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Abstract
Multi-fidelity optimization schemes enriching expensive high-fidelity functions with cheap-to-evaluate low-fidelity func-
tions have gained popularity in recent years. In the present work, an optimization scheme based on a hierarchical kriging 
is proposed for large-scale and highly non-linear crashworthiness problems. After comparison to other multi-fidelity tech-
niques an infill criterion called variable-fidelity expected improvement is applied and evaluated. This is complemented by 
two innovative techniques, a new approach regarding initial sampling and a novel way to generate the low-fidelity model for 
crash problems are suggested. For the former, a modified Latin hypercube sampling, pushing samples more towards design 
space boundaries, increases the quality of sampling selection. For the latter, a projection-based non-intrusive model order 
reduction technique accelerates and simplifies the low-fidelity model evaluation. The proposed techniques are investigated 
with two application problems from the field of automotive crashworthiness—a size optimization problem for lateral impact 
and a shape optimization problem for frontal impact. The use of a multi-fidelity scheme compared to baseline single-fidelity 
optimization saves computational effort while keeping an acceptable level of accuracy. Both suggested modifications, inde-
pendently and especially combined, increase computational performance and result quality in the presented examples.

Keywords Kriging · Efficient global optimization · Multi-fidelity optimization · Crashworthiness · Model order reduction · 
Isovolumetric Latin hypercube

1 Introduction

As computational power has increased exponentially in 
recent years, also Finite Element (FE) models reached a 
higher level of detail and complexity—e.g. modern day car 
models for crash simulations may contain more than ten mil-
lion elements. This balances out such that simulation times 
are not significantly decreasing. Especially in multi-query 
analysis such as optimization or robustness applications a 
high number of evaluations is required, which increases the 
computational effort to an infeasible level.

One possible remedy is the use of specifically designed 
optimization approaches such as Efficient Global Optimiza-
tion (EGO) that was first proposed by Jones et al. (1998). 

The idea is to build a surrogate model from an initial design 
of experiments (DoE) and adaptively improve it utilizing a 
so-called infill criterion (Jones 2001; Forrester and Keane 
2009). In this context, mostly kriging models (Krige 1951; 
Matheron 1963; Sacks et al. 1989) are exploited as surrogate 
models as their inherent error approximation features are 
especially beneficial.

More recently, these types of surrogate models were inte-
grated in a multi-fidelity scheme, whereby the high-fidelity 
FE-analysis is complemented with an additional low-fidelity 
model: The corresponding multi-fidelity kriging schemes 
can be categorized into two variants. One class of techniques 
considers correction-based methods, where a “bridge func-
tion” or “scaling function” models the differences between 
high- and low-fidelity models (Chang et al. 1993; Gano et al. 
2006; Han et al. 2013). The second type of multi-fidelity 
approaches are named cokriging. The idea of the latter is 
to enhance the low-fidelity surrogate model by utilizing the 
covariance matrix between low- and high-fidelity model. 
Originally proposed in the geostatistics community (Jour-
nel and Huijbregts 1978), this approach was extended to 
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computer experiments by Kennedy and O’Hagan (2000) 
and called KOH autoregressive model. Due to its success, 
numerous extensions and modifications have been added to 
cokriging since its introduction: Han et al. (2012) proposed 
an alternative approach for creation of the covariance matrix 
between low- and high-fidelity models. Moreover, Gratiet 
and Garnier (2014) reformulated the cokriging algorithm in 
a recursive manner to reduce computational complexity. An 
extension considering complex cross-correlations between 
varying fidelity models can be found in Perdikaris and Kar-
niadakis (2016). The present work is based on hierarchical 
kriging (HK), suggested by Han and Görtz (2012), whereby 
the low-fidelity surrogate model represents the trend term in 
the multi-fidelity predictor. It is beneficial in the context of 
multi-fidelity optimization as it provides better error estima-
tion capabilities compared to other cokriging models.

As surrogate models were adapted to multi-fidelity appli-
cations, so were infill criteria. A criterion named Augmented 
EI, capable of adaptively sampling low- and high-fidelity 
models by considering coefficients for cross-correlations and 
cost ratios between models was suggested by Huang et al. 
(2006). Moreover, Zhang et al. (2018a) proposed the vari-
able-fidelity expected improvement (VF-EI) criterion that 
implements a similar idea but with an analytical derivation 
and free from external coefficients. Therefore, the latter is 
used in the present work.

A common approach in multi-fidelity optimization is to 
combine FE models with varying levels of mesh sizes for 
high and low-fidelity models, such as realized by Zhang 
et al. (2018a) for an airfoil shape optimization. In combi-
nation with a cokriging adaptation presented by Gratiet 
and Garnier (2014), a hydrofoil shape optimization with 
varying mesh size levels was performed by Bonfiglio et al. 
(2018). Similar approaches are investigated in the applica-
tions of crashworthiness for honeycomb structures and sheet 
metal forming in Sun et al. (2010) and Sun et al. (2010), 
respectively. Alaimo et al. (2018) proposed a multi-fidelity 
approach where an adaptive functional principal component 
analysis (PCA) model is utilized with a simulated anneal-
ing (SA) algorithm applied to linear elastic structural topol-
ogy optimization. Anselma et al. (2020) published a multi-
fidelity scheme for the crashworthiness discipline inside a 
multidisciplinary optimization. The authors use analytical 
equations as a low-fidelity model and propose to only evalu-
ate the FE high-fidelity model if the former predicts infeasi-
ble results. Also a cokriging-based multi-fidelity version of 
EGO was exploited for inverse problems in haemodynamics 
(Perdikaris and Karniadakis 2016).

In automotive crashworthiness, optimization has been 
performed for many years (Redhe et al. 2004; Duddeck 2008; 
Hunkeler et al. 2013). More recently, multi-fidelity schemes 
have also been applied in this field (Sun et al. 2010). Acar 
et al. (2020) investigated a multi-fidelity optimization for a 

frontal impact problem of a bumper system with the multi-
fidelity surrogate modeling approach suggested by Zhang 
et al. (2018b). Results show that multi-fidelity approaches 
are capable of yielding significant time-savings while main-
taining acceptable accuracy. Other mechanics-based low-
fidelity models available for crashworthiness applications 
are listed in Lange et al. (2018). The authors begin with 
lumped mass-spring models and subsequently motivate 
the introduction of the so-called component solution space 
approach that can be applied in early phase component 
development for crashworthiness analyses.

