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Abstract
Here we propose a detailed protocol to enable an accelerated inverse design of acoustic coatings for underwater sound 
attenuation application by coupling Machine Learning and an optimization algorithm with Finite Element Models (FEM). 
The FEMs were developed to obtain the realistic performance of the polyurethane (PU) acoustic coatings with embedded 
cylindrical voids. The frequency dependent viscoelasticity of PU matrix is considered in FEM models to substantiate the 
impact on absorption peak associated with the embedded cylinders at low frequencies. This has been often ignored in previ-
ous studies of underwater acoustic coatings, where usually a constant frequency-independent complex modulus was used 
for the polymer matrix. The key highlight of the proposed optimization framework for the inverse design lies in its potential 
to tackle the computational hurdles of the FEM when calculating the true objective function. This is done by replacing the 
FEM with an efficiently computable surrogate model developed through a Deep Neural Network. This enhances the speed 
of predicting the absorption coefficient by a factor of 4.5 × 103 compared to FEM model and is capable of rapidly providing 
a well-performing, sub-optimal solution in an efficient way. A significant, broadband, low-frequency attenuation is achieved 
by optimally configuring the layers of cylindrical voids. This is accomplished by accommodating attenuation mechanisms, 
including Fabry–Pérot resonance and Bragg scattering of the layers of voids. Furthermore, the proposed protocol enables 
the inverse and targeted design of underwater acoustic coatings through accelerating the exploration of the vast design space 
compared to time-consuming and resource-intensive conventional trial-and-error forward approaches.

Keywords Deep Neural Network · Optimization · Metamaterials · Polyurethane elastomers · Underwater acoustic coatings

1 Introduction

Acoustic coating technologies (Fu et al. 2021) have been 
installed on maritime platforms for a variety of sound attenu-
ation purposes since the twentieth century and have been 
continuously improved to address evolving performance 
requirements (Meyer et al. 1958). However, with the advent 
of advanced sonar technologies, achieving an effective sound 

attenuation in the low frequency range has been a formida-
ble challenge due to the corresponding long wavelengths, as 
it involves impractically thick coating requirements and/or 
increase in embedded cavity diameters. In addition, under-
water vessels with thick coatings lead to a compromised 
resistant to hydrostatic pressure.

Elastomers have proven to be the material of choice for 
anechoic coatings due to their underlying microstructure, 
viscoelasticity, and inherent relaxation mechanisms (Jaya-
kumari et al. 2019).

Furthermore, the combinatorial structure of soft elasto-
meric coating layer with embedded voids or rigid inclusions 
of different shapes results in the appearance of resonance 
phenomenon, which leads to the desired reduction in sound 
transmission at low-frequency band (Liu et al. 2000; Fu 
et al. 2021; Wen et al. 2011; Sharma et al. 2019; Calvo et al. 
2015). The low frequency sound attenuation has also been 
achieved by multi-layered composite materials with different 
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natural resonant frequencies in each layer (Shi et al. 2019), 
and by creating periodically distributed voids in the viscoe-
lastic matrix (Alberich-type coatings) Ivansson (2008).

Topological optimization is one of the key techniques to 
design anechoic coatings with embedded inclusions, which 
determines the optimal size and layout of inclusions within 
the polymer matrix instead of a specific configuration. This 
leads to an enhanced sound attenuation due to the increased 
degrees of freedom (Li and Li 2018; Gao et al. 2019; Yu 
et al. 2020).

Design of acoustic coatings has been conventionally done 
through employing a forward approach, which involves 
an iterative evaluation of developed designs to predict the 
acoustic performance by computational or experimental 
means. For high dimensional design space, forward approach 
becomes computationally expensive and time-intensive. 
Nevertheless, the fundamental problem in material design 
for a specific performance demands an inverse approach, i.e., 
finding the corresponding design parameters which deliver 
a targeted performance. In the inverse design approach, one 
can utilize the forward predictive models to compare the 
performance of the designed materials with the target per-
formance (ground truth). Thus, the inverse design process 
can be formulated as an optimization problem that mini-
mizes the difference between the models developed through 
the forward approach and the ground truth (Zhong et al. 
2019). Traditionally, this gap is minimized using empirical 
trial-and-error methods in conjunction with prior domain 
knowledge. With technological advancements and increased 
computational power, efficient optimization algorithms and 
data-driven techniques, such as machine learning (ML) are 
employed to automate the learning process while utilizing 
physics-based understanding (Bacigalupo et al. 2020; Donda 
et al. 2021; Ahmed et al. 2021; Sun et al. 2021; Gurbuz et al. 
2021; Zheng et al. 2020; Wu et al. 2021; Bianco et al. 2019; 
Wu et al. 2022) through physical models.

