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Abstract
The majority of parts in modern car bodies is manufactured from sheet metal. Rarely these parts are fully stressed due to 
design space restrictions and complex requirements. The usage of tailor rolled blanks (TRB) enables the reduction of sheet 
thickness in areas less loaded and thus reduces part weight. Technically most sheet metal parts are potentially suited for the 
application of TRB. Economic circumstances like the additional flexible rolling process and technology-specific nesting 
constraints limit the application to a subset of parts. The search for the best candidate parts taking mass and cost into account 
is currently challenging. This article presents an optimization strategy for the selection of the parts in a vehicle structure 
that are best suited for the application of TRB. As a first step, a priori preferencing is performed to select parts based on 
engineering rules. Using a reduced number of candidate parts, high quality metamodels are trained to perform multiobjective 
optimizations of all possible combinations of remaining parts, revealing the most efficient part selection under consideration 
of mass and cost.

Keywords Tailor rolled blanks · Part selection · Cost estimation · Multidisciplinary optimization

1 Introduction

Tailor rolled blanks (TRBs) are widely applied in automo-
tive industry due their lightweight potential and the straight-
forward adaption to existing manufacturing processes, like 
deep-drawing and hot-stamping. Figure 1 shows the basic 
technology of TRB. Increased part cost due to flexible roll-
ing process and additional scrap because of nesting con-
straints limit the application of TRB to a subset of parts in 
automotive bodies.

Automotive parts underlie a complex variety of partly 
conflicting goals and design constraints. Hence, their design 

is challenging. With the increased design freedom of TRB, 
the complexity is further increased. This is the reason why 
optimization techniques have been used to design the thick-
ness runs of Tailor Rolled Parts (TRPs) from the beginning 
on, as shown by Harzheim and Saul (2004).

Passenger vehicles have to withstand severe crash events, 
such as frontal or side impacts with other vehicles, trees, 
walls and other surroundings. In order to design body parts 
according to current legislative and customer crash test 
requirements, crash load cases are assessed virtually using 
finite element models.

Non-linearities like contacts, large deformations and 
material plasticity hinder the application of gradient-based 
optimization techniques whenever crash loads occur. Gra-
dients would have to be calculated using finite difference, 
which is computationally demanding. Furthermore, it is 
highly unlikely to find a global optimum because of the 
noisy nature of crash events. Using metamodels trained 
from a design of experiments has proven to be a good option 
for the solution of crash problems as shown by Redhe et al. 
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(2002); Kodiyalam et  al. (2004); Forsberg and Nilsson 
(2005). The application of metamodel-based optimization 
to the design of TRPs is presented by Chuang et al. (2008); 
Duan et al. (2015).

Most research work focuses on finding a minimum weight 
TRB design. Klinke and Schumacher (2021) present a multi-
objective optimization scheme using a novel TRB-specific 
cost estimation, noting that in order to design a good TRB 
part often a goal conflict between minimum weight and min-
imum cost has to be solved. Determining which parts of the 
car body should be manufactured from TRB is a demand-
ing task, because mass reduction has to be balanced with 
additional cost. Simply manufacturing all sheet metal parts 
of the car body out of TRB would be too costly, even if this 
would be the minimum weight design. Hence, the selection 
of the best subset of parts from a list of candidates is the 
task of this work.

The higher the number of design variables, the worse the 
approximation of the metamodels. The number of the design 
variables is therefore limited. For this reason the direct 
application of the multi-objective optimization scheme from 
Klinke and Schumacher (2021) with a corresponding high 
number of the design variables, as introduced by TRB, is 
not possible. A strategy has to be found that enables the 
systematic selection of parts well suited for the application 
of TRB under consideration of the economic constraints.

This paper presents a new strategy to select a subset of 
parts to a degree where optimization becomes possible, fol-
lowed by a methodology that reveals the most promising 
combination of TRB and constant thickness parts under 
consideration of mass and cost goals. The potential of this 
strategy is shown, using the publicly available Toyota Yaris 
Crash model.

The work is structured as follows: After introducing a 
principal scheme for tailor rolled part selection in Sect. 2, 
Sect. 3 presents rules for selecting and prioritizing trb can-
didate parts. This scheme is applied to a finite element 

car body in order to select a subset of parts with which a 
metamodel-based optimization is computationally feasi-
ble. In Sect. 4 the optimization methodology as well as the 
parametrization and the metamodel training process are 
described. Afterwards the generated metamodel is used 
to perform a conventional single objective light weight-
ing optimization with all candidate trb-parts. Since this 
approach is not goal leading when cost restrictions are 
given, a new approach is presented in Sect. 5. With the 
combinatoric multidisciplinary optimization every pos-
sible combination of trb- and constant thickness parts is 
optimized  revealing the best compromise  solutions of 
weight reduction and cost.