Recently, model order reduction (MOR) techniques 
have been introduced also for non-linear problems (Guo 
and Hesthaven 2017; Swischuk et al. 2019) and applied 
in crashworthiness (Kneifl et al. 2021). The non-intrusive 
approaches are based on the results of training simulations—
here named snapshots—which are utilized to compute a 
reduced subspace. In addition, a regression model is trained 
that combines the basis vectors of the subspace to represent 
the physical behavior of the system (Guo and Hesthaven 
2019). The non-intrusive MOR has been integrated into 
a multi-fidelity training scheme by Kast et al. (2020) and 
related projection-based approaches for crashworthiness 
applications and optimization have been conducted (Le 
Guennec et al. 2018; Assou et al. 2019; Gstalter et al. 2020; 
Ren et al. 2020). A summary of recent developments in the 
field of non-intrusive MOR is presented in Yu et al. (2019) 
for fluid mechanics application. Moreover, principal compo-
nent-based surrogate models can also be found in the field of 
structural topology optimization (Alaimo et al. 2018; Xiao 
et al. 2020; Choi et al. 2019).

In the present work we aim to develop enhanced multi-
fidelity optimization schemes in crashworthiness applica-
tions. To that end, we propose to integrate an incremental 
projection-based MOR approach as low-fidelity model into 
a multi-fidelity EGO algorithm. In a second step to reduce 
computational effort, our recently developed isovolumetric 
sampling approach placing samples closer to design space 
boundaries is adapted (Kaps et al. 2021). When assessing 
algorithm performance, two main criteria can be established. 
The primary goal is to find an optimization approach with 
reduced computational effort produced by the high number 
of expensive evaluations of the objective function during 
the optimization. Secondly, an acceptable level of accuracy 
must be maintained; i.e. a multi-fidelity optimization scheme 
should not lead to inferior results compared to an optimiza-
tion based using only high-fidelity simulations.

This work is structured as follows. Initially, the novel 
design of experiments approach is introduced in Sect. 2, 
followed by the optimization scheme based on HK and 
VF-EI in Sect. 3. The MOR approach used for low-fidelity 
model generations is presented in Sect. 4. Subsequently, 
the proposed optimization scheme and its implementation 
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are explained in Sect. 5. The performance of the complete 
set of methods is illustrated by a lateral impact example 
and a crashbox design problem in Sect. 6, and final results 
are summarized together with an outlook into future work 
in Sect. 7.

2  Isovolumetric design of experiments

The first step of any population-based optimization is to 
determine an initial set of sample points by means of DoE. 
Covering the full design space with a small amount of 
samples is the general aim. As there is no unique criterion 
for this vaguely formulated goal, DoE is still an active 
field of research. An overview of popular criteria and 
approaches is given in Garud et al. (2017).

In the present work, a modified optimal Latin hypercube 
(OLH) approach is used. The standard construction of a 
Latin hypercube design (LHD) for N samples in d dimen-
sions is described in the following. In each dimension the 
space is divided into N strata of equal probability, i.e. the 
design space then consists of Nd cells. Randomly, N cells 
are selected such that each stratum of a dimension may 
only contain a single sample. Each sample can be placed in 
the center of its cell or randomly located within it (Rajabi 
et al. 2015), whereby the centered case is considered in 
the present work.

Initial Latin hypercube samples are incrementally opti-
mized with a Simulated Annealing algorithm that con-
sists of random pairwise- and coordinate-wise swaps. In an 
iterative process new samples are accepted if they improve 
a space-filling criterion or accepted with a certain prob-
ability if they do not bring an improvement (Morris and 
Mitchell 1995). Other approaches with deterministic sam-
ple selection, e.g. (Ye et al. 2000) or more elaborate opti-
mization schemes such as the Enhanced Stochastic Evo-
lutionary algorithm (Jin et al. 2003) have been suggested.

Recently, we proposed an adaptation to Latin hypercube 
sampling, named isovolumetric LHD, that places samples 
closer to design space boundaries (Kaps et al. 2021). The 
idea is to rethink the uniform strata that are created in each 
coordinate dimension for standard Latin hypercube sam-
pling as nested hypervolume shells in the design space. 
These are created as shown with the colored regions in 
Fig. 1. Here, all shells are required to have identical vol-
ume, which is especially advantageous for higher dimen-
sions, i.e. higher number of design variables. Applying 
this condition to a d-dimensional unit hypercube, with 
strata boundaries pi =

i

N
 and sizes aj =

1

N
 for standard 

LHS, yields the following new equations

Here, N is the number of samples to be drawn and Nv =
N

2
 

the number of nested hypervolume shells. An exemplary 
isovolumetric Latin hypercube design for six samples in 
two dimensions is depicted in Fig. 1. The adaptation is easy 
to implement and does not increase computational require-
ments; however, it has been shown to increase the quality 
of DoEs in popular space-filling criteria such as potential 
energy (Audze and Eglais 1977) in mid- to high-dimensional 
situations, i.e. five and more dimensions (Kaps et al. 2021). 
One expected advantage in the current application is that 
training points associated to the surrogate models are closer 
to the design space boundaries. Thereby, the prediction of 
surrogate models will be more based on interpolation of 
samples as opposed to extrapolation.

This approach, named optimal isovolumetric Latin hyper-
cube (OIVLH), is transferred to the context of optimization 
in crashworthiness applications in the present work.

3  Multi‑fidelity efficient global optimization

In the following, a multi-fidelity EGO approach is intro-
duced. In general, EGO techniques are based on kriging 
models, which have first been introduced by (Krige 1951; 

(1)

pi =

⎧⎪⎨⎪⎩

0.5

�
1 −

�
Nv+1−i

Nv

�1∕d
�
, i ∈ {1, 2, ...,Nv}

0.5

�
1 +

�
i−(Nv+1)

Nv

�1∕d
�
, i ∈ {Nv + 1, ...,N + 1}

(2)aj = pj+1 − pj, j ∈ {1, 2, ...,N}.

Fig. 1  Exemplary design of experiments for the isovolumetric Latin 
hypercube adaptation for six samples in two dimensions. Differently 
colored regions have the same area. (Kaps et al. 2021)
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Matheron 1963; Sacks et  al. 1989) and are nowadays a 
popular choice for surrogate models. The idea of adaptively 
improving an initially created kriging model by means of an 
infill criterion was proposed by Jones et al. (1998). Common 
early variants of the approach are compared in Jones (2001).

Over the years, many surrogate models of variable 
fidelity have been suggested. Overviews can be found for 
example in Forrester et al. (2007) or Park et al. (2016). 
In the present work, hierarchical kriging is applied as the 
approach has been shown to yield better error estimations 
than other cokriging methods (Han and Görtz 2012). The 
relevant aspects of creating an HK model are summarized 
below, readers are referred to the original publication for 
detailed derivations (Han and Görtz 2012).

