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Abstract
In this work, we study the potential of using kriging metamodelling to perform multi-objective structural design optimiza-
tion using finite element analysis software and design standards while keeping the computational efforts low. A method is 
proposed, which includes sustainability and buildability objectives, and it is applied to a case study of reinforced concrete 
foundations for wind turbines based on data from a large Swedish wind farm project. Sensitivity analyses are conducted to 
investigate the influence of the penalty factor applied to unfeasible solutions and the size of the initial sample generated by 
Latin hypercube sampling. A multi-objective optimization is then performed to obtain the optimum designs for different 
weight combinations for the four objectives considered. Results show that the kriging-obtained designs from samples of 20 
designs outperform the best designs in the samples of 1000 designs. The optimum designs obtained by the proposed method 
have a sustainability impact 8–15% lower than the designs developed by traditional methods.

Keywords Multidisciplinary design optimization · Structural design · Kriging surrogate model · Reinforced concrete 
structures · Multi-criteria decision making · Parametric design

1 Introduction

Today, sustainable development considerations are becom-
ing mainstream into most countries policies and legislation, 
as reflected by the United Nations’ 2030 Agenda for Sustain-
able Development. There is a need to tackle the economic, 
social, and environmental dimensions of sustainability in an 
integrated manner (UN 2015). This trend towards sustain-
ability is of vital importance in the design of building and 
civil engineering structures, since the construction sector is 
one of the most important socio-economic sectors (Favier 
et al. 2018) at the expense of large negative environmental 

impacts (Taylor et al. 2006; Ramesh et al. 2010; Petek Gur-
sel et al. 2014).

The importance of considering life-cycle sustainability 
criteria is being progressively recognized by stakeholders as 
appropriate choices in the early design stage are crucial to 
improve the sustainability of structures (Ek et al. 2019). Stand-
ards have been published in recent years to define the general 
principles and framework of the environmental, social, and 
economic sustainability assessment methods for civil engi-
neering construction works (ISO 2019a; 2019b; CEN 2017). 
Yet, today, inclusive sustainability objectives are hardly ever 
used in real-world civil engineering projects to steer the struc-
tural design process towards more sustainable solutions. In 
addition, the number of design options considered is usually 
low as the structural engineer responsible for conducting the 
technical design, often, either inherits a design developed in a 
previous design stage or uses his/her past experience to come 
up with initial design parameters defining the geometry and 
properties of the structure. The structural design of reinforced 
concrete structures generally requires performing a large 
number of different checks, in accordance with design codes 
(e.g. the Eurocodes), in a supervised manner by the engineer, 
who commonly uses finite element (FE) analysis software to 
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compute the load effects and to design the required quanti-
ties of concrete and steel reinforcement accordingly. In this 
context, achieving design improvements is a time-consuming 
process often conducted by trial and error, which limits the 
number of solutions that are evaluated (Boscardin et al. 2019). 
Different studies have previously shown how the solutions 
obtained in this traditional way may be suboptimal. Rempling 
et al. (2019) showed that the use of a set-based parametric 
design approach to calculate a larger number of design con-
figurations could lead to reductions of material cost and  CO2 
equivalent emissions of more than 20% for three studied types 
of bridges. This potential for improvement was corroborated 
by another study (Chalouhi et al. 2020) that showed that the 
use of heuristic optimization methods could reduce the mate-
rial and labour costs and environmental impact of a multi-span 
reinforced concrete beam bridge by 10–15%. As described in 
Table 1, these different design approaches require different 
implementation efforts in terms of time and programming 
skills and allow different levels of exploration of the design 
space.

Additionally, assigning relative importance to the different 
objectives and aggregating them to find the solution that best 
fits the problem involve subjective judgements. This implies 
that the estimated optimal solution may change according to 
decision-making concerns as objectives are often competing. 
For this reason, a multi-objective optimization approach allow-
ing the structural designer to find the set of most sustainable 
and feasible (i.e. fulfilling the constraints prescribed by design 
codes) solutions independently of the consideration of the dif-
ferent interests of decision makers would be of great value in 
practice and reduce the need for rework. The problem to be 
resolved can be mathematically formulated as follows:

(1a)min
x

(
f1(x),… , fm(x)

)
,

(1b)gj(x) ≤ 0,

where the variable x is the vector of design parameters, 
fi, i = 1,… ,m are objective functions and gj, j = 1,… , n 
are constraint functions that need to be fulfilled for a design 
to be considered feasible.

The structural optimization of concrete structures is 
commonly associated with high computational cost due 
to expensive structural analysis computations involving 
FE simulations and many load cases (e.g. for bridges and 
wind turbine foundations) (Mathern et al. 2020). Various 
evolutionary algorithms have been studied to optimize 
concrete structures (e.g. Jahjouh et al. 2013; Mergos and 
Mantoglou 2020). However, alternative methods need to be 
investigated to better address the expensiveness character-
istic of the problem by reducing the number of calls of the 
FE procedure used in the structural design, which becomes 
even more relevant for multi-objective settings. The use of 
metamodels (or surrogate models) can reduce the compu-
tational cost by creating a mathematical response surface 
approximation that predicts the output from a set of inputs 
(Simpson et al. 2001). Kriging (Cressie 1990) is an increas-
ingly popular metamodel, and despite more complex, it is 
more versatile and can provide more accurate results than 
other surrogate modelling methods such as polynomial mod-
els, moving least-squares, radial basis functions and support 
vector regression (Forrester and Keane 2009). Kriging also 
requires less training data than artificial neural networks, 
which makes it particularly interesting for applications 
where the training data are computationally expensive to 
generate (Simpson et al. 2001; García-Segura et al. 2017; 
Penadés-Plà et al. 2019). It was shown, on a concrete bridge 
design case that kriging-based heuristic optimization could 
reduce the computational time by more than 90% compared 
to conventional heuristic optimization without unduly affect-
ing the quality of the obtained solutions (Penadés-Plà et al. 
2019). Although kriging has often been applied in other 
fields, applications for structural optimization of civil engi-
neering structures are still limited but have indicated good 
potential to handle the standard design constraints typical 

(1c)x ∈ ℝ
D,

Table 1  Description of 
different design approaches 
and corresponding approximate 
number of design configurations 
considered

Implementation effort Design approach Number of design configurations considered

Low

High 

Unique predefined solution

Trial-and-error improvement

Parametric design

Heuristic optimization

One

A dozen

A few hundred or thousands

Whole design space, i.e. hundreds of millions
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of structural engineering design problems (Lee and Kang 
2006; Penadés-Plà et al. 2019). The selection of an adequate 
sampling plan is crucial to ensure a good prediction qual-
ity of the metamodel with only a few sample points (For-
rester et al. 2008; Chang et al. 2016). One of the most widely 
used sampling methods is Latin hypercube sampling (LHS), 
which was first proposed by McKay et al. (1979).

