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Abstract
This paper investigates the performance of four multi-objective optimization algorithms, namely non-dominated sorting 
genetic algorithm II (NSGA-II), multi-objective particle swarm optimization (MOPSO), strength Pareto evolutionary algo-
rithm II (SPEA2), and multi-objective multi-verse optimization (MVO), in developing an optimal reinforced concrete can-
tilever (RCC) retaining wall. The retaining wall design was based on two major requirements: geotechnical stability and 
structural strength. Optimality criteria were defined as reducing the total cost, weight,  CO2 emission, etc. In this study, two 
sets of bi-objective strategies were considered: (1) minimum cost and maximum factor of safety, and (2) minimum weight 
and maximum factor of safety. The proposed method's efficiency was examined using two numerical retaining wall design 
examples, one with a base shear key and one without a base shear key. A sensitivity analysis was conducted on the variation 
of significant parameters, including backfill slope, the base soil’s friction angle, and surcharge load. Three well-known cover-
age set measures, diversity, and hypervolume were selected to compare the algorithms’ results, which were further assessed 
using basic statistical measures (i.e., min, max, standard deviation) and the Friedman test with a 95% level of confidence. The 
results demonstrated that NSGA-II has a higher Friedman rank in terms of coverage set for both cost-based and weight-based 
designs. SPEA2 and MOPSO outperformed both cost-based and weight-based solutions in terms of diversity in examples 
without and with the effects of a base shear key, respectively. However, based on the hypervolume measure, NSGA-II and 
MVO have a higher Friedman rank for examples without and with the effects of a base shear key, respectively, for both the 
cost-based and weight-based designs.

Keywords Retaining wall · Multi-objective optimization · Pareto front · Nondominated sorting genetic algorithm II 
(NSGA-II) · Multi-objective particle swarm optimization (MOPSO) · The strength Pareto evolutionary algorithm II 
(SPEA2 · Multi-objective multi-verse optimization (MVO)

1 Introduction

One of the major challenges in geotechnical engineering 
is stabilizing uneven natural and artificial soil slopes. The 
systems developed to retain such masses include gravity and 
cantilever retaining walls, sheet piles, anchored earth, and 
mechanically stabilized earth walls. The difference between 

these retaining structures is based on how each can with-
stand unstable loads. Final cost is essential in determining 
which type of earth retaining structure is best suited. While 
reinforced concrete cantilever retaining (CCR) walls are 
among the most effective retaining structures in a wide range 
of construction projects, they are relatively costly due to the 
massive bulk of the required materials. Hence, any effort to 
decrease the final cost of CCR walls is pertinent.

Artificial intelligence-based algorithms have found wide 
applications in facilitating complicated civil engineering 
problems (Najafzadeh and Azamathulla 2015; Najafza-
deh and Kargar 2019; Gandomi et al. 2021; Kashani et al. 
2021a; Maniat et al. 2021). Optimization algorithms have 
proven effective in preparing cost-effective designs for 
engineering problems. Optimization algorithms have been 
applied successfully to a wide variety of civil engineering 
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problems (e.g., structural engineering (Gandomi et al. 
2013; Akhani et al. 2019; Bekdaş et al. 2019; Kashani 
et al. 2020; Kashani et al. 2021b, c; Gholizadeh et al. 
2020), water engineering (Azizi et al. 2017; Ebrahimi and 
Khorram 2021; Ali et al. 2022; Azari et al. 2022; Moeini 
et al. 2022), geotechnical engineering, transportation engi-
neering (Yang et al. 2012; Gandomi et al. 2015a, b, 2017a; 
Gandomi and Kashani 2017; Kashani et al. 2016, 2019a, 
b, 2021d, 2022a, b), construction management (Sahib and 
Hussein 2019; Panwar and Jha 2019), and structural dam-
age detection (Mishra et al. 2019; Fathnejat and Ahmadi-
Nedushan 2020; Akhani and Pezeshk 2022)). Due to their 
stochastic nature and varied performances, metaheuristic 
optimization algorithms require constant updates, which 
can be done by 1- developing new algorithms (Gandomi 
2014; Mirjalili and Lewis 2016; Saremi et al. 2017; Mir-
jalili et al. 2017a), or 2- enhancing the algorithms’ perfor-
mances (Jordehi 2015; Gandomi and Kashani 2016, 2018a, 
b; Gandomi and Deb 2020; Bigham and Gholizadeh 2020). 
As a result, research on applying metaheuristic algorithms 
in a wide range of engineering problems is an active study 
area.

Numerous studies have applied optimization algorithms 
to minimize the final cost of CCR walls over the past few 
years. Optimization approaches simplify the design pro-
cedure by satisfying three primary criteria: geotechnical 
stability, structural strength, and economic efficiency. For 
example, Khajehzadeh et al. (2010) used particle swarm 
optimization, and then later employed a modified optimiza-
tion method. Khajehzadeh and Eslami (2012) applied the 
gravitational search algorithm, Ceranic et al. (2001) utilized 
simulated annealing, Camp and Akin (2012) applied Big 
Bang Big Crunch, Aydogdu (2017) tried biogeography-
based optimization algorithms, Gandomi et  al. (2015c, 
2017b, c) and Gandomi and Kashani (2018a, b) considered 
evolutionary and swarm optimization algorithms.

These studies' main limitation is the relatively high final 
cost, weight, or  CO2 emission associated with a single objec-
tive during the design optimization procedure. Although 
the single objective approach provides a cost-effective final 
design for decision-makers, it may not reflect all aspects 
of the design since the important efficiency-related features 
often have conflicting and reciprocal relations. Therefore, it 
is impossible to find a design that satisfies the optimality cri-
teria for all conflicting objectives. Multi-objective optimiza-
tion has proved to be a sophisticated approach to identifying 
solutions, called Pareto optimal solutions, to such conflicts 
(Deb 2001; Marchionatti and Gambino 1997). Therefore, 
multi-objective optimization for finding the Pareto front (PF) 
solutions has become widespread throughout science and 
engineering (Gunantara 2018; Afshari et al. 2019; Gholi-
zadeh and Fattahi 2021; Behmanesh et al. 2020; Rangaiah 
et al. 2020).