The idea is to first create a kriging model of the low-
fidelity function that is subsequently used in the hierarchical 
kriging model for high-fidelity prediction. Based on these 
surrogate models, new sample points can be evaluated. The 
models are then adaptively improved. To that end, an infill 
criterion is introduced that can be maximized to determine 
the best location and fidelity level for a new adaptive sample.

Following, all steps of the outlined process are 
explained in details. The low-fidelity function is repre-
sented by a normal kriging model. Consider a random 
process for the low-fidelity (LF) function

with �0,lf  an unknown constant and Zlf (x) a stationary 
random process. For a d-dimensional problem, the low-
fidelity kriging model is based on a set of sampling data 
(Slf , yS,lf ) consisting of mlf  samples with input variable data 
Slf ∈ ℝ

mlf×d and corresponding output yS,lf ∈ ℝ
mlf .

To be able to construct the kriging predictor for new 
points, a correlation function, also named kernel, is needed 
to model the correlation between given sample points and 
new points. An overview of popular choices is for example 
given in Rasmussen and Williams (2005). In the present 
work, a squared-exponential kernel, also called Gaussian 
radial-basis function (RBF) kernel is utilized due to its 
smoothness and infinite differentiability:

Here, �k denotes the kernel length scale. The kernel is called 
anisotropic, if there is a separate length scale for each design 
space dimension as in the equation above. In the present 
work, an isotropic kernel is chosen, where the hyperpa-
rameter �k = � is a scalar, i.e. independent of coordinate 
dimension. In fact, many different RBF kernels with similar 
properties than the Gaussian kernel exist. The focus in the 
present work lies solely on the latter for the sake of clarity.

(3)Ylf (x) = �0,lf + Zlf (x),

(4)R(x(i), x(j)) =

d∏
k=1

exp
(
−�k|x(i)k − x

(j)

k
|2
)
.

The low-fidelity predictor for a new point x can then be 
written as

where rlf  is the correlation vector between the sample data 
and the new point, Rlf ∈ ℝ

mlf×mlf  the correlation matrix 
representing correlation between sample data points and 
1 ∈ ℝ

mlf  a column vector filled with ones.
Following the calculation of the initial sample data set, 

the kriging model is fitted by separately optimizing the ker-
nel hyperparameter � . Differential evolution (Storn and Price 
1997) is selected for the optimization of the hyperparameters 
in the present work due to its simplicity and its good global 
search characteristics. More on hyperparameter optimiza-
tions can be found in Toal et al. (2008).

Next, the hierarchical kriging model can be constructed 
including the predictor of the low-fidelity model. Therefore, 
consider a random process corresponding to the high-fidelity 
function

Here, the low-fidelity predictor scaled by an unknown con-
stant �0 is a trend term and Z(x) is a stationary random pro-
cess. Given a d-dimensional sampling data set (S, yS) con-
taining m samples with input variable data S ∈ ℝ

m×d and 
corresponding output yS ∈ ℝ

m , the HK predictor for the 
high-fidelity function can be written as

where �0 is a scaling factor indicating the correla-
tion between high- and low-fidelity functions and 
F = [ŷlf (x

(1))...ŷlf (x
(n))]T ,∀x(i) ∈ S represents the low-fidel-

ity prediction at high-fidelity sample points. r ∈ ℝ
m and 

R ∈ ℝ
m×d are defined the same way as for the low-fidelity 

predictor above. The factor R−1(yS − �0F) , named VHK in the 
original publication, does not depend on the untried point x 
and can thus be calculated at model fitting time. The mean 
squared error (MSE) of the HK prediction is given with �2 , 
the process variance of Z(x)

Once the initial HK model is built, it is adaptively improved 
using an infill criterion to determine the ideal position of 
new samples. In multi-fidelity applications two options 
exist: a ‘classic’ single-fidelity infill criterion or a multi-
fidelity criterion. Among the former, expected improvement 

(5)

ŷlf (x) = 𝛽0,lf + rT
lf
(x)R−1

lf
(yS,lf − 𝛽0,lf 1),

with 𝛽0,lf = (1TR−1
lf
1)−11TR−1

lf
yS,lf ,

and rlf = [R(x, x(1)), ...,R(x, x(m))] ∈ ℝ
mlf

(6)Y(x) = 𝛽0ŷlf (x) + Z(x).

(7)
ŷ(x) = 𝛽0ŷlf (x) + rT (x)R−1(yS − 𝛽0F)

with 𝛽0 = (FTR−1F)−1FTR−1yS,

(8)
MSE(ŷ(x)) = 𝜎2(1.0 − rTR−1r +

[
rTR−1

F − ŷlf
]2(

F
T
R
−1
F
)−1

).
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(Jones et al. 1998) is the most popular method. The inter-
ested reader is referred to Jones (2001) for other common 
techniques. The disadvantage of a single-fidelity criterion is 
that only high-fidelity samples can be considered adaptively. 
Hence, they are not further discussed here. In the present 
work, the so-called variable-fidelity expected improvement 
criterion (Zhang et al. 2018a) is utilized. It is defined at loca-
tion x and fidelity level L as

where u =
ymin−ŷ(x)

s(x,L)
 and ymin as the currently best observed 

feasible high-fidelity function value. The term s(x, L) denotes 
the uncertainty of the HK model. The previously introduced 
scaling factor between fidelity levels �0 is used here to model 
the uncertainty in high-fidelity prediction caused by the low-
fidelity predictor

Here, MSE(ŷ(x)) and MSE(ŷlf (x)) are the MSEs of the high- 
and low-fidelity kriging predictors, respectively. �(∙) and 
�(∙) in Eq. (9) represent the cumulative distribution and 
probability density functions of the standard normal distri-
bution, respectively. The two summands in Eq. (9) can be 
identified with exploration and exploitation. The first term (
ymin − ŷ(x)

)
𝛷(u) is dominated by improving the solution 

ŷ(x) and thus represents exploitation, while the second term 
s(x, L)�(u) represents exploration because it is dominated by 
the solution uncertainty s(x, L).

Due to the highly multi-modal nature of the EI functions, 
differential evolution (Storn and Price 1997) is selected for 
optimization of the infill criterion in the present work.

Notably, the VF-EI formulation is similar to the original 
EI definition (Jones et al. 1998); however, in addition the 
dependency on the fidelity level is introduced. In terms of 
multi-fidelity optimization the VF-EI criterion is comparable 
to the augmented EI criterion proposed by Huang et al. (2006). 
Both describe the expected improvement of the high-fidelity 
function with respect to adaptive samples on both fidelity lev-
els. To that end, augmented EI contains two factors that are 
multiplied with a standard EI for the high-fidelity function. A 
more detailed discussion about the differences between VF-EI 
and augmented EI can be found in Zhang et al. (2018a). Here, 
we use VF-EI as it is free of empirical parameters and is as 
such more intuitive.

