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Abstract

The optimal design of nanoparticles with respect to their optical properties is one of the main foci within nanoparticle tech-
nology. In this contribution, we suggest a new design optimization method in the framework of which the discrete dipole
approximation (DDA) is used to approximate the solution of Maxwell’s equation in time-harmonic form. In the core of
the optimization method, each dipole is repeatedly assigned a material property from a given material catalog until a local
minimum for the chosen design objective is obtained. The design updates are computed using a separable model of the opti-
mization objective, which can be solved to global optimality, giving rise to a sequential global optimization (SGP) algorithm.
We suggest different types of separable models, among them exact separable models as well as tight approximations of the
latter which are numerically tractable. The application of the DDA method in the framework of structural design methods
widens the spectrum of numerically tractable layout problems in optical applications as, compared to finite element based
approaches, significantly more complex design spaces can be investigated.

Keywords Topology optimization - Material optimization - Sequential global programming - Discrete dipole approximation

1 Introduction

In this paper, a material optimization method for the optimal
layout of nanoparticles and nanoparticle assemblies with
respect to a desired optical property is developed. Nanopar-
ticles, as well as colloidal supraparticles, which are specially
arranged assemblies of nanoparticles, give rise to interest-
ing optical properties and have thus become more and more
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attractive in a wide variety of research fields (Khan et al.
2019). Especially, the investigation of structural colors and
their application in industry has become increasingly inter-
esting over the last decade, see, e.g., Zhao et al. (2012);
Kawamura et al. (2016); Xiao et al. (2017); England et al.
(2017); Goerlitzer et al. (2018); Wang et al. (2020).

In order to predict optical properties of nanoparticles
using computers, the underlying electromagnetic scattering
problem has to be solved (see Fig. 1 for a visualization).
Therefore, simulation methods are used, which provide
approximate solutions to the Maxwell’s equations in time-
harmonic form. In the simplest case, i.e., radial symmet-
ric particles, the electromagnetic behavior can be obtained
from Mie-theory (Mie 1908; Bohren and Huffman 1998).
The optical scattering properties of assemblies of multiple
particles can be approximated by the so-called T-matrix
method (Waterman 1965, 1971; Mackowski 1994). In both
these approaches, vector spherical wave functions are used
to describe the electromagnetic fields. While these methods
are rather efficient and allow to predict properties for rela-
tively large particle assemblies, they are applicable only as
long as the shape and composition of the individual particles
in the assembly is sufficiently simple. It is also interesting

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-022-03376-w&domain=pdf
http://orcid.org/0000-0002-2018-5853

5 Page2of25

N. Nees et al.

T

incident light

N ! 7
— objec’
Q ~Sa
« N
|

scattered
j“ light
T

Fig. 1 Electromagnetic scattering problem where the object Q is illu-
minated by an incident light. Both, direction/polarization of incident
light and orientation of the object are characterized by a reference
coordinate system. For a detailed description of the particular prob-
lem, see Sect. 1.1 in Mishchenko et al. (2006)
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to note that—to the best of our knowledge—these methods
have not been used in the context of mathematical optimiza-
tion so far.

In contrast to the Mie- and T-Matrix-based methods and
their relatives, the finite element method (FEM) allows to
predict electromagnetic fields for rather arbitrarily composed
objects. However, in the context of topology optimization,
typically, a high resolution of the design domain is required
resulting in large number of unknowns in the FEM prob-
lem. To give an example, if a 3-dimensional object is rep-
resented via its piecewise constant material properties on a
regular grid, using 107 cells, the boundaries of the object still
appear rather coarse, while the solution of the correspond-
ing FE system, using standard edge elements, is already
very demanding with respect to both, computation time
and memory consumption. The latter is particularly true, as
in the FEM surrounding material has to be added and the
absorbing boundary conditions have to be handled, e.g., by
adding a perfectly matching layer (PML). Thus, a way larger
domain than the object of interest itself has to be discretized.
Of course, for a fixed design, adaptive concepts can be used
to improve the situation; however, this is very involved, if
the layout changes drastically in the course of the optimiza-
tion. As a remedy, inspired by Monk (2003), in Semmler
and Stingl (2021), a hybrid finite element approach based
on both, finite element approximations and superposition of
vector spherical wave functions, was developed. It allows for
individual particles of rather arbitrary shape and composi-
tion; however, within the hybrid approach, the electromag-
netic properties of the individual particles are pre-calculated
in an offline phase. Based on these offline calculations, opti-
mization tasks can be carried out, in which positions and ori-
entations of the predefined particles (described themselves
by a large number of elements) can be varied. In contrast
to this, in this article, we are more interested in varying the
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composition of the particles themselves utilizing a genuine
topology optimization approach. Rather than using the FEM
method, we suggest to numerically approximate the solution
of Maxwell’s equations by the discrete dipole approxima-
tion (DDA) (DeVoe 1964; Purcell and Pennypacker 1973;
Draine and Flatau 1994). The advantage of this choice is
twofold: first, highly efficient and parallel implementations
of the DDA method, see, e.g., DDScat (Draine and Flatau
1994), OpenDDA (Donald et al. 2009), and ADDA (Yurkin
and Hoekstra 2011), allow simulating the electromagnetic
behavior of 3D particles using fine design discretizations
even on high-end desktop computers. And second, the struc-
ture of the complex equation systems obtained from DDA
can be exploited by the sequential global programming
(SGP) method recently suggested in Semmler et al. (2018).
As a consequence, the range of numerically tractable topol-
ogy optimization problems relying on approximate solutions
of the 3D time-harmonic Maxwell’s equations can be sig-
nificantly extended.

While we use SGP in combination with DDA in this
paper, design approaches in literature typically combine the
FEM with the so-called SIMP (solid isotropic material with
penalization) method, which originally was developed for
the optimization of elastic structures (Bendsoe and Sigmund
2004), and in Sigmund and Jensen (2003) applied for the
first time for complex state systems. The SIMP method is
based on interpolation between two admissible materials and
an appropriate penalization scheme which renders undesired
intermediate material properties unattractive. In the context
of electromagnetics, the use of this method was first reported
in Diaz and Sigmund (2010). Generalizations of the SIMP
idea to more than two admissible materials can be found
in the literature under the name discrete material optimiza-
tion (DMO), see, e.g., Stegmann and Lund (2005); Hvejsel
and Lund (2011). The trick is here to essentially allow for
all convex combinations of the given, finitely many, dis-
crete materials and employ again a scheme which penal-
izes intermediate material choices. The resulting continu-
ous optimization problems are then solved by established
constrained optimization solvers in a “black box” manner.
Probably, the most prominent among the utilized solvers in
the design optimization community is the method of moving
asymptotes (MMA), see, e.g., Svanberg (1987); Bruyneel
et al. (2002). In both, MMA and the SGP method, our work-
ing horse in this paper, the original optimization problem is
approximated by a sequence of simpler problems, in which
nonlinear functions are approximated by separable models
which are first-order correct. However, there is an impor-
tant difference: while MMA relies on the convexity as well
as smoothness of the resulting model problems, both these
assumptions do not have to hold in SGP. This has two advan-
tages. First, in general, in SGP, we can work with much
better separable approximations. Indeed, in this article, we
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propose the so-called exact separable models along with
tight tractable approximations. We will demonstrate in the
numerical section of this article that this can help to escape
from certain local minima with a poor value for the cost
function. Moreover, as already indicated above, the ability
to compute these models is closely related to the choice of
the DDA approach. Second, design problems with more than
two materials can be treated in a much more straightforward
manner, i.e., without using higher dimensional interpolation
models as used in DMO.

We finally would like to note that applications of mate-
rial optimization methods in the context of electromagnetics
range from optimal design problems to improve different
optical properties of nanoparticles and particulate systems
(Pendry et al. 2006; Andkjeer and Sigmund 2011; Semmler
and Stingl 2021), via the design optimization of nano-
antennas and waveguides (Hassan et al. 2015; Semmler et al.
2015; Hassan et al. 2020), to inverse problems, where the
material distribution is reconstructed from the information
obtained from the scattered electromagnetic field (Colton
and Kress 2013). The computational approaches for all the
above examples are based on finite element approximations
of the solution of the time-harmonic Maxwell’s or Helm-
holtz equations. In literature, there are only a few works
dealing with dipole-based optimization in the framework of
electromagnetics. In Zecca et al. (2019), e.g., a DDA-based
non-self-adjoint variational formulation of electromagne-
tism combined with a gradient-descent method to compute
a design update is used to optimize different electromagnetic
devices. Furthermore, for the efficient inverse design of fluc-
tuating thermal sources, based on a reformulation of a stand-
ard DDA approach, called thermal DDA (T-DDA) (Edalat-
pour and Francoeur 2014), an evolutionary lattice design
approach was proposed in Salary and Mosallaei (2019).
Manuscripts dealing with pixel-based design optimization in
the context of electromagnetics using finite difference time
domain (FDTD) approaches can be found, e.g., in Kecebas
and Sendur (2021) and Yang et al. (2021). However, most
of the examples studied in the mentioned papers are two-
dimensional, and therefore, the computational complexity
is significantly lower compared to the three-dimensional
examples considered in this manuscript. In particular, even
in the very few three-dimensional examples, the number of
design degrees of freedom is orders of magnitude lower than
in our paper. An, at the first glance, rather similar concept to
the one we will discuss throughout this paper is developed
in Boutami and Fan (2019a), Boutami and Fan (2019b) and
further applied in Boutami et al. (2020) for the optimiza-
tion of photonic devices. Similar as in our approach, design
updates are carried out in a dipole-by-dipole fashion. How-
ever, the state variable as well as the value of the cost func-
tion are directly updated after each variation of a dipole.
The advantage of this is that such state updates can be done

in an efficient manner. On the other hand, the dipole-based
approach corresponds to a kind of a coordinate-wise descent
method, which typically leads to a high number of iterations.
The resulting algorithm therefore seems to be restricted to
problems with a moderate design resolution. In contrast, in
our approach, we use the idea of separability to generate
a model of the objective, which is almost exact as long as
only individual dipoles are modified, but at the same time is
a local first-order model, on the basis of which the complete
design domain can be updated at once. A main advantage
of this is, that the separable model can be combined with
gradient-based optimization techniques, which typically
results in a low number of required (outer) iterations. Addi-
tionally, in contrast to the coordinate-wise descent method,
the minimization of the separable model can be parallelized
in a straightforward way. Therefore—in combination with
DDA—we can consider more complex examples with a way
finer resolution of the design and computational domain.
To be concrete, in the papers mentioned above, the design
degrees of freedom are in the range of up to a few tens of
thousands, while we consider examples where the design
domain is discretized into much more than 10° elements.
Taking the comparably small size of the particles and parti-
cle systems considered in our paper into account, the DDA
approach provides a very accurate solution to the considered
state problems. As a consequence, as long as systems are
studied, for which the magnitude of the refractive index is
sufficiently small, see, e.g., Table 1 in Yurkin and Hoekstra
(2007), the accuracy of the state solution provided by the
DDA method compares to that of high-quality finite element
approaches, but at the same time, we can allow for a much
finer design resolution.