2  Principal scheme for tailor rolled part 
selection

The search of the most suitable TRB-parts aiming on 
reduction of mass m and cost p can be written as a multi-
objective optimization task:

where �f  is the vector of design variables in case that every 
part would be a tailor rolled part. Thinking of around 100 
parts in the BIW and around 5–10 design variables per part, 
it is comprehensible, that the task is hard to solve.

A strategy to decrease the number of possible solutions 
is the so-called a priori preferencing, presented by Hwang 
et al. (1979): An expert defines preferences in order to 
exclude potentially unsuitable solutions in a multi-objec-
tive decision problem. In our case this means, experts 
define preferences to exclude parts from the candidate list 
because it is known that those parts will not be in the 
desired solutions set. As a consequence this decreases the 
number of design variables ns:

The assumption here is, that the solution set of the optimiza-
tion Zf  is comparable to Zs.

For the formulation of preferences the following part 
characteristics play a role: blank width w, material grade 
�y , sheet thickness t and scrap s. When the blank width 
exceeds the maximum coil width of the rolling mill, the 
manufacturing of this part from tailor rolled material is 
impossible. With a low material grade and a low sheet 
thickness, the load bearing capability of a part is low, 

(1)Zf = min
�f

[m(�f ), p(�f )], with �f ∈ ℝ
nf ,

(2)

Zs = min
�s

[m(�s), p(�s)],

with �s ∈ ℝ
ns

and ns < nf .

Fig. 1  Flexible rolling technology
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hence the lightweight potential of such a part might be 
limited. Parts with a high scrap rate tend to be more costly 
than others, since the scrap material is also processed in 
the flexible rolling mill, but does not add value to the part.

Even if all part characteristics indicate the application 
of TRB, it is not guaranteed, that a thickness distribution is 
meaningful. As stated in the beginning, tailor rolled mate-
rial can be applied effectively, when parts are not fully 
stressed, or in other words, inhomogeneously stressed. If 
this is not the case, TRB might not offer any weight sav-
ing, but increases cost. By analyzing the deviation of the 
load along an axis, the load inhomogeneity can be calcu-
lated, that quantifies how much the load is varying along 
a potential rolling direction of the part.

Using part characteristics as well as the load inhomoge-
neity the number of parts of interest and thus the number 
of design variables can be reduced based on an educated 
guess. The remaining parts can be optimized with the 
multidisciplinary optimization scheme from our previ-
ous work (Klinke and Schumacher 2021) to find a mass 
optimal design. Looking at cost and thickness ranges of 
each part one could simple select the parts offering a good 
compromise between mass and cost from this optimum. 
But since the car body is a complex system, whenever a 
subset of parts is selected for the application of TRB, the 
optimization has to be redone with this exact part choice. 
Otherwise, it is likely, that the thickness run of part A is 
not optimal anymore, when part B and part C are not any-
more manufactured from TRB.

From this viewpoint, we propose to optimize every pos-
sible combination of tailor rolled and constant parts, that 
can be realized based on the design variables chosen after 
a priori preferencing. Afterwards the pareto optimal set 
of combinations can be isolated and the best compromise 
solutions offering minimal cost and weight are revealed. 
Based on the pareto optimal set, a posteriori preferencing 
is done: the project engineers decide on the final selection.

3  Rule‑based scheme for a priori 
preferencing

In this work, we present a rule-based selection scheme 
that consists of two stages. The first stage evaluates part 
characteristics only, while the second one incorporates the 
actual loading of parts from a baseline design, evaluated in 
a set of load cases. Since it is common practice to design 
sheet metal structures based on constant thickness parts 
before investigating lightweight applications, it is possible 
that here the baseline design is coinciding with the optimal 
constant thickness design.

3.1  A priori preferencing based on part 
characteristics

Preferencing based on multiple characteristics can be done in 
several ways. For example, a scalar value can be calculated 
from the different characteristics, using a weighted aver-
age, forming a so-called decision criteria �1 that expresses 
the suitability of TRB. Another way to find the most suited 
parts is to perform a multi-staged selection, where parts 
are excluded in each step due to their characteristics. We 
propose a mixture of both approaches, since certain criteria 
exist, that forbid the application of TRB, while others reveal 
tendencies.

Since the rolling mill can only process coils up to a 
certain maximum width wmax , parts whose blank width w 
exceeds this value are sorted out from the set G0 of all parts 
Pi:

Here np is the number of parts in the initial set G0 . From 
the set of remaining parts G1 , only those are kept, that have 
a higher predefined thickness than tmin , because otherwise 
thickness cannot be reduced much by TRB anymore:

To further decrease the number of parts, a decision criteria 
�1 is determined based on sheet thickness t, scrap ratio s 
and yield stress �y . The scrap ratio s can be measured based 
on a nesting analysis performed with the part blank shape, 
after conducting an inverse forming simulation. The nesting 
algorithm places multiple blank shapes on a coil strip. The 
scrap rate can be measured as:

where mp is the part mass and mr is the mass of the required 
raw material.