Structural design optimization is of particular interest 
for wind turbine structures, as wind farm projects are espe-
cially capital-intensive and characterized by serial produc-
tion of tens to hundreds of turbines. Minimizing the cost 
of wind energy is important to improve its competitiveness 
against non-renewable energy sources and support its cur-
rent development in line with the ambitious energy and 
climate targets set by many countries. Although the largest 
part of the total investment costs of a wind farm project 
corresponds to the wind turbines (tower and rotor-nacelle 
assembly), the foundations required to support these very 
tall structures subjected to large and complex loads account 
for a significant share of the costs (5–7% of the total invest-
ment costs for the wind farm project considered in this 
study) and consume important amounts of materials. Foun-
dations are typically designed on a project basis taking 
into account the loads from the previously selected wind 
turbine and the local geotechnical conditions of the site. 
This project-based design effort means that foundations 
are typically considerably less optimized than the high-
end technology turbines they support, leaving a margin for 
improvement and reduction of their sustainability impact. 
The serial production of wind turbine foundations makes 
it particularly worthwhile to invest in the higher design 
effort required in the early planning and design stage to 
seek minimizing cost and maximizing sustainability and 
buildability. However, reaching this target requires the 
development of multi-objective optimization methods that 
are applicable in practice with appropriate sustainability 
objectives and to prove their potential. Such methods have 
been recently applied, e.g. for reinforced concrete beams 
(Mathern et al. 2020) and bridges (Rempling et al. 2019) 
but have not been studied before for onshore wind turbine 
foundations.

The main aim of this study is to examine the potential 
of using kriging to perform multi-objective design optimi-
zation of wind turbine foundations taking into account a 
comprehensive set of sustainability and buildability objec-
tives. To do so, a case study based on data from a large 
Swedish wind farm project is considered. The study seeks to 
propose and evaluate an implementation procedure to deter-
mine designs with the best performance compatible with 
common structural engineering practice, i.e. according to 
design codes and based on the use of a common commer-
cial FE analysis software. The design optimization process 
proposed in this work builds on the kriging-based heuristic 

optimization process presented in (Penadés-Plà et al. 2019). 
Their work was applied to bridges, whereas here the method 
is applied to wind turbine foundations. Additionally, we here 
expand their work by including structural design based on 
FE analysis and multiple sustainability objectives assessed 
in a life-cycle manner with buildability as a fourth dimen-
sion. In summary, this work brings three novel features to 
the design methods for optimization of structures. (1) It 
integrates objective functions based on more comprehensive 
life-cycle sustainability assessment than what is available 
in the current literature on sustainability-driven structural 
design optimization, i.e. the assessment covers multiple life-
cycle impact categories in the three dimensions of sustain-
ability over several life-cycle stages, as well as the additional 
dimension of buildability. (2) The kriging-based heuristic 
optimization process, previously developed in (Penadés-Plà 
et al. 2019), is here adapted for the first time to reduce the 
expensive computations associated with common FE cal-
culations for the structural design of reinforced concrete 
structures. (3) In contrast with previous literature, structural 
design optimization is here applied to onshore wind turbine 
foundations. The proposed method is evaluated through a 
real-world case study based on industrial data from a Swed-
ish wind farm project.

2  Material and methods

2.1  Design case definition

The design case considered in this work is based on the 
foundation design for the phase 1 of the Markbygden wind 
farm, located in the north of Sweden, which was built in 
2017–2019. It comprises 314 turbines with a capacity of 
3.6 MW, a hub height of 131 m, and a rotor diameter of 
137 m. The turbines are supported by reinforced concrete 
gravity foundations based on a gravel base over glacial till. 
The static Young’s modulus of the soil is 50 MPa, which 
yields a modulus of subgrade reaction of 12 MN/m/m2. The 
soil resistance, �Rd , is 200 kPa. The foundations are designed 
for a service life of 30 years. The reinforcement bars have a 
characteristic yield strength of 500 MPa and are arranged in 
a radial and tangential layout, as illustrated in Fig. 1.

In this study, the foundation was parametrized as 
described in Fig. 1. The design parameters are discretized, 
and their possible values are listed in Table 2, resulting in 
almost 300 million possible configurations. The diameter, dr , 
and width, wr , of the tower-base ring connecting the wind 
turbine tower to the foundation were determined previously 
by the turbine manufacturer in this project ( d

r
= 5.16m and 

w
r
= 0.5m ). The chosen material parameter corresponded to 
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various common concrete classes, characterized by different 
characteristic concrete strengths fck.

2.2  FE analysis

FE analyses were conducted in Abaqus CAE 6.14-2 
(Dassault Systèmes 2014) to determine the effects of 

the design loads to be used in the design process. The 
model consisted of shell elements with a linearly vary-
ing thickness from the edge of the foundation to the edge 
of the pedestal and a constant thickness on the pedestal, 
in accordance with the foundation geometry shown in 
Fig. 1. Such FE model based on shell elements is often 
used in practice to design reinforced concrete structures, 
and it is justified here by the fact that the foundations 
are relatively slender. Additionally, the model was built 
with a hole in the middle, see Fig. 2. This is a common 
workaround used in practice to take into account the fact 
that no reinforcement is placed at the centre of the foun-
dation. Comparisons with a model without hole indicated 
that it is an assumption on the safe side and provides a 
more realistic load distribution around the tower base to 
enable the necessary transfer of forces from the radial to 
the tangential reinforcement.

