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Abstract
The main objective of this work is to extend finite element-based topology optimization problem to the two-dimensional, 
size-dependent structures described using weakly non-local Cosserat (micropolar) and strongly non-local Eringen’s theories, 
the latter of which finds an application for the first time, to the best of Authors’ knowledge. The optimum material layouts 
that minimize the structural compliance are attained by means of Solid Isotropic Material with Penalization approach, while 
the desired smooth, mesh-independent, binary solutions are obtained using density filter accompanied by volume preserving 
Heaviside projection method. The algorithms are enhanced by including an element removal and reintroduction strategy 
to reduce the computational cost, and to prevent spurious excessive distortion of elements with very low density. Example 
problems of practical importance are investigated under the assumption of linear elasticity to validate the code and to clearly 
demonstrate the influence of internal length scales and different non-locality mechanisms on final configurations. Obtained 
macro-scale optimum topologies admit the characteristics of corresponding continuum theories, and appear to be in agree-
ment with the mechanical response governed by particle interactions in micro/nanoscale.
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1  Introduction

The first rational study on topology optimization dates back 
to the beginning of twentieth century, to the pioneering 
paper of Australian mechanical engineer Michell (1904) 
on optimum frame design, in which, the minimum quantity 
of material, sufficient to sustain the external forces by ten-
sile and compressive members of identical density (named 
Michell truss), was searched. Following the landmark work 
of Bendsøe and Kikuchi (1988), the topic has gained a con-
siderable attention, and different methodologies, all seek-
ing to find the parameters that minimize (or maximize) the 
objective function for a given set of load and boundary con-
ditions while satisfying a series of service constraints, are 
proposed. In general, these approaches can be categorized 
as density-based, level-set, phase-field and hard-kill (evolu-
tionary) methods, depending on the nature (continuous vs. 

discrete), content (material density vs. structural geometry) 
and updating scheme (gradient-based vs. random search) 
of the design variable (Rozvany 2009; Sigmund and Maute 
2013; Deaton and Grandhi 2014; Tyflopoulos et al. 2018). 
Despite the widespread application of topology optimiza-
tion to classical (local) Cauchy materials, limited number 
of works, that are discussed later, focused on extending the 
problem to non-local media which are characterized by the 
presence of internal length parameters and spatial dispersion 
properties (Kunin 1968, 1982, 1983).

Non-local theories are used to describe the behaviour of 
complex materials with comparable internal and external 
length scales for their capability of maintaining the informa-
tion of underlying material organization while exploiting 
the field descriptions (Mindlin 1964; Kunin 1984; Capriz 
1989; Maugin 1993; Eringen 1999; Gurtin 2000), and sug-
gested to be categorized as ‘implicit/weak’ and ‘explicit/
strong’ depending on the nature of non-locality (Kunin 
1984; Maugin 1993; Eringen 1999; Trovalusci 2014). The 
theories belonging to the former class are known as general-
ized, microcontinua or multi-field continua (Eringen 1999; 
Trovalusci 2014) that are enriched with additional kinematic 
and work-conjugated dynamic descriptors, even leading to 
increasing of the number of field equations, as they induce a 
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limited (weak) non-local character manifested through these 
additional non-standard fields. On the other hand, the theo-
ries belonging to the latter class preserve the classical primal 
fields, nonetheless the equations contain integral, integro-
differential or finite difference operators. Since length scale 
parameters are directly linked to the bulk properties, explicit 
models possess a strong non-local character. The non-local 
theory to be used is chosen depending on the characteristics 
of the structure to be examined (how the unit cell behaves), 
though in the present study, the particular attention is going 
to be on micropolar (Cosserat) and two-phase local/non-
local Eringen’s models (Tuna et al. 2020; Tuna and Trov-
alusci 2020).

Implicitly non-local micropolar theory deals with media 
that are composed of rigid material particles enriched with 
the additional micro-rotational degree of freedom (Cosserat 
and Cosserat 1909; Nowacki 1986; Eringen 1999), and has 
been widely employed for describing heterogeneous materi-
als with microstructures, such as masonry, rock assemblages, 
reinforced composites (Masiani and Trovalusci 1996; Forest 
and Sab 1998; Colatosti et al. 2021a, b). Moreover, as the 
theory accounts for relative rotations corresponding to skew-
symmetric part of strain and to work-conjugated stress meas-
ures, it is especially suitable to describe the behaviour of 
anisotropic, and in particular orthotropic media (Trovalusci 
and Masiani 1999; Pau and Trovalusci 2014; Eremeyev and 
Pietraszkiewicz 2016; Fantuzzi et al. 2019, 2020).

Explicitly non-local Eringen’s model concerns with 
the physics of material bodies whose stress at a point is 
influenced by the state of strain of all other points within 
a neighbourhood of the body (Kröner 1967; Eringen and 
Edelen 1972; Eringen 2002), hence it covers the long-range 
interactions between material points. Although the constitu-
tive relation has originally been introduced in integral form 
(Eringen 1972), it is later transformed to differential form 
for specific kernel functions (Eringen 1983), and finally 
re-organized as two-phase local/non-local form consisting 
of weighted mixture of both (Eringen 1984; Altan 1989). 
All these forms with their enhanced versions are widely 
employed to model size-dependent behaviour of, especially 
nano and micro, structures with prominent neighbour rela-
tions (e.g. carbon nanotubes, graphene sheets, atomic chains/
arrays) (Polizzotto 2001; Ansari et al. 2011; Rafii-Tabar 
et al. 2016; Tuna and Kirca 2021; Tuna et al. 2019; Eroglu 
2020; Pisano et al. 2021; Danesh et al. 2021; Naderi et al. 
2021; Günay 2021). Nevertheless, their limitations must 
be acknowledged to avoid the improper practice leading to 
paradoxical results which are comprehensively reported in 
a current review article by Ceballes et al. (2021).

In the available literature, only a few work addresses the 
topology optimization problem of structures modelled by 
non-classical continuum theories; such as micropolar, couple 
stress, and strain gradient elasticity (Rovati and Veber 2007; 

Liu and Su 2009; Arimitsu et al. 2011; Veber and Taliercio 
2012; Bruggi and Taliercio 2012; Li and Khandelwal 2015; 
Li et al. 2017; Da et al. 2018; Su and Liu 2020; Chen et al. 
2021), while even less deals with optimal design of systems 
that are related to other interesting fields of applied math-
ematics (e.g. conduction, diffusion) governed by non-local 
type equations (Andrés and Muñoz 2015, 2017; Evgrafov 
and Bellido 2019b, 2020). In pioneering study, Rovati and 
Veber (2007) applied topology optimization procedure for 
maximum stiffness problem considering two-dimensional 
(2D) micropolar solids, which has then been extended to 
dynamic loading conditions (Bruggi and Taliercio 2012) 
and three-dimensional (3D) case (Veber and Taliercio 2012), 
while recently Chen et al. (2021) developed a parametrized 
level-set topology optimisation method to re-study the mini-
mum compliance problem of 2D Cosserat solids. For prob-
lems with prominent bending effects, the optimum material 
layouts of micropolar solids turn out to be characterized by 
more simplified and curved structures, as a result of inher-
ent flexural stiffness, whereas local case (Cauchy) presents 
truss-like structures with higher compliance. This discrep-
ancy is also evident for other non-classical models, yet to the 
authors’ best knowledge, such an investigation has not been 
performed conducting strongly non-local Eringen’s theory 
of elasticity.

With this motivation, the present paper generalizes finite 
element (FE)-based topology optimization to the 2D size-
dependent structures modelled via strongly non-local two-
phase Eringen’s theory. To make a comparison with weakly 
non-local theories, the minimum compliance problem of 
micropolar solids is also adopted making some adjustments. 
The FE models, discretised with equi-sized quadrilateral ele-
ments, are parametrised by material densities, and the optimal 
layouts are looked for adopting the simple, yet efficient Solid 
Isotropic Material with Penalization method (SIMP; Bend-
søe 1989; Zhou and Rozvany 1991; Mlejnek 1992) through 
a gradient-based updating scheme. By virtue of the fictitious 
power-law approach, intermediate values of design variables 
are penalized to support the formal solid/void solution while 
to eliminate numerical problems, such as checkerboard pattern 
(i.e. adjacent solid–void elements in optimised configuration) 
and mesh dependency (Jog and Haber 1996; Sigmund and 
Petersson 1998), the formulation is improved with density 
filter (Bourdin 2001; Bruns and Tortorelli 2001). The unde-
sirable transition region (i.e. the grey zone appeared between 
solid–void elements, having intermediate density values) 
resulting from the filtering operation is suppressed by means 
of projection method (Guest et al. 2004; Wang et al. 2011), 
which amplifies the solution further into a solid/void field. 
Finally, to avoid the misleading contribution of low-density 
elements to structural analysis of Eringen’s non-local model, 
an element removal and reintroduction scheme, similar to the 
one proposed by Bruns and Tortorelli (2003), is embedded to 



Topology optimization of scale‑dependent non‑local plates﻿	

1 3

Page 3 of 20  248

the algorithms. In the framework of linear elasticity, several 
example problems of practical importance are investigated for 
different characteristic lengths to point out the influence of 
scale effects, and different type of non-local theories on opti-
mised configurations.