Our manuscript is structured as follows: In Sect. 2 a
framework for multi-material optimization is presented. The
multi-material optimization is described as a discrete assign-
ment problem with a finite number of available materials.
Then, a relaxation of this problem is introduced, in which the
set of admissible materials is expanded to a graph, the nodes
of which correspond to the originally available materials.
Moreover, two penalization terms are defined. The first is
used to penalize undesired materials arising from the relaxa-
tion, while the second penalizes irregularity in the design
distribution. In Sect. 3, the notion of separable exact and
separable first-order approximations is introduced. Further-
more, the so-called sequential global programming (SGP)
is explained for a generic class of optimization problems
defined on graphs. A special emphasis is given to the solu-
tion of the sub-problems, which require the minimization of
a separable function over the graph structured set of admissi-
ble materials. Section 4 briefly describes the discrete dipole
approximation (DDA) approach. In particular, the concept
of polarizabilities is introduced and the DDA system, a
complex system of linear equations, is derived. It is further
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shown how the system matrix depends on materials available
for optimization. Section 5 deals with separable approxima-
tions of optical property functions and constitutes the heart
of this article. Based on the Sherman—Morrison—Woodbury
matrix identity, separable exact models are stated for a wide
class of objective functions, which depend linearly on the
solution of the state problem. Then, using an approximation
for the inverse of the system matrix, separable first-order
approximations can be obtained, which are close to the exact
ones. These general results are then used to derive separa-
ble models of important optical property functions. At the
end of this section, a numerical comparison of the separable
models with the real objective function and more traditional
gradient models is presented. To show the applicability and
capability of the DDA-SGP approach, different test cases
are discussed in Sect. 6. We start with an academic proof of
concept example, continue to a multi-material optimization
problem, in which the material catalog comprises more than
two admissible materials and—by an appropriately chosen
objective function—the complete visible spectrum is dis-
cussed. We end with the optimization of a full particulate
system, more precisely a photonic crystal. We further use the
last example, to test the performance of the DDA-SGP algo-
rithm when combining sets of dipoles into one design degree
of freedom. The combination of design variables plays an
important role, when synthesizability is taken into account.

2 Multi-material optimization

The main question within multi-material optimization is
“where to put which material for optimal performance?”. To
model this, a given design space is subdivided into finitely
many design elements. Then, to each of these design ele-
ments, a material from a catalog of admissible materials
can be assigned. If the material catalog consists of only
finitely many materials, the resulting problem is a discrete
assignment problem. In practice, the number of design ele-
ments is typically very high, which renders this assignment
problem too complex to be solved by modern combinatorial
optimization solvers to global optimality. Rather than this,
a relaxation of the discrete material catalog is used, allow-
ing also for convex combinations of the given materials.
Based on this, gradient-based optimization methods can be
used to find non-trivial locally optimal solutions. The inter-
mediate materials artificially added by this procedure are
typically undesired. Therefore, these materials are penal-
ized to encourage convergence toward a design consisting
of material assignments from the original catalog only. This
idea is shared by the so-called discrete material optimization
(DMO) methods, see, e.g., Stegmann and Lund (2005); Hve-
jsel and Lund (2011), and the recently developed concept of
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sequential global programming, see Semmler et al. (2018)
and Sect. 3.

2.1 Discrete assignment problem

We first want to introduce the so-called discrete assign-
ment problem. For this, we divide a given design space €,
describing the geometrical object to be optimized, into a
finite number of design cells (i =1, ...,N). Every cell is
associated with one of the M materials from a material cata-
logU = {u,,...,uy} (see Fig. 2).

Note that every used material is described by a mate-
rial property. For instance, in the framework of the discrete
dipole approximation, materials can be characterized by
their complex refractive indices, see Sect. 4.

Now, let u and UaD g denote the design vector and discrete
admissible set, respectively, such that

weUl=1,....N), U :=u".

Then, the discrete assignment problem reads as

min J(u),
uell’

ad

ey

where J is a real-valued objective function, which can be
evaluated for each admissible design. For particular choices
of J in the context of optical properties of nanoparticles, we
refer to Sects. 5.1 and 5.2.

2.2 Relaxation

To be able to use gradient-based optimization techniques, we
relax problem (1). For this, we introduce a graph G = (V, E)
with vertices v € V, corresponding to materials u € U and
edges {ey,...,ey } C VXV connecting the latter. Here, N
denotes the total number of edges in the graph G. We assume
that every vertex v € V is at least part of one edge. For an
exemplary visualization, we refer to Fig. 3.

Fig.2 On the left side, the catalog of admissible materials
U={u,,...,uy} is visualized. The right side shows the design space
Q discretized into a finite number of design cells. In the framework of
the DDA approach, a material is characterized by its complex refrac-
tive index and the design cells are given by dipoles
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Fig. 3 Examples of graphs for two different sets of admissible mate-
rials. In this case, the graphs are complete, which means that each
material is connected with every other material by an edge

Next, we introduce a parameterization of G. For this,
it is convenient to use the abbreviation I :={1, ... ,Ng}.

Definition 1 (Parameterization of G) We call the mapping
U : I; X [0, 1] — C the parameterization of G if and only if
(iff) the following hold:

1. U is twice continuously differentiable with respect to the
second variable.
2. U is an endpoint interpolation, i.e.,

U¢.0)=u,. UCD=up VeI,
where e, = (v}, v2) is the /-th edge in G and g1, U2 ATE
the materials associated with the vertices v'f, v?,
respectively.

3. For all Z,iel; and pe€(0,1), g€[0,1] with

Z,p) # (i,q), we have
Ui, p)# UG, q).

Condition 3 of the above parameterization implies that
the edges of G do not intersect each other. In particular, a
node of the graph cannot correspond to an interior point
of an edge.

We can now use this parameterization to define the con-
tinuous version of the admissible set as

U :={U,p) | (¢, p) €1, x[0,11}".

Note that our design variable is now parameterized by # and
p, where £ denotes the edge index and p is a continuous vari-
able, sometimes referred to as pseudo-density or grayness.
Both these names have their origin in topology optimization
with only two materials, where ‘white’ stands for void or a
very soft material, while ‘black’ represents a strong material.
Then, any intermediate choice is termed a ‘gray’ material
and can be interpreted as a material with adjusted density.

Although there is no such interpretation in optics, we con-
tinue to use the term grayness also here.

Remark 2 1In this paper, we simply use linear combinations
of the properties of the admissible materials, i.e., param-
eterizations of the following type:

U, p) = (1= pluy + pug.

Here, Ul U describe the complex refractive indices of
materials e;, e?, respectively. For such a parameterization,
intermediate choices of p € (0, 1) can be interpreted as alloys
or composites. Therefore, the above parameterization is
indeed also physically motivated.

In order to avoid undesired materials (e.g., materials in
Uy \ L{f ,)» we penalize them in the optimization with a so-

called grayness penalization function J,,, : U,, = R given
by
N
Jgray(u) = Z Jgray (ui)’ (2)
i=1
with jgmy U, p) | (¢,p) €Iz x][0,1]} = Rdefined for
allZ € I by

- 1- 0,1
%maxﬂnm={g( e e

Due to condition 3 of Definition 1, the above mapping is
well defined.

Moreover, to get rid of possible artifacts in the final mate-
rial distribution, we introduce the following irregularity
penalization function J,, : U,, = R given by

Jreg(W):=|Fu —ull3. 3)

This term penalizes designs u which are not close to a
smoothed design Fu. The smoothed design is computed
using the filter matrix F given by

F;:=¢; max{0, R — ||r; = r;[|}, )

with ¢; chosen such that Zjvzl F; = L, filter radius R > 0, r;
being the position of design element i, and |r; — r;|| describ-
ing the Euclidean distance between design element i and j.
Such filter matrices are frequently used in topology optimi-
zation, see, e.g., Bourdin (2001).
Together with the grayness function J

eray> WE have the
penalty term

J]};Iegz (u) : :yl ‘Igray(u) + szmg(u) (5)

with non-negative scalar weights y; and y,.
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3 Sequential global programming

Let us consider the optimization problem

imip S
where the objective J is again a real-valued function and U,
is a graph structured set of admissible materials formally
introduced in the previous section.

We start with some definitions, which will be used
throughout this paper.

Definition 3 (Separable function on CV) A function
g : CV - R is called separable on CV, iff there exist
g; - C—>Rforalli=1,...,N such that

N
gw =Y z(u) vuec.

i=1
Definition 4 (Separable exact model) Let N € N and
f € C(CV;R) be given. A separable function g € C(CV;R)
is called a separable exact model of fat (i1 € CV), iff

glii+8,e,) = f(ii + 8,¢,),¥5, € C, Vi=1,...,N,

u-i

where ¢; denotes the i-th unit vector in (RM).