The concrete material was modelled as linear elastic 
according to the concrete class defined for each configura-
tion. The concrete mechanical properties used in the analysis 
were derived from fck according to the Eurocode 2 (CEN 
2004a), where the mean value of compressive strength is 
fcm = fck + 8(MPa); the modulus of elast ici ty is 
Ecm = 22 × 10

3 ×
(

fcm

10

)0.3

(MPa) ; and the Poisson’s ratio is 
� = 0.2 . Using linear elastic analysis constitutes standard 
practice in design of reinforced concrete structures to keep 
computational time low and reduce modelling complexity; 
for instance, the use of nonlinear analysis is not accepted in 
Sweden for the design of transport infrastructures in rein-
forced concrete (Swedish Transport Agency 2018). Applied 
loads are described in Table 3. Design load cases and load 
values from the wind effects caused on the wind turbine 
rotor-nacelle assembly and tower are gathered in Appendix 
1. These loads are applied in a partition made at the location 
of the tower-base ring, see Fig. 2. These are load cases for 
checking stability as well as structural integrity.

Fig. 1  Schematic view of foundation and reinforcement layout (in 
red, A radial reinforcement, B tangential reinforcement, C shear rein-
forcement) with indication of geometrical parameters used. (Color 
figure online)

Table 2  Design parameters and 
their possible values

Design parameter Index Unit Possible values

Geometrical parameters for the foundation
 Base diameter x1 = d m 101 values in [15.00, 40.00] with step of 0.25
 Total height x2 = h m 31 values in [2.00, 5.00] with step of 0.10
 Pedestal diameter x3 = dp m 34 values in [5.70, 9.00] with step of 0.10
 Pedestal height x4 = hp m 11 values in [0, 1.00] with step of 0.10
 Edge height x5 = he m 18 values in [0.30, 2.00] with step of 0.10

Material parameter
 Concrete class x6 = fck MPa  14 values in [20, 25, 30, 32, 35, 40, 45, 50, 

55, 60, 70, 80, 90, 100]
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The boundary conditions were applied in a way that soil 
elasticity was taken into account. To do so, each node in 
the model was connected to a fixed point by a nonlinear 
spring, which acted only in compression with a stiffness in 
accordance with the modulus of subgrade reaction defined 
in Sect. 2.1.

The results were extracted as sectional forces and 
moments integrated in the shell section. As the coordi-
nates system used was cylindrical, the output was obtained 
in the direction of the radial and tangential reinforcement. 
All the load effects were extracted in a path that followed 
the wind direction, see Fig. 3. This proved to yield maxi-
mum effects, except for shear forces, which were, there-
fore, also extracted along a path perpendicular to the wind 
direction.

2.3  Structural design

The structural design was conducted according to regula-
tions by the turbine manufacturer, the Eurocodes (CEN 
2002, 2004a, b, 2005), the Swedish National Annex EKS 
10 (Boverket 2015), and guidelines from DNV-GL (DNV/
Risø 2002). Aspects to improve buildability were also 

taken into consideration according to project specifications 
(e.g. choice of design parameters values and limitation of 
top surface angle). The design constraints, gi , considered 
are presented in Table 4, along with constraint violation 
factors, �i (larger than 1 if the constraint is violated).

The necessary amounts of bending and shear reinforce-
ment were determined given the design criteria shown in 
Table 5. The bending reinforcement was estimated with an 
approximation often used in preliminary design. The cal-
culation of shear reinforcement was done according to the 
design formula in the Eurocode 2, Sect. 6.2.3 (CEN 2004a). 
The load cases and design loads used for the check of the 
geotechnical constraints and for the design of reinforcement 
for Ultimate Limit State (ULS) are detailed in Appendix 1. 
Serviceability and fatigue limit states were not covered in 
this study. However, they could be included in the calcu-
lations in the same way as for the design for ULS, which 
may affect the reinforcement amounts obtained to a limited 
extent.

Fig. 2  Triangular load applied in the model. The tower-base ring is 
marked in red. (Color figure online)

Table 3  Loads applied in the model

Load Magnitude Region

Self-weight of foundation 25 kN/m3 Whole model
Soil weight 18 kN/m3 Outside pedestal
Water pressure from 

ground water level 
(GWL)

GWL at foundation top Whole model

Horizontal loads from 
tower

See Appendix 1 Tower-base ring

Vertical loads from tower See Appendix 1 Tower-base ring
Bending moments from 

tower
See Appendix 1 Tower-base ring

Torsional moments from 
tower

See Appendix 1 Tower-base ring

a

b

A B

r [m]

M [kN·m/m]
Mmax

Mmin

Fig. 3  a Colour plot of moment about tangential direction (used to 
dimension radial reinforcement). The red line between the points A 
and B represents the path along which forces are extracted for the 
design in the wind direction. b Schematic representation of moment 
about tangential direction as function of the radial coordinate along 
the red extraction line in (a)
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2.4  Objectives definition

The proposed method of assessment encompassed all three 
dimensions of sustainability (economic, environmental, 
and social) based on life-cycle assessment (LCA) fol-
lowing the frameworks established by EN 15643-5:2017 
(CEN 2017) and ISO 21931-2:2019 (ISO 2019b). Hence, 
the three corresponding objectives are evaluated using 
life-cycle cost (LCC), environmental LCA (E-LCA), and 
social LCA (S-LCA), respectively. In this work, a fourth 
dimension was included to complete the sustainability 
assessment, namely buildability, and evaluated in terms 
of construction time. The objective functions taken into 
account for each dimension are summarized in Table 6. 
They all correspond to negative impacts and need to be 
minimized.

This study focused on the optimization of the founda-
tion for a preselected type of wind turbine and its associated 
loads. Hence, the object of assessment was the reinforced 
concrete foundation, which is why the wind turbine (i.e. the 
tower and rotor-nacelle assembly) and the tower-foundation 
connection (i.e. flanges and bolts) were not included in the 
assessment. A civil engineering works life cycle includes 
several stages, defined in EN 15643-5:2017 (CEN 2017). 

The relevant stages for the case study considered in this work 
are the product stage (A1–3) and the construction process 
stage (A4–5), but other stages could be integrated in a simi-
lar way when applying the method to a different case. The 
use and end-of-life stages were not included in the assess-
ment as the foundations are buried under the ground and no 
control nor maintenance actions were planned during their 
service life, and what would happen with the foundation at 
the end of their service life (e.g. repowering, leaving them in 
place, recycling) was not yet defined. The pre-construction 
stage A0 was also excluded as it would have been identi-
cal for all designs. The materials, transport, and activities 
involved in the construction of the foundations were taken 
into considered in the assessment.

