distribution �∗ for the multi-material optimi-
zation example (Sect.  6.2) with a dipole distance of 1.5nm without 
penalization; red: silica; blue: titanium dioxide; green: goethite

Fig. 15  Final material distribution �∗
reg

 for the multi-material optimi-
zation example (Sect. 6.2) with a dipole distance of 1.5nm and irregu-
larity penalization ( �2 = 10−6, R = 0.006 ); red: silica; blue: titanium 
dioxide; green: goethite
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uniformly discretized with the dipole distance d = 2nm . 
This results in a total number of active dipoles of about 
5.1 ⋅ 106 dipoles, which are about 8.2 ⋅ 103 dipoles per par-
ticle. The object to be optimized is shown in Fig. 18.

We want to minimize the backscattering magnitude 
given by Eq. (25) for a wavelength of � = 0.6�m . Note 
that we consider now the scattering in exactly the nega-
tive direction of the incident field. The particulate system 
is illuminated by an unpolarized plane wave propagating 
in positive x3-direction. The particle ensemble is embed-
ded in vacuum, and the material catalog consists of two 
admissible materials. The first one is polystyrene with 
u1 = 1.59 which is non-absorbing. The second material has 
absorbing properties similar to a carbon black-polystyrene 

composite with u2 = 1.59 + 0.6i . The values of the back-
scattering magnitude for the two admissible materials are 
given by Bsca(u1�) = 0.1667 and Bsca(u2�) = 0.0969 , where 
� again is a vector of size N with all entries equal to 1. 
Therefore, we start the optimization with a material dis-
tribution where each dipole of the system consists of pure 
polystyrene, i.e., �0 = u1�.

In a first experiment, all dipoles in the system are 
treated as individual design variables. As every individual 
particle is made up from many dipoles, one and the same 
particle can be assigned different material properties in 
different positions. The solution we obtain from this study 
serves as a reference solution. Due to the ultimate design 
freedom in this setting, it is expected that this reference 
solution provides—in terms of the function value—a lower 
bound for more realistic designs. The final material distri-
bution �∗

ref
 is displayed in Fig. 19, where the red color 

corresponds to the first material, the blue color to the sec-
ond one, and the colors in between correspond to mixed 
material properties.

In a second setting, we add the restriction that each of 
the individual particles in our system remains homogeneous 
throughout the optimization. This implies that all dipoles 
belonging to one and the same particle in the photonic 
crystal have to be assigned the same material data from our 
graph-like admissible set of materials. In order to realize 
this in practice, we collapse all design variables belonging 
to the same particle into one. While the design freedom is 
significantly reduced in this way, the total number of active 
dipoles stay the same as before.

Figure 20 shows the corresponding optimized material 
distribution denoted by �∗

hom
 . Comparing this result with the 

reference solution, the following interpretation may be pro-
vided: every mixed or “gray” particle may be interpreted as 
a macroscopic mean over material properties of assigned to 
its dipoles in the reference solution. Comparing also the 

Fig. 16  Initial and optimized spectra for the multi-material optimiza-
tion problem, see Sect. 6.2

Fig. 17  Convergence history of the value of the objective function 
(30) for the MMO example (Sect. 6.2) with and without regulariza-
tion

Fig. 18  Photonic crystal (cf. Sect. 6.3) with 7 layers of closed packed 
particles. Each particle has a diameter of 0.05�m
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corresponding values of the objective function for the above 
cases (see Fig. 23; red and blue curve), it is observed that 
despite the much more restrictive approach essentially the 
same value for the backscattering is obtained. An explana-
tion for this could be that the topological structure within the 
individual particles is of minor significance. Rather than 
this, only the ratio of the amount of material 1 and material 
2 is important. For the optimized design of our reference 
solution �∗

ref
, we have Bsca(�

∗
ref
) = 2.8022 ⋅ 10−4 , where for 

the f inal design �∗
hom

 from setting 2, we have 
Bsca(�

∗
hom

) = 3.1899 ⋅ 10−4 . It is further worth to note that 
the composite materials obtained in the second approach 
appear way more accessible to synthesis compared to the 
first setting.

We finally note that, when collapsing several dipoles into 
one design variable, we partly give up the separability of the 

SGP model. Despite this, the comparison with the reference 
optimization shows that we still find a good local minimum.