The paper is organized as follows. In Sect. 2, the field 
equations of micropolar and Eringen’s non-local models are 
outlined by presenting their limit cases leading to Cauchy con-
tinua in the case of isotropy. Then corresponding FE formula-
tions are derived focusing on 2D case. In Sect. 3, the math-
ematical formulation of topology optimization problem in the 
minimum compliance case is shown in a detailed manner by 
providing information also about element removal–reintroduc-
tion scheme. Section 4 is devoted on numerical examination in 
which the effect of different theories on optimal topologies are 
studied through individual and comparative example problems 
by providing a discussion on the results. Finally, in Sect. 5, 
concluding remarks are drawn and possible future activities 
are suggested.

2 � Continuum theories

This section provides general information on the theories 
considered in the present study, and on the corresponding FE 
formulations that are derived regarding 2D bodies occupying 
a domain, � , and discretised using linear (i.e. four-noded) ele-
ments. The structures are assumed to be made of linear, elastic 
and isotropic material, and a Cartesian coordinate system, with 
z axis along the thickness, is used for parametrisation of posi-
tions of material points, � . The formulations are derived within 
the linearized kinematical framework where the superscripts 
M and E refer to micropolar (Cosserat) and Eringen’s non-local 
models respectively. For corresponding calculations, in-house 
codes are developed using Wolfram Mathematica software®.

2.1 � Micropolar (Cosserat) theory of elasticity

Micropolar theory belongs to generalized continua, here 
included in the class of ‘implicit’ non-local model, for which 
the material particles are described in terms of their positions 
and rotations. So, the theory allows the material deformation to 
include additional micro-rotational degree of freedom, yield-
ing following kinematic relations for linearised case:

where �M
ij

 and �kj are strain and curvature tensors, while uM
i,j

 
and �k are displacement and micro-rotation vectors, respec-
tively and eijk is permutation symbol. If micro-rotations are 
constrained to coincide with the local rigid rotation (macro-
rotation); i.e. �k = −

1

2
ekmnum,n , a special case of micropolar 

(1)�M
ij
= uM

i,j
+ eijk�k, �kj = �k,j,

theory, namely couple-stress theory is obtained (Sokolowski 
1972; Masiani and Trovalusci 1996).

The material body can be conceived as a collection of rigid 
particles that undergo both translation and rotation, and inter-
act through traction forces tM

i
 , and couple-tractions mk , for 

which the following surface balance equations are attained:

where �M
ij

 is the skew-symmetric stress tensor and �kj is the 
couple-stress tensor, with nj referring to unit normal. If body 
forces and couples are neglected, the equilibrium equations 
take the following form:

In the context of linear elasticity, the constitutive relation 
between strain (and curvature) and work-conjugated stress 
(and couple-stress) tensors are expressed as follows for the 
isotropic case (Eringen 1999):

where � , � , � and � being constants related to micropolar 
theory, while � and � refer to generalized Lamé constants 
(Lakes 1995):

Here E is Young’s modulus, G is classical shear modulus 
and � is Poisson’s ratio. In case � , � , � and � equal to zero, 
constitutive equation of classical elasticity is recovered.

The FE formulation is going to be derived for 2D case using 
natural coordinates ( � , � ). For a micropolar domain, the nodal 
displacement vector of an element m; �M

m
 , is represented in 

terms of in-plane displacements ux , uy and out-of-plane micro-
rotation �z:

where T denotes the transpose operation, and over tilde indi-
cates that the displacement and micro-rotation measures are 
approximate nodal values with superscripts referring to cor-
responding node number. Thereby, for an element m, the 
displacement and rotation fields are attained by means of 
interpolation operations:

with �u and �� being the linear shape functions:

(2)tM
i
= �M

ij
nj, mk = �kjnj,

(3)�M
ij,j

= 0, �kj,j − eijk�
M
ij
= 0.

(4)
�M
ij
(�) = ��M

kk
(�)�ij + (� + �)�M

ij
(�) + ��M

ji
(�),

�kj(�) = ��ii(�)�kj + ��jk(�) + ��kj(�),

(5)� =
E�

(1 + �)(1 − 2�)
, � = G −

�

2
, G =

E

2(1 + �)
.

(6)�M
m
=

{
�M
m𝜀

�M
m𝜙

}
=
{
ũ1
x
ũ1
y
… ũ4

x
ũ4
y
𝜙̃1
z
⋯ 𝜙̃4

z

}T

m
,

(7)�M
m
(� , �) = �u�

M
m�
, �M

m
(� , �) = ���

M
m�
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At this point, it should be noted that, the adoption of quad-
ratic shape functions for the displacement field and of lin-
ear ones for the micro-rotation field would maintain the 
displacement-rotation compatibility by assuring the same 
order of interpolation in the strain tensor (Providas and Kat-
tis 2002; Darrall et al. 2014; Godio et al. 2015). Neverthe-
less, depending on the investigated problem and mesh dis-
cretization, the desired accuracy can still be achieved with 
the shape functions of same order. In fact, this very topic 
was also addressed in a recent publication of this Authors’ 
(Tuna et al. 2020) where numerical evidence is provided 
on the fact that the use of linear shape functions for both 
fields yields satisfactory results when sufficient number of 
elements are used.

To obtain the corresponding strain, �M
m

 , and curvature, 
�M

m
 , fields of an element m;

usual procedures of FE method is followed:

Here �M
m

 , � , and ∇m refer to differential operator matrix, 
permutation vector and gradient operator vector, respec-
tively, and represented as follows in natural coordinate 
system:

where J−1
11

 , J−1
12

 , J−1
21

 and J−1
22

 , denote components of inverse of 
the Jacobian matrix ( �m ) that is used for a proper transforma-
tion between physical (x, y) and natural coordinates ( � , �):

(8)

�u(� , �) =

[
N1 0

0 N1 …
N4 0

0 N4

]
,

��(� , �) =
[
N1 … N4

]
,

N1 =
(1 − �)(1 − �)

4
, N2 =

(1 + � )(1 − �)

4
,

N3 =
(1 + �)(1 + �)

4
, N4 =

(1 − � )(1 + �)

4
.

(9)�M
m
=
{
�M
11
, �M

22
, �M

12
, �M

21

}T

m
, �M

m
=
{
�M
31
,�M

32

}T

m

(10)
�M
m
(� , �) =

[
�M
m
�u ���

]
�M
m
= �M

m�
�M
m
,

�m(� , �) =
[
�2×8 ∇m��

]
�M
m
= �M

m�
�M
m
.

(11)�M
m
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

�

��
J−1
11

+
�

��
J−1
12

0

0
�

��
J−1
21

+
�

��
J−1
22

�

��
J−1
21

+
�

��
J−1
22

0

0
�

��
J−1
11

+
�

��
J−1
12

⎤⎥⎥⎥⎥⎥⎥⎥⎦
m

,

(12)� =

⎡⎢⎢⎢⎣

0

0

+1

−1

⎤⎥⎥⎥⎦
, ∇m =

⎡⎢⎢⎢⎣

�

��
J−1
11

+
�

��
J−1
12

�

��
J−1
21

+
�

��
J−1
22

⎤⎥⎥⎥⎦m
,

with qs
x
 and qs

y
 referring to x and y coordinates of sth node of 

corresponding element.
Constitutive relation in Eq. (4) can be expressed in terms 

of approximate strain and curvature fields derived in Eq. (10):

where skew-symmetric stress, �M
m
, and couple stress, �m , 

vectors are described as follows:

Under plane strain assumption, the elasticity matrices; �M
m�

 
and �M

m�
 can be re-organized as:

using Eq. (5) and following relations defined between mate-
rial’s internal length ( lc ), coupling number (N) and micropo-
lar constants ( � , �):

As the final step, the element formulation of a domain, dis-
cretized with Ntot FEs, is derived based on the minimum 
potential energy principle:

for which the total potential energy functional of an element 
m, �M

m
 , is represented in terms of elastic strain energy, UM

m
 , 

and work potential, WM
m

:

where

(13)�m =

⎡
⎢⎢⎢⎣

�xm

��

�ym

��
�xm

��

�ym

��

⎤
⎥⎥⎥⎦

xm(� , �) =

4�
s=1

Ns(� , �)qs
x
,

ym(� , �) =

4�
s=1

Ns(� , �)qs
y
,

(14)
�M
m
(� , �) = �M

m�
�M
m�
�M
m
,

�m(� , �) = �M
m�

�M
m�

�M
m
,

(15)�M
m
=
{
�M
11
, �M

22
, �M

12
, �M

21

}T

m
, �M

m
=
{
�M
31
,�M

32

}T

m
.