In the forward approach, analytical and numerical models 
have been developed to evaluate the acoustic performance 
of inclusions in a variety of mediums. However, analyti-
cal models are usually limited to simple cases, including 
assumptions with respect to the viscoelastic nature of the 
polymer matrix and distribution of the inclusions (Cai et al. 
2006; Leroy et al. 2015). Alternatively, numerical models 
such as finite element model (FEM) (Cai et al. 2006; Pani-
grahi et al. 2008) and layer multiple scattering theory (Yuan 
et al. 2019) are commonly used to predict the acoustic per-
formance of these coatings (Meng et al. 2012a). However, 
most of these studies overlook the crucial frequency depend-
ent viscoelastic properties of the polymer matrix, although it 
significantly alters the acoustic characteristics of the coating.

To reverse engineer acoustic coatings with embedded 
voids to achieve desired acoustic performance, metaheuris-
tic optimization techniques such as genetic algorithms 

(GA) (Meng et al. 2012a; Yuan et al. 2019; Chang et al. 
2005; Wang et al. 2021) and evolutionary algorithms (EA) 
(Romero-García et al. 2009; Zhao et al. 2018) are widely 
used. Interest has been given to GA as it can be used to 
find a near-optimal solution efficiently (Meng et al. 2012a; 
Yuan et al. 2019; Chang et al. 2005). These techniques can 
provide a well performing and efficient sub-optimal solu-
tion to non-linear, non-convex optimization problems. 
However, these classical iterative optimization algorithms 
tend to become highly time consuming and computationally 
demanding due to the iterative evaluation of the objective 
function. Furthermore, the computational efforts could grow 
exponentially with increasing dimension of the design space, 
i.e., the number of optimization variables (Wu et al. 2021). 
Therefore, systematic, and efficient computational models 
are key in implementing and speeding up of the optimiza-
tion algorithms.

In recent years, the application of Deep Neural Networks 
(DNNs) has become a promising tool due to their ability to 
capture nonlinear dynamics in complex models. The use of 
DNNs have been reported for accelerated and accurate pre-
diction of the acoustic performance of materials (Ciaburro 
et al. 2021; Jeon et al. 2020; Iannace et al. 2020; Ciaburro 
et al. 2020). Although these models have achieved consider-
able success in recent years, they still suffer from issues of 
interpretability, i.e., lack of understanding of the rationale 
behind the predictions (Angione et al. 2022). However, tech-
niques of interpretation such as sensitivity analysis may be 
used to explore and extract new insights from the complex 
physical system (Montavon et al. 2018).

1.1  Contribution and Focus

In the present work, we have developed a framework for 
accelerated and targeted design of underwater acoustic coat-
ings with embedded resonant inclusions through combin-
ing FEM models with ML and optimization algorithms. 
This framework enables (1) fast exploration of the design 
space and (2) an inverse targeted design strategy compared 
to the conventional forward trial-and-error coating design 
approaches. The coatings (anechoic tiles) are composite 
materials based on elastomeric polyurethane matrices with 
cylindrical resonant inclusions as they couple strongly with 
water-borne acoustic waves (Leroy et al. 2015). Additionally, 
contrary to other shapes of voids, cylindrical voids resonate 
at desired lower frequencies (Ivansson 2012; Sharma et al. 
2017a).

The developed framework focuses on inverse design 
of acoustic coatings with only two layers of cylindrical 
voids to accommodate for the constraints on the maxi-
mum allowable thickness of the tiles as well as desired 
large cylinders. We focus on optimizing the geometric 
design parameters (as shown in Fig. 1c) of the PU matrix 
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with embedded cylindrical voids. The optimal size and 
layout of layers of cylindrical voids are key determining 
factors to achieve a significant broadband attenuation in 
the low frequency range. The ML-based inverse design 
addresses and resolves the computational limitations of 
the time intensive FEM for calculating the true objective 
function. In our framework, we replace the FEM with an 
efficient ML based surrogate model developed through 
DNN. The developed framework performs expeditiously 
and provides a sub-optimal solution which consequently 
results in higher absorption. Using the ML model, we 
have demonstrated the enhancement of the speed of pre-
diction by a factor of 4.5 × 103 . In addition, in our FEM, 
we have accounted for the crucial frequency and tempera-
ture dependent complex moduli of the polyurethane (PU) 
elastomers, which have been ignored in previous studies 
of similar systems (Sharma et al. 2019). To achieve this, 
the complex moduli data obtained from experimental 
Dynamic Mechanical Analysis (DMA) is incorporated 
into the FEM model.