In a third setting, we finally want to get rid of all inter-
mediate material properties, which are not corresponding to 
a node in the admissible material catalog. In order to real-
ize this, we add the grayness penalization function (2) to 
the cost function by choosing a suitable parameter 𝛾1 > 0 in 
Eq. (5). In this example, we took �1 = 10−4 . The resulting 
material distribution �∗

gray
 is now indeed free of any interme-

diate material properties (see Fig. 21). The corresponding 
backscattering value is given by Bsca(�

∗
gray

) = 8.5430 ⋅ 10−4 . 
Compared with the result of setting 2, the objective func-
tion value gets worse. Approximately, 2.7 times more light 
energy is scattered back. Moreover, in Fig. 22, the optimized 
designs are shown sliced in the x2 − x3 plane. We can see 
how the final material distribution obtained from the three 
different settings is structured in the interior of the particle 
assembly. 

The convergence history of the objective function for the 
three cases discussed above is shown in Fig. 23. We can 
see the effect of grayness penalization. The algorithm con-
verges faster (in only 7 iterations) than without penalization, 
because it pushes the design parameters relatively quickly 
toward 0 or 1. This is why—despite the good characteristics 
of the almost exact separable approximation—the penalty 
parameter should be chosen with care. If it is chosen too 
large, it is more likely that the algorithm gets trapped in 
undesirable local optima.

Remark 16 To overcome the problems in choosing the gray-
ness parameter, we could apply a so-called continuation 
scheme for the grayness parameter �1 , see, e.g., (Sigmund 
and Petersson 1998, Sect. 4). This means, we would update 
�1 in every iteration depending on the current value of the 

Fig. 19  Final material distribution �∗
ref

 for the optimization of the 
photonic crystal (see Sect. 6.3, setting 1), where each dipole was con-
sidered as an individual design variable; red: material 1; blue: mate-
rial 2

Fig. 20  Final material distribution �∗
hom

 for the optimization of the 
photonic crystal (see Sect. 6.3, setting 2), where only one design vari-
able was assigned to each individual particle; red: material 1; blue: 
material 2

Fig. 21  Final material distribution �∗
gray

 for the optimization of the 
photonic crystal (see Sect. 6.3, setting 3), where only one design vari-
able was assigned to each individual particle and intermediate mate-
rial choices were penalized; red: material 1; blue: material 2
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grayness penalization function. Another possibility would be 
to use more building blocks, i.e., more admissible materials. 
For example, one could allow a finite number of composites 
made of the two materials with predefined material frac-
tions. The resulting problem could still be treated by the 
DDA-SGP method.

7  Concluding remarks

The combination of discrete dipole approximation and 
multi-material optimization is a promising field of research. 
We have demonstrated that the high spatial resolution pos-
sible with DDA and the usage of tight approximations of 
separable exact models within SGP-type algorithms allows 
to efficiently predict optimized layouts for nanoparticles and 

particle assemblies. It was shown that—in contrast to the 
established solver MMA—SGP is able to escape from cer-
tain local minima with a poor value of the objective. Moreo-
ver, the SGP method allows to work with continuous as well 
as discrete material catalogs. In DDA, the continuous mate-
rial parameterizations can be interpreted in terms of alloys.

The presented concept was implemented in a fully paral-
lel manner in C++, and applied to different 3D problems. 
The parallelization is especially useful when considering 
many wavelengths, incident directions, and polarizations.

In the future, we would like to apply the presented DDA-
SGP method to more realistic design setups and to put more 
emphasis on synthesizability. Realistic design setups come 
along with distributed orientations of particles as well as con-
tinuous ranges of wavelengths and scattering directions, see, 
e.g., (Semmler et al. 2015, Sect. 2.1). To handle this in an exact 
manner and to avoid spurious local minima, which may be 
introduced by an a priori discretization, we aim to combine the 
ideas of SGP and the continuous stochastic gradient scheme 
(CSG) introduced in Pflug et al. (2020).

Appendix A: Complex refractive index 
of goethite

In order to obtain a refractive index for goethite, we use a 
modified version of the refractive index of isomorph �-FeOOH 
(akaganeite) determined by Maeda and Maeda (2011). For 
this, the akaganeite refractive index is density corrected by 
applying the Gladstone-Dale (Gladstone and Dale 1863) and 
Anderson (Anderson 1984) method. The resulting complex 
refractive index is given in Table 3.

Fig. 22  Slice of the final material distribution in the x2 − x3 plane 
obtained from the three different settings to optimize the photonic 
crystal (see Sect.  6.3). The top material distribution corresponds to 
the first setting, where all dipoles in the system are treated as indi-
vidual design elements. The design in the middle corresponds to the 
optimization with only one design variable per individual particle, 
and the bottom one to the optimization of individual particles with 
penalization of intermediate material choices

Fig. 23  Convergence history of the objective function (25) for the 
optimized design of the photonic crystal (Sect. 6.3), where individual 
dipoles (blue curve), individual particles (red curve), and individual 
particles with penalization of intermediate material choices (yellow 
curve) were optimized
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Appendix B: Neumann series

We discuss briefly how the inverse of the DDA system matrix 
� , defined by Eqs. (8) - (9), can be approximated by means 
of the Neumann series. Let us denote the block diagonal of � 
by �D given by

and the off-diagonal part by �O defined by

Then, we can write � = �D + �O , and therefore

Note that the right hand side of the above equation is now in 
the form (1 − T)−1 with 

We get from the Neumann series, that 

Using, for instance, only the first two elements, we have 

and therefore 

AD
ii
= �−1

i
13,

AO
ij
=

exp(ikrij)

r3
ij

((
k2 +

3ik

rij
−

3

r2
ij

)
rijr

⊤

ij

−
(
k2r2

ij
+ ikrij − 1

)
13

)
, i ≠ j.