(16)

�M
m�

= Em�
M
�
, �M

m�
= Em�

M
�
,

�M
�
=

1

(1+�)

⎡⎢⎢⎢⎢⎢⎣

(1−�)

(1−2�)

�

(1−2�)
0 0

�

(1−2�)

(1−�)

(1−2�)
0 0

0 0
1

2(1−N2)
1−2N2

2(1−N2)

0 0
1−2N2

2(1−N2)
1

2(1−N2)

⎤⎥⎥⎥⎥⎥⎦

,

�M
�
=

1

(1+�)

�
2lc

2 0

0 2lc
2

�
,

(17)
l2
c
=

�

2(2� + �)
→ � =

2l2
c
E

(1 + �)
,

N2 =
�

2(� + �)
→ � =

N2E

(1 + �)
(
1 − N2

) .

(18)��M

��M
i

=

∑Ntot

m=1
��M

m

��M
i

= 0, i = 1, 2,… ,Ntot

(19)�M
m

= UM
m

[
�M
m

]
+WM

m

[
�M
m

]
,
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Here Jm denotes the determinant of the Jacobian matrix, 
while subscript j refers to the edge number. ��m and ��m are 
the distributed surface traction and couple traction vectors, 
respectively, with dlj indicating the edge length, and �M

m
 

being the generalized load vector including concentrated 
forces and couples:

From the expressions of strain energy and work potential, 
it is evident that the total potential energy of an element 
depends only on its own displacement field hence, leads to 
simplification of Eq. (18):

while other terms automatically vanish. By substituting the 
approximate stress and strain measures given in Eqs. (10) 
and (14) into Eq. (20), and performing the derivation opera-
tion in Eq. (22), following element formulation is obtained:

where �M
m

 denotes element load vector, and �M
m�

 and �M
m�

 are 
the components of element stiffness matrix:

Here, the integrals can be computed by means of numeri-
cal integration scheme; i.e. Gauss Quadrature Method, for 
which 2 × 2 Gauss Points provide sufficient accuracy con-
sidering four-noded linear elements:

(20)

UM

m
=

h

2

1

∫
−1

1

∫
−1

((
�M
m

)T
�M

m
+
(
�M

m

)T
�M

m

)
Jmd�d�

WM

m
= −

4∑
j=1

1

∫
−1

(
�M
m

)T{ �T

u
��m

�T

�
��m

}

j

dlj −
(
�M
m

)T
�M
m
.

(21)

��m
||j =

{
fsxj fsyj

}T

m
, ��m

||j =
{
fczj

}
m
,

dl|j=1,3 =
le

2
d�, dl|j=2,4 =

le

2
d� ,

�(� , �)|j=1,3 = �(∓1, �),

�(� , �)|j=2,4 = �(� ,∓1),

�M
m
=
{
f 1
x
f 1
y

… f 4
x
f 4
y
m1

z
… m4

z

}T

m
.

(22)
�UM

i

��M
i

+
�WM

i

��M
i

= 0, i = 1, 2,… ,Ntot

(23)�M
m

=
(
�M
m�

+ �M
m�

)
�M
m
, m = 1, 2,… ,Ntot,

(24)

�M
m�

= hEm

1

∫
−1

1

∫
−1

(
�M
m�

)T
�M

�
�M
m�
Jmd�d�,

�M
m�

= hEm

1

∫
−1

1

∫
−1

(
�M
m�

)T

�M
�
�M
m�

Jmd�d�.

where �a, �b stands for natural coordinates of Gauss points; �
1∕

√
3,−1∕

√
3
�

 , and wa,wb are the corresponding Gauss 

weights; {1, 1}.
Lastly, the global equation system is obtained by proper 

assemblage operations of element formulation:

where �M is global stiffness matrix, �M is global nodal 
unknowns displacement vector and �M is global nodal load 
vector.

2.2 � Eringen’s non‑local theory of elasticity

Eringen’s theory of elasticity is considered as an ‘explicit’ 
type non-local model for which the state of stress at a point; 
� is related to strain of all the neighbouring points; �̄ within 
a certain proximity by means of an attenuation type kernel 
function, and leading to a strong non-local character. In this 
theory, the primal fields of classical theory of elasticity is 
hold, allowing following linearised kinematic relation:

where �E
ij
 and uE

i
 refer to strain tensor and displacement vec-

tor, respectively.
For the continuum to be in balance, interactions between 

material points, that are characterized through traction forces 
tE
i
 , are described in terms of symmetric stress tensor, �E

ij
 , and 

unit normal vector, nj:

which results in following equilibrium equation, in the 
absence of body forces:

For a linear, elastic and isotropic solid obeying to Erin-
gen’s two-phase local/non-local model, which is basically a 
weighted mixture of local and non-local parts regulated via 
the fraction coefficient; � ∈ (0, 1] , the constitutive relation 
between strain and stress tensors takes the following form 
(Eringen 1984; Altan 1989):

where tij is the classical (Cauchy) stress tensor:

(25)
2∑

a=1

2∑
b=1

wawb�
T
m

(
�a, �b

)
���

(
�a, �b

)
Jm
(
�a, �b

)
,

(26)�M�M = �M,

(27)�E
ij
=

1

2

(
uE
i,j
+ uE

j,i

)
,

(28)tE
i
= �E

ij
nj

(29)�E
ij,j

= 0.

(30)𝜎E
ij
(�) = 𝜉tE

ij
(�) + (1 − 𝜉)∫

𝛺

𝜏(r, 𝜅)tE
ij
(�̄)d𝛺(�̄),
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with �(r, �) denoting the kernel function that accounts for the 
long-range effects between source and neighbouring points 
depending on their Euclidean distance, r; i.e. r = |� − �̄| , 
and the value of non-local parameter, � . It is clear that, for 
a fraction coefficient equal to unity; � = 1 , the second term 
in the right hand side of constitutive equation vanishes, and 
Cauchy continuum is recovered. As for the other extremity; 
� = 0 , the model is reported to become ill-posed in case of 
smooth kernel functions (Romano and Barretta 2016; Evgra-
fov and Bellido 2019a), except for some specific problems 
of structural mechanics (Tuna and Kirca 2017). Since, in the 
scope of this paper, a smooth kernel function is to be uti-
lized, 𝜉 > 0 is assumed to ensure existence and uniqueness 
of the solution. Thence, among widely used kernel func-
tions; such as bell-shaped, error and bi-exponential (Eringen 
1983; Polizzotto 2001; Ghosh et al. 2014), a function similar 
to the former one, which takes the following form for a 2D 
continuous domain, is used (Fig. 1):

The chosen kernel function; 

(1)	 has a positive decaying nature that vanishes beyond a 
certain limit, which from now on is called influence 
zone ( RI ), with a maximum value attained at � = �̄ 
( r = 0),

(2)	 approaches to Dirac Delta function in case � → 0,
(3)	 satisfies the normalization condition on A∞ : 

(31)tE
ij
(�) = ��E

kk
(�)�ij + 2G�E

ij
(�)

(32)�(r, �) =

⎧
⎪⎨⎪⎩

2

��2

�
1 −

r2

�2

�
if r ≤ �

0 otherwise

⎫
⎪⎬⎪⎭
.

For the FE formulation of a 2D body agreeing with Erin-
gen’s theory, nodal displacement vector, �E

m
 , and approxi-

mate strain field, �E
m

 , of an element m become identical to 
those of classical theory:

where over tilde symbol implies that in-plane displacements; 
ux and uy are approximate nodal values and strain vector is 
described as follows:

Shape function matrix �u appearing in Eq. (34) is same as 
the one given in Eq. (8), while differential operator matrix, 
�m takes the following form considering natural coordinate 
system:

Accordingly, constitutive relation can be re-written for the 
below defined stress vector, �E

m
:

by substituting the approximate strain field given in Eq. (34) 
into Eq. (30):

where Rm denotes the list of elements that reside in the influ-
ence zone of element m, which is detected by mapping the 
centre of function and nodes as illustrated in Fig. 2, and rmn 
indicates the Euclidean distance between the source point 
�m(� , �) =

{
xm(� , �), ym(� , �)

}
 , and neighbouring points 

�̄n
(
𝜁 , 𝜂̄

)
=
{
�̄n
(
𝜁 , 𝜂̄

)
, ȳn

(
𝜁 , 𝜂̄

)}
:

with over bar stating that the corresponding matrix/vector/
scalar is written in terms of ( ̄𝜁 , 𝜂̄).