The outline of the study and forward and inverse com-
ponents of the optimization framework shown in Fig. 1a 
are as follows:

• We solve the forward problem by linking the material 
and geometrical parameters of the polyurethanes and 
cylindrical voids to their acoustic behavior through a 
FEM, where we also account for the temperature and 
frequency dependence of the Young’s and shear moduli 
of the matrix polyurethanes.

• The Young’s and shear moduli master curves are 
obtained by employing the time–temperature superposi-
tion (TTS) principle on experimental data obtained from 
DMA measurements.

• Data from the FEM is used to develop a deep neural net-
work that accurately predicts the absorption coefficient 
of the composites for different design parameters.

• In the inverse targeted design component, the neural 
network model is integrated with genetic algorithm to 
determine the optimal geometrical parameters for each 
polyurethane matrix composite to maximize broad-band 
sound absorption at low frequencies.

The manuscript is organized as follows. Section 2 describes 
the models developed to establish the optimization frame-
work. Section  2 includes FEM description (Sect.  2.1), 
inverse design using optimization approach (Sect. 2.2), 

Fig. 1  a The schematic representation of the proposed optimization 
framework. b 2D schematic diagram of the unit cell of model poly-
mer matrix composite with four cylindrical voids. c Schematic repre-

sentation of the design space including the geometrical variables for 
the 2D COMSOL model
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followed by accelerated forward approach using deep neural 
network (Sect. 2.3). In Sect. 3, the findings of the work are 
reported in multiple subsections. Section 3.1 describes the 
parametric study of the FEM, which includes the effect of 
frequency-dependent moduli of the PU matrix (Sect. 3.1.1). 
Extension of this parametric study that explores the effect of 
voids (Section 3.1), the effect of polyurethane matrix (Sec-
tion 3.2), and finally effect of steel backing (Section 3.3) on 
sound attenuation is presented in the supplementary infor-
mation. In Sect. 3.2, the performances of optimized acoustic 
coatings with voids in three different polyurethanes (PU80 
(Sect. 3.2.1), PU65 (Sect. 3.2.2) and PU90 (Sect. 3.2.3)) 
are compared and discussed in detail. Finally, Sect. 4 sum-
marizes the conclusions emphasizing the potential of ML 
approaches in numerical modeling and how the results from 
this work can be used in further research.

2  Methods and Models

In acoustic coatings with embedded voids, peak values of 
the sound absorption coefficient usually correspond to the 
resonance frequency of the voids. However, the bandgap 
of this peak may be narrow as it only occurs around the 
resonance frequency. Therefore, adding multiple voids of 
different sizes can broaden the bandgap as each of the voids 
resonates at their natural frequency and results in multiple 
absorption peaks (Fu et al. 2021). In this study, four cylindri-
cal voids in two different layers with different radii in each 
layer with varied spacing have been considered per unit cell. 
This creates more possibilities for maximizing the absorp-
tion coefficient in a wider range of frequencies.

2.1  Finite element model (FEM)

A 2-dimensional FEM was developed using acoustic and 
solid mechanics modules of the COMSOL Multiphysics 
Software Package version 5.5 to explore the underwater 
acoustic behavior of a slab of PU matrix with cylindrical 
voids. We have incorporated frequency-dependent dynamic 
moduli of the polymer matrix obtained from a DMA (master 
curves obtained from DMA data are given in Fig. S1a in the 
supplementary information). This allows the development of 
accurate models, which account for the realistic viscoelastic 
behavior of the polymer matrix and its potential impact on 
the overall performance of the acoustic coating.