In most construction projects, particularly retaining walls, 
the main concern is minimizing the final cost and maximiz-
ing safety. The stronger and bulkier the wall, the higher the 
safety. As a result, the final cost would be much higher than 
the optimal low-cost design. Multi-objective optimization of 
retaining walls has been addressed in just a few studies. For 
instance, (Kaveh et al. 2013) employed a non-dominated sort-
ing genetic algorithm (NSGA-II) for retaining wall optimiza-
tion that considered bar congestion and cost as two conflicting 
objectives. In another effort, (Das et al. 2016) utilized NSGA-
II for retaining wall optimization considering the final cost 
and factor of safety.

In this study, multi-objective optimization of retaining 
walls was investigated, emphasizing two different combina-
tions of objectives based on the study by (Sarıbaş and Erba-
tur 1996): (1) minimum cost and maximum factor of safety 
(cost-based design), and (2) minimum weight and maximum 
factor of safety (weight-based design). Four multi-objective 
algorithms, i.e., non-dominated sorting genetic algorithm II 
(NSGA-II) (Deb et al. 2000), multi-objective particle swarm 
optimization (MOPSO) (Coello and Lechuga 2002), strength 
Pareto evolutionary algorithm II (SPEA2) (Zitzler et al. 2001), 
and multi-objective multi-verse optimization (MVO) (Mirjal-
ili et al. 2016), were utilized for retaining wall optimization. 
Three different measures were considered to compare the per-
formances of the proposed algorithms. A computer program 
based on ACI 318-05 (2005) and analysis presented by (Das 
2010) was developed in MATLAB to analyze retaining wall 
designs. The second design example also explored the effect of 
a base shear key. A sensitivity analysis was conducted on the 
cost-based design of Example 2 for the effective parameters, 
including surcharge load (q), base soil’s friction angle (ϕ), and 
backfill slope (β). To be more specific, the main contributions 
of this work include (1) analyzing the trend of variation of 
cost and weight by changing the factor of safety of the retain-
ing walls using multi-objective optimization, (2) a systematic 
comparative study of the performance of different classes of 
multi-objective optimization algorithms based different meas-
ures and statistical analysis on solving Reinforced Concrete 
Cantilever Retaining Wall problems, (3) examining the impact 
of design parameters on the final objective through a sensitiv-
ity analysis, and (4) providing a practical design procedure 
based on geotechnical and structural regulations provided in 
ACI 218-05. The results indicate that the NSGA-II and SPEA2 
algorithms were more efficient than MOPSO and MVO.

2  Methodology

A feasible retaining wall design should satisfy geotech-
nical stability and structural strength requirements (Das 
2010). In the former, three factors of safety—overturning 
 (FSO), sliding  (FSS), and the foundation’s bearing capacity 
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 (FSB)—were considered to guarantee the serviceability of 
the structure. In the latter, the shear and moment capacity of 
each section of the wall (stem, heel, toe, and shear key) were 
checked with ACI 318–05 (2005) regulations. In formulating 
the optimal design of the retaining wall, a bi-objective func-
tion is proposed for minimizing cost/weight and maximizing 
the factors of safety  (FSO,  FSS, and  FSB) as follows

where Cs and Cc are the unit cost of steel and concrete, 
respectively, Wst is the weight of reinforcing steel, and Vc 
and γc are the volume and unit weight of concrete scaled by 
a factor of 100 as proposed by (Sarıbaş and Erbatur 1996), 
respectively.

Figure 1 defines the twelve design variables for the retain-
ing wall in this study: width of the base slab (X1), the width 
of the toe slab (X2), stem thickness at the bottom of the wall 
(X3), stem thickness at the top of the wall (X4), base slab 

(1)
{

fcost = CsWst + CcVc

FS = (FSO + FSS + 2 × FSB)
−1 ,

(2)
{

fweight = Wst + 100Vc�c

FS = (FSO + FSS + 2 × FSB)
−1 ,

thickness (X5), distance from the front of the shear key to the 
front of the toe of the wall (X6), the width of the shear key 
(X7), the height of the shear key (X8), the vertical steel area 
in the stem per unit length of the wall (R1), the horizontal 
steel area of the toe slab (R2), the horizontal steel area of the 
heel slab (R3), and the vertical steel area of the shear key per 
unit length of the wall (R4). Discrete variables were consid-
ered for steel reinforcement areas, according to Table 1. In 
this study, the design procedure and constraints are defined 
based on (Camp and Akin 2012).

3  Description of optimization algorithms

3.1  Non‑dominated sorting genetic algorithm II

Unlike a single-objective optimization problem, which 
provides only a single optimal solution, a multi-objective 
optimization problem provides solutions representing trade-
offs between conflicting objectives known as a Pareto opti-
mal set. Several techniques have been proposed to obtain 
the Pareto optimal solutions in literature (Coello et  al. 
2007). Due to their effectiveness and easy implementation, 

Fig. 1  Design variables for a 
general retaining wall
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multi-objective evolutionary algorithms (MOEAs) have 
gained much attention from researchers. One of the signifi-
cant metaheuristic algorithms in this category is NSGA-II, 
an improved version of the non-dominated sorting genetic 
algorithm (Deb et al., 2000).