Here � denotes the classical Cauchy stress vector:

(33)∫
A∞

𝜏(|�, �̄|, 𝜅)dA =

2𝜃

∫
0

∞

∫
0

𝜏(r, 𝜅)rdrd𝜃 = 1.

(34)
�E
m
=
{
ũ1
x
ũ1
y
… ũ4

x
ũ4
y

}T

m
,

�E
m
(𝜁 , 𝜂) = �E

m
�u�

E
m
= �E

m
�E
m
,

(35)�E
m
=
{
�E
11
, �E

22
, 2�E

12

}T

m
.

(36)�E
m
=

⎡
⎢⎢⎢⎢⎢⎣

�

��
J−1
11

+
�

��
J−1
12

0

0
�

��
J−1
21

+
�

��
J−1
22

�

��
J−1
21

+
�

��
J−1
22

�

��
J−1
11

+
�

��
J−1
12

⎤
⎥⎥⎥⎥⎥⎦m

.

(37)�E
m
=
{
�E
11
, �E

22
, �E

12

}T

m

(38)

�E
m
(𝜁 , 𝜂) = 𝜉m�

E
m

+
(
1 − 𝜉m

) ∑
n∈Rm

1

∫
−1

1

∫
−1

𝜏
(
𝜅, rmn

)
�̄E
n
||�̄n||d𝜁d𝜂̄,

(39)rmn =
||�m − �̄n

|| =
√(

xm − x̄n
)2

+
(
ym − ȳn

)2

Fig. 1   Section and actual view of two-dimensional kernel function
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while elasticity matrix, �E
m

 , is expressed as follows under 
plane strain assumption:

Finally, the element formulation of a domain, discretised 
with Ntot FEs is obtained by means of principle of total 
potential energy:

for which the total potential energy functional of an element 
m, �E

m
 , is expressed in terms of elastic strain energy, UE

m
 , and 

work potential, WE
m
:

where

(40)�E
m
(𝜁 , 𝜂) = �E

m
�E
m
�E
m
, �̄E

n

(
𝜁 , 𝜂̄

)
= �E

n
�̄E
n
�E
n

(41)

�E
m
= Em�

E,

�E =
1

(1 + �)

⎡⎢⎢⎢⎣

(1−�)

(1−2�)

�

(1−2�)
0

�

(1−2�)

(1−�)

(1−2�)
0

0 0
1

2

⎤⎥⎥⎥⎦
.

(42)��E

��E
i

=

∑Ntot

m=1
��E

m

��E
i

= 0, i = 1, 2,… ,Ntot

(43)�E
m
= UE

m

[{
�E
n

|||n ∈ Rm

}]
+WE

m

[
�E
m

]
,

Here the relations mentioned in Eq. (21) for dlj , ��m||j and 
�u(� , �)

||j hold while concentrated load vector is defined as

Due to the strong non-local character of Eringen’s model, 
accounting for long-range interactions, elastic strain energy 
of an element m depends on the displacement field of all the 
elements that reside in the influence zone of the correspond-
ing element; Rm , hence cannot be omitted when taking the 
derivatives in Eq. (42):

By substituting strain and stress measures given in Eqs. (34) 
and (38) into the elastic strain energy, following formulation 
is obtained for an element m:

where �E
m

 denotes element load vector, and �E
m
 , �E

mm
 , �E

mn
 and 

(�E
mn
)T are the components of element stiffness matrix:

and

The first term in element formulation [Eq. (47)] represents 
the local part of two-phase model, while others are related 
to non-locality. In fact, the third and fourth terms that are 

(44)

UE
m
=

h

2

1

∫
−1

1

∫
−1

(
�E
m

)T
�E
m
Jmd�d�

WE
m
= −

4∑
j=1

1

∫
−1

(
�E
m

)T
�T

u

|||j ��m||jdlj −
(
�E
m

)T
�E
m
.

(45)�E
m
=
{
f 1
x
f 1
y
… f 4

x
f 4
y

}T

m
.

(46)

∑
m|i∈Rm

�UE
m

��E
i

+
�WE

i

��E
i

= 0, i = 1, 2,… ,Ntot.

(47)

�E
m
= �

m
�E
m
+
(
1 − �

m

)
�E
mm

�E
m

+
∑

n∈R
m

n≠m

(
1 − �

m

)
2

�E
mn
�E
n

+
∑

n|m∈R
n

n≠m

(
1 − �

n

)
2

(
�E
nm

)T
�E
n
,

(48)

�E
m
= hEm

1

∫
−1

1

∫
−1

(
�E
m

)T
�E�E

m
Jmd𝜁d𝜂,

�E
mn

= hEn

1

∫
−1

1

∫
−1

1

∫
−1

1

∫
−1

�mnd𝜁d𝜂̄d𝜁d𝜂,

(49)�mn = 𝜏
(
rmn, 𝜅

)(
�E
m

)T
�E�̄E

n
J̄nJm.

RIRI

RI RI

1

4 5 6 7 8

2 3

9 12 1310

212019

1817161514

mth

element

Fig. 2   Illustration of influence zone of mth element such that 
{1, 2,… , 11,… , 20, 21} ∈ R

m
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responsible for column-wise expansion of each stiffness 
matrix, arise from the long-range interactions in-between 
elements. To be more specific, the former indicates the con-
tribution of others on mth element, whereas the latter corre-
sponds to the influence of mth element on others. According 
to the expression given in Eq. (49), these terms become iden-
tical for a homogeneous domain having a uniform Young’s 
modulus and fraction coefficient.

Similar to micropolar continuum, integration operations are 
carried out adopting Gauss Quadrature Method for which the 
number of Gauss points is arranged to minimize the numeri-
cal error.

At the last step, global equation system is achieved by per-
forming proper assemblage operations:

where �E is global stiffness matrix, �E is global nodal 
unknowns displacement vector and �E is global nodal force 
vector.

3 � Topology optimization problem

3.1 � Problem formulation

Topology optimization problem considered herein aims to find 
the optimal material distribution that maximizes the stiffness 
of a structure by minimizing the compliance function under a 
given set of constraints. For a self-weight free domain, para-
metrised by the element-based design variables; i.e. material 
densities, �m , the corresponding mathematical formulation 
takes the following form (Bendsøe 1989; Sigmund 2001; 
Bendsoe and Sigmund 2013):

where the displacement vector, � , stiffness matrix, � and 
total material volume, Vtot , depends on the design variables 
vector � ; i.e. ∀�m ∈ � with 0 and 1 referring to void and 
solid parts, respectively. c stands for the structural compli-
ance function, which is twice of the elastic strain energy (or 
work potential for conservative systems), while � indicates 
residual unbalanced load vector, and g refers to constraint 
function limiting the material volume to a desired fraction, 
Vf , with V0 being the volume of the design domain.

(50)�E�E = �E,

(51)

find ∶ � =
{
�1, �2,… �Ntot

}
minimize ∶ c(�) = �T�

subj.to ∶ �(�) = �� − � = �

g(�) =
Vtot

V0

− Vf ≤ 0

0 ≤ �m ≤ 1 m = 1, 2,… , Ntot,

3.2 � Density filter and Heaviside projection method

As the direct use of design variables in local elastic anal-
ysis causes the common issue of checkerboard pattern 
(i.e. adjacent solid–void elements, see Fig. 3a), and mesh 
dependence (Jog and Haber 1996; Sigmund and Petersson 
1998), the formulation needs to be improved through dif-
ferent schemes, such as filtering, perimeter/gradient control 
methods. Among those, the sensitivity (Sigmund 1997) and 
density (Bourdin 2001; Bruns and Tortorelli 2001) filters 
become the most preferred strategies due to their simple, 
yet efficient character.

Even though sensitivity filter is criticized as leading to an 
ambiguous minimized function, a relatively recent study by 
Sigmund and Maute (2012) adopts a different perspective. 
The study alludes the analogy between non-local continuum 
models and sensitivity regularization scheme by suggest-
ing that the minimum compliance problem with sensitiv-
ity filtering does, in fact, correspond to minimization of 
strain energy of a non-local medium. Similar results are 
also reported for non-local linear diffusion problem investi-
gated by Evgrafov and Bellido (2019b) by highlighting the 
redundancy of external regularization techniques (e.g. filter-
ing) for the non-local model. As slightly different observa-
tions were made by Li and Khandelwal (2015) and Li et al. 
(2017), in which the mitigation of checkerboard pattern is 
attributed to the use of higher-order element formulation, 
and the final topologies are reported to be mesh-dependent, 
it can be concluded that some non-local models need addi-
tional regularization in connection with topology optimiza-
tion, whereas others do not.