In general, we can compute a separable exact model of a
given objective function J by

N
St :=J@(1 - N) + Y S (i), ©6)

i=1

where i is an arbitrary point. The functions S; describe the
material change in design element i and are given by

S =/ @+ (u; — @)ey),

where ¢, is the i-th unit vector. Note that we can always
define a separable exact model of an objective function in
this way. However, every evaluation of S requires N evalua-
tions of J, and hence, there is no sense in using S to approxi-
mate J in practice. Fortunately, for a broad class of objec-
tive functions, reformulations of J can be found, which are
much cheaper to evaluate. We demonstrate this in Sects.
5.1 and 5.2 for objective functions corresponding to optical
properties like the extinction cross section and the angular-
dependent scattering magnitude. We further will derive
close approximations of these separable exact models. We
call these separable first-order approximations.

Definition 5 (Separable first-order approximation)
Let Ne N and f € C'(CV;R) be given. The function
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g € C'(CV;R) is a separable first-order approximation of f
inu e CV, iff

1. gis separable,

2. g() = f(u),
3. Vg(u) = Vf(u).

Note that every separable exact model is always a sepa-
rable first-order approximation. Compared to a standard
separable first-order model, like a gradient model, the
separable exact model is still globally correct as long as
only one degree of freedom is approximated.

The principal idea of the sequential global program-
ming (SGP) approach is to replace the original optimiza-
tion problem by a sequence of sub-problems, in which
the objective function J is approximated by a separable
first-order model. Every sub-problem is thus character-
ized by a separable objective, which is minimized over
the unchanged admissible set I/ ;. Exploiting this specific
structure, all sub-problems are solved to global optimal-
ity. It is noted that for this neither convexity of S nor for
U,, s required.

An outline of the SGP algorithm is provided by Algo-
rithm 1. We start with an admissible initial guess u® and
choose some algorithmic parameters: an initial proximal
point parameter = > 0, a related update parameter 6 > 1,
a constant g > 0, which is used to decide about the ter-
mination of the inner loop and an outer stopping toler-
ance € > 0. Then, the algorithm begins with the evaluation
of the objective function J at u’. In the inner loop, the
sub-problem is solved to global optimality. The objective
of the sub-problem consists of the separable approxima-
tion S at the current iterate u” plus a proximal point term
7||u” — u||?, which is used to enforce global convergence.
The global minimizer of the sub-problem is denoted by
u*. Now, the objective function J is evaluated at u* while
the regularization parameter 7 is incremented by 6. Once
the descent is good enough, the inner loop is stopped, u*
becomes the new iterate and the algorithm continues with
the outer loop. The overall algorithm terminates if the
distance of old and new outer iterate is sufficiently small.

Note that the inner loop realizes a globalization strat-
egy: as long as the solution of the sub-problem does not
provide sufficient descent for the objective of the original
problem, the parameter 7 is increased. As a consequence,
the solution u* is pushed closer toward the previous iter-
ate u”.



Multi-material design optimization of optical properties of particulate products by discrete...

Page70f25 5

Algorithm 1 Sequential global programming (SGP)

Require: uOGUad7 7>20,0>1, n=0, £>0,€e>0
jo + J(u°)
repeat
repeat
fori=1,...,N do
for e € E do
we < argmin S(u™;u) + 7 [[u” —u||?
u;€e
je < Si(u™ywi) + 7 uf — wel?
end for
e* + argmin j;
ecE
uj — wi-
end for
T 01
Jnt1 = J(u”)
until jnp1 < jn — plu”
u" ! u*
n<n+1
until ||u” - u"71H <e€

—u"|;

For the solution of the sub-problem (cf. inner loop
of Algorithm 1), we heavily exploit the separable struc-
ture of the model objective S(u*;u) + z|ju” — ullﬁ as well
as the graph structure of U,;: For each design element
(i=1,...,N), we loop over all edges e € E of the admis-
sible set. On each edge e, the optimal design w’ is com-
puted by solving a univariate optimization problem over
the interval [0, 1]. We then evaluate and store the corre-
sponding cost function value j*. Once we have looped over
all edges, we find the edge e* with the smallest function
value, i.e., j:; < j: for all e € E. The corresponding design
w’, is then the optimal choice for the i-th design element.
Thus, we set u¥ = w’,. Once the loop over the design ele-
ments is completed, we have found the global minimizer
ut = (uT, ...,u*)T for our model problem.

In (Semmler et al. 2018, Lemma 4.9), it is proven that
the inner loop of the above algorithm terminates after a
finite number of iterations. Furthermore, for a local con-
vergence result in a more general setting, we refer to Theo-
rem 4.10 in Semmler et al. (2018). In Theorem 4.12 in the
same paper, it is also shown that the final material distri-
bution derived from Algorithm 1 is a first-order optimal
solution to the objective function J.

Remark 6

1. In general, the separable function S is non-convex.
Despite this, the sub-problem in the inner loop of Algo-
rithm 1 is solved to global optimality.

2. The sequential global programming is perfectly paral-
lelizable due to its separability, which means that the

minimization can be done for each design element inde-
pendently.

4 Discrete dipole approximation

The discrete dipole approximation (DDA) approach, origi-
nally introduced by Purcell and Pennypacker (1973), approx-
imates the solution of time-harmonic Maxwell’s equations,
see, e.g., Lakhtakia (1992); Draine and Flatau (1994); Kah-
nert (2003). The idea of DDA is to discretize the physical
problem into N dipoles (i = 1, ..., N) with polarizabilities
a; € C and positions r;. The state variables in DDA are the
polarizations P, = o,E; for all i, which depend on E; € C?,
the electric field at position r;. The latter can be written as
the sum of the incident electric field E;; and further terms,
encoding interactions with the other N — 1 dipoles. Spelling
this out for alli = 1, ..., N we obtain the complex valued
system of equations

N

Y AP =E; i=1,..N, %
j=1

in which E; is a predefined incident beam, see, e.g., (Yurkin
and Hoekstra 2011, Sec. 4.6), and A € C3¥*3V is the inter-
action matrix. The interaction matrix is made up of 3 X 3
blocks which are defined as follows:

A;=a ', (8)

ii i

>
|

exp(ikr;) ((k2 N 3ik i) -
i 3 r. 20 0

i i Ty ©)
= (R ik, = 1)1 ), i £

Here i denotes the imaginary unit, k = i—” with wavelength
A and speed of light in vacuum ¢, r;; = r; - r;, and r; = [|ry]|
(cf. (Draine and Flatau 1994, Eq. 6)).

The choice for the polarizability «; is non-trivial, and
there are several options with radiative corrections avail-
able. Nevertheless, most of them are based on the Clau-
sius—Mossotti polarizability, see, e.g., (Draine and Flatau
1994, Eq. 1), which is given for the complex refractive index

u € C\ {+iV2} by
aMw) = ————, (10)
where d is the inter dipole spacing. We note that the off-

diagonal part of the system matrix A does not depend on the
refractive index of the material.
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Based on the solution P of the system AP = E,;, we can
compute different scattering quantities, like the extinction
cross section, or the total electric field which is the sum of
the incident electric field and the scattered field, see (Purcell
and Pennypacker 1973, Eq. 3).

In the material optimization setting, we pursue in this
article, the system matrix A depends on the choice of the
material in each design element, i.e., each dipole. We recall
that the material property in dipole i is described by the
complex refractive index u;. Therefore, using Eq. (10), we
can write A for a given designu € CV as

N
1
A(u) = A’ + Zl (xCM—(ui)BiBlT’ (1)

where A is identical to A in all off-diagonal entries but has
zeros on its diagonal, and B, :=[e5;_,, €3;_;, €5,] € R34 for
alli = 1,...,N with ¢; denoting the j-th unit vector in R3N,

In the remainder of this article, we omit the superscript
“CM”, since we will always use the Clausius—Mossotti for-
mula (10) to characterize the polarizability.

5 Separable approximations

In this section, we consider an objective function of the form
J) := R(LPw)), (12)

where R maps a complex number to its real part. Here, P(u)
denotes the unique solution of the following DDA system
with material assignment u:

AP =E,. (13)

For the precise definition of A(u), we refer to Sect. 4. It is
readily seen that the cost function J is linear in the state vari-
able P, but a nonlinear function of the design variable u. In
the following, we present, on the basis of the Sherman—Mor-
rison—Woodbury formula, a separable exact model of the
function J in Eq. (12). Therefore, we introduce the following
notation. Let z;,z, € C, then

Bz, 20) 1 =a(z) ™ — a(z) ™" (14)

As outlined in Sect. 3, using an arbitrary it € CV, a separa-
ble exact model of J can be written down in a brute force
manner as

@ Springer

N
J@)(1-N)+ Zl(ﬁ+(ui —1u,)e;). (15)
i=1

The following theorem provides a numerically more acces-
sible form of this model.

Theorem 7 (Separable exact model for (13)) Let L € C3V
be given, and define S : (CV)? = R for all (ii,u) € (CV)?
as follows,

N
S(i;u):=J(@) + Z R (B0, u,)Q(@)"B,C;(1n,u)B P()),
i=1

where
C,(@,u):=(1; — (i, u)BA@)'B,) (16)

and p(u;,w,) is given by Eq. (14). Then, the function
u — S(;u) is a separable exact model according to Defini-
tion4 of J : CVN - R,

Jw):=R(L"P)),

where P(u) is the unique solution of the state Eq. (13), and
Q(u) is the unique solution of the adjoint equation,

AQ =L. A7)

Proof We just have to show that the model S(ii;u) satisfies
the generic Eq. (15). We first compute J( + (u; — @,)e;) for
the specific form of J given in Eq. (12). From the state Eq.
(13), we get

P(u) = A(w)"'E,

and hence

Jw) =R(LTAW™'E,)).

Therefore, we have

J@+ (u; — ie;) = R(LT(A@+ (u; — i)e)  E;).
Together with

a@) j#i
a(uj)_l j=i’

a(e}r(ﬁ +(u, —)e) ! = {

representation (11) implies
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A+ (u; — ye;)
N
=A%+ ) a(i)”'BB] + a(u)"'BB]
j=1
JE
N
=A%+ ) a@)'BB] - (@)™ - a(u) BB}
j=1
= A() - p(u,, l.li)BiBlT,
and thus
J@+ (u; - @)e;) = R(LT(A®@) — (@, u)BBT ) 'E,).