NSGA-II applies an elitism-based non-dominated 
approach for ranking and sorting solutions using a crowd-
ing distance method in its selection operator to maintain the 
diversity in the obtained Pareto optimal set (Deb et al. 2002). 
First, in non-dominated sorting, each solution's objective 
functions are evaluated, and the whole population is ranked 
and sorted into different non-dominated levels based on the 
dominance count. Second, an infinite crowding distance 
value is assigned to the solutions after defining the bound-
ary values based on the smallest and largest function values. 
Finally, the crowding distance between any two neighboring 
solutions is computed based on the normalized difference in 
the objective function values (Deb et al. 2002). Compared 
to NSGA, NSGA-II offers an improved mating mechanism 
dependent on the crowding distance and performance con-
straints using an adapted explanation of dominance without 
the use of penalty functions.

3.2  Multi‑objective evolutionary algorithm based 
on decomposition

The strength pareto evolutionary algorithm 2 (SPEA2), 
developed by (Zitzler et  al. 2001), is a non-dominated 
genetic algorithm with features like a truncation operator, 
nearest neighbor, and genetic operators (crossover and muta-
tion) that maintain diversity and best convergence of solu-
tions. Like most evolutionary algorithms, SPEA2 uses a set 
of solutions encoded as the chain of a chromosomic number 
in a generational approach. In each generation, all population 
members that are evaluated receive a fitness value. Better 
performance results in a high fitness value, and as such, a 
high probability is chosen to develop new generations using 
the chromosomes pairs crossing concept (Zitzler et al. 2001).

SPEA2 uses an external archive, including the previously 
identified non-dominated solutions, and is updated every 
generation. In the next step, a strength value is computed 
for each solution. Based on these strength values, the fitness 
of each individual is calculated. The fitness assignment strat-
egy of SPEA2 considers the number of individuals that an 
individual dominates and the number of its dominators. The 
algorithm also uses the nearest neighbor density approach 
and archive truncation method to maintain diversity and 
preserve the boundary solutions, respectively (Zitzler et al. 
2001).

3.3  Multi‑objective particle swarm optimization

Particle swarm optimization (PSO) (Eberhart and Kennedy 
1995; Kennedy and Eberhart 1995) was initially proposed 
as a simulation model based on studying the choreography 
of a bird flock for optimizing continuous nonlinear func-
tions. There are two definitions in the application of PSO: 
the individual best and the global best. In swarm optimiza-
tion, the particles search for the best solution based on their 
experience and the other particles within the same swarm. 
Then, each particle compares its fitness value at the current 
position to the best fitness value it had attained before. The 
best-known position, with the best fitness, for each particle, 
is pbest. The best position for the entire swarm is gbest. 
The ith particle velocity (vi) is updated for the k + 1 iteration 
according to the following equation

where w is a weight function, c1 and c2 are acceleration fac-
tors,  rand1 and  rand2 are random numbers ∈ [0, 1], and sik is 
the position of each particle. The weight function is

where wmax is the initial weight, wmin is the final weight, 
 itermax refers to the maximum iteration number, and iter is 
the current iteration number.

The new position of each particle is updated using the 
velocities as

A new multi-objective PSO (MOPSO) algorithm was 
introduced by Coello and Lechuga (2002). Optimization 
can be performed for more than one conflicting objective 
simultaneously. In the MOPSO algorithm, the swarm is 
initialized following the identification of a set of lead-
ers with the swarm's non-dominated particles. These are 
stored in a secondary repository of particles to guide 

(3)
vk+1i = wvki + c1rand1 ×

(

pbest i − ski
)

+ c2rand2 ×
(

gbest − ski
)

,

(4)w = wmax −
wmax − wmin

itermax

× iter,

(5)sk+1
i

= sk
i
+ vk+1

i
.

Table 1  Steel reinforcement properties for design variables R1 to R4 

Index number 
(η)

Reinforcement Total As  (cm2)

Quantity Bar size (mm)

1 3 10 2.356
2 4 10 3.141
3 3 12 3.392
4 5 10 3.926
5 4 12 4.523
⋮ ⋮ ⋮ ⋮
221 16 30 113.097
222 17 30 120.165
223 18 30 127.234
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particle flight (Sha and Lin 2010). A quality measure is 
computed for all leaders to select one leader for each par-
ticle of the swarm. A leader for each particle is selected, 
and the flight is performed for each generation. After per-
forming the flight, the MOPSO algorithm applies a muta-
tion operator to evaluate the particle and its corresponding 
personal best experience (pbest) is updated. A new particle 
replaces its pbest particle when this particle is dominated 
or if both are non-dominated with respect to each other. 
The set of leaders is updated once all the particles are 
updated. The quality measure for the leaders is then recal-
culated, and this process is repeated for a defined number 
of iterations.

3.4  Multi‑objective multi‑verse optimization

The multi-verse optimizer (MVO) is an optimization algo-
rithm developed by Mirjalili et al. (2017b) based on multi-
verse theory in astrophysics. It emulates the interplay among 
universes in the Big Bang theory and how they interact with 
each other through different types of holes, such as black, 
white, and wormholes.

The MVO computational process includes several iterations 
to send and receive objects (variable) to and from universes 
(solutions) based on their inflation rates (fitness values) through 
wormholes. This function helps the exploration and exploitation 
processes from becoming trapped in local optima. The math-
ematical representation of the MVO algorithm is described as

 where xj
i
 is the jth parameter of the ith universe; xj

k
 is the jth 

parameter of the kth universe chosen by roulette wheel selec-
tion; rm1 indicates a random value ∈ [0, 1]; xi represents the 
ith universe; and NI(xi) shows the normalized fitness value 
of the ith solution. The objects of the universes are updated 
using wormholes to improve the inflation rate, as follows

 where xj
i
 presents the jth parameter value of jth solution; xb

j
 

indicates the jth parameter of the best solution, lbj is the 
lower bound and ubj the upper bound of the jth variable, rm2 , 
rm3 , and rm4 are random numbers [0, 1], WEP and TDR 
represent adaptive variables. WEP is the wormhole existence 
probability and is employed to enhance exploitation. TDR 
is the traveling distance rate to allow objects to fly to the best 

(6)x
j

i
=

{
x
j

k
, if rm1 < NI(xi)

x
j

i
, otherwise

,

(7)x
j

i
=

⎧⎪⎨⎪⎩

�
xb
j
+ TDR ×

��
ubj − lbj

�
× rm4 + lbj

�
rm3

xb
j
− TDR ×

��
ubj − lbj

�
× rm4 + lbj

�
rm3 ≥ 0.5

rm2 < WEP

x
j

i
rm2 ≥ WEP

,

universe through a wormhole. The adaptive formulas for 
WEP and TDR coefficients are given as follows

 where iter is the given iteration, WEPmin and WEPmax are 
default values set to 0.2 and 1, respectively, and p is a default 
value set to 6 that shows the accuracy of the exploitation 
(Mirjalili et al. 2016).