(9)EIvf (x, L) =

{
s(x,L)[u𝛷(u) + 𝜙(u)], if s(x,L) > 0

0, if s(x, L) = 0
,

(10)s2(x, L) =

{
𝛽2
0
⋅MSE(ŷlf (x)), L = 0 low-fidelity

MSE(ŷ(x)), L = 1 high-fidelity
.

4  Model order reduction

The proposed multi-fidelity approach exploits a data-driven 
model order reduction (MOR) technique to create the low-
fidelity model. As an analytical simplification is not avail-
able for non-linear problems, a data-driven approach is 
commonly used (Sirovich 1987). Therefore, an online and 
offline phase are introduced, whereby the offline phase can 
be understood as the counter part to the DoE. In particu-
lar, the surrogate model is created during the offline, also 
called training phase. Afterwards the simplified model can 
be evaluated for multi-fidelity analysis in the online phase.

4.1  Training phase

Within the training phase, a set of full order simulations 
is created, whereby all resultants are stored as snapshots 
xi ∈ ℝ

N with N degrees of freedom. Combining the training 
simulations to a so-called snapshot matrix A ∈ ℝ

N×n , with n 
the number of collected snapshots, a reduced subspace and 
its projection matrix can be computed. Through the Sin-
gular Value Decomposition (SVD), also referred to as thin 
SVD (Golub and Van Loan 2013) the snapshot matrix A can 
be represented by the left-singular vectors U ∈ ℝ

N×n , the 
diagonal matrix Σ ∈ ℝ

n×n containing non-negative singular 
values �i in descending order and the right-singular matrix 
Z ∈ ℝ

n×n . Thus, the columns of the matrix U are the eigen-
vectors of AAT.

Moreover, the matrix A is approximated by truncating its 
parts to a rank k ≤ n,m , such that Uk ∈ ℝ

N×k , Σk ∈ ℝ
k×k and 

Zk ∈ ℝ
k×N , respectively. To define the reduced basis of the 

subspace, V ∶= Uk ∈ ℝ
N×k is further utilized as the projec-

tion matrix. In practice, the optimal rank k is not known 
beforehand and k = min k̃ with

can be found for an error threshold � . In other words, the 
matrices are truncated by k̃ such that an energy cutoff ratio 
� is maintained:

For large-scale matrices the evaluation of the full SVD is 
cost intensive as its complexity is in the range O(n2) with n 
as the number of snapshots. Therefore, multiple approaches 
(Bach et  al. 2019; Phalippou et  al. 2020) to efficiently 

(11)A = UΣZT ≈ UkΣkZ
T
k
= VΣkZ

T
k
.

(12)
‖A − Uk̃Σk̃Z

T

k̃
‖F

‖A‖F =

����
∑k

i=k̃+1
𝜎2
i∑k

i=1
𝜎2
i

≤ 𝜖

(13)� =

∑k

i=1
�2
i∑n

i=1
�2
i

.
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compute the truncated projection matrix, such as randomized 
or incremental SVD techniques, e.g. (Oxberry et al. 2017), 
can be applied. Here, an incremental SVD algorithm (Baker 
et al. 2012)1 is utilized. To save computational resources, 
the snapshot matrix A is built up incrementally. Therefore, 
A is divided into batches, which are added to the projection 
matrix V . The SVD is computed within every iteration via 
QR decomposition and its truncation rank k is evaluated. 
The batch is added to the global V and Σ before the algo-
rithm steps into the next iteration with new snapshots. Read-
ers are referred to Baker et al. (2012) for a detailed algorithm 
description. In summary, a complexity of O(mnk) with m full 
order unknowns can be reached.

After the construction of the reduced subspace a regres-
sion or interpolation approach is introduced. The meta-
model represents the unknown in the reduced space and is 
therefore restricted to the physical solution spanned in the 
subspace. In addition, the number of unknowns n is dras-
tically reduced, as k << n . Within this work the k-nearest 
neighbor (kNN) approach is utilized as an interpolation 
technique, but any other machine learning approach such as 
polynomial regression function, Gaussian process regression 
or neural networks could be used (Swischuk et al. 2019). 
k-nearest neighbor is mainly known as a classification tech-
nique, but can also be applied as a regression model. The 
function y = f (x) is interpolated by the k-nearest neighbors 
of x as shown in Fig. 2 for a one-dimensional example. Here, 
three neighbors of x and their distances are evaluated to esti-
mate f(x).

4.2  Online phase

After the construction of the low-fidelity model is com-
pleted, it is evaluated in the online phase. Recalling the 
truncated singular value decomposition, the columns of the 
matrix V ∈ ℝ

N×k can be interpreted as the basis vectors v of 
the subspace.

The full displacement vector is estimated by the linear 
combination of the basis vectors v , whereby every basis is 
weighted by a scalar value �i.

The kNN approach provides an estimation for each �i , the 
degrees of freedoms of the subspace.

5  Proposed optimization scheme

In the present work the performance of multi-fidelity opti-
mization schemes in crashworthiness applications is investi-
gated. To that end, a multi-fidelity optimization method that 
integrates a non-intrusive reduced order model into the hier-
archical kriging surrogate is proposed. The schematic pro-
cess of this approach is shown in Fig. 3 following the base-
line multi-fidelity scheme proposed by Zhang et al. (2018a). 
Initially, DoE is performed as described in Sect. 2 on both, 
the high- and the low-fidelity level separately, usually gen-
erating significantly more low- than high-fidelity samples. 
OLH and OIVLH are both applied in the present work, to 
assess the impact on optimization performance. All high-
fidelity samples are then calculated. For memory efficiency, 
a reduced order model is incrementally created during the 
high-fidelity evaluations as introduced in Sect. 4. Following 
all initial high-fidelity simulations and as the main adapta-
tion to the originally proposed scheme, the reduced basis is 
evaluated and the k-nearest neighbor regression model is 
trained for predictions. The reduced order model is evalu-
ated on the initially created low-fidelity DoE points. From 
the results, the initial low-fidelity kriging model and subse-
quently the hierarchical kriging model are fitted. For adap-
tive improvement, the infill criterion (i.e. VF-EI) is maxi-
mized separately on both fidelity levels. Depending on which 
level yields the better results the next adaptive sample can 
be either low-fidelity (L=0 in Fig. 3) or high-fidelity (L=1). 
The objective function is evaluated for the respective new 
adaptive sample and the kriging model(s) are updated. Then, 
another infill criterion optimization is started and the itera-
tive improvement continues.