Prior to calculating �1 , all characteristics are normalized 
to a range between zero and one, such that parts with a high 
suitability are given the value one, while a low suitability is 
expressed as zero:

Normalization allows the calculation of the weighted aver-
age from characteristics of different orders of magnitude. 

(3)
G0 = {Pi}, where i ∈ [1,… , np],

G1 = G0 ⧵ {Pi ∣ w(i) > wmax}.

(4)G2 = G1 ⧵ {Pi ∣ t(i) < tmin}.

(5)s = 1 −
mp

mr

,

(6)

t̃ =
ti − tmin

tmax − tmin

,

s̃ =
smax − si

smax − smin

,

𝜎y =
𝜎y,i − 𝜎y,min

𝜎y,max − 𝜎y,min

, where i ∈ [1,… , np].
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The sheet thickness t is used here again, since parts of high 
thickness have a greater potential for weight reduction. The 
scrap ratio s is a measure for the part cost, while the yield 
stress �y is an indicator for the level of load a part has to bear.

In this work, the decision criteria �1 is calculated as the 
average of the normalized characteristics:

Depending on project goals, individual measures can also 
be of higher importance and a weighted average might be 
more suitable.

By setting the threshold for �1 accordingly, the desired 
number of parts best suited for TRB can be selected:

3.2  Extension of the criterion to include the analysis 
of the load inhomogeneity

As stated in the introduction, tailored blanks are used in 
areas where sheet metal is inhomogeneously loaded. It 
seems likely, that parts with a less homogeneous loading are 
more suited for the application of TRB. Thus a methodology 
to analyze the load inhomogeneity is presented, which is 
then used for a slightly different decision criteria �2.

A part is inhomogeneously loaded when the level of load-
ing, expressed by a field response � like von-Mises stress 
�vm or plastic strain �pl , is varying depending on the location 
inside the part. Since the local load level might be different 
over several load cases, the overall loading might be homo-
geneous. Hence, a combined loading has to be calculated 
first by determining the maximum load level of each field 
entity over all nL load cases. When the responses depend on 
time, also the maximum level over time � has to be found:

Tailor rolled blanks have a thickness gradient in one direc-
tion only, thus the inhomogeneity I along the desired roll-
ing direction is of interest here. To determine I, the field 
response � is divided into nb segments along an desired axis. 
The segmentation is based on the coordinates of the blank 
shape. For every segment the mean of the field response is 
calculated: v̄j . The inhomogeneity can be expressed by cal-
culating the standard deviation of the segment mean values 
to the mean of the part v̄ , which delivers a qualitative value 
within the same units:

(7)𝜉1 =
t̃ + �̃�y + s̃

3
.

(8)G3 = G2 ⧵ {Pi ∣ 𝜉1(i) < 𝜉min}.

(9)� = max
�

max
i

�i(�), where i ∈ [1, 2,… , nL]

(10)I(�) =

√
1

nb

∑nb

j=1

(
v̄j − v̄

)2
.

To further illustrate the calculation of inhomogeneity I, an 
example part is shown in Fig. 2. The stress distribution in 
blank coordinate system is shown in the background. The 
mean stress in each segment is shown as green bars, while 
the red line indicates the mean stress of the part.

Since the inhomogeneity gives a tendency rather than 
enabling the exclusion of parts, the normalized inhomo-
geneity Ĩ(v) is used in addition to known characteristics in 
order to form the decision criteria �2 which is used instead 
of �1 to select the final part set G3:

 The threshold �min can be chosen by the engineering team. 
Since it determines the number of parts in the subsequent 
optimization, it should be chosen based on engineering pref-
erence and computational budget.

3.3  Application example: Toyota Yaris

Modern vehicles have to withstand several crash events 
such as the side impact of a large and heavy vehicle (SUV 
or Pickup) or the roof loading in a roll over. These situa-
tions put a high load on the side structure of a vehicle. Due 
to design space restrictions and the geometry of doors and 

(11)Ĩ =
Ii − Imin

Imax − Imin

, where i ∈ [1,… , np].

(12)𝜉2 =
t̃ + �̃�y + s̃ + Ĩ

4
,

(13)G3 = G2 ⧵ {Pi ∣ 𝜉2(i) < 𝜉min}.

Fig. 2  Stress inhomogeneity of an example part
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crash barriers, the loading is not distributed homogene-
ously, leaving room for the application of TRB.