4  Performance indices

In this paper, the performances of the algorithms are com-
pared using several standard measures. Previous studies have 
proposed various performance measures to evaluate various 
aspects (e.g., convergence and diversity) of a non-dominated 
solution set (Deb 2001). As explained in (Zitzler 1999; Zit-
zler et al. 2000; Azevedo and Araújo 2011), the performance 
indices quantify the convergence and diversity of final Pareto 
solutions in multi-objective problems. This study used the fol-
lowing three performance indices to compare different Pareto 
sets regarding the global Pareto set obtained from all sets.

4.1  Coverage set (CS)

The CS index, proposed by Zitzler et al. (2000), compares 
the non-dominated degrees of optimal solutions from different 
iterations. The values of CS (Xʹ, Xʺ) are in the range of 0–1. 
When CS is equal to 1, all Xʺ are dominated by or equal to Xʹ. 
To understand the exact non-dominated relationship between 
two different iterations, two cases of CS need to be analyzed: 
(Xʹ, Xʺ) and (Xʺ, Xʹ). The CS index is expressed as

(8)WEP = WEPmin + iter × (
WEPmax −WEPmin

itermax

)

(9)TDR = 1 −
iter

1∕p

itermax
1∕p

(10)CS
(
X�,X��

)
=

|||
{
a�� ∈ X��;∃a� ∈ X� ∶ a� ≥ a��

}|||
|X��|

where Xʹ and Xʺ are the optimal solutions from different 
iterations, and aʹ and aʺ are optimal solutions.

4.2  Diversity (DI)

The DI index, proposed by Zitzler (1999), evaluates the diver-
sity of optimal solutions from the multi-objective optimization 
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algorithm. It can be expressed using the minimum and maxi-
mum values of the objective function as

where Fmax
m

 and Fmin
m

 are the maximum and minimum val-
ues of Pareto fronts, respectively, fm is the mth value of 
the objective function, and M is the number of objective 
functions.

4.3  Hypervolume (HV)

The HV, defined by Zitzler and Thiele (1999), is a popular 
performance index that measures the proximity and diversity 
of a Pareto approximate front. Specifically, it measures the 
volume of the partition of the objective space bound between 
the Pareto approximate front and a reference point. The HV 
is a complete unary performance metric in terms of weak 
dominance relation; HV's solution is not weakly dominated 
by its opponent Zitzler and Thiele (1999). In this study, as 
Deb (2001) suggested, HV is calculated in the normalized 
objective space, where all results are normalized to be inside 
the unit hypercube [0, 1]m. Therefore, all normalized HV 
values (or simply NHV) are less than or equal to 1. Higher 
values of NHV are desirable, like the other two performance 
metrics. HV is calculated as

(11)DI =

√√√√√ 1

M

M∑
m=1

(
maxfm − minfm)

Fmax
m

− Fmin
m

)2

(12)HV =

|Q|∑
i=1

vi

where vi is a hypercube constructed using reference point W 
(found by constructing a vector of worst objective function 
values) at the ith solution, Q is the objective space (total 
search space), and W is the reference point that can simply 
be found by constructing a vector of worst objective func-
tion values. Therefore, HV is calculated using a union of all 
hypercubes.

5  Numerical simulation

This section examines the proposed algorithms' efficiency 
based on two case studies presented by Sarıbaş and Erbatur 
(1996). Example 1 considers the optimal design of a retain-
ing wall without a base shear key (Sarıbaş and Erbatur 
1996), and Example 2 includes the effects of a base shear 
key. Table 2 lists the parameter values for numerical exam-
ples, and Table 3 lists the boundary limitations of the design 
variables. ACI 318–05 (2005) requirements and discrete var-
iables for steel reinforcement are considered in the design. 
Both examples use two different sets of objective functions: 
(1) minimum cost and maximum FOS (cost-based design), 
and (2) minimum weight and maximum FOS (weight-based 
design). Under this contextual analysis, each optimization 
algorithm is run independently 50 times, with a population 
size of 50 for 1000 generations. The best non-dominated 
Pareto solution (true Pareto front) is obtained by huddling 
all the utilized algorithms' Pareto solutions.

In the same way, the best Pareto front for each algorithm 
is the set of non-dominated solutions from the 50 runs, 
which were then compared with the true Pareto front using 
performance indices CS, DI, and NHV. The CS index, the 

Table 2  Parameter values for 
Examples 1 and 2

Input parameters Symbol Value Unit

Example 1 Example 2

Height of stem H 3.0 4.5 m
Yield strength of reinforcing steel fy 400 400 MPa
Compressive strength of concrete fc 21 21 MPa
Concrete cover Cc 7 7 cm
Shrinkage and temperature reinforcement ratio ρst 0.002 0.002 -
Surcharge load q 20 30 kPa
Backfill slope β 10 0 °
Internal friction angle of retained soil ϕ 36 36 °
Internal friction angle of base soil ϕ’ 0 34 °
Unit weight of retained soil γs 17.5 17.5 kN/m3

Unit weight of base soil γs’ 18.5 18.5 kN/m3

Unit weight of concrete γc 23.5 23.5 kN/m3

Cohesion of base soil C 125 0 kPa
Depth of soil in front of the wall D 0.5 0.75 m
Cost of steel Cs 0.4 0.4 $/kg
Cost of concrete Cc 40 40 $/m3
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most important index of the multi-objective optimization 
solutions, was used to calculate the ratio of the number of 
non-dominated solutions obtained by a method to the num-
ber of Pareto solutions in the total set of solutions. The DI 
shows how well a method finds a widespread Pareto front. 
The NHV is calculated by the hypercube from the given 
objective functions to show the convergence aspect of the 
Pareto front. Also, basic statistical measures were computed 
(i.e., min, max, mean, standard deviation (STD)) along with 
a Friedman test with a 95% confidence level considering all 
50 runs.