((AD)
−

1

2A(AD)
−

1

2 )−1 = (1 + (AD)
−

1

2AO(AD)
−

1

2 )−1.

T∶= − (�D)
−

1

2�O(�D)
−

1

2 .

(32)(1 − T)−1 =

∞∑

k=0

Tk.

((AD)
−

1

2A(AD)
−

1

2 )−1 ≈ 1 − (AD)
−

1

2AO(AD)
−

1

2 ,

which yields 

Since, due to the specific structure of the DDA matrix, the 
diagonal entries of the second matrix on the right hand 
side are zero and the separable model, see Theorem 7, only 
depends on the diagonal entries of the inverse system matrix 
�−1 , we can approximate the diagonal of �−1 by (�D)−1 . 
As documented in Sect. 5.4, this choice already results in 
a rather tight approximation of the corresponding separa-
ble exact models for the particular objective functions we 
investigate in this article. In general, better approximations 
may be achieved by taking additional terms of Eq. (32) into 
account.

Appendix C: Proof of Theorem 12

In the following, we want to derive a separable exact 
model of the angular-dependent scattering magnitude (cf. 
Theorem 12). Following the same computations as in the 
beginning of Sect. 5, it holds 

with �i∶=[e3i−2, e3i−1, e3i] and 𝛽(�̃i, �i) = 𝛼(�̃i)
−1 − 𝛼(�i)

−1 . 
Then, using the Sherman–Morrison–Woodbury formula, we 
have 

Using the state equation �(�)�(�) = �I and the expression 

it follows 

(AD)
1

2A−1(AD)
1

2 ≈ 1 − (AD)
−

1

2AO(AD)
−

1

2 ,

�−1 ≈ (�D)−1 − (�D)−1�O(�D)−1.
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i
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|||||

2

,

Csca(a, ũ + (ui − ũi)ei)

=
4𝜋k4
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||
2

|||||
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(A(ũ)−1EI)j exp(−ikrj ⋅ a)
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N∑
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[
(𝛽(ũi, ui)A(ũ)

−1Bi
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.
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i
A(ũ)−1Bi)

−1,

Table 3  Complex refractive 
index of goethite; n̄ : real part; k̄ : 
imaginary part

� ∕ nm n̄ k̄

400 2.63 0.3944
420 2.61 0.2800
440 2.54 0.1653
460 2.48 0.1252
480 2.46 0.1123
500 2.48 0.0850
520 2.48 0.0455
540 2.49 0.0181
560 2.43 0.0060
580 2.40 0.0036
600 2.39 0.0034
620 2.31 0.0037
640 2.30 0.0040
660 2.28 0.0040
680 2.27 0.0037
700 2.27 0.0031
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With the definition of �̃ from Eq. (23) and the assumption 
that the incident electric wave has unity amplitude, we obtain 

Letting now �(�) be the adjoint variable, solving the adjoint 
problem �(�)� = �̃(�) , the above equation simplifies to

Using the identity

for a, b ∈ ℂ , we can conclude that

with

The separable exact model for the angular-dependent scat-
tering magnitude is therefore given by
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Note that the above model is separable and exact by 
definition.

Appendix D: Proof of Theorem 13

By construction, the approximation S�,sca(�̃;�) from Theo-
rem 13 is separable. We also have that

since 𝛽(�̃i, �̃i) and thus also �̃�i(�̃, �̃i) vanish for all 
i = 1,… ,N.

For the first-order property, we have to compute the 
gradient of S�,sca(�̃;�) with respect to � . The derivative of 
�̃�i(�̃, �i) with respect to �i is given by

Therefore, we obtain

Now, using �̃�i(�̃, �̃i) = 0 , and

we immediately get
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Finally, analogously as in the proof of Theorem 8, we use the 
implicit function theorem to show that the derivative of the 
angular-dependent scattering magnitude Csca(�, �̃) coincides 
with Eq. (33).

Therefore, the model given in Theorem 13 is a sepa-
rable first-order approximation of the angular-dependent 
scattering magnitude (25) in the point of approximation �̃.
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