2.4.1  Economic

In this study, the objective function, f1, associated with the 
economic impact was defined as the total cost, C, associated 
with the production of the foundations:

(2)f1(x) = C(x) = Cm(x) + Ca(x) + Ctr (x),

Table 4  Summary of 
constraints, gi , used in the 
foundation design, and 
constraint violation factors, �i

Design constraints Index and definition

Geometrical constraints
 Height g1(x) = he + hp − h ≤ 0; �1(x) =

he+hp

h

 Top surface angle g2(x) = �top − 45◦ ≤ 0; �2(x) =
�top

45◦

Geotechnical constraints
 Lift-off Foundation not allowed to lift-off for corresponding load case

g3(x) = 0.5 × Atot − Aeff ≤ 0 ; �3(x) =
0.5×Atot

Aeffwhere

Aeff = 2 ×

[
(

d

2

)2

× arccos
(

emax

d∕2

)
− emax ×

√(
d

2

)2

− emax
2

]

,

emax : maximal eccentricity under corresponding load case, emax =
Mrd+Frd×h

Fzd+gcd

Mrd : design value of moment applied at foundation top for studied load case
Frd : design value of horizontal load for studied load case
Fzd : design value of vertical load from tower
gcd : design value of self-weight of foundation

Atot =
�×d2

4

 Overturning Foundation allowed to lift-off only to its centreline for corresponding load case
g4(x) = emax − 0.5 × d < 0; �4(x) =

emax

0.5×d

 Ground pressure Ground pressure under corresponding load case does not exceed limit
g5(x) = �Ed − �Rd ≤ 0 ; �5(x) =

�Ed

�Rdwhere:
�Ed : design value of pressure at the bottom of the foundation, �Ed =

Fzd+gcd

Aeff

�Rd : soil resistance value according to geotechnical survey of site (fixed site-
specific parameter, see Sect. 2.1)

 Sliding Sliding not allowed for corresponding load case

g6(x) =
Frd

Fzd+gcd
− 0.4 < 0; �6(x) =

Frd

0.4×(Fzd+gcd)
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where Cm corresponds to the material cost, Ca to the cost of 
construction activities and Ctr to the cost of transport.

The material cost, Cm , was calculated as the sum of 
the unit price (see Table 9 in Appendix 1), pm,k , for each 
material, k , times the respective material quantity, Qm,k , as 
follows:

The cost of construction activities, Ca , is equal to the 
unit labour cost, pa , times the time required for construc-
tion activity, Ta,

in which the time of construction activity, Ta , was calcu-
lated as the sum of the unit time for the construction activity 
associated with each material times the respective material 
quantity, as follows:

(3)Cm(x) =
∑

k

pm,k × Qm,k(x).

(4)Ca(x) = pa × Ta(x),

(5)Ta(x) =
∑

k

Tm,k × Qm,k(x),

where Tm,i corresponds to the unit price for each construction 
activity k, as given in Table 10.

The cost of transport, Ctr , is equal to the unit transport cost, 
ptr,k , for each material, i , times the corresponding distance, 
dtr,k , (as specified in Table 11), times the respective material 
quantity,

2.4.2  Environmental and social

The evaluation of the environmental objective function, f2, and 
social objective function, f3, followed the same pattern as the 
economic one previously described:

where Em corresponds to the material environmental impact, 
Ea to the environmental impact of construction activities and 
Etr to the environmental impact of transport, and,

where Sm corresponds to the material social impact, Sa to the 
social impact of construction activities and Str to the social 
impact of transport.

The environmental assessment was conducted using the 
endpoint approach of the ReCiPe 2008 method and data of 
Ecoinvent database (Ecoinvent 2016). Each term Ej of Eq. (7) 
was evaluated as in Eq. (9), by adding the three endpoint dam-
age categories defined in the ReCiPe 2008 method, using the 
Europe H/H normalization and weight values to obtain the 
overall environmental impact. The damage categories are pre-
viously obtained by aggregation of 18 midpoint impact catego-
ries, e.g. climate change, human toxicity and mineral resource 
depletion (Goedkoop et al. 2009).

where Ej,EQ represents the damage to ecosystem quality, Ej,RC 
the resources consumption, and Ej,HH the damage in human 
health.

In a similar manner, the social impact was obtained by 
adding the four stakeholders of the Social Impacts Weighting 
Method, using the PSILCA database (GreenDelta 2013), asso-
ciated with the processes of the Ecoinvent database by means 
of an add-on called SOCA (Eisfeldt 2017). This procedure 
allowed performing the S-LCA using the same processes as 
the E-LCA to ensure the coherence of the overall assessment. 
Therefore, each term Sj of Eq. (8) was evaluated as in Eq. (10),

(6)Ctr (x) =
∑

k

ptr,k × dtr,k × Qm,k(x).

(7)f2(x) = E(x) = Em(x) + Ea(x) + Etr (x),

(8)f3(x) = S(x) = Sm(x) + Sa(x) + Str (x),

(9)Ej(x) = Ej,EQ(x) + Ej,RC(x) + Ej,HH(x),

(10)Sj(x) = Sj,W(x) + Sj,VCA(x) + Sj,S(x) + Sj,LC(x),

Table 5  Summary of criteria for design of reinforcement

Design criteria Definition

Bending reinforcement 
(ULS)

As,i =
MRd,i

0.9×dc×fyd
,

where
As,i : required bending reinforcement
MRd,i : moment in the analysed section
dc : effective depth of cross section
fyd : design yield strength of reinforcement

Shear reinforcement 
(ULS)

Asw,i =
VRd,s,i

z×fywd×cot(�)
,

where
Asw,i : required shear reinforcement
VRd,s,i : shear force in the analysed section
z : lever arm of internal forces, z = 0.9 × dc
fywd : design yield strength of shear rein-

forcement
� : stirrup angle, with cot(�) = 2.0

Table 6  Objective functions considered in the assessment

Objective function Index

Economic
 LCC f1

Environmental
 Aggregated E-LCA result f2

Social
 Aggregated S-LCA result f3

Buildability
 Time of construction f4
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where Sj,W represents the social impact in workers, Sj,VCA the 
one in value chain actors, Sj,S in society, and Sj,LC in local 
community.