5.1  Example 1: 3‑m tall retaining wall design 
without a base shear key

Figures 2 and 3 show the best aggregate Pareto fronts, result-
ing from 50 independent runs for each algorithm, for the 
cost-based and weight-based designs, respectively. Moreo-
ver, the true Pareto front is also depicted to better compare 
the algorithms’ performances. For the cost-based design, 
NSGA-II and SPEA2 have a more significant overlap with 
the true Pareto front, while MOPSO and MVO Pareto fronts 
were far from the true Pareto front. There is a negligible dif-
ference between the presented solutions and true Pareto for 
all algorithms for the weight-based design. 

The algorithms' performances were further evaluated 
using three measures, CS, DI, and NHV (see Fig. 4). The 
CS results in Fig. 4 confirm the observations in Figs. 2 and 
3 that NSGA-II and SPEA2 participate more than the other 
two algorithms in forming the true Pareto front in both cost-
based and weight-based designs. A comparison of NSGA-II 
and SPEA2 revealed that NSGA-II contributes more to the 
true Pareto than SPEA2. DI results suggest that SPEA2 is 

the better solver for the cost-based design, while NSGA-II 
is better for the weight-based design. NHV metrics indicate 
minor differences between these algorithms.

Tables 4, 5 and 6 list a statistical comparison of the pro-
posed performance measures (i.e., CS, DI, and NHV). In this 
way, the proposed indices are calculated for every run out of 
50 runs. The results are presented as min, mean, max, and 
standard deviation (STD) and ranked using the Friedman 
statistical test at a 95% significance level. The CS results, 
listed in Table 4, indicate that NSGA-II exhibited better per-
formance than the other algorithms due to its higher mean 
value. Also, the Friedman test results confirm the advan-
tage of NSGA-II over the other approaches. Based on the DI 

Table 3  Design variable boundary constraints for Examples 1 and 2 
(from Camp and Akin (2012))

Design 
vari-
ables

Unit Example 1 Example 2

Lower 
bound

Upper 
bound

Lower 
bound

Upper bound

X1 m 1.3090 2.3333 1.96 5.5
X2 m 0.4363 0.7777 0.65 1.16
X3 m 0.2000 0.3333 0.25 0.5
X4 m 0.2000 0.3333 0.25 0.5
X5 m 0.2722 0.3333 0.4 0.5
X6 m – – 1.96 5.5
X7 m – – 0.2 0.5
X8 m – – 0.2 0.5
R1 – 1 223 1 223
R2 – 1 223 1 223
R3 – 1 223 1 223
R4 – – – 1 223 Fig. 2  Pareto front comparison for the cost-based design of Example 

1

Fig. 3  Pareto front comparison for the weight-based design of Exam-
ple 1
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metric analysis listed in Table 5, the obtained mean values 
indicate that the SPEA2 algorithm dominated the other cost-
based design methods. The NHV test results of the cost-
based design, shown in Table 6, again confirm that NSGA-II 
outperformed the other algorithms.

Tables 7, 8 and 9 compare the proposed measures (i.e., 
CS, DI, and NHV) for weight-based designs. Results also 
exhibit the superior performance of NSGA-II over the 
other algorithms, like in the cost-based design. The CS and 
NHV results proposed NSGA-II as the best solver due to its 
lower mean values. The Friedman ranking scores were also 

consistent with this observation. However, for the DI metric, 
SPEA2 demonstrated better performance than NSGA-II.

5.2  Example 2: 4.5‑m tall retaining wall design 
with and without a base shear key

In Example 2, two cases are considered: one with a base 
shear key (Case I) and one without a base shear key (Case 
II). In this example, cohesionless soil is considered for the 
base. Tables 2 and 3 list values for parameters in this exam-
ple and the domains for the design variables. Figures 5 and 
6 show the best Pareto fronts of the utilized algorithms for 
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Fig. 4  Comparison of performance measures for Example 1

Table 4  CS values of the cost-based designs for Example 1

CS MOPSO NSGAII SPEA2 MVO

Min 0 0.072848 0.039735 0
Max 0.05298 0.675497 0.344371 0.02649
Mean 0.001987 0.136954 0.090464 0.001589
STD 0.008084 0.081728 0.041981 0.005054
Friedman rank 3.1 1 2 3.1

Table 5  DI values the cost-based designs for Example 1

DI MOPSO NSGA-II SPEA2 MVO

Min 0.745712 0.900899 0.930785 0.874225
Max 1.15339 0.909986 2.95404 1.219239
Mean 0.950427 0.906319 1.391317 0.962048
STD 0.083037 0.002049 0.531021 0.070583
Friedman rank 2.75 3.477273 1.25 2.522727

Table 6  NHV values of the cost-based designs for Example 1

NHV MOPSO NSGA-II SPEA2 MVO

Min 42.83728 68.98337 67.47319 63.5848
Max 69.46702 70.21706 69.52192 76.40606
Mean 62.79358 69.67386 68.88013 69.73618
STD 5.386051 0.254108 0.552678 2.88383
Friedman rank 3.892857 1.392857 2.607143 2.107143

Table 7  CS values of the weight-based designs for Example 1

CS MOPSO NSGA-II SPEA2 MVO

Min 0 0.007407 0.007407 0
Max 0.051852 0.733333 0.392593 0.259259
Mean 0.008741 0.074074 0.049333 0.030222
STD 0.010123 0.097305 0.05285 0.036102
Friedman rank 3.7 1.14 2 2.6
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cost-based and weight-based designs of Case I. Most of the 
solutions in the Pareto fronts of NSGA-II and SPEA2 are 
coincident with the true Pareto. Although all MOPSO’s 
results were not located on the true optimal solution set, 
they were very close (Fig. 7).