In order to reflect the effects of the side impact of a 
pickup, the Insurance Institute for Highway Safety (IIHS 
2017) established a crash test, in which a deformable barrier 
with elevated impact height and a mass of 1500 kg hits the 
vehicle with 50 km/h. Lately the test protocol was adapted to 
new field data, using an altered barrier geometry with higher 
mass of 1900 kg and 60 km/h impact speed (IIHS 2020). In 
addition to dummy measurements, both versions of the test 
protocol evaluate the structural performance based on the 
distance of the inner B-Pillar to the centerline of the driver 
seat, as shown in Fig. 3b. A good performance is reached 
when the inner B-Pillar stays more than 125 mm away from 
the driver seat centerline after the crash. Acceptable is a 
distance of 50–124 mm, while marginal describes a distance 
between 0 mm and 4.9 mm. The passing of the centerline 
leads to a poor rating.

To demonstrate the application of the rule-based selection 
scheme a proper vehicle model is necessary. Here a publicly 
available finite element model of a Toyota Yaris from 2007 
is used. The vehicle was reverse engineered and validated 
in several front crash load cases by the Center for Colli-
sion Safety and Analysis (CCSA 2016). In this process all 
parts were 3D-scanned and remodelled for FEM calculation. 
Material coupon tests were conducted to describe the mate-
rial behavior. The model can be considered a standard in 
the crash simulation community. Its public availability and 
thus the good reproducibility of results were the reasons to 
choose this model even though it was not properly validated 
in IIHS side impact. Figure 3a shows the simulation model 
for IIHS side impact simulation.

When evaluated according to the old test protocol, the 
structural performance of the finite element model turn out 

to be poor. Hence we tuned the model with the goal to reach 
a good structural rating that enables a light weighing. At first 
the B-Pillar assembly, consisting of four parts, was simpli-
fied to a single sheet, as shown in Fig. 4a. Based on that 
model, the material of the six most sensitive parts in side 
crash was updated to hot-stamped 22MnB5. The thicknesses 
of those parts are updated by an optimization. The resulting 
structural rating can be reviewed in Fig. 9, while Table 1 
shows a sheet thickness and performance summary of base-
line (BM) and adapted model (AM).

When reviewing the side impact performance not every 
part of the body plays a role, hence 14 parts of the side frame 
were identified as potential TRB-parts based on engineering 
judgment (Fig. 5). Including all those parts in a metamodel-
based optimization would increase the number of design 
variables drastically, which is why we limit ourselves to find 
the six most promising parts. This number has to be chosen 
based on project preferences.

Applying the presented rule-based selection scheme, 
the part characteristics as well as the decision criteria �1 , 

Fig. 3  IIHS side impact

Fig. 4  Yaris model updates

Table 1  Results of the optimization of the adapted model (AM) in 
comparison to the baseline model (BM)

BM AM

tBPLR_OTR [mm] 1.19 2.13
tBPLR_OTR_LWR [mm] 2.12 –
tBPLR_REINF1 [mm] 2.10 –
tBPLR_REINF2 [mm] 1.22 –
tRKR_OTR [mm] 1.43 1.47
tRKR_INR [mm] 1.43 1.57
tSQT2 [mm] 1.44 1.20
tRBW [mm] 1.42 1.73
tRR_OTR[mm] 1.83 1.08
Mass sum Σm [kg] 32.61 31.65
Seat Dist. �min [mm] − 6.6 137.2
IIHS Rating Poor Good
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shown in Table 2 are calculated. It can be seen, that no part 
is excluded because of the blank width. The inner B-Pillar 
(BPLR_INR) and the front roof bow (RBW1) are sorted 
out, since their thickness t is less than 1 mm. To find the six 
most suited parts, the threshold for �1 is set to be ≥ 45.15%, 
which certainly reveals the same parts which were upgraded 
to hot-stamped material. The most suited part seems to be 
the middle roof bow (RBW2), followed by the outer rocker 
(RKR_OTR), while the outer B-Pillar (BPLR_OTR) is listed 
on position four.

As described before, the inhomogeneity can be calculated 
on arbitrary field responses. In order to derive a meaning-
ful load inhomogeneity, a suitable field response has to be 
chosen. Possible responses are plastic strain �pl , von-Mises 

stress �vm and specific energy um . Where the specific energy 
um is calculated from element mass m and the strain energy 
U and is thus based on strain energy density u and element 
area A:

Table 3 shows the inhomogeneity based on specific energy 
I(um) , plastic strain I(�pl) and von-Mises stress I(�vm) . It 
can be concluded, that using the plastic strain or the stress 
response is not goal leading here, because parts of higher 
strength are preferred automatically and comparing parts 
with different materials would be questionable. Thus the 
energy-based inhomogeneity assessment I(um) is our pre-
ferred choice and used to calculate �2.

Compared to the results based on �1 , the selection stays 
the same, but the order of suitability changes. The loading 
of the outer B-Pillar (BPLR_OTR) is quite inhomogeneous, 
followed by the middle roof bow (RBW2) and the rocker 
sheets (RKR_INR and RKR_OTR).