2.4.3  Buildability

As the different designs assessed in this study were based on 
the same concept and included the same type of construction 
activities, the buildability objective function, f4 , was meas-
ured in this study as the number of working hours required 
for the construction works, T  , including construction activi-
ties, Ta, and transport on site and to the site, T

tr
:

where Ta is calculated according to Eq. (5), and Ttr is calcu-
lated as the sum of the times necessary for transport for each 
material i, considering the respective unit transport times, 
ttr,i , and distance, as defined in Table 10, in the following 
manner:

2.4.4  Multi‑criteria decision making

Converting the different objectives into a single quantifi-
able indicator constitutes a multi-criteria decision-making 
(MCDM) problem. To do so, weights need to be predefined 
for the objectives according to the stakeholders’ perception 
of their relative importance. Additionally, it is necessary to 
normalize the objective function values as economic, envi-
ronmental, social, and buildability objectives are often meas-
ured in different units.

In this work, the indicator used was called sustainability 
index, I , and it was defined as follows:

with

where wi represents the different weights and fi,n the normal-
ized values for the different objective functions assessed for 
each feasible design. The latter was calculated as the ratio 
of the objective function value, fi , for this specific design, to 
the average, fi,m, of the initial sample population considered:

(11)f4(x) = T(x) = Ta(x) + Ttr (x),

(12)Ttr (x) =
∑

i

ttr,i × dtr,i × Qm,i(x).

(13)I(x) =
∑

i

wi × fi,n(x),

(14)
∑

i

wi = 1,

(15)fi,n(x) =
fi(x)

fi,m
.

2.5  Kriging‑based heuristic optimization process.

Figure 4 shows the flow chart of the design optimization 
process used in this work. It builds on the metamodel-based 
heuristic optimization process presented in Penadés-Plà 
et al. (2019). The process is further developed here by inte-
grating FE modelling for the structural analysis and design, 
and MCDM with a more comprehensive set of objectives 
assessed in a life-cycle manner.

A purpose-written Python script was developed in this 
work to control the FE analysis and the structural design 

OPTIMIZATION PROBLEM
- Objective function
- Constraints
- Design variables

Initial population (N) 
definition using latin 
hypercube sampling

2nd kriging surface
construction after 

modification and penalization METAMODEL

SAMPLING

Validation
VALIDATION

STRUCTURAL DESIGN
Design of reinforcement

Structural analysis using FEM

Preliminary checks

Evaluation of objectives / 
sustainability index

MULTI-CRITERIA DECISION-MAKING

Until 
termination 

criterion
Simulated annealing algorithm Search kriging model

for optimum

OPTIMIZATION

ESTIMATED OPTIMUM 
DESIGN

STRUCTURAL DESIGN

VERIFICATION
MULTI-CRITERIA 

DECISION-MAKING

1st kriging surface construction
to assess unfeasible designs

Fig. 4  Flow chart of design optimization process
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of the foundations. The computations were carried out on 
a single computer cluster node with 20 cores built on Intel 
Xeon E5-2650v3 (“Haswell”) CPU and 64 GB of RAM. The 
FE analysis was computationally expensive, taking approxi-
mately 60 s to complete for a single foundation, which called 
for the use of a metamodel to limit the number of FE simula-
tions required in the optimization process.

In metamodel-based optimization, the optimization pro-
cess is carried out from a response surface approximation 
derived from an initial sampling. In this work, initial samples 
were obtained by LHS using uniformly distributed intervals 
to guarantee that all the design parameters were represented 
along their respective ranges. LHS defines the position of the 
sample points according to the initial defined sample size. 
In this work, to study the influence of the sample size, the 
optimization process was carried out considering different 
sample sizes, N: 10, 20, 50, 100, 200, 500, and 1000.

The initial sampling covers the whole design space, and 
some of the designs in the samples were not feasible as they 
did not fulfil all the geometrical and geotechnical constraints 
defined in Table 4. To reduce computational time, the struc-
tural design step was interrupted for these designs after these 
preliminary checks. It was possible to do so for all the con-
straints considered here since they had known analytical 
expression. These constraints were chosen as they were the 
ones used in the design of the foundations for the industrial 
project that this case study is based on, to ensure the com-
parability of the results. If the problem had also included 
constraints of which evaluation relied on results from the FE 
analysis, the same design optimization process could have 
been followed by evaluating these constraints at a later stage 
of the structural design.

To maintain the sample size, a first kriging surface was 
used to predict the objective function’s values for the unfea-
sible designs. This kriging surface was built using the values 
obtained for the feasible designs in this sample (i.e. after 
conducting full structural design and MCDM). Before cal-
culating the second kriging surface to be used in the optimi-
zation process, two alterations were applied to the imputed 
objective values of the unfeasible designs, with the aim of 
reducing the probability of getting optimum designs in non-
feasible regions of the design space. First, a modification 
of the imputed values was done by setting a lower bound 
equal to the minimum value of all the feasible designs in 
the considered sample. Additionally, penalties were applied 
to the imputed values of the unfeasible designs by multiply-
ing them by a penalty factor. Different penalty factors were 
investigated in this work: three constant penalty factors, 
p = 1 (no penalty), p = 1.25, p = 1.5, as well as a variable 
penalty factor, p = pvar, according to Eq. (16). This variable 
penalty factor ranges between 1 and 1.5, and it is a function 
of the constraint violation factors (see Table 4). Each of the 
four penalty factors was applied to all the different sample 

sizes considered in order to determine the influence of this 
parameter on the kriging model. The kriging code used in 
this work was developed based on the DACE kriging tool-
box (Lophaven et al. 2002a, b), as described in more detail 
in Appendix 3.

The search for the optimal design was carried out using 
the metaheuristic simulated annealing (SA) algorithm (Kirk-
patrick et al. 1983) applied to the kriging model. The use of 
SA was supported by its versatile acceptance criteria, which 
is the reason why it is used in many studies to carry out con-
ventional heuristic optimization, e.g. (Medina 2001; Camp 
and Huq 2013). In each iteration of the optimization process, 
the design parameters were modified according to the cho-
sen algorithm, and the value of the objective function was 
calculated using the mathematical approximation created by 
the kriging model. This value was then compared with the 
one of the previous iterations to determine if there was any 
improvement. The SA calibration was done according to the 
method proposed by Medina (2001), which suggests to halve 
the initial temperature when the percentage of acceptance 
is greater than 40% and to double it when the percentage of 
acceptance is lower than 20%. After that, the temperature 
decreases according to a coefficient of cooling k following 
the equation T = k × T  , when a Markov chain ends. In this 
work, the calibration revealed that a coefficient of cooling 
of 0.8 and a Markov chain length of 1000 were appropriate. 
The SA algorithm was terminated after three Markov chains 
showed no improvement.