In contrast, most of MVO’s Pareto solutions were far from 
the true Pareto front. Figure 5 shows that SPEA2 and NSGA-
II had more contributions to the true Pareto fronts from the 
lower cost and FOS to intermediate cost and FOS for the 
cost-based design. However, MOPSO could find solutions 
in the true optimal Pareto front for the higher FOS and cost 
values. On the other hand, NSGA-II and SPEA2 were more 
involved in forming the true Pareto front for higher weight 

and FOS for the weight-based design. The MVO algorithm 
was effective for the lower cost and FOS solutions.

The comparison of the CS performance measure reflects 
the better performance of NSGA-II over the other algorithms 
for both cost-based and weight-based designs. The second-
best algorithm was SPEA2 based on the CS metric. As shown 
in Fig. 7, although MOPSO and MVO performed better than 
NSGA-II and SPEA2 in terms of diversity, their solutions did 
not cover the true Pareto front provided in Fig. 6. Moreover, 
SPEA2 resulted in more diverse solutions than NSGA-II for 
both cost-based and weight-based designs. Figure 7 also shows 
MOPSO and MVO as the best and second-best algorithms in 
terms of diversity and hyper volume. However, recorded better 
coverage for both cost and weight designs.

Tables 10, 11, 12, 13, 14 and 15 provide a statistical com-
parison of CS, DI, and NHV for cost-based and weight-based 
designs for Case I. The CS results for both cost-based and 
weight-based designs indicate NSGA-II and SPEA2 as the 
best and second-best methods, confirmed by Friedman test 
results. Based on this measure, these two algorithms play a 
more critical role in forming the true Pareto front. Although 
MVO and MOPSO were the better solvers considering DI 
and NHV measures, their performances are not satisfactory 
since they are far from the true Pareto front. Further com-
parison of NSGA-II and SPEA2 as the best optimizers based 
on CS measures proves that SPEA2 performs better with 
higher mean values of DI and NHV. The Friedman test rank-
ing results indicate MOPSO and MVO are the best solvers 
based on DI and NHV measures.     

A sensitivity analysis was conducted on the variation 
of the cost-based designs for the following parameters: (1) 
backfill soil slope, (2) base soil’s friction angle, and (3) sur-
charge load. Figures 8a–c present the sensitivity analysis 

Table 8  DI values of the weight -based designs for Example 1

DI MOPSO NSGA-II SPEA2 MVO

Min 0.943343 0.970709 0.947282 0.890416
Max 1.069722 1.010534 1.04477 1.026334
Mean 0.990945 0.984446 0.998352 0.974814
STD 0.023612 0.012098 0.01817 0.022988
Friedman rank 2.25 2.863636 1.704545 3.181818

Table 9  NHV values of the weight -based designs for Example 1

NHV MOPSO NSGA-II SPEA2 MVO

Min 0.082976 0.088529 0.087423 0.078086
Max 0.094875 0.093313 0.092672 0.093059
Mean 0.088059 0.090226 0.089384 0.08917
STD 0.002401 0.001435 0.001446 0.002351
Friedman rank 3.142857 1.571429 2.928571 2.285714

Fig. 5  Pareto front comparison for the cost-based design of Example 
2-Case I

Fig. 6  Pareto front comparison for the weight-based design of Exam-
ple 2-Case I
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Fig. 7  Comparison of DI measures for numerical simulations

Table 10  CS values of the cost-based designs for Example 2 (Case I)

CS MOPSO NSGA-II SPEA2 MVO

Min 0 0.055944 0.020979 0
Max 0.076923 0.811189 0.594406 0.13986
Mean 0.002238 0.238042 0.181958 0.017063
STD 0.010873 0.138482 0.110812 0.031435
Friedman rank 3.42 1.04 2.04 3

Table 11  DI values of the cost-based designs for Example 2 (Case I)

DI MOPSO NSGA-II SPEA2 MVO

Min 0.027597 0.461265 0.708702 0.544536
Max 1.35927 0.783306 1.444243 1.387263
Mean 0.995983 0.621469 0.898854 1.028522
STD 0.302235 0.083627 0.126839 0.186008
Friedman rank 1.75 3.875 2.55 1.825

Table 12  NHV values of the cost-based designs for Example 2 (Case 
I)

NHV MOPSO NSGA-II SPEA2 MVO

Min 0.105347 0.246328 0.245034 0.243297
Max 0.313575 0.272526 0.270078 0.321297
Mean 0.269526 0.253897 0.251761 0.280271
STD 0.036413 0.005721 0.00524 0.024699
Friedman rank 2.071429 2.571429 3.571429 1.714286

Table 13  CS values of the weight-based designs for Example 2 (Case 
I)

CS MOPSO NSGA-II SPEA2 MVO

Min 0 0 0 0
Max 0.007407 0.762963 0.474074 0.207407
Mean 0.000148 0.02237 0.014815 0.004593
STD 0.001037 0.106208 0.066204 0.029027
Friedman rank 1.96 1.02 1.28 1.94

Table 14  DI values of the weight-based designs for Example 2 (Case 
I)