(14)V =
[
v
1
v
2
⋯ vk

]

(15)x ≈

k∑
i=1

vi�i

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0
y
=

f(
x)

Data
k = 3 Neighbors
Predicted Value

Fig. 2  One-dimensional example of regression based on k-nearest 
neighbors with k = 3. The ‘X’ marks the prediction at x = 0.5 accord-
ing to the three nearest previously known points marked with black 
dots

1 Implemented in IncPACK library.
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Three different criteria determine the termination of 
the algorithm. First, a minimum allowable value for the 
maximized infill criterion is specified (here ICth = 10−5 ). 
Second, a maximum number of high-fidelity evaluations 
is specified. Third, a maximum total number of objec-
tive evaluations can be specified, which in single-fidelity 
optimizations is equivalent to the second criterion. Val-
ues specified for the criteria are given in Sect. 6 with the 
respective examples. The first criterion can be interpreted 
as convergence of the algorithm to an optimal point with 
little improvement possibilities. The other two criteria 
are used to represent time restrictions on the optimization 
runs, i.e. an estimation of the maximum run time.

The proposed scheme is implemented in an in-house 
Python code. The DoE part of the algorithm is based on 
Kaps et al. (2021). The implementation of the incremental 
SVD technique in the present work is adjusted from Baker 
et al. (2012) and Bach et al. (2019). HK model generation 
and kernel implementation are based on the scikit-learn 
library in Python (Pedregosa et al. 2011).

6  Crashworthiness application problems

In the following, the presented optimization scheme is 
compared to a baseline multi-fidelity scheme proposed by 
Zhang et al. (2018a) as well as a single-fidelity scheme based 
on a high-fidelity model and EI. Additionally, each of the 
techniques is assessed with a standard OLH sampling as 
well as the OIVLH method that places samples closer to 
design space boundaries. These overall six approaches are 
each evaluated for two crashworthiness problems in terms 
of result quality and computational requirements. Each opti-
mization run is repeated ten times to ensure reliability of 
the assessment. An overview of the compared methods and 
nomenclature is given in Table 1. All analyses are performed 
on the identical hardware using the explicit finite element 
software LS-Dyna in its MPP version distributed on eight 
cores. All objective function values referred to below are 
based on the high-fidelity model unless explicitly stated 
otherwise.

6.1  Side sill impact problem

The initial problem is a crash model representing the side sill 
of a car under side pole impact as depicted in Fig. 4. Both 
ends of the side sill are fixed, and the pole represented by 
a cylindrical rigid body with radius 35mm has a prescribed 
initial velocity of 36 km/h and a mass of 86 kg. Further 
modeling information as well as all material parameters are 
summarized in “Appendix A”. The simulation is terminated 
when the impactor stops or—as a backup—after 40 ms.

The design variables of the optimization problem are the 
thicknesses ti of the five horizontal reinforcement ribs in the 
interior of the side sill (compare detail in Fig. 4). The objec-
tive is to minimize the mass of the side sill, i.e. the mass of 
the horizontal ribs, while keeping the lateral intrusion below 
uallow = 50 mm. Applying the penalty method with a penalty 
factor p = 3.75 , the deformation constraint is included into 
the objective function. The complete optimization problem 
can then be formulated as 

Fig. 3  Schematic representation of the proposed optimization scheme 
to integrate reduced order model (ROM) into a multi-fidelity optimi-
zation based on hierarchical kriging and variable-fidelity expected 
improvement (compare Fig. 2 in Zhang et al. (2018a)). The main dif-
ference to the originally proposed scheme is the utilization of initial 
high-fidelity sample data for ROM creation (marked by the grey box). 
Not shown is the varying method of the design of experiment per-
formed in the present work

Table 1  Overview of different optimization schemes applied in the 
following crashworthiness examples. All techniques are referred to by 
the abbreviation given in the first column

Method DoE LF Surr. Infill
Name Method Model Model Crit.

SF (base) OLH – Kriging EI
SF + OIVLH OIVLH – Kriging EI
MF (base) OLH Coarse FE HK VF-EI
MF + OIVLH OIVLH Coarse FE HK VF-EI
MF (MOR) OLH ROM HK VF-EI
MF (MOR) + OIVLH OIVLH ROM HK VF-EI
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The model depicted in Fig. 4 represents the high-fidelity 

model with an element size of approximately 5mm in each 
direction. For comparison, the low-fidelity model with the 
element size doubled to 10mm is depicted in “Appendix 
A”. Thus, the speed-up factor of the low-fidelity model is 
about five to six. The number of initial high-fidelity samples 
for the single-fidelity case is set to 50. For all multi-fidelity 
approaches, the number of initial samples is 20 and 120 for 
high- and low-fidelity models, respectively. In this example, 
the only termination criterion specified is a threshold value 
for the respective infill criterion, i.e. EI for SF methods and 
VF-EI for MF methods, of ICth = 10−5.

The reduced order model is constructed with 20 train-
ing simulations sampled by the respective method. With 
the truncation energy of � = 0.9999 a subspace containing 
approximately k = 4 basis vectors is computed. Moreo-
ver, the kNN regressor using 5 neighbors is trained for the 
unknowns in the reduced subspace. Eventually, a single 
evaluation of the reduced order model has a speed-up factor 
of 150 in comparison to the high-fidelity simulation.

In Fig.  5, optimization results for the six different 
approaches are compared with a parallel coordinates plot. 
On the x-axes all five design variables are listed while the 
y-axes represent their normalized ranges. Each curve illus-
trates an optimized design, whereby the color indicates the 
respective objective function value. The problem seems to 

(16a)min
t

f (t) = mribs + p ⋅max(c(t), 0), with p = 3.75,

(16b)subj. to c(t) =
umax

uallow
− 1 ≤ 0, uallow = 50mm,

(16c)where 0.5mm ≤ ti ≤ 3.0mm, i = 1, ..., 5.

have a clear global optimum with t1 = t3 = t5 = 3.0 mm and 
t2 = t4 = 0.5mm. Distributing three horizontal ribs with the 
maximum allowable thickness across the whole height of 
the component and having the two ribs in between vanish 
results in the best compromise between low weight and suf-
ficiently low impactor intrusion. The respective objective 
value f (t) = 1.898 is found in the majority of single-fidelity 
and MF (MOR) repetitions independent of the chosen DoE 
method. For this set of input variables, the maximum impac-
tor displacement of the high-fidelity model is umax = 50.6

mm. The specified constraint uallow = 50 mm is violated by 
1.2%, which is considered acceptable in this exemplary 
problem. All compared results have a similar level of con-
straint violation, which is not further investigated to focus 
on the multi-fidelity optimization itself.