In order to see what happens in micropolar and Erin-
gen’s theories, the case without filtering is also investi-
gated. However, it is only briefly commented on in the sub-
sequent sections since the main purpose is to compare final 
topologies of different non-local continua not only with 
each other, but also with Cauchy medium that requires fil-
tering. In doing so, the density filter, proposed by Bourdin 
(2001) and Bruns and Tortorelli (2001), is adopted herein 
due to its ability on providing two separate density fields 
and on enabling the straight forward incorporation of the 
element removal and reintroduction strategy (Bruns and 

(a) (b) (c)

Fig. 3   The a original � , b filtered 𝝆̃ , and c projected 𝝆̂ density fields
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Tortorelli 2003). As illustrated in Fig. 3b, filtered densi-
ties, �̃ , are obtained by mapping the original densities, � , 
onto design domain with taking into account the status of 
neighbour elements set, Nm , with the aid of a weighting 
function, wmq:

where

Here Δmq is the centre to centre distance between elements 
m, q, while rmin refers to user defined filter radius, that is 
chosen in accordance with the originally imposed constraints 
(e.g. size of FEs Sigmund and Maute 2013); rmin must be 
greater than the mesh size to include the influence of, at least 
the nearest, neighbour elements.

Even though density filter smoothens the original field 
and yields mesh-independent results that automatically pre-
serves the material volume, the final configuration might 
suffer from undesirable transition region (called grey zone) 
with intermediate density values (Bourdin 2001; Bruns 
and Tortorelli 2001). A way to alleviate this drawback is to 
diminish the filter radius in the expense of having configu-
rations with very thin members or using projection method 
that amplifies the continuous filtered field to desired binary 
solution (Fig. 3c) by means of a Heaviside function (Guest 
et al. 2004; Sigmund 2007; Guest 2009; Kawamoto et al. 
2011; Xu et al. 2010; Guest et al. 2011; Wang et al. 2011):

Here 𝜌̂ stands for physical densities, and H refers to con-
ducted Heaviside projection function which is approximated 
to have a smooth continuous differentiable character. Among 
those, the one promoting the material formation is employed 
throughout this study to relate the filtered and physical den-
sities (Guest et al. 2004):

where the constant � tailors the curvature of the Heaviside 
function such that it has a linear characteristic for � = 0 , 
while approaches to step function for � → ∞ (see Fig. 4).

To ensure a stable convergence and avoid local minima, 
Heaviside projection method is generally used with a con-
tinuation scheme in which � is gradually increased from an 
initial value, �ini , to a desired magnitude, �max , as the opti-
mization progresses (Guest et al. 2004; Andreassen et al. 
2011), nevertheless bad or perturbated configurations can be 
obtained as enforcing volume constraint is not guaranteed 

(52)𝜌̃m(�) =

∑
q∈Nm

wmq𝜌q
∑

q∈Nm

wmq

,

(53)wmq = 1 −
Δmq

rmin

and q ∈ Nm ifΔmq ≤ rmin.

(54)𝜌̂m(�) = H
(
𝜌̃m

)
.

(55)𝜌̂m = 1 − e−𝛽𝜌̃m + 𝜌̃me
−𝛽 ,

unlike density filter (Xu et al. 2010; Engstrom 2016; Ferrari 
and Sigmund 2020):

where vm refers to volume of an element.
To mitigate this violation, the parameter increase is 

adjusted in a volume preserving manner: at each t�max
= 50 

iterations or when the convergence is achieved for 𝛽 t < 𝛽max , 
� is doubled for the next iteration; � t+1 = 2� t ≤ �max , where 
t refers to number of iteration. In case, the volume con-
straint is not satisfied to a certain extend due to this sudden 
increase, � is decreased by 75%; � = 0.75� , until the condi-
tion is met.

It should be noted that, since the continuous updating 
scheme of � is computationally inefficient, simple modi-
fications were proposed and successfully employed by 
researchers (Guest et al. 2011; Behrou et al. 2021). Also, 
more enhanced projection filters and robust strategies can 
be used to keep the volume constraint preserved (Xu et al. 
2010; Wang et al. 2011; Ferrari and Sigmund 2020), but not 
considered herein.

3.3 � Material interpolation

In the present study, material properties are linked to the 
physical element densities, 𝝆̂ , with the aid of an artificial 
power-law approach, so-called modified SIMP method 
(Bendsøe 1989; Zhou and Rozvany 1991; Sigmund 2007):

Here E0 and Emin stands for the Young’s modulus of solid 
and void, respectively, while to ensure the non-singularity 
of global stiffness matrix, a very small positive number is 

(56)
Ntot∑
m=1

𝜌mvm =

Ntot∑
m=1

𝜌̃mvm ≠
Ntot∑
m=1

𝜌̂mvm,

(57)Em(�) = Emin + 𝜌̂p
m
(�)

(
E0 − Emin

)
.

Fig. 4   Heaviside projection function for different curvature param-
eters, �
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assigned for Emin : 10−9E0 which can be dismissed in case an 
element removal and reintroduction strategy is introduced 
into the algorithm:

The penalization factor p ( p ≥ 1 ) is typically taken as p = 3 
(Sigmund 2001, 2007; Andreassen et al. 2011), and guides 
the problem towards a solid/void solution by penalizing 
intermediate density values (Bendsøe and Sigmund 1999). It 
should be noted that, choosing p too large or too small either 
cause fast convergence to a local minima or large grey zones, 
respectively (Sigmund and Maute 2013). In some studies 
with micropolar solids, different penalization parameters 
for translational and rotational parts of constitutive relation 
are considered (Rovati and Veber 2007; Veber and Taliercio 
2012), while here it is taken identical.

3.4 � Sensitivity analysis and update scheme

For solving the problem given in Eq. (51), a gradient-based 
optimization procedure established upon the optimality cri-
teria method (Bendsøe 1995) is followed. First, the Lagran-
gian scheme is formulated by augmenting the objective func-
tion considering the volume constraint:

where � is the positive Lagrangian multiplier. Second, with 
exploiting the fact that the gradient of Eq. (59) is zero when 
the optimality condition is met, the equation system to be 
solved is obtained:

whereas due to adopted filtering and projection operations, 
chain rule must be employed to accurately obtain the sensi-
tivities of compliance and constraint functions with respect 
to design variables:

After some mathematical manipulations, the derivative of 
compliance function is obtained as follows for a self-weight 
free domain (i.e. external load vector is independent of the 
density field):

which can also be represented in terms of element stiffness 
matrices:

(58)Em(�) = E0𝜌̂
p
m
(�).

(59)L = c + �g,

(60)
�L

��m
=

�c

��m
+ �

�g

��m
= 0, m = 1, 2,…Ntot

(61)
𝜕𝜓

𝜕𝜌m
=

∑
q∈Nm

𝜕𝜓

𝜕𝜌̂q

𝜕𝜌̂q

𝜕𝜌̃q

𝜕𝜌̃q

𝜕𝜌m
.

(62)
𝜕c

𝜕𝜌̂q
=

𝜕�T

𝜕𝜌̂q
�� = −�T 𝜕�

𝜕𝜌̂q
�

where

and �M
0

 , �E
0
 , �E

qq0
 and �E

nq0
 are non-dimensional element stiff-

ness matrices depending only on Poisson’s ratio. Calculating 
other derivatives in Eq. (61) is a straightforward task, and 
results in:

Finally, with employing fixed-point iteration method, the 
corresponding density field that fulfil Eq. (60) is determined:

By further adjusting Bm with introducing a so-called damp-
ing parameter, n̄ , for smoothing its value, and a positive-
move limit, m̄ , for defining the update range (Bendsøe 1995; 
Sigmund 2001; Andreassen et al. 2011), the well-known 
form of heuristic updating scheme is derived:

where the bisection method is simultaneously applied to 
detect the value of Lagrangian multiplier � , that satisfies the 
user defined volume constraint, for which the total material 

(63)

𝜕cM

𝜕𝜌̂
q

= −
𝜕E

q

𝜕𝜌̂
q

(
�M
q

)T

�M
0
�M
q
,

𝜕cE

𝜕𝜌̂
q

= −
𝜕E

q

𝜕𝜌̂
q

(
�E
q

)T

𝜉
q
�E
0
�E
q

−
𝜕E

q

𝜕𝜌̂
q

(
�E
q

)T(
1 − 𝜉

q

)
�E
qq0

�E
q

−
𝜕E

q

𝜕𝜌̂
q

∑

n|q∈R
n

q≠n

(
�E
n

)T(
1 − 𝜉

n

)
�E
nq0

�E
q
,

(64)
𝜕Eq

𝜕𝜌̂q
= p

(
E0 − Emin

)
𝜌̂p−1
q

(65)

𝜕g

𝜕𝜌̂q
=

∑Ntot

m=1

𝜕
(
𝜌̂mvm

)
𝜕𝜌̂q

V0

=
vq

V0

,

𝜕𝜌̂q

𝜕𝜌̃q
= 𝛽e−𝛽𝜌̃q + e−𝛽 ,

𝜕𝜌̃q

𝜕𝜌m
=

wmq

wq

, wq =
∑
r∈Nq

wqr.