DI MOPSO NSGA-II SPEA2 MVO

Min 0.384083 0.500607 0.802895 0.715858
Max 1.083038 0.856874 1.001166 1.081281
Mean 0.957371 0.691432 0.894992 0.942152
STD 0.157757 0.084455 0.050732 0.093038
Friedman rank 1.612903 3.83871 2.451613 2.096774

Table 15  NHV values of the weight-based designs for Example 2 
(Case I)

NHV MOPSO NSGA-II SPEA2 MVO

Min 0.234896 0.255354 0.25346 0.25932
Max 0.334012 0.315642 0.321269 0.335072
Mean 0.296541 0.269353 0.270501 0.311588
STD 0.027239 0.012983 0.014586 0.022558
Friedman rank 2.392857 2.75 3.285714 1.392857
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results of the cost-based design of Case I. Figure 8a dem-
onstrates that increasing β values from 5° to 25° resulted in 
more expensive design values and a right shift in the Pareto 
front towards higher costs. On the other hand, the decreas-
ing FOS resulted in a downward shift of the Pareto front. It 
can be seen that the inclination of the Pareto front decreases 
with increasing β values, meaning that for lower backfill 
slopes, we can get a higher factor of safeties by increasing 
the final cost rather than higher backfill slopes. Surcharge 
loads had the same effect as the backfill slope on the final 
design. Changing the surcharge load within the considered 
domain on the final cost was less intensive than the backfill 
slope. However, this effect caused a higher reduction in FOS 
for the surcharge load than the backfill slope. It can be seen 
the final cost varied in the lower domain, while FOS was 
higher than the ones for backfill soil slopes.

In contrast, Fig. 8b indicates the positive effect of the base 
soil’s friction angle on the final design, where increasing the 
ϕ values resulted in lower costs and higher FOSs. The Pareto 
fronts shrank for more intensive cases, which suggests that 
attaining the higher FOSs was much more expensive for 
highly intensive cases.

Figure 9 compares the extreme design points for this case 
study. The observation confirms that increasing β resulted in 
increased cost. In Fig. 9a, the minimum cost value of 172.78 
($/m) was obtained by NSGA-II, and MOPSO found a maxi-
mum of 308.92 ($/m). The variation in cost values was about 
78.79%. Moreover, these changes diminished FOSs by about 
48.88%. MOPSO achieved the maximum FOS of 48.51 
and a minimum of 24.8 (see Fig. 9b). Increasing ϕ from 
28° to 38° caused a decrease in cost and increased FOS. 
Figure 9c shows that the maximum cost value of 241.61 
($/m) is related to the MOPSO algorithm at ϕ equal to 28°, 
while NSGA-II obtained the minimum cost of 156.70 ($/m) 
at ϕ equal to 38°. Cost and FOS variations were 35.14% 
and 213.47%, respectively. Increasing the surcharge load 
resulted in a 55.19% increase in cost and a 64.05% decrease 
in FOS. the NSGA-II algorithm found the minimum FOS 
of 29.60 and the cost of 128.90 ($/m). MOPSO obtained 
the maximum FOS of 82.33 and the cost of 200.03 ($/m). 
In summary, FOS experienced the maximum variations by 
changing ϕ, and the most significant changes in cost were 
attributed to changing β.

Figures 10 and 11 present the Pareto fronts for each algo-
rithm for Case II's cost-based and weight-based designs. 
Most of the solutions on the true Pareto front were obtained 
by NSGA-II and SPEA2, similar to the previous examples. 
For Case II, MOPSO did not participate in forming the true 
optimal solution, while MVO did contribute to developing 
part of the true Pareto front. In particular, MVO was able 
to find more solutions on the true Pareto front in the area 
with lower FOS and lower cost for the cost-based designs. 
MVO successfully found more solutions coincident with the 

true Pareto front for weight-based designs. A comparison 
of Figs. 5 and 6 with Figs. 10 and 11 shows that adding a 
base shear key does not affect the final cost, weight, or FOS 
values on the Pareto fronts.

Comparing performance measures in Fig. 12 resulted in 
the same conclusion as the previous examples. Based on CS 
measures, NSGA-II outperformed the other algorithms, fol-
lowed by SPEA2; however, SPEA2 outperformance NSGA-
II in both cost-based and weight-based designs based on DI 
measures. There is no significant difference between these 
algorithms based on NHV values.

Tables 16, 17, 18, 19, 20 and 21 list a statistical com-
parison of CS, DI, and NHV for the Case II cost-based and 
weight-based designs. The CS results indicate that NSGA-
II and SPEA2 were the best algorithms because of their 
higher mean values for both designs, with NSGA-II exhib-
iting better performance. Considering the DI index, SPEA2 
performed better than NSGA-II, while NHV revealed no 
considerable difference between these algorithms.

Figures 8d–f display sensitivity analyses of the Pareto 
fronts for Case II cost-based designs and show similar results 
to those of Case I. In general, increasing β and q increased 
the cost designs, while FOS values decreased. An inverse 
trend was recorded by increasing ϕ values. It can be seen 
that the range of cost was maximized by changing β, while 
FOS varied most with changing q. The inclination of the 
Pareto front for lower β and q values was significant, mean-
ing that higher FOSs can be obtained by slightly increasing 
the final cost. However, these inclinations were reduced at 
higher β and q, where a moderate increase in FOS resulted 
in a higher cost. The Pareto fronts’ inclinations for ϕ are less 
than those for β and q, meaning choosing a higher FOS value 
results in higher costs compared to β and q.