In order to account for the variability of the process and 
obtain statistically significant results, nine different sam-
ples were generated by LHS for each initial sample size (i.e. 
N = 10, 20, 50, 100, 200, 500 and 1000) and used to create 
different kriging surfaces. In addition, a tenth sample was 
generated for each sample size N, to validate the accuracy of 
the kriging surfaces prior to conducting the optimization. For 
each sample size, the kriging surface error was defined as the 
average relative error between the calculated sustainability 
index values for the feasible designs of the tenth sample and 
the corresponding predicted values computed from each of the 
nine kriging surfaces. The error in the prediction of the objec-
tive function values provided insight into whether the model 
was adequate for subsequent optimization. Finally, once the 
optimization algorithm returned a prediction that was deemed 
optimal, the structural design and MCDM steps were repeated 
to verify its actual feasibility and sustainability performance.

2.6  Mono‑ and multi‑objective settings

First, a mono-objective optimization was conducted to study 
the influence of different characteristics of the kriging-based 

(16)pvar (x) = min
[
max

i

(
�i(x);1

)
;1.5

]
.
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optimization (sampling size and penalty factor). To do so, 
the four objectives (economic, environmental, social, and 
buildability) were considered equally important when cal-
culating the sustainability index used as single objective 
function in the optimization process according to Eq. (1a), 
i.e. the relative weight associated with each one of these 
objectives was 0.25.

Once the best behaviour of the kriging-based optimiza-
tion was determined, multi-objective optimization was done 
by performing the optimization process several times for 
different objective weight combinations to obtain a Pareto 
set of designs that forms a preferred trade-off between the 
sustainability and buildability objectives considered. For 
this purpose, the relative weights ( w1 , w2 , w3 , and w4 ) were 
discretized into multiples of 0.05 (i.e. 0, 0.05, 0.1, …, 1), 
and combined such that they summed to one, leading to 266 
possible weight combinations. In order to measure the qual-
ity of the set of Pareto solutions, the common hypervolume 
indicator was used (Zitzler and Thiele 1999). This indicator 
measures the volume of the space enclosed by the Pareto 
front and a reference point. The reference point used to cal-
culate the normalized hypervolume was

where max
(
fi,n

)
 corresponds to the maximum value reached 

by the objective function i for all the initially generated 
designs.

As different initial sample sizes were considered and sev-
eral runs were conducted for each of them in both the mono-
objective and multi-objective settings, the normalized objec-
tive function value, fi,n , for each objective i, was calculated 
as described in Eq. (15), using for fi,m the average value of 
the feasible sample designs from the nine initial series with 
the largest sample size (i.e. N = 1000).

3  Results and discussion

3.1  Mono‑objective optimization

As a first step, a mono-objective optimization was performed 
to study and choose the best way to carry out the kriging-
based optimization. For this purpose, two different sensitivity 
analyses were performed: to study the influence of the initial 
sample size obtained by LHS and of the penalty factor applied 
to unfeasible solutions of the initial sample. In both cases, the 
goal was to determine the design with the lowest sustainability 
index considering all objectives to be equally important.

Figure 5 shows the average error and standard devia-
tion (shaded areas), obtained from nine different kriging 
surfaces, for each initial sample size and penalty factor. 
Results showed that the kriging surfaces that best predicted 

(17)r =
[
max

(
f1,n

)
,max(f2,n),max(f3,n),max(f4,n)

]
,

the objective value were the ones obtained with p = 1.00 
(i.e. without penalty) and with an initial sample size greater 
than N = 50, for which the error was about 5%. The fact that 
the best results were obtained when the kriging surface was 
not altered indicates that the alteration of the kriging sur-
faces using penalties considerably affects the accuracy of the 
predicted results. Although the average errors were similar 
between N = 50 and N = 1000 for a penalty p = 1, the stand-
ard deviation decreased between these sizes, i.e. the variabil-
ity decreased when the sample size increased. The results 
do not reveal any significant improvement when using the 
variable penalty factor p = pvar (i.e. varying between 1 and 
1.5) instead of the constant one of 1.5. For the problem con-
sidered with six design parameters, it appears necessary to 
create the kriging surface from initial samples consisting of 
at least 50 configurations to obtain good predictions.

Figure 6 shows the sustainability index of the kriging-
obtained solutions for the different initial sample sizes and 
the influence of the penalty factor applied. The sustainabil-
ity index obtained without penalty (p = 1) was marked by 
a sharp fall when the sample size increased from 10 to 20. 
Larger sample sizes seem to be required to reach similar sus-
tainability performance with the penalty factor of 1.25. The 
sustainability of the solutions was poorer and the variability 
larger with the penalty factor of 1.5 and the variable one. 
These results can be explained by the larger kriging surface 
error observed for the series p = 1.5 and p = pvar in Fig. 5.

Fig. 5  Influence of sample size (N) and penalty factor (p) on kriging 
surface error, and area within ± 1 standard deviation from the aver-
age (shaded areas). For each population and penalty factor, the krig-
ing surface error corresponds to the average relative error between 
the predicted values using nine kriging surfaces of the sustainability 
index of the designs of a tenth surface and the calculated values for 
the designs of this tenth surface
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Figure 7 shows a comparison between the sustainability 
index of the series without penalty (p = 1) and the average 
of the lowest sustainability index obtained for all the designs 
in the initial LHS-generated samples. The results showed 
that the designs obtained using a kriging surface based on a 
sample of 20 or more designs outperformed in average the 
best designs in the LHS-generated sample of 1000 designs. 
This result clearly highlights the potential of the kriging 
metamodel to reduce the computation time needed to obtain 
good-performance designs by limiting the extent of expen-
sive FE analyses required.

The results obtained here are in line with previous find-
ings (Penadés-Plà et al. 2019) for kriging-based optimiza-
tion of the embodied energy of concrete box-girder bridge 
designs. In both studies, the best performance was exhib-
ited when no penalty was applied, and the kriging surface 
error was approximately 4–5% for N larger or equal to 50. 
In this previous study, little improvement of the results was 
observed for sample sizes larger or equal to 50, while this 
was already observed here from N = 20.

