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Abstract
A high-performance density-based topology optimization tool is presented for laminar flows with focus on 2D and 3D aero-
dynamic problems via OpenFOAM software. Density-based methods are generally robust in terms of initial design, making 
them suitable for designing purposes. However, these methods require relatively fine resolutions for external flow problems 
to accurately capture the solid-fluid interfaces on Cartesian meshes, which makes them computationally very expensive, 
particularly for 3D problems. To address such high computational costs, two techniques are developed here. Firstly, an 
operator-based analytical differentiation (OAD) is proposed, which efficiently computes the exact partial derivatives of the 
flow solver (simpleFOAM). OAD also facilitates a convenient development process by minimizing hand-coding and utilizing 
the chain-rule technique, in contrast to full hand-differentiation, which is very complex and prone to implementation errors. 
Secondly, a multi-stage design process is proposed to further reduce the computational costs. In this technique, instead of 
using a fixed refined mesh, the optimization processes are initiated with a coarse mesh, and the converged solutions are 
projected to a locally refined mesh (as an initial guess) for a secondary optimization stage, which can be repeated to obtain a 
sufficient accuracy. A set of 2D and 3D laminar aerodynamic problems were studied, which promisingly confirmed the utility 
of the present approach, which can be adopted as a starting point for developing a design tool for large-scale aerodynamic 
engineering applications. In addition, the 3D problems indicated that less than 3% of total optimization CPU-time is devoted 
to OAD, and multi-staging up to 45% has reduced the overall costs.

Keywords  Topology optimization · Operator-based analytical differentiation (OAD) · Multi-stage design · Discrete 
adjoint · Laminar aerodynamics · OpenFOAM

1  Introduction

Topology optimization (TO) is a powerful computational 
tool for enhancing or designing engineering systems with 
wide-ranging applications. TO fundamentally features no 
limitation in modifying the design configuration, during the 
optimization process, in contrast to size or shape optimiza-
tion techniques. Consequently, TO process could be robust 
in terms of initial design guess, facilitating an optimization 

process, starting from scratch. Such strength is significantly 
useful for the designing processes, which time-consumingly 
rely on trial-and-error or the designer’s intuition. Hence, TO 
can be particularly useful for conceptual designs in applica-
tions where limited or no intuition are available.

Initially, TO was developed for structural optimization 
using a homogenization technique (Bendsøe and Kikuchi 
1988), searching for an optimal void-solid material distribu-
tion. This approach (so-called the density-based method) was 
later applied to Stokes flow problems (Borrvall and Peters-
son 2003), by introducing a porosity field with continuously 
variable impermeability as the design parameter. Since then, 
TO techniques have been evolved in various aspects and 
applied to problems such as unsteady flows (Kreissl et al. 
2011), turbulent flows (Yoon 2016), heat convection (Dede 
2009), fluid-structure interaction (Yoon 2010), with many 
different approaches (Alexandersen and Andreasen 2020). 
It is noticeable that the majority of the previous works have 
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mainly focused on internal (channel) flows. State-of-the-art 
TO developments for external flow problems are limited to 
two-dimensional cases and/or very low Reynolds numbers, 
such as (Kondoh et al. 2012; Garcke et al. 2018; Lundgaard 
et al. 2018). The present work focuses on two and three-
dimensional laminar aerodynamic TO, which can be utilized 
for optimization of small-sized flying objects such as fixed-
wing micro air vehicles (MAV) (Pornsin-Sirirak et al. 2001).

Level-set and density-based methods are two main 
approaches of TO, each with advantages and disadvantages. 
The primary strength of level-set approaches is the clear-cut 
description of solid-fluid boundaries, if they are equipped 
with interface capturing techniques such as CutFEM (Vil-
lanueva and Maute 2017) or explicit (body-fitted) boundary 
tracking (Zhou et al. 2018; Feppon et al. 2020). This main-
tains a high level of model accuracy, particularly for captur-
ing the boundary layers, during the optimization process. 
However, a critical drawback of such methods is that they 
mostly fail to create new isolated zones or split an existing 
one, if needed during the optimization process. This implies 
that the number of solid zones in final design would be less 
than or equal to the number of zones in initial design. As a 
result, such methods greatly depend on the initial guess (Jen-
kins and Maute 2015), and may not satisfyingly fulfill the 
important factor of designing from scratch. Besides, provid-
ing an appropriate initial guess can potentially be difficult, 
particularly for high-speed external flows, where the flow 
steadinesses and the behavior of boundary layers are sensi-
tive to the geometry. In contrast, density-based methods indi-
cate no fundamental dependency on initial designs, in the 
sense that they are able to unlimitedly create, split or merge 
solid zones during optimization process (although the initial 
guess can affect the final solution (local minima) in gradient-
based optimization). As an example, density-based method 
has been used together with level-set method for enabling a 
hole-seeding feature during the optimization (Barrera et al. 
2020). Hence, density-based method is a promising approach 
for both design and optimization purposes.

In density-based methods, solid materials are mostly 
modeled by techniques such as Brinkman volume penaliza-
tion (BVP) on fixed meshes. The caveat is that such meth-
ods may suffer from relatively inaccurate approximation of 
solid-fluid interfaces. Such inaccuracy can be distinguished 
by modeling and discretization (meshing) errors. On a body-
fitted mesh, it is suggested that the modeling error could 
be satisfyingly small O(�) ( � as the penalization parameter) 
compared to classical no-slip boundary conditions (Hester 
et al. 2021) (compare Fig. 1a, b). On a non-conforming (Car-
tesian) mesh, however, the solid geometry lacks a smooth 
solid-interface description (Fig. 1c). This problem can be 
greatly improved by local mesh refinements, as depicted 
in Fig. 1d. A block mesh refinement of the design space 
features less re-meshing costs, compared to adaptive inter-
face tracking used in level-set methods, however, it raises 
the problem size, as the number of state/design variables 
increases. To this end, an efficient computational tool with 
a refinement strategy can play an important role for achiev-
ing an accurate density-based TO, particularly for external 
flow problems.

The computational costs are divided into two main parts: 
the numerical flow (primal) solver, and numerical compu-
tation of sensitivities, as TO is a gradient-based, numerical 
optimization process. For the primal solver, the finite volume 
method (FVM) based OpenFOAM software is used, which 
is efficient and parallelized. For computing sensitivities of a 
given cost function , adjoint methods are widely used, which 
effectively demonstrate computational costs, independent 
of the number of design variables. Continuous and discrete 
adjoint methods are two different adjoint approaches (see 
Nadarajah and Jameson (2000); Evgrafov et al. (2011) for 
comparisons). Continuous adjoint sensitivities are obtained 
by numerically solving PDEs, which may introduce some 
discretization errors and mesh-dependent accuracies (Car-
narius et al. 2011; Yu et al. 2020). Conversely, discrete 
adjoint methods, independent of mesh size, can provide 
exact sensitivities, which are consistent to the value of cost 
function, obtained from primal solver. Exact sensitivities 

Fig. 1   Schematic of solid-fluid interface descriptions using volume penalization on different meshes, compared to classical no-slip boundary 
conditions
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are sometimes vital, particularly for external or turbulent 
flows (Dilgen et al. 2018), and most of the modern adjoint-
based optimization tools utilize the discrete adjoint methods 
(Peter and Dwight 2010; Kenway et al. 2019); hence, dis-
crete adjoint method is utilized in this work, as well.

For computation of discrete adjoint sensitivities, two steps 
are required: computing derivatives of residuals �(�, �) with 
respect to state � and design variables � , and solving the 
adjoint linear system of equations. Regarding the adjoint 
problem (second step), a suitable iterative linear solver (e.g. 
preconditioned Krylov subspace method), via the efficient 
and parallelized PETSc library (Balay et al. 2021), can pro-
vide accurate results with reasonably fast convergence speed. 
However, effectively (and precisely) deriving the partial 
derivatives of � (step two) is a challenging task, particu-
larly for the sophisticated CFD solvers. For this task, two 
different approaches can be used: analytical, or automatic 
differentiation (AD) (Griewank and Walther 2008). Either of 
approaches feature a trade-off between the implementation 
efforts and overall performance, although the first one could 
be faster and less memory consuming (Nørgaard et al. 2017; 
Kenway et al. 2019). This is because once the mathematical 
expression of � partial derivatives are explicitly available, 
then calculation of derivative values would be very fast. As 
a result, the analytical approach is employed in this work, as 
the computational efficiency is of primary concern.