The Sherman—Morrison—Woodbury formula yields then
i;)e;)
= R(LT(A@™ + A(@, u)A@ B,

J(@ + (u; —

(1, - ﬁ(ﬁ,-,u[)BiTA(ﬁ)‘lB,-)_lBiTA(ﬁ)_l)E1>
= J(@) + R (p(@, u)LA@ B,
(15 = G, u)BT A@'B,) ' B]PG@) ).

From this we get, using Eq. (16) and the adjoint Eq. (17):

J@+ (u; — @))e;)
=J@) + R (@, u)Q() ' B,C;(11, u,)B/ P(1)).

Finally, summing from i =1, ..., N and adding the term
J(@)(1 — N) on both sides, we conclude

N
S(Em) = J@(1 = N) + Y I+ (u; - 0e,).

i=1

O

As the explicit computation of the inverse of the DDA
matrix is typically prohibitive, we further show that we still
obtain a separable first-order approximation, if we replace the
matrix A(@)~! in the expression for C,(4,w,), i =1,...,N
from Eq. (16) by an arbitrary 3N X 3N-matrix.

Theorem 8 (Separable first-order approximation of (13))

Let L € CN be given, and define Si : (CV)*> - R for all
(@, u) € (CY)2 as follows

Sp(iizu) : =J(i1)
N

+ Z R (p(@;,u,)Q(@)"B,C,(ii, u,)B] P()),
i=1

where

p(ii, u)BFB,) ", (18)

C(,u):=(15 -
with F € C*NN arbitrary, and p(4;, w;) defined by Eq. (14).
Then, the function u — Sg(;u) is a separable first-order
approximation according to Definition 5 of J : C¥ — R,

J):=R(L'P(w)) = R(LTA)'E))
in the point of approximation @, where P(u) and Q(u) are the
unique solutions of (13) and (17), respectively.

Proof Due to p(u;,0;) =0, the sum in the expres-
sion for Sp(i;u) vanishes, and we immediately have
Sp(@i;i1) = J(@). Next we look at the first derivative. We
first provide a derivative formula for P. For this, we
apply the implicit function theorem P(i1) to the function
f@,y) := Ay — E,. We observe that f(i1,y) = 0 if and
only if y = P(i1) and further

afk(ﬁv Y) _ ~
ay, Awi®
of (y) —Z;f;iyk ke {3i—2,3i—1,3i)
o, 0 otherwise
and thus
oP@ _1 | 9f (@, P())
ou, [y y(u, P(@))] [ on, ]
- a(“)A( ) 2 ¢, P(i)
a(@;)? k=3ie e

Together with A(@)) 'L = Q, we get

/(u

) =R

0J(it)
on,

T oP(w)

=R(L Z Q) P(),).

i k3t

For the derivative of Sg(i;u), we have

0Sp(ii;u)
oy,
= ( (( )20< )"B,(1; - (ii;, u,)B]FB,)"'B] P(ﬁ))
- a’(ui) T
R (ﬁ(ui’ u) () Q(m) B,

(15— ﬁ(ﬁi,ui)BiTFBi)_ZBiTFBiBiTP(ﬁ)>,

and thus
aSF(fl;fl) o' (u,) S
ou, R( a(u,)? Q(@) BB/ P(1)).
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Now, taking the structure of B, into account, both derivative
formulae coincide. Finally, the approximation is separable
by construction. O

The strength of a separable exact model is that—as long
as we vary only one variable—it is fully correct, even if we
are far away from . This is in clear contrast to a typical first-
order model. In order to maintain this property at least in an
approximate manner, instead of choosing an arbitrary matrix
Fin Eq. (18), we opt for an approximation of A(ii)~!, which is
computationally accessible.

In detail, we suggest using the inverse of the diagonal of
the original system matrix as an approximation of the inverse
system matrix, i.e.,

A" ~ diag(A() " (19)

An interpretation of this in terms of a Neumann series is pre-
sented in Appendix B. We further note that the approxima-
tion in Eq. (19) corresponds to a Jacobi preconditioner, as it
is used in DDA together with an iterative solver to compute
an approximate solution of the linear system (7), see (Yurkin
and Hoekstra 2011, Sec. 7.1).

Now, using

(diag(AG@) ™), = a(ii,)1;,

and Eq. (19), we observe

C () ~ (1, — A, u)a(E)l,) " = %M (20)
Further

J@+ (u; —w,)e;)

<@+ 3 48, 0)00)" B, 520 LBTP@ )

=J@@) +R <MQ( )"B,B] P(i ))

a(ir;)?
. a(u;) — a(l,
=J@+R <— Z Q(u)kP(u)k>

a(l)? S,
and therefore, we have

SN(ﬁ‘u) 1=J()
a(u;) — a(i,)
* Z m( o@)?

Based on this argument, we will use the following instantia-
tion of the class of separable models introduced in Theo-
rem 8. In Sect. 5.4, a comparison of this model and more
simplified once is shown.

3i
D Q<ﬁ>kP(ﬁ>k>.

k=3i-2
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Corollary 9 Let L€ C be given, and define
Sy : (CM)? = Rfor all (,u) € (CV)? as follows

SN(ﬁ‘u) :=J ()
— a(W;)

a(u;)
i Z m( oG,

Then, the function u — Sy(@;u) is a separable first-order
approximation according to Definition 5 of J : CV — R,

3i
D Q(fnkP(ﬁ)k).

k=3i-2

J):=R(L"P(w)) = R(L'AW)'E))

in the point of approximation @, where P(u) and Q(u) are the
unique solutions of (13) and (17), respectively.

Remark 10 (Generalization to nonlinear functions)

1. For the objective function J(u):=g(P(u)), where
g : C¥ — Ris a nonlinear function, we can in general
no longer compute a separable exact model. However,
we can approximate it by a linearization in g, e.g., at
aeCV:

= g(P(w)
~ g(P() + Vg(P()) (P(u) — P(1r))
= g(P()) — Vg(P(1)) P(0) + Vg(P()) P(u).

J(u)

For the last term, we can now derive again a separable
exact and first-order model like before.

2. For the objective function J(u):=g(L"P(u)), where
g : C = Ris a polynomial and L. € C*", we can also
compute a separable exact model as well as a separable
first-order approximation of the above objective function
in the same way and with the same properties described
before. Rather than proving this in general, we refer to
Sect. 5.2 where this is shown for the angular-dependent
scattering magnitude which indeed can be written as a
quadratic polynomial.

In the following, we want to determine separable first-
order approximations for some optical properties, including
the extinction and angular-dependent scattering magnitude.

5.1 Extinction cross section

The sum of absorption and scattering of light is related to the
extinction cross section which is—using the terminology of
Sect. 4—defined by (Draine and Flatau 1994, Eq. 8)

0o (w) 1 =47k (E] P(u)), 1)
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where P(u) is the unique solution of the state Eq. (13), and
S maps a complex number to its imaginary part. It is thus
readily seen that the extinction cross section is of the form
of the objective function given in Eq. (12). Therefore, using
Corollary 9, a reasonable separable first-order approxima-
tion is given as

SN cxt(ﬁ.u) = cht(ﬁ)

a(u;) — a(l,)
+4n'k2 < R

where Q(u) is the unique solution of the adjoint equation

22
Z Q(u)kmu)k) @

k=3i—

AWQ=E,.

5.2 Angular-dependent scattering magnitude

Assume in the following that the incident electric field is a
plane wave given by

E,;(x) = pexp(ikx - d),

where p is the polarization and d the direction of the inci-
dent field, respectively. Furthermore, we assume that the
polarization is perpendicular to the direction of the incident
wave, i.e., p L d.

We are now interested in the proportion of energy that is
scattered in an arbitrary scattering direction, defined by a
unit vector a. For that we start with the scattering amplitude,
see (Yurkin and Hoekstra 2011, Eq. 27), defined as

N
F(a,u):=—ik’(1; —aa") ) P(u); exp(—ikr; - a),

J=1
where P(u) is the unique solution of the state Eq. (13). The

desired angular-dependent scattering magnitude C,., in
direction a is then given by

C,olau) = 4’; |F(a,w)?
2
1
N 2
477,']( T
| | (13 —aa )ZP(u) exp(—ikr; - a)| .
1 J=1

We now define E(a) € C3V3 as

(E(a));:=(1; — aa") exp(—ikr; - a), (23)
where (E(a)) is the j-th 3 X 3 block in the complex matrix
E(a) and, assume, without loss of generality, that the inci-
dent electric wave has unity amplitude, i.e., |E ,| = 1. Then,
we can write the angular-dependent scattering magnitude as

(24)

.Y(a

(a,u) = 4ﬂk4|E(a)TP(u)|

Note that if we consider the scattering in exactly the back
direction of the incident field (a = —d), this is equivalent to
the so-called backscattering magnitude B, (cf. (Virkki et al.
2013, Eqg. 8)), i.e., it holds

BXC(I (u) vca( d u)

(25)

Remark 11 (Backscattering magnitude) In the special
case where the incident wave propagates along the x;-axis,
ie.,, d=(0,0,1)T, and we consider the scattering direc-
tion a = —d, E can be written as E = E);l + E);z, where E);‘,
E);z are the incident electric fields with x,-, x,-polarization,
respectively. In Sect. 6.3, we consider this situation, where
we want to optimize the backscattering magnitude for a pho-
tonic crystal.