3.2  Multi‑objective optimization

In a second phase, multi-objective optimization was per-
formed to obtain the Pareto front of the most sustainable 
foundation designs for different combinations of weights for 
the four objectives considered. Based on the results from 
the mono-objective optimization, no penalty was used in 
this phase (p = 1).

Figure 8 shows the average normalized hypervolume val-
ues obtained for each sample size considered. It includes 
both the average hypervolume from the nine LHS initial 
samples and the one from the nine kriging generated sets of 
solutions to the multi-objective optimization problem based 
on the same initial samples.

Similar to the mono-objective setting results, the nor-
malized hypervolume calculated from the kriging solutions 
underwent a significant improvement when the kriging 
surface was interpolated from an initial sample with a size 
N = 20 or higher. These results revealed that the set of Pareto 
solutions obtained by the kriging metamodel based on 20 
or more initial designs was better than the Pareto solutions 
obtained from 1000 LHS-generated designs. Although the 
normalized hypervolume of the kriging solutions did not 
improve significantly when using initial samples with more 
than 20 points, the spread of the results appeared to decrease 
for initial samples of 200 or more points.

Note that in this work a large number of weight combina-
tions (i.e. 266 in total with the weight increment considered 
of 0.05) were calculated for the sake of accuracy and analys-
ing the potential of the method. This number of combina-
tions is rather large, given that each Pareto front was com-
posed of one to five solution points. The reduced number 
of Pareto solutions in this case can be explained by the fact 
that the objectives taken into account are not conflicting a lot 
despite that they are related to very different aspects, similar 
to the results obtained for the two objectives of cost and 
 CO2 emissions in previous works (Camp and Assadollahi 

Fig. 6  Average sustainability index of kriging-obtained optimum 
solutions versus initial sample size (N) for different penalty factors (p)

Fig. 7  Average sustainability index of initial sample population and 
average sustainability index of kriging-obtained optimum solutions 
versus initial sample size (N) for penalty factor p = 1 (i.e. no penalty)
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2013; Yepes et al. 2015; Rempling et al. 2019). Finding the 
optimum design for each of these 266 combinations was 
done using the kriging metamodel, which does not involve 
the expensive structural analysis calculations using the FE 
method. What takes time instead is the verification of the 
solutions in the last step of the process. Therefore, in a prac-
tical application structural engineers could verify only the 
solutions corresponding to the expressed stakeholder’s pref-
erences and possibly the ones in their immediate vicinity.

3.3  Influence of design approach

In the previous part, feasible designs obtained using krig-
ing-based heuristic optimization were compared to the best 
designs from the initial LHS-generated sample. It should be 
noted that neither of these two approaches constitutes com-
mon practice today in design offices. An attempt is made 
here to evaluate the influence of the design approach on the 
performance of the developed designs on the case study at 
hand.

In the real-world industrial project on which the case 
study of this work is based, the technical design was first 
conducted using the design configuration developed in 
the predesign stage of the project due to limited time. 
This design was then refined in a trial-and-error manner 
inspired by engineering judgement in an attempt to reduce 
material quantities. In this second step, around ten solu-
tions were investigated. However, the configuration used 
in the predesign had a definite influence on these results 
as the iterations started from it, which is mostly explained 
due to time limitations to select a design to be further 

developed (e.g. to produce the full technical design, the 
technical drawings and specifications, etc.). As a conse-
quence, many possibly better-performing configurations 
were obviously disregarded at this stage. Using parametric 
design allows calculating a much larger number of design 
configurations, as was done in this work when calculat-
ing all the initial LHS-generated design configurations. 
Using metamodel optimization as was done with kriging in 
this work is a further development that allows to consider 
all possible design configurations. These four approaches 
require different design efforts (recall Table 1).

To put the results here obtained into context, the sus-
tainability performances of the designs developed by the 
different design approaches are represented in Fig. 9. This 
comparison reveals that the optimum design obtained by 
kriging has a sustainability index 15% lower than the orig-
inal predefined design and around 8% better than the best 
design obtained by trial-and-error improvement. This rate 
of improvement depends certainly on the quality of the 
predesign and of the engineer’s experience and judgment 
in the trial-and-error improvement process. However, it 
clearly appears that the use of kriging-based optimiza-
tion can lead to further substantial improvement of the 
sustainability of the structure. In the case study investi-
gated, satisfactory results were obtained, and therefore, it 
was not deemed necessary to include further complexity 
to the kriging metamodel. In more complex problems, it 
may be necessary to assess the need to update the kriging 
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metamodel with infill points during the optimization 
process.

The parameter values, material quantities, and objective 
values for the designs with the lowest SI in Fig. 9 are detailed 
in Appendix 4. The best designs obtained by trial-and-error 
improvement and LHS have sensibly similar geometries to 
that of the unique predefined design. Interestingly, kriging-
based optimization not only led to better designs with the 
same kind of geometry but also to an even better solution 
with a markedly different geometry (i.e. a thinner foundation 
with a larger diameter that is more heavily reinforced but 
using substantially less concrete). The analysis of the results 
reveals that this solution is characterized by the reduction of 
the concrete class and the quantity of concrete. Both these 
parameters impact the amount of cement required, which 
appears to be the dominant factor influencing the sustain-
ability of the designs for wind turbine foundations.

4  Summary and conclusions

The aim of the present study was to investigate the potential 
of using metamodels for multi-objective structural design 
optimization in a manner compatible with real engineering 
practice. The proposed method integrates kriging-based heu-
ristic optimization, FE analysis, and multi-criteria assess-
ment. To verify the applicability and potential of the method, 
the optimization process developed was applied on a case 
study dealing with the design optimization of wind turbine 
foundations of a real-world project of a Swedish wind farm. 
This case study integrated FE analysis to compute the load 

effects on the structure and the verification of constraints in 
accordance with design codes.

The results shown in this paper indicate that a kriging 
model can be effectively used to find promising designs for 
a low number of calls of the expensive FE-based design 
procedure. The proposed method enabled us to generate 
designs that performed better in terms of the sustainability 
and buildability indicators considered, both in a mono-
objective setting and in a multi-objective setting. This 
use of a metamodel is especially interesting for achieving 
multi-objective optimization and for uncoupling the deter-
mination of the relative importance of the objectives from 
the design and optimization process, which allows solving 
the MCDM problem in parallel or after the design stage. 
The findings of this study indicate that a kriging surface 
based on an initial sample size of only 20 designs results 
in good-quality designs. In the considered case study, the 
kriging-based optimization method led to an improvement 
by 8% to 15% of the sustainability index of the designs 
developed in practice.