Analytical approach, via hand differentiation (HD), 
has been used for some early shape optimizations, such as 
(Nielsen and Anderson 1999), and been implemented limit-
edly, for few closed-source codes, such as DLR-Tau-code 
(Dwight and Brezillon 2006). However, HD has some draw-
backs: it is a non-trival task (with difficulties, proportional 
to the complexity of solvers), and prone to implementation 
(human) errors (Brezillon and Dwight 2005). As a result, in 
recent years AD has been preferred for advanced solvers, 
such as OpenFOAM (He et al. 2020), and SU2 (Economon 
et al. 2016). As an alternative to HD, symbolic differentia-
tion (SD) has been recently developed for an FEM-based 
Euler solver for an error-prove, and fast discrete adjoint 
developments (Elham and van Tooren 2021). However, for 
SD the code has to be rewritten symbolically before differen-
tiation, which is not trivial for all CFD solvers. For density-
based TO, analytical differentiation has been previously used 
for solvers with comparatively simpler mathematical formu-
lations, such as lattice Boltzmann (LB) (Pingen et al. 2007), 
and pseudo-spectral (Ghasemi and Elham 2021). Another 
example is hand-coded discrete adjoint, developed for TO 
using a staggered-based FVM solver (Marck et al. 2013), 
which, in favor of a convenient analytical differentiation, has 
a simpler formulation compared to collocated FVM. Nev-
ertheless, such solvers are nowadays outdated, and modern 
FVM-based CFD software (e.g. OpenFOAM) are collo-
cated-based (Moukalled et al. 2016). In collocated-based 

FVM solvers (using SIMPLE algorithm), the pressure cor-
rector (Poisson) equation is constructed (via Rhie-Chow 
interpolation) by discretization coefficients of the velocity 
equations (including the penalization term), and solved itera-
tively. This formulation is rather complex, due to the nested 
dependency of solution states, which has to be untangled for 
analytical differentiation process. Besides, the discretization 
formulation varies based on the type of FVM scheme, which 
can lead to a very slow and case-dependent implementation 
process. Consequently, despite the advantages of analytical 
differentiation, it can still be a highly complicated task, since 
no general approach has been proposed so far to alleviate its 
complexity.

To address the aforementioned issues, an operator-based 
analytical differentiation (OAD) is developed here, which 
has three advantages. Firstly, OAD untangles the complex 
residuals formulations, by expressing them in matrix forms 
using a set of linear operators, which clarifies the depend-
ency of residuals on state and design variables, and facili-
tates the differentiation process by maximizing the use of 
chain-rule and minimizing hand-coding. More precisely, 
the derivatives are simply computed at discretization level, 
which greatly reduces the risk of implementation errors. 
Secondly, for different FVM schemes simply the corre-
sponding operator needs to be updated with minimal effort 
(instead of restarting differentiation from scratch). Thirdly, 
OAD preserves a reasonably high performance, due to the 
low cost of the matrix operators for highly sparse matrices, 
in favor of more efficient discrete sensitivity computations.

Lastly, to further reduce the overall cost of the TO process 
a multi-stage procedure is employed. As mentioned before, 
a sufficiently fine mesh is required for an improved accu-
racy of solid-fluid interfaces. However, using a fine mesh 
on the entire simulation domain, especially in aerodynamic 
problems, from the beginning of optimization process would 
be either very expensive or waste of computational efforts. 
Also, the geometry of design, which needs finer meshing, 
is not easily predictable in advance. To address this issue, 
TO can be initiated on a coarser mesh, and then optimized 
design can be projected onto a new mesh with refined design 
space. Generally, the secondary optimization stages con-
verge relatively faster, as their starting states are an opti-
mized solution on a coarser mesh. As a result, this technique 
can reduce the overall computational costs, particularly for 
the design problems, starting from scratch. Finally, a set of 
2D/3D optimization problems, such as drag minimization or 
lift maximization, are solved to better demonstrate the poten-
tial utilities of the present approach, which can benefit a vast 
amount of applications and future progresses, especially for 
aerodynamic topology optimizations.

Thus, the novelties are summarized as: (1) proposing an 
operator-based approach (OAD) for a high performance and 
exact (analytical) differentiation of simpleFOAM solver in 
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OpenFOAM (collocated FVM flow solver), which facilitates 
rapid and convenient implementations for further develop-
ments, (2) utilizing a multi-stage (multi-resolution) proce-
dure for achieving an improved model accuracy with less 
computational efforts, (3) exploring the potential ability of 
density-based topology optimization technique for 2D/3D 
laminar aerodynamic problems, via the proposed efficient 
and parallelized open-source design tool. The remainder of 
the paper is organized as follows: in Sect. 2 the flow govern-
ing equations as well as the numerical solve procedure is 
presented; in Sect. 3 the topology optimization formulation 
and algorithm is discussed together with the sensitivity anal-
ysis; a set of 2D and 3D optimization examples are solved in 
Sect. 4 and discussed in 5; finally, Sect. 6 summarized the 
achievements of the present work.

2 � Fluid flow problem

2.1 � Penalized Navier–Stokes

The steady-state incompressible Navier-Stokes (NS) equa-
tions equipped with Brinkman volume penalization (BVP) 
are

where � is the velocity vector, p is the dynamic pressure, � 
is the fluid density, � is the kinematic viscosity, and � and 
� are the penalization intensity (permeability) and material 
identifier parameters, respectively. At any point � , solid and 
fluid materials are then modeled using penalization effect 
which is controlled by � , such that

It is shown that the solution of penalized NS equations con-
verges to the NS solutions with classical boundary condi-
tions (zero velocities on �ΩF ) (Carbou and Fabrie 2003) with

which indicates smaller the � , better the penalization (mod-
eling) accuracy.

2.2 �  Flow (primal) solver

A standard finite volume method (FVM) is used for discre-
tization of penalized incompressible Navier-Stokes equa-
tions, which is widely utilized for CFD applications. The 

(1)∇ ⋅ (��) − ∇ ⋅ (�∇�) +
1

�
�� = −

1

�
∇p,

(2)∇ ⋅ � = 0,

(3)� ∈

{

Solid zones (ΩS) if � = 1

Fluid zones (ΩF) if � = 0.

(4)||� − �penalized|| ≤ C�1∕2,

Rhie-Chow interpolation method (Rhie and Chow 1983) 
is used for an oscillation-free computation of pressure gra-
dients on collocated meshes, and the flow solutions are 
obtained, iteratively, via the segregated SIMPLE algorithm 
(Patankar and Spalding 1983). In this study, the native sim-
pleFoam solver of OpenFOAM CFD software is modified to 
incorporate the Brinkman penalization term in the left-hand-
side of the momentum equation, similar to Eq. (1).

As it will be discussed in Sect. 3.3, for the analytical dif-
ferentiation of the flow solver residuals, a basic knowledge 
of the discretization process, as well as the SIMPLE algo-
rithm, is essentially required. Therefore, such details are 
discussed sufficiently in Appendix A.

3 � Topology optimization

3.1 � Interpolation of materials

Motivated by Borrvall and Petersson (2003), a density-based 
approach is adopted, in which a porosity field is utilized to 
describe the design. More precisely, a continuous interpola-
tion function is used for � in Eq. (1), such that the binary 
solid-fluid model is replaced by a porous material with 
variable permeability within the flow domain. The material 
interpolation function � is then defined as

where � ∈ [0 1] is the material parameter, and q is the inter-
polation parameter which controls the interpolation curva-
ture. Now Eg. (3) becomes

such that the material zones are exclusively controlled by � . 
Therefore, a � field is assigned to all cells, and the vector of 
� is adopted as the design variables for optimization.

As shown in Fig. 2, � ’s are defined on cell centers, where 
the momentum equations are solved and the penalization is 
applied. It should be noted that velocities at faces ( � fluxes) 
are not directly penalized, as they are intended to satisfy 
mass continuity, therefore, the solid-fluid boundary crosses 
cell centers (not faces).