Individual results for single-fidelity, i.e. high-fidelity, 
EGO show a low variation for different DoE methods and the 
majority of repetitions terminate at the global optimum. For 
MF (base) and MF + OIVLH, results vary quite significantly 
and only three of the overall 20 runs converge to the global 
optimum. Many of the evaluations terminate at points rather 
close to the global optimum so that the objective function 
value is only a few percents of the optimal value. Notably, 
more MF + OIVLH analyses get close to the global optimum 
than MF (base). The MF (MOR) approaches yield more con-
sistent results than MF (base) and MF + OIVLH, converg-
ing to the optimum for a total of 14 out of 20 assessments 
across both DoE methods, with two more runs being very 
close to the optimum. Overall, the OIVLH-based approaches 
yield a higher consistency within the multi-fidelity schemes. 
OIVLH places samples significantly closer to design space 
boundaries. Therefore, the reduced order low-fidelity model 
being created from the high-fidelity samples is based more 
on interpolation between samples than on extrapolation.

In a further step, the quality of the two varying types of 
low-fidelity models is assessed. To that end, the low-fidelity 

Fig. 4  Side sill impact problem: Both ends of the component are 
fixed and the impactor represented by a cylindrical rigid body has a 
prescribed velocity and mass. Detail in the bottom right shows the 
five design variables of the optimization

Fig. 5  Side sill impact problem: Parallel coordinates plot comparing 
results of ten repetitions for six different approaches. Design variable 
values on the y-axis are normalized. The color scale indicates objec-
tive value of the respective results (lower is better)
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models are evaluated at the respective determined optimum. 
The maximum displacement of the impactor dmax is con-
sidered as a metric to compare high- (HF) and low-fidelity 
(LF) models. This metric is chosen as it directly represents 
the constraint and—because the mass of the component can 
analytically be calculated from the given design variables—
it also implies the objective function of the optimization 
problem. As such it estimates the accuracy of the low-fidel-
ity models in the present example. The error metrics are 
defined as

for the absolute difference eabs and the relative difference erel 
between fidelity levels, respectively. Results for all methods 
are listed in Table 2. Each of the listed values represents 
the mean value of ten evaluations. For MF (base) and MF 
+ OIVLH the low-fidelity model is identical for all evalu-
ations, while for the MOR based methods, the low-fidelity 
model depends on the initial high-fidelity samples (compare 
Fig. 3). Both types of low-fidelity models approximate the 
(maximum) impactor displacement sufficiently well with an 
error of 4-6% . The error indicators for the reduced order low-
fidelity models are slightly better, i.e. lower, compared to 
those of the coarse simulation models. For the latter, the use 
of OIVLH sampling does not significantly impact the low-
fidelity result quality. However, for MF (MOR) + OIVLH 
the low-fidelity model is slightly more accurate than for 
MF (MOR) which may explain the performance difference 
between the two methods. It also indicates that the increased 
interpolation share for OIVLH sampling can in fact increase 
the ROM quality.

Keeping in mind the quality of the results, the computa-
tional requirements for all approaches are evaluated. Average 
run times along with their respective standard deviations are 
listed in Fig. 6 for all techniques. The larger standard devia-
tions for SF (base) and SF + OIVLH compared to the other 
four methods are explained by a single outlier in each of the 

(17)eabs = |dmax,hf − dmax,lf |,

(18)erel =
|dmax,hf − dmax,lf |

|dmax,hf | ,

methods. In both cases, the algorithm finds the global opti-
mum in a reasonable number of iterations but then requires 
many adaptive samples to reach the specified termination 
criterion. So both outliers can be explained by the somewhat 
unrealistic definition of termination criterion here, where no 
maximum allowed number of iterations was specified. As 
the standard deviations in all methods are similar apart from 
that, the following comparisons are focused on the average 
times. SF (base) is taken as a baseline for all comparisons. 
Without changing the optimization itself, switching the DoE 
to OIVLH reduces 14% of computation time in this problem, 
while maintaining result quality.

Using an MF approach with a coarser low-fidelity model 
lowers the computational cost about 47% and 35% for OLH 
and OIVLH, respectively. In fact, this is the only case in 
the present work, where OIVLH requires more computa-
tional time than OLH. The reason here is the same as for the 
outliers outlined above. Both MF (base) and MF + OIVLH 
find the respective optimum after a similar number of high-
fidelity iterations, but the latter variant requires a few more 
adaptive iterations than the former to reach the termination 
criterion. The work load to create the low-fidelity model is 
not considered here, however for complex models this is an 
additional time intensive step. Especially, when considering 
that the low-fidelity model may not be needed otherwise. 
Contrary to that, both MF (MOR) options do not require 
the manual creation of a low-fidelity model. They reduce 
computation times by about 51% and 56% for MF (MOR) 
and MF (MOR) + OIVLH, respectively. The speed-up of 
MF (MOR) compared to the other MF techniques can be 
explained by the significantly faster evaluation times of the 
reduced order low-fidelity models compared to the coarse 
simulation model. In comparison the MF (MOR) + OIVLH 
approach yields the best overall improvement for the side 
sill impact problem. It saves on average more than 50% com-
putation time compared to SF (base) while maintaining an 
acceptable level of accuracy.

Table 2  Side sill impact problem: Evaluation of low-fidelity model 
quality. For all optimization runs, low-fidelity models are evaluated 
for the respective optimum and maximum impactor displacements are 
compared to those of the high-fidelity model [see Eqs. (17) and (18)]

Method e
abs

e
rel

[mm] [%]

MF (base) 3.22 6.3
MF + OIVLH 3.43 6.5
MF (MOR) 2.76 5.3
MF (MOR) + OIVLH 2.15 4.1

Fig. 6  Side sill impact problem: Average run times for all compared 
optimization approaches in seconds. Also shown is the standard devi-
ation of the optimization run time
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6.2  Frontal impact problem

A shape optimization problem of the frontal impact of a 
crash box, as depicted in Fig. 7 is presented as a second 
application problem for the suggested multi-fidelity scheme. 
For the high-fidelity model, an element length of about 
4 − 5 mm is specified, while for the low-fidelity model, the 
element length is in the region of 10mm. This yields a high-
fidelity model with 4,928 elements and a low-fidelity model 
with 1,296 elements. The planar impactor crushing the com-
ponent from the top has a prescribed mass of 300kg and an 
initial velocity of 30 km/h. The impactor is modeled as a 
rigid body, and the crash box is constructed as a tube with a 
steel-like material and a piecewise linear plasticity model. 
Exact material parameters are listed in “Appendix B”. 
For the contact formulation, the LS-Dyna ’*CONTACT_ 
AUTOMATIC_SINGLE_SURFACE’ is applied. The simu-
lation is terminated when the impactor stops or after 45ms.