We considered the cross-section of two layers of cylin-
drical voids in a PU matrix attached to a steel backing 
submerged in water as schematically depicted in Fig. 1b. 
Periodic boundary conditions were applied to an infinite 
array of units in the y direction. The acoustic plane wave 
was propagated in the x direction and is perpendicular to 
the y axis. Furthermore, perfectly matching layers were 

applied at the end of the water layer and air layer to mimic 
an open and non-reflecting infinite domain. The trans-
mitted pressure was measured at the steel-air interface 
(the dashed red line), and the reflection was measured 
at the water-polymer interface (dashed green line). The 
polymer domain and steel were modeled as viscoelastic 
solid and elastic solid materials, respectively. The densi-
ties of PU and steel were taken as 1026 kgm−3 and 7850 
kgm

−3 , respectively at temperature T = 15 ◦
C and pressure 

P = 101.325 kPa. The thickness of the steel backing was 
considered 30 mm. For air and water, the inbuilt mate-
rial properties available in the COMSOL materials library 
were used. The developed FEM models have been vali-
dated against data from literature (Jayakumari et al. 2011; 
Sharma et al. 2017b), and it is presented in Section 2 in 
the supplementary information.

2.2  Inverse design approach using optimization

One of the common and longstanding issues in design-
ing anechoic coatings with embedded voids is the rela-
tively narrow absorption peak produced by the voids 
(Jayakumari et al. 2019). In the present study, we develop 
an inverse design and optimization framework shown in 
Fig. 1a to maximize the low-frequency sound attenuation 
while increasing the bandwidth of the peak. In Fig. 1b, the 
schematic of the unit cell of PU matrix composite is shown 
with four cylindrical voids and is considered for optimiza-
tion. An array of 2 ⋅ 2 voids in the unit cell was considered 
to account for all the influencing geometrical parameters. 
This ensures the possibility of exploring a wider design 
space to find a better solution for a maximized low-fre-
quency broad-band sound attenuation. Furthermore, the 
design variables of the model are shown in Fig. 1c.

The developed optimization scheme was formulated 
using the GA as it is an evolutionary-based meta-heuris-
tic search algorithm that mimics the natural selection of 
a population with the process of adaptation for survival. 
Genetic algorithm is considered a robust and efficient 
approach that can be used to explore complex nonlin-
ear solution spaces (Katoch et al. 2021). Unlike swarm 
intelligence techniques, GA is less likely to have a pre-
mature convergence to a local optimal solution (Katoch 
et al. 2021). For the optimization algorithm in this study, 
10 independent geometrical parameters of the unit cell 
(shown in Fig. 1c) were considered as the design variables 
for which objective function is defined as Eq. 1,
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where wi and ai are the weight and absorption coefficient 
of the ith frequency, respectively and N is the number of 
frequencies. 1000 frequency points were considered rang-
ing from 10 Hz to 10 kHz with equal intervals of 10 Hz. In 
the objective function, the weighted sum of the absorption 
coefficient was considered for the whole frequency range 
but higher weights have been allocated to low frequencies to 
provide a higher priority to the low frequency range attenu-
ation. Furthermore, a penalty p was included in the objec-
tive function to add manufacturing, or practical constraints 
to avoid infeasible solutions. A constraint was employed to 
maintain a minimum distance of 1 cm between the edges of 
the coating and the voids considering the practical fabrica-
tion processes. Larger values of penalty were imposed for 
solutions that violate the constraints. Additionally, the feasi-
ble limits of the design variables were directly incorporated 
into the GA by setting reasonable lower and upper bounds 
for the variables presented in Table 1.

The transmission coefficient of the acoustic coatings 
with embedded voids is negligible due to the large imped-
ance mismatch between the steel plate and the air backing 
(a detailed explanation is given in supplementary informa-
tion S3.3). Therefore, a maximized absorption coefficient 
is equivalent to a minimized reflection coefficient given 
their relationship through the following equations

where A, T and R are absorption, transmission and reflection 
coefficients, respectively. Hence, the optimized design of the 
proposed algorithm will exhibit better anechoic properties 
with a low reflection coefficient.

(1)
Objective function =max

(

N
∑

i=1

wiai − p

)

,

wi =
N + 1 − i

N
,

(2)
A + T + R = 1,

T ≈ 0,

A + R = 1

2.3  Accelerated forward approach using Deep 
Neural Network (DNN)

In optimization algorithms, the high computational cost 
of high fidelity physical models such as FEM becomes an 
obstacle in practical implementation. Therefore, approxima-
tions or surrogate models with less computational costs can 
be constructed to replace the high fidelity model. Conven-
tionally, surrogate models were constructed based on sta-
tistical methods through linear, polynomial regression, or a 
combination of basis functions (Wu et al. 2021). However, 
with the recent advances in machine learning, the applica-
tion of artificial neural networks (ANN) is widespread due 
to their ability to capture nonlinear dynamics in complex 
models. Artificial neural network is a ML technique that 
mimics the process of the nervous system in the brain. It 
is used as a basis to develop algorithms with the ability to 
learn, identify complex patterns, and extract key features 
from data sets. DNNs are one of the widely used supervised 
learning models used to develop predictive models in numer-
ous applications.