A proper interpolation curvature helps to better control the 
behavior of gray designs ( 0 < 𝛾 < 1 ) during optimization, and 
also to eliminate them at local minima. Figure 3 illustrates the 
interpolation function of 5 with q = {0.1, 1, 10} and � = 10−7 . 
As the curve intersections suggest, a certain impermeability 
level is achieved at larger � values when q is larger. Therefore, 

(5)�(�) =
�

1 + q(1 − �)
,

(6)� ∈

⎧

⎪

⎨

⎪

⎩

Solid material if 𝛾 = 1

Fluid material if 𝛾 = 0

Porous (permeable) material if 0 < 𝛾 < 1,
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for a given problem, this effect forces the optimizer to push � to 
1 anywhere a solid zone is needed, or otherwise eliminate it by 
setting � to 0, if a volume constraint is imposed. Accordingly, 
different q values are used for different optimization cases, in 
the present work.

3.2 � Optimization formulation

A generic density-based topology optimization problem is 
formulated here as

where, J and C are the objective and constraint functions;

and

 are the vectors of state variables and residuals, respectively; 
as mentioned earlier, � is the vector of design variables, and 
Ωd ⊆ Ω is the design space, which can be defined as a part 
of the physical domain ( Ω).

3.3 � Sensitivity analysis

A gradient-based optimization is employed, and the accurate 
gradients (sensitivities) are obtained via a discrete adjoint 
method. Adjoint methods are effective techniques for com-
puting sensitivity of a given function, which depends on 
both state and design variables. For sensitivity of function 
J, a Lagrangian function is first defined as

where, � is the vector of adjoint variables; and by differenti-
ating it with respect to design variable � it becomes

By rearranging (11), it becomes

To avoid computing d�
d�

 , which is a matrix of Ns (number of 
state variables) by Nd (number of design variables), alterna-
tively, the adjoint problem of

is solved, and then the total derivatives are obtained by sub-
stituting � in (12).

Solving the linear system of (13) for Ns adjoint unknowns 
has favorably a computational load, which is independent of 
the number of design variables. But, in order to solve the 
adjoint problem (and compute sensitivities) four partial 

(7)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

minimize
�

J(�, �)

subject to Cj(�, �) ≤ 0

�(�, �) = 0

0 ≤ �i ≤ 1 ∀�i ∈ Ωd,

(8)� = [ux uy uz p �]T

(9)� = [rux ruy ruz rp r�]T

(10)
L = J + �T�

⏟⏟⏟
≈ 0

,

(11)
dL

d�
=

�J

��
+

�J

��

d�

d�
+ �T

(

��

��
+

��

��

d�

d�

)

.

(12)
dL

d�
=

�J

��
+ �T ��

��
+
(

�J

��
+ �T ��

��

)

d�

d�
.

(13)��

��

T

� = −
�J

��

T

Fig. 2   Solid-fluid modeling using the penalization field. The dashed 
line, crossing cell centers, indicates the solid-fluid interface

Fig. 3   Material interpolation function for various curvature param-
eters q 
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derivative matrices, namely �J
��

 , �J
��

 , ��
��

 and ��
��

 are needed, 
where the first two depend on the given function and the 
latter two on the primal solver residuals. For this task, the 
discretized residuals are differentiated fully analytically. This 
approach provides solver-consistent and exact derivatives, 
since the governing equations are differentiated after the 
discretization. In addition, computing such derivatives 
would be significantly efficient, once their explicit close-
forms are available. However, differentiating a sophisticated 
CFD-code such as OpenFOAM, analytically, is a non-trivial 
task, since it is not always easy to obtain the residuals in a 
closed-form.

To mitigate this problem, the primal solver is reformu-
lated using several PDE and numerical operators, such as 
divergence, Laplace, gradient and interpolation operators 
(equivalent to the built-in OpenFOAM ones), in order to 
obtain residuals, represented in algebraic expressions. This 
approach untangles the dependency of the residuals on the 
state or design variables, without explicitly providing their 
mathematical expressions. The differentiation would accord-
ingly be considerably simplified by applying the chain-rule 
of differentiation, where it is needed.

The details of the developed operator-based analytical dif-
ferentiation (OAD) process is discussed in Appendix B. This 
differentiation process efficiently provides the exact partial 
derivatives of � with respect to state variables, �,

and with respect to design variables, �,

for the adjoint problem of Eq. (10)–(13). Here, NC , NF , and 
ND denote to the total number of cells, faces (with variable 
fluxes), and design variables, respectively.

3.4 � Implementation notes

Figure 4 illustrates the flowchart of the present topology 
optimization framework. The method of moving asymp-
totes (MMA) (Svanberg 1995) is used as the gradient-based 
optimizer, which is particularly developed for problems 
with large number of design variables. As the flowchart 

(14)
��

��
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�
ux
ux

0 0 �
ux
p �

ux
�

0 �
uy
uy

0 �
uy
p �

uy
�

0 0 �
uz
uz

�
uz
p �

uz
�

�
p
ux

�
p
uy

�
p
uz

�
p
p �

p
�

��
ux

��
uy

��
uz

��
p

�
�
�

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(4NC+NF)
2

,

(15)
��

��
=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�
ux
�

�
uy
�

�
uz
�

�
p
�

�
�
�

⎤

⎥

⎥

⎥

⎥

⎥

⎦(4NC+NF)×ND

,

indicates, the optimization process has two main modules: 
the primal solver (OpenFOAM) and sensitivity computation 
(via discrete adjoint) parts. Once the flow solver (SIMPLE 
algorithm) converges, the required partial derivatives for 
the objective and constraints are computed via OAD, and 
the adjoint problem is solved to obtain the sensitivities for 
the optimizer. For the sparse matrix operations, which are 
required in OAD, the highly efficient and parallel Armadillo 
C++ library (Sanderson and Curtin 2016, 2018) is used, 

Initialize design
(γ0), and meshing

Map fields

Solve for ui (Eq. 31)

Solve for p (Eq. 34)

Correct ϕ (Eq. 36)

Converged?

Compute partial
derivatives (OAD)

Solve adjoint
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Compute sensi-
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A
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O
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Fig. 4   Flowchart of the multi-stage discrete adjoint topology optimi-
zation
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which is a user-friendly and open-source tool for linear 
algebra problems, with a syntaxes similar to MATLAB. For 
code compilations, the g++ compiler with -O3 optimization 
option is used. For the solution of discrete adjoint prob-
lem, two methods are used, namely: a direct linear solver 
(LU factorization) for relatively small-sized problems (e.g. 
2D cases), or the flexible GMRES iterative method with 
block Jacobi preconditioning and SOR sub-preconditioning 
for larger problems (e.g. 3D cases). For the first option the 
built-in MATLAB solver is used, but for the second one, the 
efficient and parallel PETSc library is used. As a result, all 
pieces of the present tool are efficiently parallelized (Open-
FOAM, Armadillo, and PETSc). In this work, mainly the 
Phoenix computing resources (from TU Braunschweig) are 
utilized.

As mentioned earlier, a relatively higher mesh resolution 
is needed for better accuracy of the solid-fluid interface on 
Cartesian meshes. As a result, it is possible to perform the 
optimization problem on a fine mesh from the beginning; 
however, this can sometimes be noticeably expensive, par-
ticularly for 3D problems. Alternatively, a multi-stage pro-
cedure can be used. In this manner, the optimization is ini-
tially performed on a coarser mesh, and then the converged 
solutions are mapped onto the fine mesh, to be used as an 
initial starting point for a new optimization process on the 
fine mesh. The multi-stage process has two important advan-
tages. Firstly, the overall optimization performance can be 
improved, as the secondary stages tends to converge faster 
with a good initial guess. Secondly, the new design space, 
which will be locally refined, can be adjusted according to 
the dimensions of the coarser design (note that in aerody-
namic problems, the simulation space is considerably larger 
than the design, and a proper design space cannot always 
be easily estimated in advance). Consequently, unneces-
sary declaration of extra state and design variables will be 
avoided by limiting the mesh refinement to the necessary 
zones, which again leads to a reduced computational costs.

The multi-stage procedure can be used for both internal 
and external flow problems, but for external flow problems 
it is more beneficial, particularly if the design space size is 
reduced. Therefore, before re-meshing, the block of design 
space is adjusted with nearly extra 5% margin to the coarser 
design. Then, for the next stage a new mesh is generated 
with locally refined zone, coinciding the new design space. 
For re-meshing, a mesh grading strategy with gradually 
expanding cells (towards the boundaries) is used, although 
the mesh remains uniform within the refined (design) zones. 
For projecting the design (penalization) field onto the refined 
mesh, the OpenFOAM built-in mapFields tool with linear 
interpolation is used. Lastly, it should be highlighted again 
that as the flowchart of Fig. 4 indicated, the multi-stage pro-
cedure is optional, and its utility depends on the problem 
type (refer to Sect. 4 for examples).