(66)�t+1
m

= �t
m

−
�c

��m

�
�g

��m

= �t
m
Bm, m = 1, 2,…Ntot.

(67)

𝜌t+1
m
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⎧⎪⎨⎪⎩
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�
0, 𝜌t
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�
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0, 𝜌t
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1, 𝜌t
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�
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�
1, 𝜌t

m
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�
𝜌t
m
Bn̄
m

otherwise

⎫⎪⎬⎪⎭
,
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volume, Vtot , is calculated continuously using physical densi-
ties [see Eq. (56)].

Similar to existing literature (Ferrari and Sigmund 2020; 
Behrou et al. 2021), the design domain is assumed to be 
converged to final configuration when following conditions 
are simultaneously met for a parameter � equals to the user 
defined maximum value �max ; � t = �max:

where ‖‖2 refers to second norm of the vector.

3.5 � Element removal/reintroduction scheme

When conducting Eringen’s non-local model, the presence 
of low-density elements might lead to excessive distortion 
and unrealistic nodal displacement fields that consequently 
results in misleading energy distribution and false optimal 
topologies, a phenomenon also encountered during optimi-
zation of non-linear structures (Bruns and Tortorelli 2003). 
Even though in Cauchy and micropolar models the numeri-
cal singularity arising from zero density can be tackled by 
the introduction of a minimum of elasticity modulus, Emin 
as in Eq. (57), in Eringen’s model this is not the case as 
the stiffness matrix already admits a higher condition num-
ber even in case of uniform density distribution. Combined 
with the material singularities, the inversion of the stiffness 
matrix is bound to errors, which manifests itself as highly 
distorted elements. To circumvent the associated numerical 
instabilities the current algorithm is improved by adopting 
the systematic element removal and reintroduction strategy 
proposed by Bruns and Tortorelli (2003).

The method is grounded on the idea that, for a penaliza-
tion parameter greater than two ( p > 2 ), elements with phys-
ical densities below a prescribed threshold, �tol ; i.e. 𝜌̂m ≤ 𝜌tol 
carry a negligible contribution to the physical response of 
the model; hence can be dismissed from the structural analy-
sis, alongside with the nodes completely surrounded by such 
elements (Fig. 5). This can simply be achieved by excluding 
the marked elements from global stiffness matrix, and rear-
ranging the equation system to be solved by eliminating the 
rows and columns that are related to the constrained DOFs 
of the marked nodes, while the sensitivity analysis is per-
formed for the entire model due to the propagation effect of 
density filter which might yield non-zero derivatives:

For the same reason, the adopted scheme allows previously 
removed elements to be reintroduced back in a very straight-
forward manner. However attention must be paid to select 

(68)
���𝝆̂

t+1 − 𝝆̂t���2√
Ntot

< 10−4,
��ct+1 − ct��

ct
< 10−6,

(69)∀𝜌̂m ≤ 𝜌tol ∶ ∃
𝜕𝜓

𝜕𝜌m
≠ 0 if

(
q ∈ Nm ∨

𝜕𝜓

𝜕𝜌̂q
≠ 0

)
.

an optimal threshold magnitude that avoids chatter between 
successive iterations or development of disconnected regions 
(i.e. structural island) which requires further treatment 
(Bruns and Tortorelli 2003). The way of doing this is to 
perform numerical experiments for various tolerance values 
which is suggested as �tol = 0.05 by Bruns and Tortorelli 
(2003) and �tol = 0.1 by Behrou et al. (2021) for different 
types of optimization problems, based on avoiding different 
final topologies. In this study, �tol up to 0.2 is considered in 
order to observe if it would affect the results, as presented 
in the subsequent sections.

3.6 � Algorithm and remarks

In this subsection, the algorithm is summarized briefly with 
highlighting the key points. 

(1)	 The FE model is initialized with discretisation of the 
domain into equi-sized four-node linear elements for 
which the neighbour elements set and corresponding 
weights that are required for density filter are attained.

(2)	 Each iteration of the optimization loop starts with 
detecting/marking low-density elements and the nodes 
surrounded by such elements for removal. The struc-
tural analysis is then performed for the given loading 
and boundary conditions to obtain the nodal unknowns 
vector.

(3)	 The resulting compliance function is calculated and 
the sensitivity analyses are performed for the whole 
domain to achieve the volume preserving physical and 
other density fields which are to be saved for the next 
iteration.

(4)	 The algorithm checks if the termination criteria are ful-
filled in order to decide whether to continue the topol-
ogy optimization loop or not.

4 � Numerical examples

In this section individual and comparative example problems 
are investigated on the basis of ‘implicit/weak’ micropolar 
(Cosserat), ‘explicit/ strong’ Eringen’s non-local models and 

Fig. 5   Illustration of element removal scheme
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classical theory of elasticity in order to validate the in-house 
code, and highlight the influence of size effects and different 
non-local theories on optimal topologies. In all the examples 
the material update scheme is endowed with density filter in 
conjunction with Heaviside projection method (Guest et al. 
2004), and element removal/reintroduction strategy (Bruns 
and Tortorelli 2003), the effects of which are also put into 
evidence. All the units throughout the example problems 
are consistent.

4.1 � Validation

4.1.1 � Cauchy medium

Validation of the in-house code for Cauchy medium is per-
formed through a classical MBB beam problem (i.e. half 
model of three-point bending test), in which the effects of 
element removal/reintroduction scheme along with Heavi-
side projection method (HPM) is also examined. For this 
purpose, a rectangular domain, with a half length of L = 60 
and a height of H = L∕3 , filled with a uniform design vari-
able field of �ini at the initial configuration, is considered 
(Fig. 6).

The optimal material distributions, that are obtained for 
plane stress condition and a filter radius of rmin = 0.03L , are 
compared with the ones reported in Andreassen et al. (2011) 
for the following parameter set:

where �ini can be adjusted to ensure that the physical den-
sity field 𝜌̂ini conforms to the volume constraint for given 
parameter �ini.

The results, illustrated in Fig. 7, for two different mesh 
discretisation with 60 × 20 and 150 × 50 elements respec-
tively, exhibit almost perfectly solid and void domains, and 
are found to be in a very good agreement with the litera-
ture (Andreassen et al. 2011) where slight variations can 
be attributed to difference in �max values. Moreover, the 
analyses, that are repeated for various threshold values; 
�tol = 0.10, 0.20 , clearly demonstrate the independence of 
the optimised configurations from element removal/reintro-
ductions scheme (Bruns and Tortorelli 2003). It also reveals 
the versatility of the method, since no significant discrep-
ancy neither in terms of compliance function nor in terms 
of material distribution is obtained between the original and 
element removed models, while for the latter, total number 
of elements is reduced up to 49% by discarding structurally 
insignificant low-density elements.

As depicted in Fig. 8, the structural compliance func-
tion is decreased about 71% as the optimization progresses, 
where the stepped characteristic of the curve originates 
from the update scheme of Heaviside projection parameter 
� . Note that, a stable convergence is ensured by limiting the 
increase in a volume preserving manner, where a violation 
up to 4% is permitted as numerical experiments reveal no 
difference for smaller deviations. Although, the examples 
could be extended for larger values of �tol , it is not preferred 
herein due to possible formation of structural island in the 
early iteration steps, which might require introduction of 
additional constraints (Bruns and Tortorelli 2003).

4.1.2 � Micropolar medium

For validation purposes in case of micropolar medium, a 
benchmark problem of cantilevered beam with a tip force is 

(70)
E = 1.0, Vf = 0.5, 𝜈 = 0.3, m̄ = 0.2, n̄ = 0.5

𝛽ini = 1, 𝛽max = 36, 𝜌ini = Vf, p = 3,

Fig. 6   Schematic of design domain of half MBB Cauchy beam model 
(i.e. beam under three-point bending)

Fig. 7   Optimised design of half MBB plate, modelled as Cauchy medium, reported for various element removal threshold values, �
tol

 , with 
specifying the compliance function, c, and number of remaining elements (N

tol
)
final
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studied, considering following material constants; N = 0.8 , 
lc = 0.075L (Rovati and Veber 2007). The rectangular design 
domain is assumed to have an aspect ratio of L∕H = 5∕2 
(Fig. 9), while the parameters related to optimization pro-
cedure are identical to the previous example except for 
Vf = 0.3 , rmin = 0.04L and �tol = 0.1.