Theorem 12 (Separable exact model for scattering magni-
tude (25)) Let a be the desired scattering direction. Further,
let P(u) be the unique solution of the state Eq. (13), and Q(u)
denote the adjoint variable solving the adjoint equation

A(w)Q = E(a). (26)

Moreover, let the function S, : (CV)* > R be defined for

all (1, u) € (CY)? as follows,

sca(u ll) - Csca(a u)

+dnk Z <29i(E(a)TP(ﬁ))9{(y[(ﬁ, )

=
25 (B(@)"P@) S (1@ w) + 1@ vl ).

where

v, w) 1 =A(@;, u)Q(@) 'B,C; (1, u)B] P(W),

and

— p(,u)BTA@)'B,) ",

C,(1, u):=(1; 27

with p(u;,u;) given by Eq. (14). Then, the function
u = S, (W) is—according to Definition 4—a separable
exact model of the angular-dependent scattering magnitude

from Eq. (24).
Proof For a proof, see Appendix c. O
Again, we obtain a separable first-order model, if we

replace the inverse DDA matrix A(1)~! in Eq. (27) by an
arbitrary approximation F.
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Theorem 13 (Separable first-order model for scattering
magnitude (25)) Let a be the desired scattering direction.
Further, let P(u) and Q(u) be the unique solutions of (13)
and (26), respectively. Moreover, let Sg ;. : (CV)? > R be
defined for all (i, u) € (CV)? as follows

Sp sea(Ww) = Cy (a, @)

sca

+dnk Z <29{(E(a)TP(ﬁ))9{(7i(ﬁ, )

i=1
23 (E@) P@)) S (7@, u)) + |70, u[)|2)
with
7,(8,w) :=A(0;, u,)Q() ' B,C,(1n, u,)B] P(),

and

C,(i,u):=(1; - A(@i;,u,)B]FB,)~ " (28)
where F € C*NN arbitrary, and p(u;, ;) defined by Eq.
(14). Then, the function u = Sg . (W) is—according to
Definition 5—a separable first-order approximation of the
angular-dependent scattering magnitude (24) in the point
of approximation 1.

Proof The proof can be found in Appendix D and is analo-
gous to the proof of Theorem 8. O

We again approximate the inverse of the system matrix
A(@)~! in the above matrix function C,(Qi,u;) from Eq.
(27) using the first element of the Neumann series, which
yields,

“(lf") 1.
(X(lli) .

C,(i,u) =

Therefore, we have

o) — @) 2 Q(@)P(i), (29)

o a(@)? S

where P(u) and Q(u) are the unique solutions of (13) and
(26), respectively. With this expression for y;, we now have a
separable first-order approximation Sy ., according to Defi-
nition 5 of the angular-dependent scattering magnitude C,,
given by Eq. (24).

Remark 14 In most applications, not the scattering magni-
tude in a specific direction is of interest, but the scattering
energy in a predefined segment of an observation sphere,
which we call the monitor O (see Fig. 4). The correspond-
ing cost function integrates the angular-dependent cross
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section over this monitor. The resulting expression can be
well approximated by Romberg’s quadrature rule as follows:

/ C,o(a,u)da = Z ®; Cop(@, 10).

Jj=1

Here, 7 is the number of integration points @ on the moni-
tor O, and w; are quadrature weights for all j=1,...,n.
Obviously, the right hand side is a linear combination of the
angular-dependent scattering magnitudes for the directions
determined by the integration points a’. Consequently, all
of the above results determined in this section carry over to
this function. In particular, separable exact and first-order
models are obtained by computing a weighted sum of sepa-
rable models computed as described in Theorems 12 and 13.

5.3 Separable model for penalization function

In this section, we want to briefly describe how we can
derive separable models for the grayness and irregularity
penalization function from Equs. (2) and (3), respectively.
Note that the grayness function J,,,, is separable by
definition.
To derive a separable model for the irregularity penaliza-

tion function J,,,, we can again use Eq. (15). First, we have

J ,) = ||Fa—- ullé =u"Mu,

reg

withM:=F -1 N)T(F — 1,). The material change in design
element i for an arbitrary it € CV is then given by
reg ﬁi)ei)
= (0 + (u; — 0,)e;) "M(@ + (u; — @)e;)
= 0"Mi + 2(u; — )" Me; + (u; — &;)%e] Me,

U+ (u, -

T 2
= Jyee(@) + 2(u; —w)u Me; + (u; — ;)°J , (€)).
I’ monitor O
!
T '
~a
incident light
e ttered
scattere ; ;
. ! imaginary
light observation
1 sphere

Fig.4 Visualization of the scattering problem where all the energy
scattered in direction of a monitor O, here, a spherical cap, is of inter-
est (cf. Remark 14)
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Therefore, we can conclude that our separable model for the
irregularity penalization function J,,, is given by

S g (1) = J, (1)

N
+ 200, — )i Me; + (u; — )2, (¢)-

i=1

Obviously, the above separable model §,,, is a univariate
quadratic function.

5.4 Accuracy of separable models

In the following, we want to emphasize the accuracy of the
proposed separable first-order models with the Jacobi-type
approximation of the inverse of the DDA system matrix A
as introduced in Eq. (22) and Theorem 13 with expression
(29) for y;. For this, we compare for an exemplary setting the
proposed separable model with the true objective function
as well as the linear first-order model, i.e., a gradient model,
which is obviously also separable.

For the comparison of the models, we focus on an indi-
vidual spherical particle with 0.1um diameter and a wave-
length of 0.6um. The particle is discretized into approxi-
mately 7 - 10* active dipoles. The admissible set of materials
is given by u; = 1.59 and u, = 1.59 + 0.61, which are con-
nected by an edge like it is discussed in Sect. 2.2. Note, that
these materials will also be used in Example 6.3. The initial
material distribution is given first by a homogeneous design,
where each dipole of the sphere consists of the first material.
We want to discuss the models derived for the extinction
cross section, see Sect. 5.1, as well as for the backscattering
magnitude, cf. Sect. 5.2.

For comparison of the models, in the following, the mate-
rial of one single design element, i.e., the polarizability of a
single dipole, is changed. This means the material property
for this dipole is gradually changed from u, (material 1) for
p = 0tou, (material 2) for p = 1by the interpolation param-
eter p € [0, 1]. Then, for each p on the edge connecting the
materials, the DDA system is solved in order to get the real
objective function o,,, (Eq. (21)) and B, (Eq. (25)), see
solid blue curves in the top plots in Figs. 5 and 6, respec-
tively. We further point out that the blue curves in the top
graphs coincide exactly with the answer provided by the
separable exact models suggested previously in this section.
Then, to compute the separable first-order approximations
SN.exr a0d Sy .- We compute the DDA solution only in the
point of approximation (p = 0O for the left plots, p = 1 for the
plots on the right) and approximate the function values at all
p € [0, 1], cf. solid red curves in the top plots in Figs. 5 and
6, respectively. Note that for the respective right plots, we
start with material 2 (p = 1) in the changing dipole. Since
the separable model for the extinction cross section is almost

exact in the considered setting, the blue curve is hidden by
the red curve. Additionally, the solid yellow curve corre-
sponds to a primitive gradient model. We can see that our
separable model approximates the behavior of the physical
objective function quite well, while the gradient model is—
in the case of the backscattering—not approximating the
true objective function very well.

This gets even worse when penalization of intermediate
material comes into play. There are two possible ways of
simple separable first-order models. The naive first one is
to build a linear model for the objective function including
the grayness penalization (dashed-dotted yellow curves) and
the more sophisticated is to have a gradient model for the
physical part of the objective function and add to this the
grayness penalization function (dashed yellow curves) which
is separable by construction, see Eq. (2).

Furthermore, the plots in the bottom row of Figs. 5 and 6
show the absolute error of the considered models compared
to the true objective function. We can see that in all cases, the
model error in our separable first-order approximation (see
red curves in the bottom row of the plots) is several orders of
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Fig.5 We visualize the accuracy of the derived separable approxima-
tions for an exemplary setting described in Sect. 5.4. The plots cor-
respond to the extinction cross section (see Eq. (21)), and describe
the setting where we start with p = 0 in the left column and p =1
in the right column for the changing dipole. For the top plots, we
have Solid lines: models without grayness penalization; dashed
lines: models with grayness penalization; dashed-dotted lines: linear
model for objective function including grayness penalization func-
tion. The bottom plots show the model error of our separable model,
the linear model, and the linear model for the objective function
including grayness penalization. It is seen that in all cases, the chosen
separable model provides a very tight approximation of the objective
function over the full design interval. This is in sharp contrast to typi-
cal first-order approximations, which provide tight approximations
close to the expansion point only
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83.842

objective function

model error / -
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Fig.6 We visualize the accuracy of the derived separable approxima-
tions for an exemplary setting described in Sect. 5.4. The plots corre-
spond to the backscattering magnitude (see Eq. (25)). Function values
for the different models are shown in the top row, while error plots
are presented in the bottom row. For a detailed description of the
meaning of the colors and the line style used in each plot, we refer to
the caption of Fig. 5

magnitude lower compared to the error in the linear models
(see yellow curves in the bottom row of the plots). Obviously,
the error in the linear model for the objective function includ-
ing grayness penalization is the worst, see yellow dashed-
dotted lines. Note that the errors of the models with grayness
penalization (the dashed blue and dashed red curves in the
upper row plots) are the same as the errors of the models
without penalization; therefore these are not displayed again.

6 Examples

To illustrate the presented framework, we discuss in this sec-
tion three different examples. The first example is an academic
proof of concept example, where our material catalog consists
of two artificial materials. We also show the optimization of
this example on a high-performance computing (HPC) envi-
ronment and point out the corresponding benefits. Last but not
least, we will test our SGP method against the MMA method
(Svanberg 1987).

The purpose of the second example is twofold: On the one
hand, we want to discuss a multi-material optimization prob-
lem with more than two admissible materials. On the other
hand, we demonstrate that we can consider a full spectrum of
wavelengths, rather than an individual one.

In our last example, we consider the minimization of the
backscattering magnitude for a photonic crystal. Here, we first
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optimize each dipole of one particle in the system separately.
In a further step, we show how we can combine some sets of
dipoles/design elements in our model. Using this, we are able
to assign only one material property to each individual particle
and to enforce that during optimization the material properties
of each particle remain completely homogeneous. Then, the
third step is to investigate the effect of grayness penalization
to avoid undesired materials.

Note that in the following, every used material is character-
ized by its complex refractive index u. Unless otherwise stated,
we sety; = Oand y, = Oin the penalty term (5), which means
that there is no grayness or irregularity penalization.