4 � Optimization results

In this section, first the accuracy of the BVP method is 
analyzed as it is the basis for density-based TO, and the 
derived sensitivities are examined in terms of accuracy and 
performance. Next, a series of 2D and 3D flow problems are 
studied to demonstrate the utilities of the present TO frame-
work for a broad range of application. An emphasis is placed 
on drag and lift optimizations of external flow problems, to 
investigate the potentials of density-based TO for the design 
of flying objects.

4.1 � Preliminary case studies

4.1.1 � Accuracy of BVP method and mesh study

Introduced by Borrvall and Petersson (2003), penalization 
technique is the basis of the density-based flow TO approach, 
and is fundamentally different from level-set methods, in 
which the solid-fluid boundaries are clearly captured dur-
ing the optimization process. Indeed application of Dirichlet 
(no-slip) boundary conditions on solid surfaces with a body-
fitted mesh is more accurate than a solid structure model 
represented by nearly impermeable porous media on a non-
matching mesh. But, a model analysis is essentially needed 
to quantify such inaccuracies. Therefore, a set of preliminary 
cases are studied for this purpose.

Firstly, flow around a cylinder is simulated with three 
settings: (a) body-fitted mesh with classical boundary con-
ditions, (b) body-fitted mesh with overlapping penalized 
zone, and (c) non-overlapping penalization zone on Carte-
sian meshes (Fig. 1). Case (a) is considered as the reference 
solution here. Case (b) with various penalization parameters 
( � = {10−5, 10−6, 10−7} ) is intended to indicate BVP model 

Fig. 5   Schematic of the 2D external flow problem with specified 
boundary conditions
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accuracy, as the internal mesh (penalization zone) matches 
the cylinder surface. In case (c), penalization is applied on 
cells, of which centers laid inside the cylinder. This case is 
refined two times to examine accuracy achievements with 
higher mesh resolutions.

Figure  5 illustrates schematic of a typical 2D exter-
nal flow optimization problem, with physical and design 
domains and boundary conditions. Here, a fixed circu-
lar design, which is a challenging geometry for Cartesian 
mesh, is considered; but later, optimized structures will be 
designed during a optimization process, inside Ωd . The drag 
force is studied as a measure of accuracy, which will be later 
used as an objective or a constraint for optimization. Exerted 
fluid forces on solid structures are conveniently computed 
by volume integration of the Brinkman penalization term (in 
Eq. 1) over a given domain (see Kondoh et al. (2012)) via

The Table  1 lists the computed drag coefficients, 
CD =

2Fx

�U2
∞
A
 , for flow at Re = U∞D

�
= 36 , where A and D are 

the frontal cross-section area and the cylinder diameter, 
respectively. The flow domain is 12-by-5, where a D = 1. 
Cases (a) and (b) are meshed with sufficient resolutions 
(301k and 389k cells, respectively), with higher resolutions 
near cylinder surface. For case (c), the domain is discretized 
uniformly, and refined two times such that mesh resolutions 
are �x = {D∕64,D∕128,D∕256}.

The overlapping penalized zones indicate negligible 
errors (less than 0.1% ), which is slightly improved by reduc-
ing � ; however, very small � slows down the convergence 
rate, due to numerical stability issues. Hence, � = 10−6 is 
used for a compromise between accuracy and performance. 
The results of the Cartesian meshes are less accurate, due to 
the combination of penalization and discretization errors. It 
is because capturing a curved geometry on a Cartesian mesh 
leads to non-matching solid interfaces (Fig. 1c). It can be 

(16)� =
1

�∫
Ωd

�(�)� dΩ.

conceived that the BVP modeling error is less than the dis-
cretization error, although is can be considerably improved 
by mesh refinement (Fig. 1d). As a result, it should be bet-
ter analyzed how much mesh refinement can improve the 
accuracy.

Accordingly, a symmetric convex design (with aspect 
ratio of Ly∕Lx = 1∕8 , and A = 1 ) is studied for various 
mesh resolutions at three different Reynolds numbers, 
Re = {50, 200, 500} (or Rea = {150, 600, 1500} by adopt-
ing cord as characteristic length). A series of Cartesian 
meshes with resolutions between 50 to 400 cells per unit 
characteristic length (D) are considered, and selectively 
shown in Fig. 6. The computed drag forces are shown in 
Fig. 7, for all cases. It is observable that at higher Reyn-
olds number, a finer mesh is needed for a better accuracy. 
By assuming the boundary layer size be proportional to 
�∗ = Lx∕

√

Rex  and performing analyzing the computed 
forces, it can be estimated that 15 cells per �∗ length would 
approximately provide error of less than ∼ 1% , which for 
instance is the case for mesh of Fig. 6c at Re = 500 . Simi-
larly, minimum 12 or 7 cells per �∗ for errors less than ∼ 2% 
and ∼ 4% , respectively. Nevertheless, such errors could sim-
ply be ignored for some applications or preliminary (concep-
tual) designs, where a high accuracy level is not a primary 
concern.

Table 1   Comparison of drag force for 2D cylinder using BVP method 
on body-fitted and Cartesian meshes

Case C
D

Rel. error

Body-fitted (no-slip) 1.65420
Body-fitted (BVP, � = 10−5) 1.65311 – 0.066%
Body-fitted (BVP, � = 10−6) 1.65327 – 0.056%
Body-fitted (BVP, � = 10−7) 1.65332 – 0.052%
Cartesian, coarse (BVP, � = 10−6) 1.64776 – 0.389%
Cartesian, medium (BVP, � = 10−6) 1.64964 – 0.275%
Cartesian, fine (BVP, � = 10−6) 1.65079 – 0.213%

(a) D/ = 50 (b) = 100

(c) = 200 (d) = 400

Fig. 6   Symmetric convex design on various Cartesian meshes (note 
that figures are cropped)

Fig. 7   Drag and mesh convergence study for the symmetric convex 
shape, at various Reynolds numbers
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4.1.2 � Sensitivity verification

Discrete adjoint with analytically differentiated partial 
derivatives provides exact sensitivities. Nevertheless, it 
is crucial to verify the developed adjoint problem and 
particularly its implementation, prior to performing opti-
mizations. For this task, the sensitivity of the problem in 
Sect. 4.1.2, as an example, is computed via analytical dis-
crete adjoint, and compared with the sensitivities derived 
numerically by finite-difference method (FDM). Hence, 
drag force partial derivatives, as required in Eq. 12–13 
( J = Fx ), are simply obtained from Eq. 16 by

and

where v and i are cell volume and index, respectively. The 
numerically approximated sensitivities are obtained using 
central-differencing scheme via

and then, the relative errors are computed via

Figure 8 indicates the relative errors for all design variables 
of a coarse meshed domain. FDM is perturbed with vari-
ous � , such that the acceptable range between round-off and 
truncation error of FDM is captured. The matching results 

(17)
�J

�ux,i
=

1

�
�ivi,

(18)
�J

��i
=

1

�
ux,ivi

��i

��i
,

(19)
dJ

d�i

FDM

=
J(�i + �) − J(�i − �)

2�
,

(20)Ei =
dJ∕d�FDM

i
− dJ∕d�

Analytic

i

dJ∕d�FDM
i

.

( E < 10−6 ) satisfyingly confirm the accuracy as well as 
the correct implementation of the analytical adjoint. Same 
results can be obtained for other functions such as lift or 
pressure drop.

4.1.3 � Diffuser problem (2D) and performance analysis

First example is the classical diffuser topology optimization 
problem, first investigated by Borrvall and Petersson (2003).

Figure 9 shows the geometry as well as the boundary con-
ditions imposed for this internal flow problem. A parabolic 
velocity profile with umax

x
= 10 is applied at inlet, L = 3 , 

and Re = umax
x

L∕� is either 10, 100 or 1000. In this case 
the design and physical domains are identical Ωd = Ω . The 
objective is minimization of the total pressure drop, hence

with minimum 25% volume constraint. Since velocity and 
pressure values are fixed in inlet and outlet, respectively, the 
derivatives of 21 become

where i is the cell index, |�f | is the cell face area, and 
�J∕��i = 0 . It is important to note that J requires pressure 
and velocity at cell faces, but in Eq. 22–23 cell center values 
are used. It is simply because at such boundaries, face values 
equal their cell center values, due to the applied zero normal 
gradient boundary conditions.