The emerging topologies, depicted in Fig. 10 are in a 
very good agreement with corresponding literature (Rovati 
and Veber 2007) where the increased capacity of flexural 
resistance of material points of micropolar medium results 
in a structure that is formed by curved beam-like members. 
Note that, slight deviations with reference study arise from 
different filtering schemes (sensitivity vs. density).

Although the final designs seem to be independent of the 
discretisation, increased number of elements improves the 
resolution and leads to sharper boundaries when combined 
with Heaviside method (HPM). Moreover, the computational 
advantage of element removal and reintroduction scheme is 
once again demonstrated with remarkable reduction of 66% 
in total number of elements during the process (Bruns and 
Tortorelli 2003). Finally, as illustrated through Fig. 11, thin-
ner members disappear as the filter radius is increased, and 

density distribution becomes smoother with a raise in grey 
zone which seems to be persisted for the largest filter radius; 
rmin = 0.06L.

Figure 12 shows the final topologies of the same problem 
for coarse and fine discretization without any filters. For 
this particular case, the results turn out to be not only free 
of checkerboard pattern, but also mesh-independent despite 
the use of linear FEs. Note that the same problem with even 
finer discretization is examined in Rovati and Veber (2007) 
and same final topology is reported. Although the findings 

Fig. 8   Evaluation of compliance function (c), projection parameter 
( � ) and material distribution for half model of Cauchy plate under 
three-point bending (MBB) (mesh: 150 × 50 and �

tol
= 0.1)

Fig. 9   Schematic of design domain of cantilevered micropolar beam 
model with a tip force

Fig. 10   Variation of structural compliance (c) and optimised configu-
rations of tip loaded cantilever micropolar plates considering cases 
with and without Heaviside projection method (HPM)

Fig. 11   Variation of compliance function (c) and optimised configu-
rations of tip loaded cantilever micropolar plates with respect to filter 
radius ( r

min
∕L ), considering cases with and without Heaviside projec-

tion method (HPM) (mesh: 120 × 48)
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conform the suggestion of Sigmund and Maute (2012) on 
the analogy between optimization of non-local continuum 
models and minimum compliance problem with sensitivity 
filtering scheme, it is important to note that a rigorous math-
ematical analysis is required to examine the role of internal 
scale parameters on topology optimization problem which 
is out of the scope of this paper.

4.2 � Optimization of uniaxially loaded Eringen’s 
plate

Following the validation of the present optimization proce-
dure and auxiliary algorithms, the next step is to study the 
contribution of long-range interactions on optimal topolo-
gies within the framework of Eringen’s non-local theory of 
elasticity, which is seemingly reported for the first time in 
the literature. As the first step of doing so, an example prob-
lem of a plate under uniaxial tension with a length to height 
ratio of L∕H = 3 is examined thoroughly (Fig. 13a). The 
non-locality is kept fixed; � = L∕60 , � = 0.5 , and different 
filtering techniques and radii are considered. It should be 
noted that the material constants are selected in accordance 
with what has been reported in the literature (e.g. Pisano 
et al. 2009), while the remaining parameters are the same as 
in Cauchy example.

As depicted in Fig. 14, the nature of Eringen’s theory 
of elasticity covering long-range interactions between 
material points promotes a non-uniform density field that 
is independent of the mesh discretisation. Although a 
dog-bone shaped geometry is attained for a filter radius of 
rmin = 0.06L , further simulations, which use various filter 
radii (i.e. rmin = 0.03L, −0.06L ), point out that rmin does not 
only control the minimum size of the members, but also 
completely alters the final configurations when combined 
with long-range interactions (Fig. 15). To be specific, larger 
values of rmin increase the density around the horizontal 
mid-line as the optimization progresses, and eventually 
produces a monolithic structure; whereas smaller values of 
rmin suggests two branches of same thickness whether HPM 
is included or not. In any case, incorporation of HPM sup-
presses the blurring effect of density filter that is leading to 
topologies with ambiguous boundaries. More importantly, 
circumventing the grey zone with low density and high 
deformability reduces objective function (compliance) up 

to 27% by eliminating the unrealistic final configurations as 
can be seen for instance; rmin = 0.04L : The slight curvature 
of the branches, that are susceptible to bending, is overcome 
by means of HPM. In case of no filter, additional, very thin, 
vertical braces emerge since no constraint on the thickness 
of the members exist, as evident from Fig. 16. Furthermore, 
almost checkerboard free and mesh-independent topologies 
are observed for this particular case where the former is in 
line with what has been reported by Evgrafov and Bellido 
(2019b) in which optimization using a strongly non-local 
model for heat conduction is examined, and the redundancy 
of external regularization schemes for such a case is high-
lighted. However, it should be noted that, this is far from an 

Fig. 12   Optimised configurations of tip loaded cantilever micropolar 
plates without filtering

(a)

(b)

Fig. 13   Schematic of design domain of uniaxially loaded a intact 
Eringen’s plate, and b Cauchy plate with a central crack

Fig. 14   Optimised design of uniaxially loaded Eringen’s plates 
reported for a filter radius of r

min
= 0.06L considering both cases with 

and without Heaviside projection method (HPM) (for visualization 
purposes, pictures are rotated 90◦)
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actual proof of the correspondence of non-local parameters 
to a filter radius which requires a comprehensive elaboration.

The reason of a non-uniform density distribution in 
the first place seems to be the softening effect of missing 
neighbour relations, which is reported to be responsible for 
deformation gradient around the end portions of the bar 
(Pisano and Fuschi 2003; Pisano et al. 2009; Benvenuti and 
Simone 2013; Tuna and Trovalusci 2020). Being inherently 
more pronounced at the corners, this is compensated by the 
increased material formation around them, and followed by 
gradual decrease of thickness through to the middle, in order 
to reduce stress concentrations. On the other hand, a uni-
form plate with a constant physical density field ( ̂𝜌m = 0.5 ) 
is expected for the Cauchy (and also Cosserat) continuum 
as a result of its homogeneous response to uniaxial tension.

If the uniformity of initial strain energy distribution of 
local plate is disturbed through a central crack (Fig. 13b) with 
detaching nine symmetrically (with respect to the horizontal 
axis) placed nodes, the optimization procedure (performed for 
a filter radius of rmin = 0.04L ) yields two branches of bars 
(see Fig. 17) which are practically identical to intact Eringen’s 
medium. Thereby, it can be concluded that, different sources 

of non-uniformity, and different distributions of initial strain 
energy can induce exact optimal material layouts and very 
similar final compliances.

At this point, it should be noted that such a mesh density 
is definitely not sufficient to capture the stress singularity, or, 
stress intensity factor; however, since optimization suggest 
avoiding the cracked region by removing the elements around 
it, there is no such need.

4.3 � Comparative examples

After the validation of the in-house code for Cauchy and 
micropolar media, and observing the effects of long-range 
interactions (or in another words, strong non-locality) in the 
framework of Eringen’s model, an example problem of practi-
cal importance; pinned plate subjected to a downwards force 
at the middle of the bottom edge (Fig. 18a), is studied in a 
comparative manner to demonstrate the influence of each the-
ory on optimum configurations. To this aim, the rectangular 
design domain, that has an aspect ratio of L∕H = 2 , is discre-
tized into 80 × 40 elements following the mesh independence 
demonstrated previously. To avoid numerical problems (e.g. 
hourglass), concentrated force is modelled as a distributed load 
on a very small region; L/20. Topology optimization is then 
performed for the following parameter set:

where the effect of coupling number, fraction coefficient, 
and internal characteristic lengths are studied individually 
considering various material properties, the results of which 
are illustrated in Figs. 19 and 20 for micropolar and Erin-
gen’s media, respectively.

Here the largest value of characteristic internal length (or 
non-local parameter) is limited to 0.0375L to avoid the need 

(71)

E = 1.0, Vf = 0.5, 𝜈 = 0.3, m̄ = 0.2, n̄ = 0.5,

𝛽ini = 0, 𝛽max = 36, 𝜌ini = Vf, p = 3,

rmin = 0.0375L, 𝜌tol = 0.20,

(72)
Micropolar:

N = 0.10, 0.50, 0.75, 0.90,

lc∕L = 0.0125, 0.0250, 0.0375,

Eringen:
� = 0.10, 0.25, 0.50, 0.90,

�∕L = 0.0125, 0.0250, 0.0375.