The presented SGP approach was implemented in MAT-
LAB ver. R2020a as well as in a C++ library for highly paral-
lel computations. For the solution of the DDA system, we used
the open-source project ADDA (Yurkin and Hoekstra 2011)
for the MATLAB implementation, and OpenDDA (Donald
et al. 2009) for our C++ code.

6.1 Academic example

The objective in this optimization example is to reduce the
extinction cross section as defined in Eq. (21) of a ball with
0.35um diameter at a wavelength of A = 0.4 um. The particle is
illuminated by an unpolarized plane wave which propagates in
xs-direction. The background medium surrounding the object
is chosen to be vacuum (#, = 1.0). The material catalog con-
sists of two artificial materials:

uy=14+1i and u,=2.

At first, the object is uniformly discretized with a dipole
spacing d = 3.5nm, which results in a total number of around
5.4 - 107 active dipoles—this is at the same time the number
of optimization variables we have to handle in our optimi-
zation model. We start with a particle where each dipole
consists of the second material. So, the initial material dis-
tribution is given by u? =u,foralli=1,...,N.

For this setting, the initial extinction cross section is
computed to be o,,(u’) = 0.4480um?*. Since the initial
material distribution is homogeneous (only material 2)
and the particle is a sphere, we can also use Mie-theory
to compute optical properties, from which we obtain
0,,(%) = 0.4415um>. Increasing the resolution up to
a corresponding dipole distance of d = 0.875nm, the
DDA method provides an objective function value of
0,,(’) = 0.4431um?. This is in nice correspondence with
the Mie prediction.

To minimize the extinction, we ran our DDA-SGP
approach for different resolutions and initial designs u®.
The corresponding convergence graphs, showing the
history of the objective function values, are displayed
in Fig. 7. We note that one SGP iteration means that we
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Fig.7 Convergence history of the objective function for the academic
example (see Sect. 6.1) for different resolutions and initial material
distributions

have to solve one times the state and the adjoint equation.
Therefore, in one major iteration, we have to solve the
DDA system twice (cf. Algorithm 1).

Table 1 shows the final extinction cross section for dif-
ferent resolutions. Comparing the function values for the
different solutions, we can observe that our method is not
sensitive with regard to the chosen resolution as long as it
is sufficiently fine. Additionally, the result appears to be, for
this problem, independent of the initial material distribution.
This means that the SGP algorithm finds stable local optima.

The optimized material distribution for the problem
with d = 3.5nm is shown in Figure 8, where the material
distribution for the first and second material is visualized
separately.

Additionally, we want to investigate, if the visibility of the
optimized particle (computed here via the extinction cross
section) is reduced for the entire spectrum of visible light.
For this, we use the final material distribution u* from Fig. 8
(d = 3.5nm) and compute, using the DDA method, the cor-
responding extinction cross section for a large number of
wavelengths in the interval [0.4 um, 0.8 um]. Figure 9 shows
the initial spectrum for the material distributions where each
dipole consists of material u, or u,, respectively, as well as
for the optimized material distribution u*. We can see that
the design derived from the optimization of only one wave-
length (A4 = 0.4um) behaves also quite good for the whole
wavelengths range: the extinction is significantly reduced
for all wavelengths in the visible spectrum. This observa-
tion is not too surprising, as the material parameters were
chosen to be wavelength independent. Finally, we would
like to note that still a better result could be obtained, if we
would optimize for all wavelengths in the desired interval
simultaneously.

Table 1 The final objective

d . ?
function value of the academic / rm Sen) / 1
optimization example (see 7.0 0.1770
. 6.1) for diff

Sect 6. ) ‘or different 35 0.1752
resolutions

1.75 0.1742

0.875 0.1727

Ty

z \I/-’ 3

material

Fig.8 Final distribution for the academic example
(Sect. 6.1) with a dipole distance of 3.5nm; left: material 1; right:
material 2
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Fig.9 Extinction spectra for the material distributions where each
dipole consists of material u, or u,, respectively, as well as for the
optimized design u* for the academic optimization example (see
Sect. 6.1)

Note that the above optimization was done on a single
desktop computer, with 8 Intel Xeon E3-1245V6 processors,
each with 4 cores, and a total of 32GB of RAM. On this
computer, we cannot benefit that much from the separabil-
ity/parallelizability of our model and algorithm. Neverthe-
less, we could go down to a dipole spacing, i.e., the distance
between two adjacent dipoles, of 3.5nm.
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As pointed out already in Sect. 3, the SGP approach is
based on the concept of separability. As a consequence,
the optimization can be carried out independently for each
dipole. As also the DDA solver, we were using itself is
designed for the use on parallel architectures, we decided
to develop a version of our software that can be used in
a high-performance environment. To demonstrate its effi-
ciency, we have run the same problem as before with a much
higher resolution on the Emmy Cluster from the Regional
Computing Center at the Friedrich-Alexander-Universitit
Erlangen-Niirnberg (FAU) in Germany. Doing so, we were
able to discretize the design domain with a dipole spacing of
0.875nm, which is already in the range of a few atomic dis-
tances (=~ 0.1nm). This resulted in a total number of around
3.3 - 107 active dipoles (see Fig. 10 for the final material
distribution), which is about 64 times more than we were
able to use on the desktop PC.

Furthermore, in Table 2, wall-clock times as well as
times for the optimization used on the personal computer
and the HPC environment are given. Since both, the DDA
code and the code for the sub-problem solution in the opti-
mization can be fully parallelized on the HPC environ-
ment, the calculations are way faster than on our single
desktop computer. Obviously, the most time is needed for
solving the state and adjoint problem, which means for
solving the DDA systems. The time for optimization on
both machines is only a minor part of the total time. This
can be partly explained by the computational complexity
formulae for both these steps, which are O(N; log(N;))
for DDA (and also the adjoint), assuming a constant num-
ber of iterations for the iterative solver, see, e.g., Yurkin
et al. (2006) and Yurkin (2016), and O(N) for the solution
of the optimization sub-problem, where N is the number
of design dipoles and N; is the total number of dipoles
including the “inactive” ones.

With the DDA-SGP approach implemented in a HPC
environment we can further, for example, increase the
number of incident directions, or compute a lot of more

T x9
s el

Fig. 10 Final material distribution for the academic example
(Sect. 6.1) with a dipole distance of 0.875nm; left: material 1; right:
material 2
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Table 2 The wall-clock time spent for solving the academic optimiza-
tion example (see Sect. 6.1) as well as the time for optimization (=
accumulated wall-clock time for solving all sub-problems) for differ-
ent resolutions on the desktop computer (PC) and the HPC environ-
ment is presented

d /[ nm # active Total time/ s Optim. time/ s
dipoles PC HPC PC HPC
7.0 6.6 - 10* 826.4 79.1 28.7 0.7
3.5 5410 9341.2 410.1 275.6 2.5
1.75 42100 - 1867.7 - 7.9
0.875 3.3-107 - 9374.5 - 29.8

Note that the examples on the PC were run in a serial fashion, while
on HPC, we used parallelization on 100 cores for d = 7.0nm, 200
cores for d = 3.5nm, 400 cores for d = 1.75nm, and 800 cores for
d = 0.875nm

wavelengths in a spectrum in parallel, i.e., we can also
refine the resolution in the wavelength range. Furthermore,
the usage of the high-performance computing library can
also be interesting for large particle assemblies, as studied
in Sect. 6.3.

Remark 15 We also performed experiments where we used
the irregularity penalization introduced in Eq. (3) to get rid
of the ring in the final design from Fig. 8 computed with
d = 3.5nm. Therefore, we have chosen y, = 5.0-107% in
Eq. (5) with filter radius R = 0.014 in Eq. (4). As a result,
we obtained essentially the same material distributions as
before, but the ring was “smoothed out.” Comparing the cor-
responding value of the objective function, which amounted
to am(u:‘eg) = 0.1801um? with the one without irregularity
penalization (see Table 1), we could observe a relatively
small difference. We concluded from this that the ring struc-
ture in the above designs is of minor importance.

We finally want to use our academic optimization exam-
ple to compare the presented SGP approach with the well-
known MMA algorithm. For that, we take the example
described in detail in the beginning of Sect. 6.1 with a dipole
distance of d = 7nm. We perform two different experiments.
First, no grayness penalization is used throughout the opti-
mization process (i.e., y; = 0). The convergence history
of the objective function for both solvers is visualized in
Fig. 11 (solid lines). We see, that MMA converges much
slower than our SGP approach. When we stopped MMA
after 200 iterations, the computed function value was still
far away from the value found by SGP. The gap between
MMA and SGP gets even larger, when we consider gray-
ness penalization, i.e., the grayness penalization function
(2) is now added to the objective function with a weight of
¥, = 107 (cf. Eq. (5)). Comparing the convergence history
of the cost function (see dashed lines in Fig. 11), we see
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that, while SGP finds still a good local optimum close to the
one without penalization, the function value for the design
computed by MMA is now much worse. In order to under-
stand this situation a bit better, we had a closer look at the
iteration history in both cases. For SGP, we found that in all
but two iterations a fully ‘black-and-white’ solution was gen-
erated, i.e., no intermediate material properties were used.
Beyond that, checking the projected gradient, we found that
each of these points is Karush-Kuhn-Tucker (KKT) points.
That means, SGP has visited in total 9 KKT points until it
stopped, thereby permanently improving the value of objec-
tive functions. Quite contrary to this, MMA approached a
KKT point (also ‘black-and-white’) with a rather poor func-
tion value after a little bit more than 10 iterations and was
not able to escape from this anymore. The reason why SGP
can cope much better with the situation is the way better
approximation, which is used in the sub-problems: while in
MMA, even a (locally) concave function is approximated by
a convex model, in SGP the concave character is maintained.
Thus, thanks to the global solution strategy applied for the
solution of the sub-problem, SGP has the chance to escape
from poor local minima.