Figure 13 compares extreme design points and shows 
the same trends as those for Case I. It can be observed that 
increasing β and q resulted in higher costs and lower FOSs, 
which was the opposite for ϕ variations. Increasing β from 
5° to 25° resulted in a 65.27% increase in the cost values 
and a 53.08% decrease in FOS values. MVO and MOPSO 
obtained the minimum cost of 171.09 ($/m) and FOS of 
23.23. MOPSO found the maximum cost of 282.78 ($/m) 
and FOS of 49.51. Cost values decreased by 27.19%, and 
FOS values increased by 125.88% by varying ϕ from 28° to 
38°. In this case scenario, the lowest cost of 158.51 ($/m) 
and FOS of 25.51 were obtained by MVO and MOPSO, 
respectively. MOPSO and SPEA2 obtained the highest cost 
of 217.72 ($/m) and FOS of 57.63. Varying q from 0 to 
50 (kPa) resulted in a 56.96% increase in cost values and a 
64.97% decrease in FOS values. The lowest cost of 130.04 
($/m) and FOS of 29.23 was obtained by MVO and MOPSO, 
respectively. Finally, the highest cost of 204.11 ($/m) and 
FOS of 83.46 was determined by MOPSO and NSGA-II, 
respectively.
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Fig. 8  Cost-based design sensitivity to a backfill slope, b base soil friction angle, and c surcharge load
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6  Summary and conclusions

In this study, four metaheuristic algorithms, including 
non-dominated sorting genetic algorithm II (NSGA-II), 

multi-objective particle swarm optimization (MOPSO), 
strength Pareto evolutionary algorithm II (SPEA2), and 
multi-objective multi-verse optimization (MVO), were uti-
lized for multi-objective optimization of retaining walls. 

Fig. 9  Comparison of the extreme design points for the cost-based design of Case I
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Two case studies were considered for two different designs 
with different sets of objectives: (1) minimum cost and max-
imum factor of safety (cost-based design), and (2) minimum 
weight and maximum factor of safety (weight-based design). 
Moreover, the effect of a base shear key on the final design 
was studied in the second example. This study aimed to (1) 
apply different multi-objective optimization methods to the 
design of a retaining wall, (2) provide an efficient compari-
son between the algorithms’ performances, (3) explore the 
effect of a base shear key on the final designs, and (4) con-
duct a sensitivity analysis on critical design parameters, i.e., 
surcharge load (q), base soil’s friction angel (ϕ), and backfill 
slope (β). The performances of the utilized algorithms were 
measured with three well-known indices: coverage set (CS), 
diversity (DI), and hypervolume (NHV).

Comparing the CS values indicated that the NSGA-II and 
SPEA2 had the most significant contribution in forming the 
true optimal Pareto front. Based on DI values, SPEA2 pro-
vided better performance. Also, observations indicate that 
CS and DI have inverse relations, whereby the algorithms 
with higher CS resulted in lower DI. Based on NHV meas-
ures, there were negligible differences between the algo-
rithms. While DI measure values for MOPSO and MVO 
were higher than those for NSGA-II and SPEA2, these meth-
ods did not significantly contribute to the true Pareto fronts.

Comparing the Pareto fronts for Case I and Case II of 
Example 2 shows little effect of the base shear key on cost 
and FOS. Sensitivity analysis demonstrated that decreas-
ing ϕ and increasing β and q resulted in increased cost, 
causing shrinkage in the Pareto front. The contraction of 
Pareto fronts in the retaining wall without a base shear key 
was much more significant than those with a base shear 
key. Moreover, for more intensive cases, the inclination 
of Pareto fronts was smaller, which further indicates that 
high FOSs required a significant increase in the final costs.

Fig. 10  Pareto front comparison for the cost-based design of Example 
2-Case II

Fig. 11  Pareto front comparison for the weight-based design of 
Example 2-Case II
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Fig. 12  Comparison of NHV measures for numerical simulations

Table 16  CS values for cost-based designs for Example 2 (Case II)

CS MOPSO NSGA-II SPEA2 MVO

Min 0 0.038835 0.019417 0
Max 0 0.941748 0.514563 0.058252
Mean 0 0.177282 0.127184 0.01165
STD 0 0.119458 0.069504 0.016704
Friedman rank 3.42 1 2 3

Table 17  DI values for cost-based designs for Example 2 (Case II)

DI MOPSO NSGA-II SPEA2 MVO

Min 0 0.586228 0.706534 0.477998
Max 1.313303 0.950737 1.358221 1.537728
Mean 0.8175 0.784649 0.950155 0.958777
STD 0.394283 0.086219 0.128496 0.266955
Friedman rank 2.384615 3.230769 2.153846 2.230769

Table 18  NHV values for cost-based designs for Example 2 (Case II)

NHV MOPSO NSGA-II SPEA2 MVO

Min 0.029955 0.251887 0.267848 0.329959
Max 0.3365 0.345768 0.34437 0.355047
Mean 0.280312 0.318917 0.317677 0.345141
STD 0.067605 0.018479 0.016153 0.006012
Friedman rank 3.785714 2.142857 2.821429 1.071429

Table 19  CS values for weight-based designs for Example 2 (Case II)

CS MOPSO NSGA-II SPEA2 MVO

Min 0 0 0 0
Max 0 0.593548 0.445161 0.264516
Mean 0 0.017548 0.012516 0.005548
STD 0 0.082551 0.062075 0.037017
Friedman rank 2 1 1.28 1.9

Table 20  DI values for weight-based designs for Example 2 (Case II)

DI MOPSO NSGA-II SPEA2 MVO

Min 0 0.641127 0.801433 0.782222
Max 1.070252 0.945235 1.004358 1.110663
Mean 0.703617 0.811018 0.926126 0.961678
STD 0.282253 0.082238 0.048824 0.070183
Friedman rank 3.105263 3.210526 2.105263 1.578947

Table 21  NHV values for weight-based designs for Example 2 (Case 
II)

NHV MOPSO NSGA-II SPEA2 MVO

Min 0.088823 0.272771 0.275661 0.337748
Max 0.359912 0.358022 0.356916 0.363611
Mean 0.316293 0.328966 0.335877 0.35694
STD 0.059365 0.019167 0.012972 0.004416
Friedman rank 2.75 3 2.892857 1.178571
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