Figure 10 shows the optimized topologies (started from 
empty designs) on a uniform mesh of 4802 size. The total 

(21)J = ∫Γin

(

p +
1

2
��2

)

dΓ − ∫Γout

(

p +
1

2
��2

)

dΓ,

(22)
�J

�pi
= |�i

f
| (for f ∈ Γin),

(23)
�J

�uj,i
= −�|�i

f
|uj,i (for f ∈ Γout, j = {x, y}),

Fig. 8   Sensitivity verification using central-scheme finite-difference 
method with various perturbation sizes

Fig. 9   Schematic of the diffuser TO problem
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pressure loss is changed by + 13.2%, − 5.2% and − 16.6%, 
respectively for Re = 10, 100, 1000 . For Re = 10 , the objec-
tive value has been increased to fulfill the volume constraint. 
Since the empty design is an infeasible state, the optimizer 
tends to rapidly expand the volume, which leads to a jump of 
objective value. Hence, the interpolation parameter of q = 5 
was used for a more gradual increase of objective function 
value and an oscillation-free process. However, for Re = 100 
and 1000 cases, the objective function reduces by volume 
increase (without oscillation). As a result, q = 0.1 was used, 
which leads to almost a linear curve. Nonetheless, it should 
be highlighted that the results are barely sensitive to the 
interpolation parameter, and q = 1 is found to be working 
properly for most of the cases.

It is worth noting to the computational performance of the 
present topology optimization example, particularly the ana-
lytical differentiation part. Figure 11 indicates a breakdown 
CPU-time for three resolutions of 1202 , 2402 and 4802 cells, 
performed on a 14-core processor. Noticeably, less than 11% 

of total adjoint sensitivity parts for these cases are dedicated 
to differentiation by OAD, whereas it is more than 67% for 
the reverse-mode AD, although both approaches provide 
exact derivatives. This can advantageously reduce the total 
computational time, particularly for large 3D problems. 
Also, it is important to note that the exact derivatives can be 
computed on-the-fly by OAD. More precisely, OAD doesn’t 
need any information (e.g. cell connectivities or mesh topol-
ogy) to be previously stored. Therefore, by changing mesh 
after multiple refinements, no extra process is required for 
the new mesh.

4.2 � Drag minimized (2D) topologies

Aim of this example is finding optimum shape of struc-
tures with minimized drag forces, under a minimum vol-
ume (cross-section area) constraint. The problem setting is 
similar to the one studied in Sect. 4.1.1, and Fig. 5 indicates 
its geometry and boundary conditions. Area of a circular 
cross-section with unit diameter D = 1 is considered as the 
lower bound for the design area, i.e. Amin = (D∕2)2� . Size 
of the design domain is set to Ωd = 6D × D , which prop-
erly overlaps the final geometries. The reference Reynolds 
number is defined as Rer = U∞D∕� , nevertheless, the actual 
values could be calculated by Rea = (Lc∕D)Rer , where Lc is 
the characteristic length of the optimized shapes. A square 
with area of ∼ Amin∕100 is adopted as the initial design 
� init . It is because the solver doesn’t converge with fully 
empty design space. The interpolation parameter is set to 
q = 1 for a smooth (oscillation-free) optimization process. 
A sufficiently fine mesh (545.1k cells, with �x = D∕200 ) is 
used here to provide 15 cells per �∗ length, for an accuracy 
level of approximately less than 1% of drag for flows up to 
Rer ≤ 500 (and less than ∼ 3% for Rer = 1000 ). A single-
stage optimization process is considered here, because the 
problem is relatively inexpensive (compared to 3D cases).

Figure 12 illustrates the optimized shapes (topologies) for 
Rer numbers ranging from 10 to 1000. The optimized design 
of Rer = 10 has a blunt convex-symmetric shape, similar to 
the introduced rugby-ball shapes by Borrvall and Petersson 

Fig. 10   Results of diffuser 
topology optimization with 4802 
design variables (cells)

Fig. 11   CPU-time details of diffuser problem with primal solver, 
analytical differentiation (OAD), reverse-mode AD (DAFoam), and 
adjoint solver parts, for three resolutions 1202 , 2402 , 4802 , computed 
on a 14-core processor (Intel® Xeon® E5-2697 v3). DAFoam (v2.2.3) 
is used for as AD tool and matrix coloring is excluded for timing
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(2003). By increasing Reynolds number, aspect ratio of opti-
mized designs increases. Also, leading and trailing edges 
become gradually sharper, as pressure drag dominates vis-
cous drag for higher Reynolds numbers. The symmetrical 
profile disappears at larger Re numbers to suppress flow 
separation and formation of a wake region, which increase 
the drag, as it is the case for case Rer = 1000 for instance. 
The optimized drag coefficients are plotted in Fig. 13 with 

respect to Reynolds numbers, and compared to the similar 
work of Kondoh et al. (2012) (note that reference length 
is replaced by 

√

Amin for similar definition of Re and CD ), 
which tend to produce comparatively less drag forces.

Before proceeding, it is practical to examine the effect of 
initial guess on the final design. For this purpose, the optimi-
zation case of Rer = 200 is solved again with different initial 
geometries. Figure 14 shows the initial designs as well as the 
final solutions. As Fig. 15 indicates, all cases converged to 
local minima, although with different convergence speed, 
and final drag values. All cases, no matter the number of 
initial elements, converged to an airfoil-shaped geometry 
(identical in terms of topology). Nevertheless, it is observ-
able that the initial guess can influence the final solution, at 
least in terms of convergence behavior. In addition, starting 
from a single-element design can be a suitable initial guess 
to start the optimization with, and is adopted as the initial 
guess in the following examples as well.

Fig. 12   Drag minimized (2D) topology optimization results under 
volume constraint

Fig. 13   Drag coefficients of the 2D volume-constrained topology 
optimization problem for various Reynolds numbers. The reference 
length is changed here to 

√

A in accordance to the literature

Fig. 14   Initial and optimized designs for Re
r
= 200
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4.3 � Lift maximized (2D) topologies, 
with constrained drag

In this example, the goal is to investigate the topologies, 
which maximize lift force with constrained drag force. This 
problem formulation can be considered for some applica-
tions, in which the goal is to maximize payload for a fixed 
thrust force, for instance. A set of problems with differ-
ent flow and optimization settings are considered to better 
study the utility of the present approach. In all cases, drag 
force is constrained such that CD∕C

0
D
≤ � , where C0

D
 is the 

minimized drag coefficient obtained from Sect. 4.2. Each 
case is defined with a unique combination of three different 

aspects, namely: Reynolds number Rer = {50, 200, 500} , 
permissible drag force � = {1, 1.4, 1.8} , and enabled or 
disabled minimum volume constraint (18 cases in total). 
Due to the flow physics of the lift problem, the simulation 
domain is expanded to Ω = 12D × 12D , which embodies a 
design domain of Ωd = 7D × 2D . In addition to the enlarged 
physical domain, the adjoint problem should be solved twice 
her (for both lift and drag sensitivities), which increases the 
computational load compared to the drag minimization case. 
Therefore, a two-stage optimization process is employed to 
reduce the overall cost of these 18 optimization cases. Simi-
lar to the previous example, optimizations cases are initiated 
with a small square with area of A = 0.01D2.

Figures 16, 17 and 18 illustrate the optimized topolo-
gies for � = 1, 1.4 and 1.8, respectively. The design of 16a 
is simply a curved thin structure, which attempts to guide 
the upstream flow to downward direction in order to gener-
ate lift force. It is predictable that for higher Rer (or U∞ ) 
the flow stream above the upper design surface may sepa-
rate and form an unsteady wake region behind, which may 
increase lost of momentum that are supposed to generate lift. 
It is worth noting that the optimized topologies avoid such 
phenomena interestingly in three ways: firstly, the angles 
of attack are reduced to minimize the area of the potential 
wake, and to avoid early flow detachments; secondly, two 
sharp corners are often created to control flow detachments 
at the upper and lower surfaces of the trailing edges; and 
thirdly, a limited number of isolated elements (trailing struc-
tures) are created in the wake region to guide and stabilize 
the flow. Therefore, most of the optimized topologies consist 
of more than one element.