The proposed inhomogeneity assessment is well suited 
to deliver another characteristic for a priori preferencing. 
Even if a simple strategy for the consideration of multiple 
load cases is presented here, load cases from different dis-
ciplines like stiffness or strength might have energy levels 
orders of magnitudes lower than crash. This would require 
an advanced calculation method for the combination of load 
levels in Eq. 9.

(14)u =
1

2
��, U = uA, um =

U

m
.

Fig. 5  Selected parts of the side structure

Table 2  A priori selection based on part characteristics: blank width 
wf  , sheet thickness t, material yield �y and scrap rate s. Additionally 
the decision criteria �

1
 is shown

Bold printed entries are above the threshold and thus part of the 
selection set

wf t �y s �1

[mm] [mm] [MPa] [%] [%]

threshold ≤ wmax t ≥ 1 ≥ 43.15
BPLR_INR 393 0.99 270 56.96 –
BPLR_OTR 356 2.13 950 44.83 68.46 (4)
RBW1 182 0.97 270 15.22 –
RBW2 121 1.73 950 9.04 85.92 (1)
RKR_INR 227 1.47 950 6.39 80.36 (3)
RKR_OTR 210 1.57 950 8.95 81.23 (2)
RKRE_INR 384 1.90 270 40.14 31.95
RKRE_OTR 339 1.01 420 21.72 28.11
FLRE_INR 357 1.90 270 45.51 27.55
RR_INR 169 1.31 350 47.02 12.85
RR_OTR 155 1.08 950 37.59 43.15 (6)
RR2_INR 141 1.07 350 21.39 26.70
SQT1 288 1.46 350 19.81 39.55
SQT2 187 1.20 950 20.59 60,67 (5)

Table 3  inhomogeneity assessment based on different field responses: 
specific energy I(um) , plastic strain I(�pl) and von-Mises stress I(�vm) . 
Additionally the decision criteria �

2
 is shown

Bold printed entries are above the threshold and thus part of the 
selection set

I(um) I(�pl) I(�vm) �2

[J/kg] [%] [MPa] [%]

threshold ≥ 335.75 ≥ 0.15 ≥ 33.78 ≥ 32.85
BPLR_INR 864.44 (2) 1.81 (1) 28.94 –
BPLR_OTR 2009.72 (1) 0.35 (4) 206.54 (1) 76.35 (1)
RBW1 89.71 0.14 27.78 –
RBW2 202.10 0.02 165.11 (2) 66.40 (2)
RKR_INR 518.06 (4) 0.51 (3) 30.94 66.26 (3)
RKR_OTR 389.85 (5) 0.10 91.13 (4) 65.28 (4)
RKRE_INR 335.75 (6) 0.53 (2) 13.42 27.63
RKRE_OTR 170.73 0.15 (6) 2.89 22.64
FLRE_INR 71.17 0.06 4.36 20.95
RR_INR 119.05 0.13 39.11 (5) 10.54
RR_OTR 86.44 0.03 138.07 (3) 32.85 (6)
RR2_INR 48.20 0.05 15.36 20.03
SQT1 251.19 0.23 (5) 13.82 32.25
SQT2 619.94 (3) 0.10 33.78 (6) 52.79 (5)



Rule and optimization‑based selection of car body parts for the application of tailor rolled…

1 3

Page 7 of 13 60

4  Selection based on optimization result

Having determined the six most suited parts, we are now 
able to perform a TRB-optimization. Using the design eval-
uation and optimization strategy from our previous work 
(Klinke and Schumacher 2021; Klinke 2021), metamodels 
are trained sequentially until the prediction quality is not 
further improved.

This means that each iteration a batch of experiments is 
sampled using a space-filling approach with the software 
LS-Opt®. Following the maximin-distance criterion it is 
ensured that new designs can be added subsequently without 
sacricing uniformity or equidistance of the design points as 
described by Stander et al. (2015).

Using the commercial software  PSeven®, metamodels for 
all responses are trained using different types of algorithms 
(Piecewise Linear Approximations, Polynomials, Gauss-
ian Process Regression, ...) in parallel. The best model is 
selected based on Leave-One-Out cross validation (LOO-
CV) as described by Belyaev et al. (2016).

The optimization is then conducted on the metamodel and 
validated with the analysis model as shown in Fig. 6.

The underlying cae process estimates the effect of form-
ing Tailor Rolled Blanks in a deep-drawing or a hot-stamp-
ing process. The resulting thickness distribution is mapped 
back to the crash analysis model. In addition the part’s blank 
shape is utilized to conduct a TRB-nesting analysis. Based 
on a comprehensive cost model the piece price is estimated, 
as described by Klinke and Schumacher (2021); Klinke 
(2021).

In order to find optimal thickness configurations for TRB-
parts, the thickness run function has to be varied. The way 
the thickness run is parameterized influences the turnaround 
time of the optimization significantly, as shown by Klinke 
and Schumacher (2016). Focusing on reducing the compu-
tational effort, the most efficient way to parameterize the 
thickness distribution is a so-called Fixed Plateau Boundary 
(FPB) parametrization, where the positions of the areas of 
constant thickness (plateaus) are not moved.