DNN can transform a set of input variables into corre-
sponding outputs by approximating the existing nonlinear 
relationship. The DNN learns this approximation by ‘train-
ing’, i.e., the iterative adjustment of its network parameters 
to capture the implicit mapping of the input and output vari-
ables. This is achieved by utilizing an optimization algo-
rithm to minimize the error between the predicted and actual 
output. A well-structured and well-trained neural network 
can accurately predict the output corresponding to a set of 
previously unseen inputs.

To predict the absorption coefficient of the model shown 
in Fig. 1b, a DNN with multiple hidden layers is developed 
in Python using Scikit-learn (Note, three separate DNNs 
were developed to predict the absorption coefficient of the 
three commercial polyurethanes considered in this study). 
This DNN is used as a surrogate model to accelerate the 
forward prediction of the acoustic behavior of the coatings 
with embedded cylindrical voids.

The trained DNN is integrated into the optimization algo-
rithm to expedite the exploration of the best set of param-
eters that yields low frequency broadband sound attenua-
tion. We employed a multi-layer feed forward neural network 
with multiple hidden layers as shown in Fig. 2a to predict 
the absorption coefficient of the acoustic coatings with 
embedded voids. The input layer considers ten independent 
geometrical parameters (shown in Fig. 1c) as well as the 
frequency as inputs. For the enhanced performance of the 
network, the inputs were converted to a common scale by 
normalizing to a value between (0, 1).

The accuracy of the network was evaluated using the 
mean absolute percentage error (MAPE) that calculates 
the deviation between the predicted and actual values. 

Table 1  Lower and upper bounds of the design variables

Design Lower Upper
variable bound/(mm) bound/(mm)

r
1
, r

2
1 15

D
1
,D

2
10 80

B
1
,B

2
,B

3
,B

4
10 80

h 30 100
t 30 100
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Multiple DNN architectures with different activation func-
tions, learning rate, number of layers and nodes were eval-
uated, and the best architecture was then selected based on 
the lowest MAPE and the least overfitting. Accordingly, 
sigmoidal activation functions were used in the network’s 
intermediate layers to activate the signals in the nodes 
due to their enhanced performance compared to other 
activation functions. The sigmoid function returns values 
between (0 and 1) that align with the range of the data 
in this study. The network is optimized using the Adam 
optimizer, which is a stochastic gradient descent algorithm 

based on adaptive estimates of lower-order moments 
(Kingma and Ba 2015).

2.3.1  DNN performance for coating with voids in PU80

For training the DNN, we collected approximately 
150, 000 data points from the COMSOL FEM models. 
This encompasses 400 sets of combinations of geomet-
ric parameters achieved through randomization within 
the desired range (presented in Table 1). The simulations 
were carried out in the low frequency range, i.e., 10 Hz–10 

Fig. 2  a The general architec-
ture of the DNN developed 
to predict the absorption 
coefficient. b Variation of 
the predicted (by DNN) and 
targeted (calculated from the 
Comsol FEM model) absorption 
coefficient for the training data. 
c Variation of the predicted and 
targeted absorption coefficient 
for the testing data. d Perfor-
mance analysis of the neural 
network during training. e Error 
histogram of the neural network
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kHz. The data were randomly split into two sets. 70% of 
the data were randomly selected to train the model and the 
remaining 30% of the data are considered for testing. Fur-
thermore, 20% of the training data were randomly selected 
for validation. The generality of the network and its per-
formance were evaluated for unseen data. Accurate pre-
dictions were achieved with just three hidden layers that 
contain 200 nodes (neurons) at each layer. The optimized 
learning rate, batch size and the number of epochs was 
0.0021, 100, and 800, respectively. The convergence of the 
network during the training process is presented in Fig. 2d. 
Further, the computation time to converge the network 
from a 2.3 GHz core i7 processor is approximately 820s.