The crash box of the optimization study and its design 
variables are depicted in Fig.  7. The first three design 

variables are the vertical positions of the triggers in the 
model. The corner elements of the triggers are deleted to 
increase numerical stability. Three additional design varia-
bles are the depths of the triggers, i.e. the respective element 
rows are shifted in or against the arrow directions indicated 
in the figure next to the variables x4 , x5 and x6 . The configu-
ration depicted in Fig. 7 represents the setup for x = 0 for 
all design variables. Model generation features are realized 
using ANSA preprocessor.

Throughout the optimization analyses, the mass of the crash 
box remains approximately constant as the effect of design vari-
ables is negligibly small. The objective function is chosen as the 
load uniformity, also called peak amplification, of the force-dis-
placement curve. It is defined as the peak force Fmax divided by 
the mean force Fmean of the complete force-displacement curve 
measured at the rigid body impactor. The optimization problem 
can then be formulated as 

The processing time of the classical low-fidelity model is one 
fourth of the high-fidelity computation time. The number of ini-
tial samples is accordingly set to 60 in single-fidelity analysis, and 
30/90 for high-/low-fidelity samples in the multi-fidelity meth-
ods. For this problem, all possible termination criteria presented 
in Sect. 5 are specified and respective values are listed in Appen-
dix Table 7. To construct the snapshot matrix for the reduced 
order model, 30 initial high-fidelity samples are utilized. With the 
truncation energy of � = 0.9999 , a subspace with approximately 
k = 15 bases is computed. Moreover, the kNN regressor using 5 
neighbors is trained for the unknowns in the reduced subspace. 
A single evaluation of the reduced order model has a speed-up 
factor of 50 to 100 in comparison to the high-fidelity simulation.

To investigate the convergence of the optimization schemes, 
Fig. 8 shows the best current objective values in each iteration for 
all (high-fidelity) evaluations of SF (base) (grey lines) and MF 
(MOR) + OIVLH (black lines). These two methods are repre-
sentatively chosen from all investigated methods for the purpose 
of clarity. The adaptive phase of the algorithm starts after 60 
evaluations for the single-fidelity case and 30 evaluations for the 
multi-fidelity case. Both approaches reach objective values below 
3.4, i.e. close to the final optimum, mostly within ten adaptive 
high-fidelity evaluations. Afterwards only slight improvements 
are achieved.

In addition, the termination criteria can give valuable 
insights to the performed optimization studies. Here, the 
observations are contrary to those of the previous lat-
eral impact example, where all optimization analyses are 

(19a)min
x

f (x) =
Fmax

Fmean

,

(19b)where −10mm ≤ xi ≤ 10mm, i = 1, 2, 3,

(19c)−4mm ≤ xi ≤ 4mm, i = 4, 5, 6.

Fig. 7  Frontal impact problem of a crash box impacted by a planar 
rigid wall: The lower end is fixed, the impactor moving from the top 
downwards has a prescribed mass and velocity. Design variables are 
the vertical trigger positions as well as depths of the three triggers 
in the crashbox. The latter are realized by shifting the respective 
element rows in or against the direction indicated by the respective 
arrows next to x

4
 , x

5
 and x

6
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terminated by the threshold infill criterion. A majority of 
analyses for the crash box example terminate after reach-
ing the maximum number of allowed iterations. Of course, 
there is an argument to be made that these optimization runs 
may not be fully converged. However, as seen in Fig. 8 and 
because some runs do actually terminate due to ICth , the 
authors believe that this is not the case. A maximum allow-
able number of iterations also represents a situation more 
akin to a practical application case. It matters more to find 
an acceptable result in a given time as opposed to the best 
result in as much time as necessary.

A comparison of the optimization results for the pre-
sented methods is depicted in Fig. 9. Low objective function 
values of slightly below 3.3 depend on x1 on its upper limit 
of 10mm, x2 around its lower limit of −10 mm and x3 in a mid 
region albeit slightly above 0mm. Only the first of the trigger 
depths x4 , x5 and x6 , which is found close the maximum of 
4mm throughout all methods, seems to significantly impact 
the optimization results. A significant share of the crash 
energy is absorbed in the first fold, i.e. the one controlled 
by x1 and x4 . It usually also contains the total maximum in 
the force-displacement curve Fmax . To that end, it appears 
reasonable that those two design variables appear to always 
converge to similar values, while the others, especially x5 
and x6 , may vary between optimizations.

All compared methods yield rather similar results in 
terms of objective function values except for a total of three 
runs in MF (base) and MF (MOR). In these, the best objec-
tive value is up to 10% off the best overall result because 
the algorithm terminates in a local optimum. For the SF 
approaches, OIVLH appears to not affect result quality or 
consistency. In the multi-fidelity setups however, OIVLH 
sampling reduces the number of outliers compared to MF 
(base) and MF (MOR), respectively. All variants utilizing 

OIVLH sampling as well as the baseline single-fidelity EGO 
yield very similar results.

In a further step the quality of low-fidelity models is evalu-
ated as done for the previous example. Here the same error 
metric is chosen mainly for two reasons. First, as the impac-
tor kinetic energy remains constant, the maximum impactor 
displacement is directly related to the mean force Fmean which 
is part of the objective function. Second, having the same com-
parison metric as in the previous example allows for compari-
sons of low-fidelity model accuracy between the two exam-
ples. Table 3 lists mean values for the differences in maximum 
impactor displacement between low- and high-fidelity models 
in the different methods [compare Eqs. (17) and (18)]. In this 
example, the coarse simulation model of MF (base) and MF + 
OIVLH has a significantly larger error value compared to the 
ROMs. Due to the highly nonlinear nature of frontal impact 
simulation, the mesh size has a high impact on the crushing 
behaviour of the component. As the ROM-based low-fidelity 
models utilize the high-fidelity model mesh for learning and 
predictions, they are not affected and show better accuracy 
compared to the coarse low-fidelity model. The present exam-
ple confirms that the application of OIVLH for reduced order 
models increases the prediction accuracy. The results of MF 
(base) and MF + OIVLH, as listed in Table 3 differ mainly due 

Fig. 8  Frontal impact problem: Convergence comparison for SF 
(base) and MF (MOR) + OIVLH. Depicted is the best current objec-
tive function value over the number of high-fidelity evaluations for 
each separate optimization run. Grey and black lines represent SF 
(base) and MF (MOR) + OIVLH versions, respectively