The parts of interest are parameterized using an equally 
spaced fixed plateau boundary parametrization (es-FPB): the 
outer B-Pillar (BPLR_OTR) and the middle seat cross member 
(SQT2) are divided in 50 mm wide, the rocker sheets (RKR_
INR and RKR_OTR) as well as the outer roof rail (RR_OTR) 
and the middle roof bow (RBW2) in 100 mm wide plateaus 
and transitions. This leads to 43 design variables in total. The 
parametrization of the six parts is shown in Fig. 7a.

To assess side impact performance, metamodels are trained 
for the distances �i of several nodes on the inner B-Pillar to the 
middle of the driver seat, shown in Fig. 7b.

Following the optimization scheme showed in Fig. 6, an 
iterative metamodel training process is used.  PSeven® is used 
for metamodel training. The model quality is evaluated in each 
step based on cross validation. The basic quality measures are 
calculated from the simulation responses yi , the model predic-
tion ŷi as well as the mean response value ȳ of nd design points:

To derive single values that can be used to stop the iteration 
process, erms,rrms and R2

rms
 are derived from all nr responses:

Seven iterations, with 200 designs each were necessary to 
train metamodels until the quality indicators changed less 

(15)

erms =

�
1

nd

�nd

i=1
(yi − ŷi)

2,

errms =
erms�

1

nd

∑nd
i=1

(yi − ȳ)2
,

R2 = 1 −

∑nd
i=1

(yi − ŷi)
2

∑nd
i=1

(yi − ȳi)
2
,

(16)
erms,rrms =

√
1

nr

∑nr

i=1
(errms,i − ērrms)

2,

R2

rms
=

√
1

nr

∑nr

i=1
(R2

i
− R̄2)2.

Definition
optimiza-
tion task

DoE: Space Filling
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Fig. 6  Metamodel-based optimization scheme
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the 5%. The evolution of these measures can be reviewed in 
Fig. 8, while Table 4 shows the final values. Please note that 
theses measures where calculated based on cross validation 
scheme as explained by Belyaev et al. (2016). A detailed 
explanation of the used sequential metamodel training strat-
egy is presented in Klinke and Schumacher (2021).

To find the lightest TRB design, the following optimiza-
tion task is solved, based on the presented models, using 
the “Self-adaptive Differential Evolution” (SaDE) algo-
rithm from the PyGMO python package of Biscani and Izzo 
(2020):

 Here gTRB describes manufacturing constraints, ensuring 
that a thickness profile can be rolled in the mill. The con-
straints, well-known from previous work of Harzheim and 
Saul (2004); Chuang et al. (2008); Klinke and Schumacher 
(2016, 2018), are shown here:

 The optimal design is shown in Fig. 9a. Even if the min-
imum distance in side impact is just 120.9 mm and thus 
only an “Acceptable” rating, the deviation is in the range of 
expected metamodel accuracy.

It can be concluded from Fig. 9a, that five parts show 
significant thickness ranges, while the outer roof rail 
(RR_OTR) is down-gauged to the lower bound of 0.8 mm. 
Since cost was not part of the optimization, this is the mass 

(17)

min
x∈ℝn

m(x),

where

�(x) ≥ 125 mm,

gTRB(x) ≤ 0,

0.8 mm ≤ xi ≤ 3.0 mm i ∈ [1,… , n].

(18)
gTRB,1 = 1 −

mini ti

maxi ti
− rt,max

gTRB,2 =
|ti − ti+1|
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Fig. 8  Iterative model training for the IIHS side impact using six 
parts with 43 design variables: RMS value of the model quality meas-
ures ( erms,rrms in black , R2

rms
 in gray)

Table 4  Model quality of relevant responses

Response R2 [-] erms emax

Mass (RMS) m [kg] 1.000 2.90e-5 5.60e-5
Distance �N1 [mm] 0.949 5855 18,464
Distance �N2 [mm] 0.951 5305 16,342
Distance �N3 [mm] 0.902 7061 19,683
Distance �N4 [mm] 0.802 10,814 35,837
Distance �N5 [mm] 0.771 15,495 44,113
Distance �N6 [mm] 0.722 18,968 56,026
Distance �N7 [mm] 0.651 20,722 64,509
Distance �N8 [mm] 0.495 16,328 45,583
Distance �N9 [mm] 0.646 7,864 25,863
Distance �N10 [mm] 0.935 6416 18,830
Distance �N11 [mm] 0.943 5432 14,792
Min. distance �min [mm] 0.610 20,290 73,032

(a) Thickness distribution.
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optimum, but no necessarily the most interesting economic 
solution.