The performance of the trained neural network was 
investigated by comparing the target value and the pre-
dicted value for the absorption coefficient. Figure 2b and 
c present the distributions of the predictions and the line 
of equality (identity line) for the training and testing data 
where the x and y axes are the targets and the predicted 
values, respectively. The central mark on each blue box 
represents the median, and the upper and lower edges indi-
cate 25th and 75th quartiles. The outliers are plotted indi-
vidually in red ‘ + ’ symbols. The scatter points are closer 
to the line of equality, which indicates the reliability and 
accuracy of the prediction. The developed DNN showed a 
Pearson coefficient (R) of 0.999 for predicted test data and 
MAPE of 1.22, 1.27, and 1.27 for the training, validation, 
and testing data, respectively. Furthermore, as seen in the 
error histogram in Fig. 2e, the majority of the predictions 
are closer to zero error. Therefore, the predicted absorp-
tion coefficient from the DNN is in good agreement with 
the FEM model. The average prediction time for a fre-
quency range from 10 Hz to 10 kHz in steps of 20 Hz for 
the DNN is approximately 0.04 s, whereas the FEM takes 
an average of 180 s. This pinpoints the speed increase by 
a factor of 4.5 × 103 compared to FEM, and therefore, sig-
nificantly accelerates the optimization process.

3  Results and Discussion

3.1  Parametric study of finite element model

We have investigated the impact and physical mechanisms 
of varying material properties of the polymer matrix as 
well as geometrical parameters of the cylindrical voids. 
We also explored the effect of the layout of the cylindri-
cal voids on the acoustic performance of the PU80 matrix 
composite. The detailed discussion is presented in the sup-
plementary information Sections 3.1–3.3.

3.1.1  Frequency dependent PU moduli

In order to consider realistic material properties, frequency-
dependent Young’s modulus for PU80 (as shown in Fig. S1a) 
was considered. Frequency dependence of sound attenua-
tion of a single layer of voids embedded in the PU matrix 
(shown in Fig. 3a) was evaluated by considering frequency-
independent complex Young’s modulus at 100Hz ( 8.8 + 2.3i 
MPa). The sound attenuation by voids is attributed to their 
monopole resonance, which results in a reduction in the 
transmitted acoustic pressure at their resonance frequency 
(Sharma et al. 2017a). The attenuation is also affected by the 
void diameter d, thus, we varied the void size while keeping 
the thickness t = 10 cm and the spacing between the voids, 
i.e., the lattice constant h = 10 cm constants, which allowed 
us to evaluate the effect of the void fraction.

Figure 3b presents the transmitted acoustic pressure of 
the acoustic coatings for varying diameters, considering 
frequency-dependent and independent complex Young’s 
moduli. It is observed that there is a significant difference 
between the monopole resonance frequency, the ampli-
tude, and the bandwidth for the two cases, i.e., with (solid 
lines) and without (dashed lines) frequency-dependent 
Young’s modulus of the PU matrix. The sound attenuation is 

Fig. 3  a A schematic representation of a model with a single layer 
of cylindrical voids in PU matrix submerged in water. b Transmitted 
acoustic pressure through PU80 matrix for a range of void diameters. 
Solid lines represent the frequency-dependent modulus and dashed 
lines represent the frequency independent modulus
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increased both in amplitude and bandwidth for an increased 
diameter. This broadband attenuation is attributed to the 
strong coupling of the voids that correspond to higher fill-
ing fractions. However, the sound attenuation is lower for 
low diameters due to the reduced coupling between voids. 

This behavior is observed in both cases. We have listed the 
deviations of the monopole resonance for the frequency-
dependent and independent modulus in Table 2.

3.2  Comparison of the performances of different PU 
matrices

3.2.1  Optimized acoustic coating PU80 with voids

Figure 4a illustrates the geometrical layout of the optimal 
design that resulted from the developed optimization frame-
work. This design was selected by running the optimization 
algorithm iteratively and selecting the best option among the 
solutions as GA does not guarantee the global optimal. The 
solutions from the iterations converged to similar geometries 
as shown in Fig. 4a with slight variations in the positioning 
of the voids. However, the variations in the value of the 
objective function among these solutions were negligible. 
Therefore, external factors such as ease of manufacturing 
and cost can be considered in selecting a suitable solution. 