6.2 Multi-material example

The purpose of this example is to demonstrate the ability of
our approach to treat a multi-material optimization problem
with a material catalog consisting of more than two admis-
sible materials. Moreover, we discuss in more detail the opti-
mization for a whole range of wavelengths.

0.5 T T
SGP
045 R~ =~ MMA
A\ — — —-SGP pen
\ — — — -MMA pen
04+
£ 035+
3
~
T 03+
N
0.25 +
0.2+
0.15 : =
10° 10! 102

iterations

Fig. 11 Comparison of the SGP and the MMA method. Shown is the
convergence history of the objective function for the academic exam-
ple (see Sect. 6.1) with d = 7nm. Solid lines: optimization without
grayness penalization; dashed lines: optimization with grayness
penalization (y, = 1075)

Again, we focus on the optimization of the extinction
cross section given by Eq. (21), but in this case for a wave-
length spectrum ranging from 0.4um to 0.7um. We want
to minimize on the left part of the extinction spectrum and
maximize on the right. Therefore, our objective function is
the numerical approximation of the weighted mean value in
the visible range of light given by

19
J) = Y 130 (A w), (30)

=0
with

1 2<0.55um
n(d) = { 1 4>0.55um’
and
0.3um

A;=04um+j THE forj=0,...,19.

We consider a sphere with 0.3 um diameter which is illumi-
nated by a x-polarized incident plane wave propagating in
positive x;-direction. As medium for the background, we
choose ethanol with u;, ~ 1.36. The three admissible materi-
als are given by silica, titanium dioxide, and goethite, with
wavelength-dependent complex refractive indices u, u,, and
us, respectively. For the corresponding complex refractive
indices, we refer to Malitson (1965) for silica, and DeVore
(1951) for titanium dioxide. For goethite, see Appendix A.

The graph structured set of admissible materials is visu-
alized in Fig. 12. Note, that we consider a complete graph,
which means that each node is connected by an edge with
every other node.

In this case, we choose a dipole spacing of d = 1.5nm,
such that we have about 4.2 - 10° active dipoles. We start
with a material distribution where all dipoles consist of a
homogeneous mixture of 50% silica and 50% titanium diox-
ide, which would mean that we are for all design elements
on edge e, with intermediate value p = % (cf. Fig. 12). With
this, the initial material distribution in each design element
i is given by

ul(4) = Ju, () + 3ur(A), (31

and the corresponding initial objective function value is
J(®%) = 1.2050um3. Furthermore, homogeneous designs
for the catalog materials lead to the following function
values: J(u,e) = 0.0245um?, J(uye) = —0.6721um?, and
J(use) = 0.29147um?3. Here, e is a vector of size N with all
entries equal to 1. Fig. 13 shows the initial spectra for dif-
ferent initial material distributions.

The DDA-SGP approach yields the following results. If
we choose y; = 7, = 0in Eq. (5) (no penalization), then we
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Fig. 12 Graph structured
admissible set of materials for
the multi-material optimization
example, see Sect. 6.2

0.4 0.45 0.5 0.55 0.6 0.65 0.7
A/ um

Fig. 13 Initial spectra for different initial material distributions u® for
the multi-material optimization problem, see Subsection 6.2

obtain the final material distribution shown in Fig. 14. We
denote this by u*. We can observe that there are some unde-
sired geometric artifacts at the boundary of the materials.
In order to improve on this, we activated the irregularity
penalization term (3) in the cost function.

In detail, we choose the parameters y, = 107 in Eq. (5)
and R = 0.006 in the filter matrix (4). The corresponding
optimized design is given in Fig. 15 and denoted by ujeg. We
note that to compute ujeg, we again started the optimization
with the initial homogeneous material distribution given in
Eq. (31).

In Fig. 16, the initial and optimized spectra are shown.
The corresponding convergence histories of the cost function
are given in Fig. 17. The final objective function values are
given by J(u*) = —0.8308um> and J(uy,) = —0.8254um’.
We can see that the penalization of irregularity does not
significantly affect the spectrum as well as the corresponding
function value, but the design looks much better since most
of the artifacts are smoothed out.

6.3 Optimization of a photonic crystal
In this example, we want to investigate how our model

works for particle assemblies. We consider a photonic
crystal, that is an ensemble of several nanoparticles, with

@ Springer

Fig. 14 Final material distribution u* for the multi-material optimi-
zation example (Sect. 6.2) with a dipole distance of 1.5nm without
penalization; red: silica; blue: titanium dioxide; green: goethite

N

Fig. 15 Final material distribution u’  for the multi-material optimi-
zation example (Sect. 6.2) with a dipofe distance of 1.5nm and irregu-
larity penalization (y, = 107%, R = 0.006); red: silica; blue: titanium
dioxide; green: goethite

the following properties. We have a system with 7 layers of
closed packed spherical particles, each with a diameter of
0.05um, that are arranged in a hexagonal pattern. In each
layer, we consider around 10 by 10 particles which are
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Fig. 16 Initial and optimized spectra for the multi-material optimiza-
tion problem, see Sect. 6.2

uniformly discretized with the dipole distance d = 2nm.
This results in a total number of active dipoles of about
5.1 - 10% dipoles, which are about 8.2 - 10° dipoles per par-
ticle. The object to be optimized is shown in Fig. 18.

We want to minimize the backscattering magnitude
given by Eq. (25) for a wavelength of A = 0.6um. Note
that we consider now the scattering in exactly the nega-
tive direction of the incident field. The particulate system
is illuminated by an unpolarized plane wave propagating
in positive x;-direction. The particle ensemble is embed-
ded in vacuum, and the material catalog consists of two
admissible materials. The first one is polystyrene with
u; = 1.59 which is non-absorbing. The second material has
absorbing properties similar to a carbon black-polystyrene
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Fig. 17 Convergence history of the value of the objective function
(30) for the MMO example (Sect. 6.2) with and without regulariza-
tion

composite with u, = 1.59 4+ 0.6i. The values of the back-
scattering magnitude for the two admissible materials are
given by B, (u,e) = 0.1667 and B, ,(u,e) = 0.0969, where
e again is a vector of size N with all entries equal to 1.
Therefore, we start the optimization with a material dis-
tribution where each dipole of the system consists of pure
polystyrene, i.e., u’ = u,e.

In a first experiment, all dipoles in the system are
treated as individual design variables. As every individual
particle is made up from many dipoles, one and the same
particle can be assigned different material properties in
different positions. The solution we obtain from this study
serves as a reference solution. Due to the ultimate design
freedom in this setting, it is expected that this reference
solution provides—in terms of the function value—a lower
bound for more realistic designs. The final material distri-
bution uj‘ef is displayed in Fig. 19, where the red color
corresponds to the first material, the blue color to the sec-
ond one, and the colors in between correspond to mixed
material properties.

In a second setting, we add the restriction that each of
the individual particles in our system remains homogeneous
throughout the optimization. This implies that all dipoles
belonging to one and the same particle in the photonic
crystal have to be assigned the same material data from our
graph-like admissible set of materials. In order to realize
this in practice, we collapse all design variables belonging
to the same particle into one. While the design freedom is
significantly reduced in this way, the total number of active
dipoles stay the same as before.

Figure 20 shows the corresponding optimized material
distribution denoted by uy . Comparing this result with the
reference solution, the following interpretation may be pro-
vided: every mixed or “gray” particle may be interpreted as
a macroscopic mean over material properties of assigned to
its dipoles in the reference solution. Comparing also the

3
x?\l/zl

Fig. 18 Photonic crystal (cf. Sect. 6.3) with 7 layers of closed packed
particles. Each particle has a diameter of 0.05um
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*

Fig. 19 Final material distribution w . for the optimization of the
photonic crystal (see Sect. 6.3, setting {), where each dipole was con-
sidered as an individual design variable; red: material 1; blue: mate-
rial 2

corresponding values of the objective function for the above
cases (see Fig. 23; red and blue curve), it is observed that
despite the much more restrictive approach essentially the
same value for the backscattering is obtained. An explana-
tion for this could be that the topological structure within the
individual particles is of minor significance. Rather than
this, only the ratio of the amount of material 1 and material
2 is important. For the optimized design of our reference
solution ujef, we have Bm(ufef) = 2.8022 - 107, where for

*

the final design w from setting 2, we have
B (uf )=3.1899-107*. It is further worth to note that
the composite materials obtained in the second approach
appear way more accessible to synthesis compared to the
first setting.

We finally note that, when collapsing several dipoles into

one design variable, we partly give up the separability of the

*

Fig.20 Final material distribution w; ~for the optimization of the
photonic crystal (see Sect. 6.3, setting 2), where only one design vari-
able was assigned to each individual particle; red: material 1; blue:
material 2
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SGP model. Despite this, the comparison with the reference
optimization shows that we still find a good local minimum.

In a third setting, we finally want to get rid of all inter-
mediate material properties, which are not corresponding to
a node in the admissible material catalog. In order to real-
ize this, we add the grayness penalization function (2) to
the cost function by choosing a suitable parameter y, > 0 in
Eq. (5). In this example, we took y; = 10~*. The resulting
material distribution u*m _is now indeed free of any interme-
diate material properties (see Fig. 21). The corresponding
backscattering value is given by B, (u; ) = 8.5430 - 1074,
Compared with the result of setting 2, the objective func-
tion value gets worse. Approximately, 2.7 times more light
energy is scattered back. Moreover, in Fig. 22, the optimized
designs are shown sliced in the x, — x; plane. We can see
how the final material distribution obtained from the three
different settings is structured in the interior of the particle
assembly.

The convergence history of the objective function for the
three cases discussed above is shown in Fig. 23. We can
see the effect of grayness penalization. The algorithm con-
verges faster (in only 7 iterations) than without penalization,
because it pushes the design parameters relatively quickly
toward O or 1. This is why—despite the good characteristics
of the almost exact separable approximation—the penalty
parameter should be chosen with care. If it is chosen too
large, it is more likely that the algorithm gets trapped in
undesirable local optima.