Fig. 15   Variation of compliance function (c) and optimised con-
figurations of uniaxially loaded Eringen’s plates with respect to filter 
radius ( r

min
∕L ), considering cases with and without Heaviside projec-

tion method (HPM) (mesh: 120 × 40)

Fig. 16   Optimised design of uniaxially loaded Eringen’s plates with-
out filtering

Fig. 17   Optimised design of uniaxially loaded Cauchy plate with 
central crack reported for a filter radius of r

min
= 0.04L considering 

Heaviside projection method (HPM)
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of incorporation of geodetic path in the Eringen’s formula-
tion, which must be accounted for structures with holes and 
curved outer boundaries, to consider the deteriorating nature 
of geometric discontinuities on long-range interactions, as 
mentioned by Polizzotto (2001) and executed in Tuna and 
Trovalusci (2021).

Accordingly, in Fig.  19a, the coupling number of 
micropolar continuum is kept constant at N = 0.75 , and 

various internal lengths, lc∕L = 0.0125 − 0.0375 , are stud-
ied. Due to relatively large value of N ∈ [0, 1] , the couple-
stress tensor is highly affected by the parameter lc given 
the dominant bending effects in the problem via which the 
transition of the members from straight to curved is clearly 
observed. To be specific, an increase in lc escalates the 
contribution of curvatures to the strain energy, and forms 
a funicular main arch. Since the thickness of the segments 
remain unaltered, the total height of the structure decreases 
to satisfy the prescribed volume constraint. On the other 
hand, as depicted in Fig. 19b, material distributions turn 
out to be less sensitive to N for the relatively small value of 
lc = 0.0125L , where apart from the slight rounding of the 
top edge, no significant change from optimum Cauchy topol-
ogy is attended (Fig. 18b), especially for the case with less 
pronounced non-locality; N = 0.10 , lc = 0.0125L.

Similar observation can be made for the topology of Erin-
gen’s medium with the lowest of non-locality considered 
herein;

� = 0.90 , � = 0.0125L (Fig. 20b). Although the effect 
of fraction coefficient, � , is limited for this relatively low 
value of non-local parameter, it still is more dominant than 
the coupling number is in micropolar case. Meanwhile 
the influence of characteristic length in Eringen’s medium 
is analysed in the light of Fig. 20a, in which the fraction 
coefficient is fixed at � = 0.25 , that is, 75% of the material 
response includes long-range interactions (with � = 1 denot-
ing the local case), while non-locality is tailored through 
non-local parameter, �∕L = 0.0125 − 0.0375 . In all cases, 

(a)

(b)

Fig. 18   a Schematic of design domain of pinned plate, and b result-
ing optimized design of Cauchy plate

(a) (b)

Fig. 19   Optimum material distributions and resulting compliances, 
c, of pinned micropolar plates with a point load considering a vari-
ous internal lengths for a constant coupling number, N = 0.75 , and b 
various coupling numbers for a constant internal length, l

c
= 0.0125L

(a) (b)

Fig. 20   Optimum material distributions and resulting compliances, 
c, of pinned Eringen’s plates with a point load considering a vari-
ous non-local parameter for a constant fraction coefficient, � = 0.25 , 
and b various fraction coefficients for a constant non-local parameter, 
� = 0.0125L
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the final compliance turn out to be greater than the Cauchy 
continuum, which is associated with the non-locality-related 
softening effect of Eringen’s theory: The increased deform-
ability, that is concentrated at the vicinity of domain bound-
aries due to missing neighbour relations, causes a dense 
region around the top edge (Fig. 21, iteration 3). Combined 
with the long-range interactions, this material formation is 
better connected with the main arms (Fig. 21, iteration 4), 
and leads to a higher structure than that of Cauchy. Another 
remarkable difference is that the junctions of the tips of the 
V-braces with the arms at the upper corners of the optimum 
shape are smaller compared to the Cauchy continuum. This 
is because of the ability of long-range effects to soften the 
stress concentrations (Tuna and Trovalusci 2020, 2021). 
However, in overall, the main outlook is very similar to that 
of Cauchy due to the fact that they share common deforma-
tion descriptors.

Finally, Fig. 22 demonstrates the distribution of compli-
ance over the optimised configurations. For comparison, 
the contribution of the elements are coloured by weighting 
each with the structural compliance, c. The extreme values 
at the loading and boundary regions are off the scale for all 
sub-figures, for the sake of seeing better the distribution. 

The Cosserat continuum seems to be the one with the least 
strain energy gradient, pointing out its ability to distrib-
ute the load, which is maintained by less deformation as 
evidenced from the reduction of total energy. On the other 
hand, the localized decrement of the stiffness around domain 
boundaries of Eringen’s continuum results in high gradients 
of strain energy, and causes the greatest compliance due to 
the softening effect of non-local parameter. Interestingly, 
for all models, the macro-scale optimum topologies admits 
the physics of underlying structure by being in accord-
ance with the interactions defined between material points 
(Voigt 1887; Trovalusci et al. 2008; Capecchi et al. 2011; 
Trovalusci 2014): Roughly, the Cauchy continua assumes 
the particles constituting the matter interacts through forces, 
corresponding to bar-like connections, while micropolar 
continua further includes active couples, resembling to 
beam-like links. Based on this analogy, one can expect to 
obtain a truss-like structure in Eringen’s non-local model 
with only slight deviations from Cauchy due to existence 
of long-range interactions as both theories share common 
deformation descriptors.

5 � Conclusion

Generalizing topology optimization method to size-de- pen-
dent continuum theories has the utmost significance in max-
imizing the performance of complex materials. With this 
motivation, in the present paper, the update scheme of clas-
sical FE-based optimization problem is modified to analyse 
the design domains described on the basis of weakly/implic-
itly non-local micropolar and strongly/explicitly non-local 
Eringen’s theories, while, to the best of authors’ knowledge, 
this is the first time that the latter theory is used in address-
ing the corresponding problem.

In order to avoid mesh-dependent topologies with adja-
cent solid–void elements (i.e. checkerboard pattern), the for-
mulation is endowed with density filter, the blurring effect of 
which is further alleviated by means of volume preserving 

Fig. 21   Distribution of compliance for Cauchy and Eringen’s plates 
considering comparative example 1

Fig. 22   Contribution of the elements to the compliance (c) for different continua descriptors considering pinned plate with a concentrated load
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HPM. With the aid of SIMP approach and density filter, an 
element removal/reintroduction strategy is easily integrated 
within the code to remove structurally insignificant low-
density elements, that are prone to numerical instabilities. 
Based on the results of individual and comparative example 
problems, following deductions can be made about the effect 
different non-locality mechanisms on optimal topologies:

•	 Given the dominant bending effect of considered prob-
lem, the increased capacity of rotation resistance of 
material points of micropolar medium allows a better 
reduction of structural compliance with the least gradient 
among other models considered herein. Moreover, as the 
contribution of curvatures through work-conjugate stress 
measure becomes prominent with increased non-locality, 
the members of resulting topologies are transitioned from 
straight to curved, causing the load to be carried mainly 
by membrane actions.

•	 Despite sharing common deformation descriptors with 
Cauchy continuum, the topology of Eringen’s medium is 
essentially formed by the localized decrement of the stiff-
ness that occurs around domain boundaries as a result of 
missing long-range interactions. Moreover, the capability 
of Eringen’s theory in distributing the stress intensity 
yields less material formation around stress concentration 
zones (such as non-convex domains in junction points). It 
is also interesting to observe that the optimised topology 
of an uniaxially loaded intact Eringen’s plate converges 
to that of Cauchy with a central crack albeit for different 
reasons, which indicates the possibility of distinct theo-
ries on providing exact topologies with different initial 
energy distributions.

•	 For all theories, the macro-scale optimum topologies 
confirms the physics of underlying lattice system as they 
are in accordance with the mechanical response governed 
by particle interactions, including, forces, couples and 
multi-body effects, while all the results become prac-
tically identical to that of Cauchy for decreasing non-
locality.

•	 Hints on possible effects of incorporating internal length 
scale on topology optimization are presented through a 
limited number of tests. The results suggest that, the 
non-locality of the continua mitigates the checkerboard 
pattern and leads to mesh-independent results. These 
observations enrich the existing discussions on the role 
of internal scale parameters in topology optimization, 
and possible correspondence with filter radius which is 
the topic of an ongoing project.

The present study can be broadened by adopting geodetical 
distance to the formulation of Eringen’s model via which 
the case of higher non-locality can be examined. Further 
studies can be performed on non-local domains weakened 

by various types of cracks by focusing on detection of the 
material layouts that prevent their initiation and propagation.
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