Table 2  Monopole resonance for cylinders with different diameters 
for a polyurethane matrix with and without frequency-dependent 
Young’s modulus and their differences

Void Monopole resonance (Hz) Percentage

d/t fraction Freq. dependent Freq. inde-
pendent

error (%)

0.1 0.008 − 2250 −
0.2 0.031 2630 1690 35.7
0.3 0.070 2350 1550 34.0
0.4 0.126 2290 1610 29.7
0.5 0.196 2510 1950 22.3
0.6 0.283 3010 2170 27.9

Fig. 4  a Geometry of the opti-
mized unit cell with PU80 as 
the matrix material. b Broad-
band sound attenuation of the 
optimized unit cell of PU80 
with embedded voids and steel 
backing. Deformation maps at 
c 330 Hz, d 970 Hz, e 3870 Hz, 
and f 6200 Hz
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Moreover, it was observed during the iterative evaluation 
that the optimal thickness always resided in the upper bound 
of the acceptable range, i.e., 100 mm. This is because having 
the largest allowed thickness enables attenuation of acoustic 
waves with a wider range of wavelengths. Thus, the number 
of dimensions of the problem can be reduced by fixing the 
values of these parameters. This enhances the efficiency and 
the speed of the algorithm as the complexity of the problem 
can be reduced.

Figure 4b shows the absorption coefficient and the trans-
mitted pressure of the optimized acoustic coating with 
embedded voids in PU80. The absorption coefficient of the 
acoustic coating with and without the steel backing is further 
compared. It is observed that the acoustic coating attached 
to the steel backing exhibits better broad-band absorption 
characteristics in the low-frequency range. It consists of two 
peaks at 970 Hz and 3830 Hz with absorption coefficients 
of 0.96 and 0.99, respectively. The first peak emerges as a 
result of the presence of the steel backing at 970 Hz and is 
attributed to the scattering of the acoustic wave reflected 
from the steel backing by the layers of the voids. Also, the 

highest transmission occurs at 330 Hz, and its deflection is 
presented as a deformation map in Fig. 4c. This high trans-
mission corresponds to the high deflection of the steel plate 
with a magnitude higher than the deflections at other fre-
quencies. Figure 4d presents the deformation of the second 
layer of voids that interferes with the reflected wave from the 
steel backing and displays a radial motion as a result of high 
sound absorption, this finding is consistent with the previ-
ous work (Meng et al. 2012b). From Fig. 4e and f, the first 
layer of voids that interferes with the incident wave exhibits 
a radial motion that corresponds to high absorption. This is 
further confirmed by Fig. 4b that the behavior of acoustic 
coating with embedded voids in the high-frequency range, 
i.e., greater than 4000 Hz is independent of the backing.

3.2.2  Optimized acoustic coating PU65 with voids

The optimized geometry of the cylindrical voids in PU65 
and its performance is shown in Fig. 5, which is rather 
similar to the PU80 case. As seen in Fig. S4a, the Young’s 
modulus of PU65 is close to PU80 and from S4b, where 

Fig. 5  Geometry of the 
optimized voids in PU65 (a) 
and absorption coefficient (b). 
Deformation maps of the opti-
mized voids in PU65 at c 290 
Hz, d 1430 Hz, e 5750 Hz, and 
f 9250 Hz
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both PU65 and PU80 showed low-frequency attenuation 
with a void of the same diameter. In Fig. 5b the absorption 
coefficient consists of two peaks at 1430 Hz and 5750 Hz 
with coefficients of 0.86 and 0.98, respectively. Furthermore, 
the displacement maps of PU65 at different frequencies are 
shown in Fig. 5c–f, where PU65 behavior is observed to be 
similar to that of the PU80.

3.2.3  Optimized acoustic coating PU90 with voids

Figure 6 presents the optimized geometry of the voids in 
PU90 and its acoustic characteristics. Contrary to PU65 and 
PU80, the optimal parameters resulted in two layers of voids 
with larger diameters. PU96 has higher Young’s modulus 
compared to PU65 and PU80. As shown in Section S3.2 an 
increase in the modulus results in an increase in the speed 
of sound and therefore, shifts the absorption peaks to higher 
frequencies. However, as explained in Section S3.3, voids 
with increased diameters can be used to shift the peak to low 
frequencies to achieve low-frequency attenuation.