The importance of such trailing structures can be investi-
gated better by a closer look at the flow stream lines depicted 
in Fig. 19, corresponding to the optimized design of Fig. 18f. 
It can be seen that the upper-surface flow is partially guided 
through the training elements, which stabilizes the flow in 

Fig. 15   Influence of initial guess on final solutions

(a) Rer = 50 (b) Rer = 50 (volume constrained)

(c) Rer = 200 (d) Rer = 200 (volume constrained)

(e) Rer = 500 (f) Rer = 500 (volume constrained)

Fig. 16   Maximized lift with drag constraint of C
D
≤ C

0

D
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the wake. The post-simulation analysis of the same structure 
without the trailing elements indicates a largely unsteady 
flow in the wake, and confirms the stabilization role of such 
elements. A two-stage design process of this structure is 
plotted together with its optimization history in Fig. 20. 

It is worth noting that the intermediate designs contain 
areas of gray (porous) materials in the wake, with damping 
flow velocity effects, which better clarifies the importance 
of wake stabilization during the optimization process. A 
detailed analysis of the exerted forces on trailing elements 
is listed in the Table 2. It is interesting that the elements 
produce negative drag and lift forces, which the latter is 
negligible in magnitude. Here the drag force is a limiting 
design constraint, and a negative drag force is advantageous, 
as it allows the main structure to reach to a larger drag. As 
a result, the trailing elements play two effective roles, wake 
stabilization and producing negative drag forces.

Figure 21 indicates the optimization results, CL∕CD , for 
different Reynolds and � numbers, with and without vol-
ume constraints. It should be highlighted that the actual 
Reynolds number are much larger the the length of the 

Fig. 17   Maximized lift with drag constraint of C
D
≤ 1.4C

0

D

(a) Rer = 50 (b) Rer = 50 (volume constrained)

(c) Rer = 200 (d) Rer = 200 (volume constrained)

(e) Rer = 500 (f) Rer = 500 (volume constrained)

(a) Rer = 50 (b) Rer = 50 (volume constrained)

(c) Rer = 200 (d) Rer = 200 (volume constrained)

(e) Rer = 500 (f) Rer = 500 (volume constrained)

Fig. 18   Maximized lift with drag constraint of C
D
≤ 1.8C

0

D

Fig. 19   Plot of streamlines for the case of Fig. 18f, to reveal the role 
of trailing elements in the wake
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main structure is adopted as the characteristic length. For 
example, Rea ≈ 1900 for the design in Fig. 18f. Relaxing 
the permissible drag force by increasing � , expectedly facili-
tates achieving to higher maximum lift forces in all Reynolds 
numbers. At higher flow velocities the achieved maximum 
CL∕CD ’s increases, due to the larger input momentum of the 
upstream. It can be also been that imposing volume con-
straint considerable limits the obtainable maximum lift, par-
ticularly for � = 1 cases. Larger volumes lead to less aspect-
ratios which generates more drag forces. However, for larger 

permissible drag forces, the effect of minimum volume con-
straint diminishes, as the design volume increases (compare 
Fig. 16–18 cases).

4.4 � Drag minimization and lift maximization (3D)

In this part, two 3D examples are considered, namely: drag 
minimization with constrained (minimum) volume, and lift 
maximization with constrained (minimum) drag. Here, the 
volume of a sphere with unit diameter D = 1 is considered 
as the lower limit for design volume in drag minimization 
case, and similar to the previous 2D cases, the value of the 
optimized CD (with a scale of � ) is adopted as the maximum 

Fig. 20   Design process and 
optimization history of case of 
Fig. 18f

Table 2   Relative drag C
D,i
∕C

D
 and lift C

L,i
∕C

L
 forces of the trailing 

structures, for case of Fig. 18f

Trailing structures 1 2 3 4 5-7

Drag ratio (%) – 3.209 – 0.814 – 0.361 – 0.319 – 0.070
 Lift ratio (%) – 0.066 – 0.005 – 0.015 – 0.031 – 0.029

Fig. 21   Optimized C
L
∕C

D
 values versus C

D
 constraints

Fig. 22   Convergence histories for the three-stage drag minimization 
problem in Sect. 4.4
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permissible drag force for the lift maximization case. The 
upstream velocity is U∞ = 20 , and the reference Reynolds 
number is Rer = U∞D∕� = 200 . The topology optimization 
process for both cases are initiated with a relatively small 
cube (edge size of D/5) for a better convergence behavior, 
based on the previous findings in Sect. 4.1.1. Such an ini-
tial guess initially violates the volume constraint in the drag 
minimization case, however, it will demonstrate the capa-
bility of the present framework for designing almost from 
scratch. Accordingly, to fulfill the minimum volume, the 
drag force has to increase during optimization. Therefore, 
similar to Sect. 4.1.3 the interpolation parameter of q = 1 
facilitates a smoother (non-oscillatory) design process.

For the drag minimization problem, a three-stage 
design process is utilized, with the simulation domain 
Ω = 12D × 5D × 5D and three mesh resolutions of 
�x = {D∕24, D∕48, D∕96} . The optimization process 
including the histories of CD and design volume are shown 
in Fig. 22, and the final (optimized) designs in Fig. 23. It 
can be seen that initially the optimizer expands the design 
volume within the first few iterations to satisfy the initially 

violated volume constraint. The process continues by mini-
mizing the objective function with the permissible volume 
lower bound. Initially a conservatively large design space 
( Ωd = 6D × D × D ) was used, as the final design sizes were 
initially unknown. Then, the location and size of the design 
spaces (for the second and third stages) were adjusted corre-
sponding to the optimized topology in the first stage, to min-
imize the local refinement zones, as shown in Fig. 25a. The 
optimized drag forces are CD = {0.4282, 0.4151, 0.4109} , 
respectively for each consecutive stage, with 3.1% and 1.0% 
improvements after each refinement. In addition, according 
to the mesh studies in Sect. 4.1.1, the mesh resolution in the 
third stage provides more than 12 cells per �∗ (at Rer = 200 , 
or Rea ≈ 700 ), which can suggest an overall error of <2% 
in calculation of CD.

For the lift maximization case, a drag constraint of 
CD ≤ �C0

D
 is imposed, where C0

D
 is the optimized drag coef-

ficient from the previous case. Here, no maximum volume 
constraint is imposed, since the drag constraint can indirectly 
limit the design size. Also in this case, � is set to 8, since 
lower values, e.g. 1 or 2, considerably suppress the design 

Fig. 23   Optimized solutions 
of the 3D drag minimization 
problem for three stages with 
�x = {D∕24, D∕48, D∕96} . 
Note that the graphs indicate 
the � = 0.5 level-set of the 3D 
scalar design ( � ) field

(a) Stage 1, grid view (b) Stage 2, grid view (c) Stage 3, grid view

(d) Stage 1, contour view (e) Stage 2, contour view (f) Stage 3, contour view

Fig. 24   3D lift maximization at 
Re

r
= 200 , with drag constraint



	 A. Ghasemi, A. Elham 

1 3

130  Page 16 of 22

volume to expand. Here, the initial guess does not violate the 
constraint, and therefore, the interpolation effect is disabled 
by q = 0.1 (almost linear curve). The simulation domain is 
expanded to larger domain ( Ω = 12D × 12D × 9D ) com-
pared to the drag case, to better capture the flow field. 
Both drag and lift values are relatively negligible initially 
for the small cube (initial guess), which lets the design to 
gradually expand its volume, in order to gain lift force, 
until the permissible drag is reached. For this problem a 
four-stage procedure is utilized, with mesh resolutions of 
�x = {D∕15, D∕20, D∕30D∕40}.

The optimization process is shown in Fig. 24. It can be 
observed that the design volume expands in the first ∼ 50 
iterations until the permissible drag is reached. It should also 
be pointed out that the optimization process, compared to the 
drag minimization case, requires more iterations to converge. 
This can be attributed to the absence of volume constraint, 
which sharply limited the design to change (in drag mini-
mization cases). Figure 26 demonstrates the final design for 
the 4th stage, in multiple views, and Fig. 25b shows the 
design as well as the simulation and design domains. Con-
sidering the problem setting and the local (refined) mesh 
size, the final stage provides more than 7 cells per �∗ , which 
suggest an estimated error of <4% in computed forces. The 
final lift over drag ratio of CL∕CD = 1.59 at Rer = 200 was 
achieved at last stage. Unlike the drag case, the achieved 
maximum lift force increases at each stage, mainly because 
at higher mesh resolutions, a thinner design with less drag 

force can be designed, which is in favor of the present drag 
constrained problem setting (to better manage the permis-
sible drag force).