Fig. 9  Frontal impact problem: Parallel coordinates plot comparing 
results of ten repetitions for six different approaches. Design variable 
values on the y-axis are normalized. The color scale indicates objec-
tive value of the respective results (lower is better)

Table 3  Frontal impact problem: Evaluation of low-fidelity model 
quality. For all optimization runs, low-fidelity models are evaluated 
for the respective optimum and maximum impactor displacements are 
compared to the high-fidelity model [see Eqs. (17) and (18)]

Method e
abs

e
rel

[mm] [%]

MF (base) 16.03 11.0
MF + OIVLH 22.28 15.4
MF (MOR) 8.72 6.0
MF (MOR) + OIVLH 4.29 3.0
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to one single outlier in MF + OIVLH, where the low-fidelity 
model predicts a significantly earlier stop of the impactor, thus 
inflating the error measure. Overall, the low-fidelity accuracy 
of the two methods is similar, which is expected as the choice 
of DoE should not have an impact on the simulation model.

Computational requirements are again compared for all dif-
ferent methods using the mean run time of each optimization. 
The averaged processing times for all techniques are plotted in 
Fig. 10. Regarding the varying EGO approaches, the findings 
here are highly similar to those of the previous problem. Com-
pared to SF (base), MF (base) and MF + OIVLH yield about 
30-45% speed-up while MF (MOR) and MF (MOR) + OIVLH 
result in 50-55% time reduction. Here, the use of OIVLH over 
OLH shows slight time benefits across all variants. Notably, the 
time benefit SF + OIVLH yields over SF (base) is significantly 
smaller than for the previous example (compare Fig. 6). This is 
due to the difference in applied termination criterion between 
the examples.

Overall, results for the present application example closely 
match those for the side sill impact example presented above. 
The MF (MOR) + OIVLH scheme performs best with time-
savings of more than 50% compared to SF (base). Here, all 
approaches utilizing OIVLH perform better than respective 
OLH variants.

7  Conclusions

In the present work, a multi-fidelity efficient global opti-
mization based on recently proposed hierarchical kriging 
and variable-fidelity expected improvement is applied to 
crashworthiness examples and its performance is investi-
gated. Additionally, two adaptations to the scheme regard-
ing initial design of experiments and the choice of low-
fidelity model are proposed. For the former, a recently 
developed variant of Latin hypercube sampling is chosen 
that places samples closer to design space boundaries and 

thus allows for more interpolation instead of extrapola-
tion in surrogate models. For the latter, a non-intrusive 
model order reduction scheme is applied as low-fidelity 
model as it integrates nicely into the existing multi-fidelity 
optimization scheme. All different optimization schemes 
are investigated on two crashworthiness application exam-
ples: one side sill impact size optimization and one frontal 
impact shape optimization. Already with the rather small 
problems presented here, results show that multi-fidelity 
optimization is capable of reducing computational costs 
of the optimizations significantly while not compromising 
result quality. Both proposed adaptations independently 
and especially combined further reduce computation times 
and also increase result quality compared to the baseline 
multi-fidelity optimization. Especially the use of non-
intrusive reduced order modeling techniques is promising 
as it removes the need to (manually) create an additional 
low-fidelity model. Together, a speed-up factor of two in 
the optimization with next to no influence on result qual-
ity is observed.

The problems shown in the present work represent rather 
small examples with a low number of design variables. Based 
on the works introducing OIVLH (Kaps et al. 2021) and previous 
investigations on the projection of large-scale systems (Bach et al. 
2019), it seems reasonable to assume that the advantages of the 
proposed schemes grow as the model size and number of design 
variables increase.

Multi-fidelity optimization is a wide topic with a variety 
of different applications and many imaginable adjustments 
to be explored. Based on the promising results of the pre-
sent work we have collected some topics and questions that 
we believe to be interesting for future work:

– In the present work all DoEs are performed separately 
for different fidelity levels and with no connection 
between levels. It seems only reasonable to use a multi-
fidelity DoE scheme if the initial samples are combined 
into a multi-fidelity surrogate. Multi-fidelity sampling 
approaches proposed so far, require the high-fidelity 
DoE to be a subset of the low-fidelity DoE. It could be 
investigated, how these approaches perform for multi-
fidelity optimizations shown here and if methodologi-
cal improvements can be achieved.

– We believe the potential of the proposed multi-fidelity 
scheme(s) should be confirmed in further studies on more 
complex larger crashworthiness application problems and 
other fields of applications.

– A big challenge in practical applications is robustness 
with regards to both the method as well as the objective 
function. An optimization method should produce con-
sistent results for given inputs, as in practice, repeating 
runs is often infeasible. Moreover, an optimum highly 
sensitive to small perturbations of the inputs is also not 

Fig. 10  Frontal impact problem: Average run times for all compared 
optimization approaches in seconds. Also shown is the standard devi-
ation of the optimization run time
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desirable. To that end, an effort has to be made to inte-
grate robustness into the optimization framework seam-
lessly.

Appendix A

See Tables 4 and 5 (Figs. 11, 12). 

Appendix B

See Tables 6 and 7.

Table 4  Side sill impact problem: general modeling properties

Parameter Value

Component width 800 mm
Component height 120 mm
Component depth 80 mm
No. vertical ribs 3 (evenly distributed)
No. horizontal ribs 5 (evenly distributed)
Element formulation Belytschko-Lin-Tsay
Contact formulation *CONTACT_AUTOMATIC_
(LS-Dyna) SURFACE_TO_SURFACE

Table 5  Side sill impact problem: material properties used for mod-
eling the aluminum component

Parameter Symbol Value

Young’s modulus E 70GPa
Poisson’s ratio � 0.33
mass density � 2700

kg

m3

yield strength �y 180MPa
plasticity See Figs. 11, 12 below

Fig. 11  Side sill impact problem: Piecewise linear plasticity curve 
used in the aluminum material model

Fig. 12  Low-fidelity model for side sill impact problem with a cylin-
drical rigid body representing a pole. Both ends are fixed, the impac-
tor has a prescribed velocity

Table 6  Frontal impact problem: material properties used for mod-
eling the steel component

Parameter Symbol Value

Young’s modulus E 200 GPa
Poisson’s ratio � 0.3
Mass density � 7830

kg

m3

Yield strength �y 360 MPa
Strainrate model Cowper-Symmonds
Strainrate parameters C 40

p 5
Plasticity See Fig. 13 below

Fig. 13  Frontal impact problem: Piecewise linear plasticity curve 
used in the steel material model
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