The absorption coefficient of the acoustic coating based 
on PU90 consists of two peaks at 2130 Hz and 7210 Hz 

with coefficients of 0.78 and 0.99, respectively. Compared 
to PU65 and PU80, this corresponds to lower low-fre-
quency sound attenuation. Furthermore, the displacement 
maps of the unit cell are presented in Fig. 6c–f at differ-
ent frequencies. The highest deflection of the steel plate 
occurs at 130 Hz as shown in Fig. 6c and this frequency 
corresponds to the highest transmission. The first peak at 
2130 Hz corresponds to the Fabry–Pérot resonance, and 
the regions between the voids of minimum displacement, 
i.e., between the two voids in the right layer correspond(s) 
to the destructive interference of the sound waves reflected 
by the steel backing and the voids. At high frequencies, 
the minimum displacement regions can be seen between 
the two voids in the left layer that occur mainly due to the 
interference of the incident wave and sound waves scat-
tered by the four voids. Further, unlike in PU65 and PU80, 
the effect of the steel backing can be seen throughout the 
frequency range as shown in Fig. 6.

Fig. 6  Geometry of the 
optimized voids in PU90 (a) 
and absorption coefficient (b). 
Deformation maps of the opti-
mized voids in PU90 at c 130 
Hz, d 2130 Hz, e 7210 Hz, and 
f 9850 Hz
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4  Summary and Conclusion

We developed an inverse design framework by coupling 
ML and GA with FEM to develop acoustic coatings 
comprising cylindrical voids in polyurethane matrix. A 
FEM-based physical model was used to simulate the real-
istic acoustic characteristics of the acoustic coatings with 
embedded voids by accounting for the temperature and 
frequency dependent Young’s modulus of polyurethanes.

In the inverse design, a neural network was incorpo-
rated into GA to determine the optimal geometric param-
eters with maximum broadband sound attenuation at low 
frequencies. The outcomes of this work demonstrate the 
developed framework delivers an accelerated inverse 
design of viscoelastic materials with targeted acoustic 
performance.

Based on the findings of the present study, we made the 
following conclusions:

• Acoustic characteristics of coatings with embedded 
voids depend on multiple factors, including intrinsic 
material properties of the polymer matrix (specifically 
frequency-dependent viscoelastic modulus) as well as 
size and parameters associated with the geometrical 
layout of the resonant cylindrical voids. Furthermore, it 
was observed that temperature and frequency-depend-
ency of the moduli of the polymer matrix needs to be 
considered to obtain accurate and realistic results for 
the practical application purposes.

• A significant, broadband, low-frequency attenuation 
was achieved by optimally configuring the layers of 
cylindrical voids and exploiting attenuation mecha-
nisms, including Fabry–Pérot resonance and Bragg 
scattering of the layers of voids.

• An optimization algorithm was used for efficient explo-
ration of the design space, which enables accelerated 
development of acoustic coatings with targeted perfor-
mance. This provides a tool to overcome conventional 
time and cost-intensive ad hoc trial-and-error forward 
design approaches.

• Coupling of ML with the optimization algorithm fur-
ther accelerates the exploration of the high dimensional 
design space. The developed DNN exhibited signifi-
cantly increased speed (by a factor of 4.5 × 103 ) in 
predicting the absorption coefficient compared to the 
FEM.

Although the primary aim of the surrogate ML model in 
this research is to significantly reduce the prediction time, 
black box machine leaning models can suffer from issues 
of interpretability (Angione et al. 2022). To address this 
issue, we have conducted an extensive parametric study 

(presented in the supplementary information) and explored 
the effects of variables to identify the physical mechanisms 
of sound attenuation. Furthermore, the acoustic character-
istics of the coating can be evaluated by different sources 
of information such as numerical models, analytical mod-
els, and experimental data. It is advantageous to lever-
age these multiple sources of information to accelerate 
the optimization process. Thus, the current study can be 
further extended to a multifidelity framework. Another 
promising direction for future work is to inspect the effect 
of pressure to assess the performance of coatings under 
operational conditions. Therefore, the effect of hydrostatic 
pressure (i.e., operation depth) needs to be incorporated 
into the design tool.

The significant role of frequency-dependent viscoelas-
tic moduli of the polyurethane matrix on the acoustic per-
formance of these coatings underpins the critical need for 
establishment of the linkages between polyurethane chem-
istry (molecular scale) and bulk morphology (mesoscopic 
scale) to that of the macroscopic viscoelastic behavior (Haji-
zadeh et al. 2018). These could be achieved through inte-
grating the molecular dynamic simulations (Hajizadeh et al. 
2014a, b, 2015; Prathumrat et al. 2021) and self-consistent 
field theory (Paradiso et al. 2016) calculations into the con-
tinuum models in a unified multiscale framework.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00158- 022- 03322-w.
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