It is worth noting that, in contrast to the 2D lift cases, the 
optimized design is an one-element structure, apparently due 
to the different nature of the wake in 3D flow. It has a ∼ 22 
degree angle of attack to redirect the upstream flow down-
wards to increase the lift force, while maintaining the flow 
to be stabilized and attached in the wake region (behind the 
main body). Visualization of the flow streamlines in Fig. 27 
can reveal the utility of the grooved surfaces for flow control 
(attachment) in the wake region. It is not trivial to eliminate 
the grooves to precisely analyze their functionality, how-
ever, an analogous behavior was previously observed in 2D 
optimized cases, where trailing structures suppressed wake 
instabilities. Design of such complex pieces can be a very 
challenging task for other techniques such as shape optimi-
zation, however, as it was stated earlier, density-based TO 
is capable of designing optimized structures from scratch.

5 � Discussion

In this section, the achievements and novelties of the present 
work are discussed, in terms of application of density-based 
TO for laminar aerodynamics, and performance achieve-
ments by OAD and multi-stage framework.

Fig. 25   Design and simulation 
domains for 3D drag and lift 
optimizations

(a) Drag minimization case (b) Lift maximization case
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The optimization results demonstrated a promising utility 
of the density-based TO in terms of design of aerodynamic 
structures from scratch, for both 2D and 3D problems. In some 
cases, interestingly up to 8 distinct elements were designed 
from a very small square or cube as an initial design. This fea-
ture is a noticeable strength for density-based method, which 
is mostly lacked by classical level-set topology optimization 
approaches. In addition, the designed trailing structures or 
grooved surfaces demonstrated an interesting capability of the 
present TO framework, to maintain the flow stability during 
the entire optimization process, which is essentially important 
to minimize loss of energies and obtain high-performance fly-
ing devices. Such details are sometimes very unintuitive to be 
designed manually. Consequently, the present approach fur-
ther underlines the designing capability of the density-based 
method for laminar aerodynamic applications.

Table 3 indicates the 3D problems sizes as well as their 
CPU-time breakdowns for each optimization stage of 
Sect. 4.4. It should be pointed out that the exact analytical 
differentiation via OAD, dedicates less than 3% of the total 
CPU times in these 3D cases, suggesting its high efficiency. 
In addition, the choice of linear solver (preconditioned flex-
ible GMRES) for adjoint problem provides computing times 
comparable to the OpenFOAM (primal) solver (note that 
both solvers are initiated with the previous solution for a 
faster convergence speed). Also, the multi-stage procedure 
facilitated multiple local mesh refinements (withing the 
design space), to achieve a better model accuracy with less 
computational costs. Using the finest mesh for a single-stage 
optimization, besides its expensive computational costs, 
suggests less convergence speed, particularly when a large 
volume change occurs during the process (due to the slower 
volume growth with smaller cells). However, by assuming 
a similar convergence speed (independent of mesh size), it 
can be estimated that the multi-stage process can reduce the 
total CPU-time by at least 45%. Such a performance gain is 
very important, not only for sake of reduced computational 
time, but also for achieving higher BVP model accuracy by 
refined meshes.

6 � Closure

An efficient and parallel multi-stage density-based topology 
optimization framework was presented for 2D and 3D lami-
nar flow problems. The exact sensitivities were efficiently 
computed via OAD and discrete adjoint methods. For imple-
menting OAD, Armadillo library was used, whereas Open-
FOAM and PETSc library were used for flow and adjoint 
problems, respectively. A set of 2D and 3D problems were 
studied and results promisingly suggested the utility of the 

(a) Top view

(b) Side view

(c) Bottom view

Fig. 26   3D lift maximized topology, with post-processed interface

Fig. 27   Streamlines over the grooved surfaces
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density-based for aerodynamic optimization and design 
problems. The key findings are:

–	 Solid-fluid model via Brinkman volume penalization on 
a Cartesian mesh is not exact but is acceptably accurate 
for conceptual design purposes, when the mesh is suf-
ficiently refined.

–	 Solutions on locally refined meshes can be obtained by 
the multi-stage procedure with considerably less overall 
computational costs (up to 45% for 3D cases).

–	 OAD provides exact derivatives, with cost of less than 
3% of the total optimization CPU times (in 3D cases). 
OAD facilitates a convenient differentiation and imple-
mentation. OAD is a general differentiation approach, 
which can be utilized for other complex CFD solvers as 
well.

–	 The results promisingly indicated a successful design 
process nearly from scratch, which suggests the potential 
utility of the density-based TO for an unmanned (auto-
matic) designing tool.

–	 The aerodynamically optimized topologies featured inter-
esting properties such as multi-element trailing structures 
or grooved surfaces to stabilize and control the flow in 
the wake region as well as enhancing the overall perfor-
mance.

–	 Drag minimized airfoil geometries were obtained for 
Reynolds numbers up to Re = 1000 ( Rea ≈ 5000 ). And 
up to CL∕CD = 5 was achieved at Re = 500 ( Rea ≈ 1900 ), 
supported by 7 separate trailing elements as flow stabiliz-
ers.

 Appendix A: Discretization overview

By integration of Eq. (1) over a control volume VP and appli-
cation of Gauss theorem, the convection term becomes

(24)
∫
VP
∇ ⋅ (��) dV = ∮

�VP
d� ⋅ (��)

≈
∑

f �f ⋅ (��)f
=
∑

f �f�f

where �f  is face normal vector (pointing outwards) with 
magnitude equal to the face area, �f = �f ⋅ �f  is the flux of 
fluid volume on face f, and

where subscript N stands for the neighboring cell.
For a constant � , the diffusion term becomes

where

where �f =
�2
f

�.�f
� , �f = �f − �f  , and � = �N − �P.

By the mid-point rule approximation, the penalization term 
becomes

Summarizing Eq. (24)–(28), the momentum equations for 
ux , uy , and uz become

where a denotes the resulting discretization coefficients, and 
b the velocity boundary conditions.

The pressure correction equation of SIMPLE algorithm is 
constructed by connecting continuity and momentum equa-
tions. For this, Eq. (2) is integrated over VP and by applying 
Gauss theorem, it becomes

To compute �f  , here, Eq. (29) is first reformulated to isolate 
� such that

(25)�f = ��P + (1 − �)�N

(26)
∫
VP
∇ ⋅ (�∇�) dV = ∮

�VP
d� ⋅ (�∇�)

≈
∑

f �f ⋅ (�∇�)f ,

(27)
�f ⋅ (∇�)f = |�f |

�N − �P

|�|
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

orthoginal

+ �f ⋅ (∇�)f
⏟⏞⏞⏟⏞⏞⏟
non-orthogonal

,

(28)∫VP

�

�
� dV ≈

�

�
�PVP.

(29)aP�P +
∑

N

aN�N = bP −
1

�
∇p

(30)∫VP

∇ ⋅ � dV = ∮�VP

d� ⋅ � ≈
∑

f

�f ⋅ �f = 0.

Table 3   The average CPU-
time per each optimization 
iteration for different stages 
of 3D problems in Sect. 4.4, 
performed on a 10-core Intel® 
Xeon® (E5-2640 v4) processor 
(equipped with 256 Gb RAM)

3D drag min. case 3D lift max. case

Stage # Cells Primal 
Sol. 
(min)

Adjoint 
Sol. 
(min)

OAD 
Diff. 
(min)

# Cells Primal Sol. (min) Adjoint 
Sol. 
(min)

OAD 
Diff. 
(min)

1 385,000 0.61 0.22 0.05 520,992 0.87 0.59 0.07
2 1,254,528 2.49 1.04 0.14 1,088,000 1.63 1.48 0.14
3 3,852,288 6.84 7.67 0.46 2,493,072 4.52 6.19 0.33
4 – – – – 4,782,400 14.23 21.02 0.62
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where H(�) = bP −
∑

N aN�N . Then, by applying the Rhie-
Chow interpolation, �f  is approximated by:

Inserting Eq. (32) in (30) yields to

which, in a succinct form, becomes

where

and 𝜑̃f = �f ⋅ (H(�)∕aP)f .
Finally, the variable fluid fluxes �f  are corrected using 

the updated pressure fluxes, via

In SIMPLE algorithm, the flow solutions are obtained by 
starting with an initial guess for � , and then by iteratively 

(31)�P =
1

aP
(H(�) −

∇p

�
),

(32)�f = (
H(�)

aP
)f − (

1

aP
)f (

∇p

�
)f .