Remark 16 To overcome the problems in choosing the gray-
ness parameter, we could apply a so-called continuation
scheme for the grayness parameter y,, see, e.g., (Sigmund
and Petersson 1998, Sect. 4). This means, we would update
7, in every iteration depending on the current value of the

3
xg,\]/@l

Fig. 21 Final material distribution u; = for the optimization of the
photonic crystal (see Sect. 6.3, setting 3), where only one design vari-
able was assigned to each individual particle and intermediate mate-
rial choices were penalized; red: material 1; blue: material 2
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Fig.22 Slice of the final material distribution in the x, — x; plane
obtained from the three different settings to optimize the photonic
crystal (see Sect. 6.3). The top material distribution corresponds to
the first setting, where all dipoles in the system are treated as indi-
vidual design elements. The design in the middle corresponds to the
optimization with only one design variable per individual particle,
and the bottom one to the optimization of individual particles with
penalization of intermediate material choices

grayness penalization function. Another possibility would be
to use more building blocks, i.e., more admissible materials.
For example, one could allow a finite number of composites
made of the two materials with predefined material frac-
tions. The resulting problem could still be treated by the
DDA-SGP method.

7 Concluding remarks

The combination of discrete dipole approximation and
multi-material optimization is a promising field of research.
We have demonstrated that the high spatial resolution pos-
sible with DDA and the usage of tight approximations of
separable exact models within SGP-type algorithms allows
to efficiently predict optimized layouts for nanoparticles and
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particle (with penal)
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Fig. 23 Convergence history of the objective function (25) for the
optimized design of the photonic crystal (Sect. 6.3), where individual
dipoles (blue curve), individual particles (red curve), and individual
particles with penalization of intermediate material choices (yellow
curve) were optimized

particle assemblies. It was shown that—in contrast to the
established solver MMA—SGTP is able to escape from cer-
tain local minima with a poor value of the objective. Moreo-
ver, the SGP method allows to work with continuous as well
as discrete material catalogs. In DDA, the continuous mate-
rial parameterizations can be interpreted in terms of alloys.

The presented concept was implemented in a fully paral-
lel manner in C++, and applied to different 3D problems.
The parallelization is especially useful when considering
many wavelengths, incident directions, and polarizations.

In the future, we would like to apply the presented DDA-
SGP method to more realistic design setups and to put more
emphasis on synthesizability. Realistic design setups come
along with distributed orientations of particles as well as con-
tinuous ranges of wavelengths and scattering directions, see,
e.g., (Semmler et al. 2015, Sect. 2.1). To handle this in an exact
manner and to avoid spurious local minima, which may be
introduced by an a priori discretization, we aim to combine the
ideas of SGP and the continuous stochastic gradient scheme
(CSG) introduced in Pflug et al. (2020).

Appendix A: Complex refractive index
of goethite

In order to obtain a refractive index for goethite, we use a
modified version of the refractive index of isomorph f-FeOOH
(akaganeite) determined by Maeda and Maeda (2011). For
this, the akaganeite refractive index is density corrected by
applying the Gladstone-Dale (Gladstone and Dale 1863) and
Anderson (Anderson 1984) method. The resulting complex
refractive index is given in Table 3.
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Appendix B: Neumann series

We discuss briefly how the inverse of the DDA system matrix
A, defined by Egs. (8) - (9), can be approximated by means
of the Neumann series. Let us denote the block diagonal of A
by AP given by

Af = (xi_1]l3,
and the off-diagonal part by A° defined by

AO_M«szrﬂ‘_i) T

o= ) g
ij 3 - 200
i i Ty

— (R ik = 1)1y), i),
Then, we can write A = AP + A9, and therefore
(AP)2AAP)"3)7! = (1 + (AP)7A(AP)™3)7!.

Note that the right hand side of the above equation is now in
the form (1 — 7)~! with

T:=— (AP) 1 AC(AD) 3.

We get from the Neumann series, that

=) T (32)
k=0

Using, for instance, only the first two elements, we have

1-7"

(AP)2AAP)3)! & 1 — (AP) 2 A%(AP) 3,

and therefore

Table3 Complex refractive 4/ nm 7 [

index of goethite; 7: real part; k:

imaginary part 400 2.63 0.3944
420 2.61 0.2800
440 2.54 0.1653
460 2.48 0.1252
480 2.46 0.1123
500 2.48 0.0850
520 2.48 0.0455
540 2.49 0.0181
560 243 0.0060
580 2.40 0.0036
600 2.39 0.0034
620 2.31 0.0037
640 2.30 0.0040
660 2.28 0.0040
680 2.27 0.0037
700 2.27 0.0031
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(AP):A7'(AD): ~ 1 — (AP)3A%(AP) 3,

which yields

A~ % (AP)! = (AP)'AO(AD)!.
Since, due to the specific structure of the DDA matrix, the
diagonal entries of the second matrix on the right hand
side are zero and the separable model, see Theorem 7, only
depends on the diagonal entries of the inverse system matrix
A~!, we can approximate the diagonal of A~ by (AP)~.
As documented in Sect. 5.4, this choice already results in
a rather tight approximation of the corresponding separa-
ble exact models for the particular objective functions we
investigate in this article. In general, better approximations
may be achieved by taking additional terms of Eq. (32) into
account.

Appendix C: Proof of Theorem 12

In the following, we want to derive a separable exact
model of the angular-dependent scattering magnitude (cf.
Theorem 12). Following the same computations as in the
beginning of Sect. 5, it holds

(a, 0+ (u; — 0y)e;)

sca

47rk

] zl
: Z«A(u) ~ p(a; u)B,B

J=1

—aa)

2
D7'E)); exp(-ikr; -a)| |

with B, :=[es;_,, e5,_1, e3;]and f(@;, u,) = a(li,) ™! — a(u,)™".
Then, using the Sherman—Morrison—Woodbury formula, we
have

Ci.(au+(u;, —

sca ﬁ)e)

47rk

CIEF
N

+ (13 —aa") ) [(A@;, u)AG@) "B,
&

(113 —aa") Z(A(u) 1E,) exp(—ikr; - a)

j=1

- (13 — A, u)B/A@~'B)"'B]A®)'E)),
2
- exp(—ikr; - )|

Using the state equation A(u)P(u) = E; and the expression

C,(0,u):=(1; — p(ia;,u l)BTA(u) 'B)7!,

it follows
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(@aa+ (u - fL)e»)

47rk

B[

N
+ (15 —aa") )’ [(A(@;, u)A(@)~'B,C,(, u)B] P(),

J=1

(1, —aa") Z P(i); exp(—ikr; - a)
Jj=1

2
- exp(—ikr; - a)]

With the definition of E from Eq. (23) and the assumption
that the incident electric wave has unity amplitude, we obtain

(@, 0+ (u; —uye;)

.S(,a

= 4zk*

N
Z(E(a»JTP(ﬁ)j + Y [B@;.u)
j=1 Jj=1

2
- (E(@) (A@~'B,C,(@,u)B/P@)]| .

Letting now Q(u) be the adjoint variable, solving the adjoint
problem A(u)Q = E(a), the above equation simplifies to

vca(a u+ (ll ﬁi)ei)

= 4zk*|E(a) "P(@) + A(@1;, u,)Q(@) 'B,C (i1, u,)B; P(in) g

Using the identity

la + b)* = |a]* + 2R (@R (D) + 25 (@)S(b) + |b|%,

for a, b € C, we can conclude that

C,.(a, i+ (u, — ))e;)

= 47k* (|E(@)"P@)[* + 2R (E(a) "P@)R(7,(@, u;))
+2S(E(@) "P@)S(y,(i, w)) + |7,(@, ui)lz)

= C,,(a, ) + 47k* (2R(E@) "P@)R(7(0, u)))
+23(E@) "P@)S (@, u) + 1@ w)[).

with

v, up) =A@, u)Q' (@)B,C (i1, u)B/ P().

The separable exact model for the angular-dependent scat-
tering magnitude is therefore given by

sca(u u)
N
=C,,(a,u)(1 =N)+ 2 Ci.(au+ (u; —uye)
i=1

N
= Cypo@ ) +47k* ) (2RETP@)R (7,1, v,)

i=1

2SETP@)S (@, u)) + |r,@ w)|’).

Note that the above model is separable and exact by
definition.

Appendix D: Proof of Theorem 13

By construction, the approximation S ,.,(@;u) from Theo-

rem 13 is separable. We also have that

\sca

SF,sca (ﬁ’ﬁ) Csca(a ll)

since (i, 0;) vanish for all
i=1,...,N

For the first-order property, we have to compute the
gradient of S ., (@;u) with respect to u. The derivative of

7;(,u;) with respect to u, is given by

0;) and thus also 7,0, @

l’l

0 _ .
a—ul%’(“,“i)
o' (w;)

= e )ZQT(u)BC(u ,u)BIP(@)
o' (u;)

— B(ii.,u T B.C
p(@;,v;) o )Q (@)

C,(ii,u,)’B]FB,B P(0d).

Therefore, we obtain

9
Jdu

i

Sk sea(@WW)
_ 4nk4<2mE(a)TP(ﬁ))m(aiuif/i(ﬁ, u)
+23(E@) "P@)S( %m&, u))
+ 2R 7@ w)R( aiuf"(ﬁ’ u))
+23(7,(0, u) 3 (

J . ..
a—ui}/i(u, ui))).

Now, using 7;(u,u;) = 0, and

Z Q@) (@)

‘ a(u
( )2k 3i—

o] -
—¥,,w)
aui u=u

we immediately get
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aiiSF,sca(ﬁ;ﬁ)
=4nk4(2m(E(a)TP(ﬁ))m (( )2 2 Q@) P@)) (33
k=3i—
+25(E@) P@)S (L) Z Q(u)kP(u)k)>

( )2/( 3i—

Finally, analogously as in the proof of Theorem 8, we use the
implicit function theorem to show that the derivative of the
angular-dependent scattering magnitude C,,(a, i1) coincides
with Eq. (33).

Therefore, the model given in Theorem 13 is a sepa-
rable first-order approximation of the angular-dependent
scattering magnitude (25) in the point of approximation i.
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