Part price p and lightweight cost can calculated for the 
mass optimum based on Klinke and Schumacher (2021); 
Klinke (2021), as shown in Table 5. Summing up weight 
and cost differences in the vehicle, the summed price 
Σp increases by 16.47 € while the summed weight Σm is 
decreasing by 4.576 kg, which leads to lightweight cost of 
3.6 €/kg.

In certain cases the lightweight cost of the mass opti-
mum might be too high, necessitating further part selection. 
The trivial approach would be to just select the parts from 
Table 5, that offer a good compromise between cost and 
weight saving. Since the vehicle side frame is a complex 
system, it is not goal leading to simply pick a subset of parts, 
because the thickness run of the mass optimum is depending 
of the other parts and their thicknesses. Hence an optimiza-
tion  is necessary for every candidate selection, but since the 
choice for a particular selection can only be made knowing 
the optimum, every possible selection has to be optimized. 
Because no additional metamodel training is necessary, this 
task can be solved pretty fast.

5  A posterior selection based 
on combinatoric multidisciplinary 
optimization

Combinatoric multidisciplinary optimization means that 
every possible part selection, or manufacturing scenario is 
being optimized. A scenario is the combination of different 
manufacturing types per part (constant thickness or tailor 
rolled thickness). Thinking of a study with two possible TRB 
candidates, this leads to the scenarios shown in Table 6.

Using metamodel-based optimization enables the quick 
solving of several hundreds of such scenarios in a few hours. 
Using the cost model mentioned earlier, it is possible to 
include cost as a goal function in the optimization to find 
pareto optimal solutions of each manufacturing scenario.

The trained metamodel offers the variation of six poten-
tial TRB-parts. For the outer B-Pillar in particular, differ-
ent nesting scenarios apply. The more the B-Pillar shapes 
overlap each other on the coil, the lower the scrap rate. 
Unfortunately also the design freedom of the thickness 
run decreases resulting in less weight saving. In principle 
this is shown in Fig 10, the fully nested shapes in Fig 10a 
require the thickness run to by symmetric to the middle, 
while the thickness in the upper area of the B-Pillar can be 
reduced, when shapes are not nested (Fig 10b). Thus it is 
necessary to evaluate different nesting scenarios as shown 
in Klinke and Schumacher (2021); Klinke (2021).

Here the following nestings can be evaluated based on 
the presented parametrization: Fully overlapping nesting—
NT07, intermediate nestings—NT08, NT09, NT10, NT11, 
NT12 and no nesting—NN.

All other parts can be evaluated as part with constant 
thickness (const.) or as TRP, since no variation in the nest-
ing is possible using the metamodel at hand. Combining 
these possibilities a total of 256 scenarios for the six parts 
have to be evaluated.

Table 5  Analysis of the mass optimum: thickness range Δt in each 
part, weight reduction Δm , price impact Δp and lightweight cost 
(LWC) when compared to the adapted model

Part Δt [mm] Δm [kg] Δp [€] LWC [€ / kg]

BPLR_OTR 0.80 0.537 4.70 8.75
RKR_OTR 0.87 0.501 1.76 3.51
RKR_INR 0.88 0.784 1.00 1.28
SQT2 0.76 − 0.024 1.33 –
RBW 0.89 0.486 − 0.17 − 0.35
RR_OTR 0.00 0.247 − 0.47 − 1.90

Table 6  Possible scenarios in a study with two TRB candidates

Scenario Part A Part B

1 Constant (c) Constant (c)
2 Constant (c) TRB (t)
3 TRB (t) Constant (c)
4 TRB (t) TRB (t)
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Using the NSGA2 algorithm presented by Deb et al. 
(2002) from the PyGMO package, the following optimiza-
tion task is solved for every scenario:

Since the optimization tasks are independent of each other 
they can be solved in parallel on a HPC cluster in hours. 
In this case we used 96 individuals and 50000 generations.

Figure 11 shows the summed part cost over the summed 
mass of all optimal solutions for the six parts. Every point 
is an optimal solution of the particular scenario. Looking at 
the point markers the effect of the TRB application on each 
part can be understood. While the TRB application on the 
rocker sheets (RKR_OTR and RKR_INR) show a tendency 
towards the left, meaning decrease in weight with a fair cost 
increase, the outer B-Pillar (BPLR_OTR) tends to increase 
cost with decreasing amount of overlap in nesting.

To find the best alternatives among all solutions the 
pareto optimal set is isolated, as shown in Fig. 12. The 
shown points are validated using the analysis model, reveal-
ing slight deviations in side impact distance within the range 
of metamodel accuracy. Some characteristic points of the 
pareto front are marked and further analyzed in Table 7, 
Figs. 13 and 14. Please acknowledge, that also constant 
thickness parts show a thickness variation because of the 
integration of an automatic forming processes simulation.