(33)
∑

f

�f ⋅ [(
1

aP
)f (

∇p

�
)f ] =

∑

f

�f ⋅ (
H(�)

aP
)f ,

(34)
∑

f

Γ
p

f
=
∑

f

𝜑̃f ,

(35)Γ
p

f
=

1

�
(
1

aP
)f (|�f |

pN − pP

|�|
+ �f ⋅ (∇p)f ),

(36)𝜑f ≈ 𝜑̃f − Γ
p

f
.

solving Eqs. (31) and (34) for � and p (with relaxation) and 
correcting � (36), until convergence.

Appendix B: Operator‑based analytical 
differentiation (OAD) for simpleFOAM

Residuals matrix forms: The residuals should be refor-
mulated in algebraic (matrix) forms for the differentiation 
process. Therefore, Eq. (29) can be written as

where the operator �(⋅) builds a diagonal matrix for a given 
vector, and constant ��

i
 vectors account for boundary con-

ditions. For a 3D problem, three velocity residual vectors, 
namely ��x , ��y and ��z are defined. Note that pressure is 
scaled by inverse of density. The matrix � is the sum of 
divergence, Laplace and Brinkman volume penalization 
(BVP) operators, such that

and the pressure gradient operator � is defined as

where the �p

cf
 operator interpolates pressure from cell cent-

ers to the cell faces, and �grad,i operator computes its gradi-
ents in i ∈ {x, y , z} directions.

(37)��i = ��i − ��
i
+ �(�)�i� ≈ 0

(38)� = �u
div

+�u
Lap

+�u
BVP

,

(39)�i = �grad,i �
p

cf
,

Table 4   List of operators, defined to derive the residuals in matrix forms

Note that o and c are owner and neighbor global indexes of face f, respectively; c is the cell global index, and the f-superscripted M values 
are accumulatively summed to form the global operator matrix. The operators are based on 1st order upwind for divergence, Gauss linear for 
Laplace and gradient terms and linear for interpolation. For this case an orthogonal mesh is considered

Matrix Cells/internal faces Fixed-value boundaries Fixed-flux boundaries

��
Lap M

f

o,o = M
f

n,n = �
f

|�
f
|

|�
no
|

,
 
M

f
n,o = M

f
o,n = −�f

|�f |

|�no|
M

f
o,o = �f

|�f |

|�fo|

–

�
p

Lap M
f

o,o = M
f

n,n = a
f

|�
f
|

|�
no
|

,
 
M

f
n,o = M

f
o,n = −af

|�f |

|�no|

– M
f
o,o = af

|�f |

|�fo|

��
div M

f
o,o = −M

f
n,o = � if � ≥ 0, Mf

n,n = −M
f
o,n = −� if 𝜑 < 0 – M

f
o,o = �

�
𝜑̃

div M
f

o,f
=

1

v
o

�
f
⋅�

o,f

|�
f
⋅�

o,f |

,
  
M

f

n,f
=

1

vo

�f ⋅�n,f

|�f ⋅�n,f |
M

f

o,f
=

1

vo

�f ⋅�o,f

|�f ⋅�o,f |
M

f

o,f
=

1

vo

�f ⋅�o,f

|�f ⋅�o,f |

�grad,i M
f

o,f
=

Sf ,i

vo
 ,  Mf

n,f
=

Sf ,i

vn
M

f

o,f
=

Sf ,i

vo
M

f

o,f
=

Sf ,i

vo

��
BVP Mc,c =

�c

�
vc – –

�
p

flux Mf ,o = −Mf ,n = −af
|�f |

|�no|

– Mf ,o = −af
|�f |

|�fo|

�
p

cf Mf ,o = 1 −Mf ,n =
�nf

|�no|

– Mf ,o = 1

�
ar
cf Mf ,o = 1 −Mf ,n =

�nf

|�no|

Mf ,o = 1 Mf ,o = 1

��
cf Mf ,o = 1 −Mf ,n =

�nf

|�no|

– Mf ,o = 1
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For the pressure residuals of Eq. (34), � is first decom-
posed to diagonal and off-diagonal matrices by

and the discretization coefficient vector is formed by

where, � stands for the vector of cell volumes. The coef-
ficients can be interpolated to faces by

To apply Rhie-Chow interpolation, � is first defined by

where

and interpolating �̃ to faces gives

The face flux 𝜑̃f  of Eq. (34) can be constructed by

where n can be either 2 or 3 depending the problem dimen-
sions. Now the vector of pressure residuals becomes

where �p

Lap
 is a Laplace operator with �r,f  as diffusion coef-

ficients; and, �p
Lap

 vanishes by assuming zero pressure value 
and gradients on domain boundaries.

Lastly, Eq. (36) is constructed by

which is counted as the fluid volume flux residual.
Analytical differentiation: Supported by the set of 

defined operators, the dependency of the residuals (Eq. 
(37), (47) and (48)) on state, intermediate and design var-
iables are clarified. Such clarity significantly simplifies 
the differentiation process. Table 4 summarizes how these 
operators are assembled.

Beginning with momentum Eq. (37), the partial deriva-
tives of �ui are derived as

(40)� = � + �̄,

(41)�r = �−1�

(42)�r,f = �
ar
cf
�r.

(43)�i = �(�)−1(�i − �̄�i),

(44)�̃i = �(�r)�i,

(45)�̃f ,i = �h
cf
�̃i + ��

i
.

(46)�̃ =

n
∑

i=1

�(�f ,i) �̃f ,i

(47)�p = −
(

�
p

Lap
� − �

p

Lap

)

− �(�)�
𝜑̃

div
𝝋̃ ≈ 0

(48)�� = 𝝋 − 𝝋̃ +�
p

flux
� ≈ 0

(49)�ui
ui
= �,

and

with respect to state variables �i , � and � , and design vari-
ables � , respectively. Note that �uiui = 0 if i ≠ j.

For �p , the second term of Eq. (47) is first reformulated 
and simplified using Eq. (43)–(46) to obtain

where �j are constant matrices. Now, �p in a succinct form 
becomes

The partial derivatives of pressure residual are then calcu-
lated as

and

respectively for � , �i , � and � , where chain-rule of differen-
tiation is applied for intermediate variables such as �r . Note 

that from Eq. (42) 
��r,f

��r
= �

ar
cf

 , and

(50)�ui
p
= �(�)�i,

(51)�
ui
� =

�(��
div
�i)

��
,

(52)�
ui
� =

�(�BVP�i)

��
,

(53)

�(�)�
𝜑̃

div
𝝋̃ =

�(�)�
𝜑̃

div

∑n

i=1
�(�f ,i)(�

�̃
cf
�(�r)�i + ��

i
) =

�(�)�
𝜑̃

div
�������

�1

(

n
�

i=1

�(�f ,i)�
�
i

�����������
�2

+

∑n

i=1
�(�f ,i)�

�̃
cf

�������
�3,i

�(�)−1�(�r)(�i − �̄�i)),

(54)
�p = −�

p

Lap
� − �1�2−

�1�(�)
−1
�(�r)

∑n

i=1
�3,i(�i − �̄�i).

(55)�p
p
= −�

p

Lap
,

(56)�p
ui
= �1�(�)

−1
�(�r)�3,i�̄,

(57)
�p
�
= −

�(�
p

Lap
�)

��r,f

��r,f

��r

��r

��

−�1

n
∑

i=1

�3,i

(

�(�i)
��r

��
+ �(�r)

��i

��

)

,

(58)�p
�
= −

(

�(�
p

Lap
�)

��r,f

��r,f

��r
+ �1

n
∑

i=1

�3,i�(�i)

)

��r

��
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from Eq. (43).
Using the �j matrices, �� can be simplified as

and its derivatives are obtained by

and

with respect to � , �i , � and � , respectively, where � is the 
identity matrix.
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p
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