Appendix 1: Design loads

Load cases used for check of geotechnical design con-
straints are shown in Table 7, while load cases for design 
of reinforcement in ULS are presented in Table 8. 

The z-axis corresponds to the vertical axis and the 
r-axis corresponds to a radial axis in the acting wind 
direction.

Table 7  Design loads for 
check of geotechnical design 
constraints

Limit state Load case Fz [kN] Mz [kNm] Fr [kN] Mr [kNm]

ULS Lift-off 5.517E+03 1.297E+03 5.690E+02 7.239E+04
ULS Overturning 5.552E+03 − 6.681E+03 9.943E+02 1.222E+05
ULS Ground pressure 5.552E+03 − 6.681E+03 9.943E+02 1.222E+05
ULS Sliding 1 5.469E+03 − 1.008E+04 4.420E+02 4.916E+04
ULS Sliding 2 5.552E+03 − 6.681E+03 9.943E+02 1.222E+05

Table 8  Design loads for check 
of ULS, including partial 
safety factors, considering all 
applicable load cases (normal, 
abnormal and erection) 
according to the IEC 61400-1 
design standard (IEC 2014)

Limit state Load case Fz [kN] Mz [kNm] Fr [kN] Mr [kNm]

ULS DLC 8.1 8.248E+03 1.312E+03 1.039E+02 2.445E+04
ULS DLC 6.2 5.959E+03 − 2.897E+03 9.309E+02 1.236E+05
ULS DLC 1.3 7.420E+03 − 6.993E+02 1.052E+03 1.197E+05
ULS DLC 2.2 6.016E+03 − 1.108E+04 4.862E+02 6.033E+04
ULS DLC 2.3 6.054E+03 − 5.847E+02 9.426E+02 1.270E+05
ULS DLC 2.1 7.329E+03 7.301E+03 9.913E+02 1.384E+05
ULS DLC 2.2 6.107E+03 − 7.349E+03 1.094E+03 1.425E+05
ULS DLC 2.1 7.208E+03 4.211E+02 1.083E+03 1.425E+05
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Appendix 2: Data used for objectives 
assessment

A unit labour cost for construction activities of 69.8 €/h 
was taken into account according to (Wikells 2018). This 
cost includes direct costs (i.e. social security and payroll 
taxes) and indirect costs (e.g. site installation, equipment, 
transport, administrative and management costs, waste). The 
data have been retrieved from the Markbygden wind farm 
project and complemented with (Wikells 2018; Catalonia 
Institute of Construction Technology 2020). Unit costs, unit 
times, and transport distances used for criteria assessment, 
in the case study, at hand, are detailed in Tables 9, 10, and 
11, respectively.

Appendix 3: Kriging metamodel

Kriging is a spatial interpolation method that was origi-
nally developed for mining and geostatistical applications 
(Matheron 1963; Cressie 1990; Forrester et al. 2008). Krig-
ing takes into account the spatial correlation of the data. 
The idea behind kriging is that the unknown deterministic 
response (of interest) y(x) can be described as in Eq. (17):

where h(x) is the known approximation function that pro-
vides a global approximation of the design space, and Z(x) 
is a realization of a stochastic process with zero mean, vari-
ance �2 and non-zero covariance, which creates local devia-
tions so that the kriging model interpolates the initial sample 
points, see Eq. (18).

where the process variance �2 scales the spatial correlation 
function R

(
xi, xj

)
 between two data points. The kriging code 

used in this work was developed based on the DACE krig-
ing toolbox (Lophaven et al. 2002a, b). The approximation 
function was considered constant in this work (i.e. the model 
becomes equivalent to ordinary kriging). The Gaussian cor-
relation function, as defined in Eq. (19), was chosen for the 
stochastic process Z(x).

This Gaussian correlation function, commonly used in 
engineering design, is defined by the unknown hyperparam-
eters �k that fit the model to the data in hand by controlling 
the area of influence of nearby points (Simpson et al. 2001; 
Forrester and Keane 2009). The hyperparameters �k are 
determined by maximum likelihood estimation (Lophaven 
et al. 2002b).

(17)y(x) = h(x) + Z(x),

(18)cov
[
Z
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)
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)
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Table 9  Unit costs for construction materials and associated transport

a Conversion rate used: 1 € = 10.5 SEK (Swedish krona)

Material and transport Unit  costa

Material
 Concrete 1.08 fck+151 [€/m3]
 Reinforcing steel 1371 [€/tonne]
 Plywood and timber for formwork 11.7 [€/m2]
 Crushed rock 33.0 [€/m3]
 Excavation and refill 10.5 [€/m3]

Transport to site
 Concrete and crushed rock 0.095 [€/km/m3]
 Reinforcing steel 0.095 [€/km/tonne]
 Plywood and timber for form 0.095 [€/km/tonne]

Transport on site
 Concrete 0.29 [€/km/m3]
 Excavation and refill material 0.29 [€/km/tonne]

Table 10  Unit times for construction activities and transport of mate-
rials

Activity and transport Unit time

Activity
 Concreting 0.4 [h/m3]
 Reinforcing steel placing 7.0 [h/tonne]
 Form work 0.5 [h/m2]
 Crushed rock 0.05 [h/m3]
 Excavation/refill 0.05 [h/m3]

Transport to site
 Aggregates, crushed rock, cement 0.0015 [h/km/m3]
 Reinforcing steel 0.0010 [h/km/tonne]
 Plywood and timber for form 0.0015 [h/km/m3]

Transport on site
 Concrete 0.003 [h/km/m3]
 Excavation and refill material 0.002 [h/km/m3]

Table 11  Transport distances for different materials

Material transported Distance [km]

Transport to the site
 Cement 175
 Aggregates 75
 Crushed rock for soil preparation 75
 Steel reinforcement 150
 Plywood and timber for formwork 100

Transport on site
 Concrete 15
 Excavation and refill material 15
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Appendix 4: Details of the designs 
with the lowest SI in Fig. 9

Table 12 provides the details of the solutions with the lowest 
sustainability index for each design approach, as represented 
in Fig. 9.
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