(19)

min
x∈ℝn

[m(x), p(x)],

where

�(x) ≥ 125 mm,

gTRB(x) ≤ 0.0,

0.8 mm ≤ xi ≤ 3.0 mm i ∈ [1,… , n].

Optimum A offers a weight reduction of 0.80 kg, by 
increasing the TRB thickness of the outer ends of a roof 
bow, enabling a decrease in the rocker thicknesses and the 
outer roof rail. The summed cost of all parts (5 left, 5 right 
and roof bow) is slightly decreased by 0.54 € , leading to 
lightweight cost of – 0.67 €/kg.

The weight reduction of Optimum B is 2.44 kg, with a 
cost increase of 1.6 € and lightweight cost of 0.66 €/kg. 
In this design the outer rocker panel is made of TRB and 
enables a thickness decrease in the rocker inner.

When both rockers are made of TRB (Optimum C), 
3.32 kg can be saved adding 4.31 € of cost, leading to 
1.30 €/kg. It can be seen in Fig. 13 that the thickness run 
of the outer rocker changes quite significantly when the 
inner rocker has a thickness run.

Optimum D is the first optimum with a TRB B-Pillar. 
The weight reduction is 4.18 kg with additional cost of 
9.16 € and lightweight cost of 2.19 €/kg. In this scenario 
the B-Pillar is nested symmetrically and fully overlapping.

Manufacturing the seat cross member (SQT2) of TRB, 
as done in Optimum E, adds an extra of 0.27 kg to the 
weight reduction, leading to 4.45 kg of total weight reduc-
tion compared to the adapted model. Costing an extra of 
11.32 €, the lightweight cost is 2.54 €/kg.
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Optimum F represents the mass optimum and is known 
from Sect. 4. It offers a weight reduction of 4.58 kg and 
16.48 € of extra cost and thus lightweight cost of 3.6 €/kg. 
The B-Pillar of this optimum is not nested.

6  Conclusion and discussion

This work presents a methodology to systematically select 
the most suited parts for the application of TRB in the 
automotive body. Respecting the computational effort of 
optimization under consideration of crash load cases a 
priori selection is presented first. This step enables the 
proper selection of TRB candidate parts based on formal-
ized engineering rules. Suitable part characteristics as well 
as the methodology to assess the load inhomogeneity are 
presented.

A priori preferencing is well suited to reduce the number 
of design variables to a level where optimization is possible. 
Especially the inhomogeneity assessment has to be furtherer 
developed to cope with load cases from different disciplines 
resulting in field results in different orders of magnitudes 
like crash and stiffness.

Using metamodels, the optimization of every possible 
combination of TRB part selections of the remaining part 
set, the pareto optimal part selection can be found efficiently, 
revealing mass and cost trade-offs.
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Table 7  Result summary for the 
selected characteristic optima

AM A B C D E F

Manufacturing scenario
BPLR_OTR const. const. const. const. NT07 NT07 NN
RKR_OTR const. const. TRP TRP TRP TRP TRP
RKR_INR const. const. const. TRP TRP TRP TRP
SQT2 const. const. const. const. const. TRP TRP
RBW const. TRP const. const. TRP TRP TRP
RR_OTR const. const. const. const. const. const. const.

Thicknesses
�BPLR_OTR [mm] 2.13 2.16 2.20 2.15 1.67–2.29 1.61–2.34 1.53–2.33
�RKR_OTR [mm] 1.47 1.46 1.00–2.00 0.92–1.83 0.98–1.95 1.03–2.06 0.86–1.74
�RKR_INR [mm] 1.57 1.46 1.16 0.92–1.84 0.92–1.84 0.80–1.59 0.90–1.79
�SQT2 [mm] 1.20 1.33 1.41 1.41 1.31 0.85–1.68 0.83–1.59
�RBW [mm] 1.73 1.29–2.29 1.78 1.70 0.96–1.90 1.00–1.95 0.91–180
�RR_OTR [mm] 1.08 0.81 0.80 0.83 0.80 0.80 0.80

Results
mBPLR_OTR [kg] 9.87 10.04 10.19 9.97 9.15 8.86 8.80
mRKR_OTR [kg] 8.95 8.86 8.14 7.06 7.84 8.53 7.94
mRKR_INR [kg] 7.13 6.61 5.28 5.72 5.60 5.00 5.56
mSQT2 [kg] 2.03 2.24 2.37 2.38 2.21 2.04 2.08
mRBW [kg] 1.75 1.65 1.80 1.72 1.24 1.35 1.26
mRR_OTR [kg] 1.92 1.45 1.43 1.48 1.43 1.43 1.43
Σm [kg] 31.65 30.85 29.21 28.33 27.47 27.20 27.07
Σp [€] 56.91 56.37 58.51 61.22 66.07 68.23 73.39
LWC [€ / kg] - -0.67 0.66 1.30 2.19 2.54 3.60
�min [mm] 13.72 13.16 12.82 11.91 12.84 12.02 11.62
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