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Abstract
This paper develops a robust framework for the multiscale design of three-dimensional lattices with macroscopically tai-
lored thermal and thermo-structural characteristics. A multiscale approach is implemented where the discrete evaluations of 
small-scale lattice unit cell characteristics are converted to response surface models so that the properties exist as continu-
ous functions of the lattice micro-parameters. The derived framework constitutes free material optimization in the space of 
manufacturable lattice micro-architecture. The optimization of individual lattice member dimensions is enabled by the adjoint 
method and the explicit expressions of the response surface material property sensitivities. The approach is demonstrated 
by solving thermal and thermo-structural optimization problems, significantly extending previous work which focused on 
linear structural response. The thermal optimization solution shows a design with improved optimality compared to the SIMP 
methodology. The thermo-structural optimization solution demonstrates the method’s capability for attaining a prescribed 
displacement in response to temperature gradients.

Keywords Additive manufacturing · Heterogeneous multiscale methods · Homogenization · Free material optimization · 
Lattice · Thermo-structural optimization

1 Introduction

The advent of additive manufacturing and its rapid evolution 
is increasingly offering flexibility and precision to the physi-
cal realization of advanced materials, potentially expanding 
the capabilities of some structural and thermal optimization 
techniques (Sigmund and Maute 2013; Wu et al. 2017; Li 
et al. 2018; Cheng et al. 2019). In the past, the realization of 
optimal structural design was limited to manufacturing tech-
niques such as casting and machining processes which con-
strained the complexity and precision of realizable designs 
(Brackett et al. 2011). Today, the mechanics of advanced 
materials have defined a class of optimization techniques 
that allow free variations of the material properties tailored 
to meet prescribed macroscale objectives. This concept of 
freely varying material properties in the domain of a struc-
ture towards fulfiling functional objectives, with the capacity 

for physical realization of optimized structures by additive 
manufacturing techniques, provides inspiration for this work.

Additive manufacturing has broadened the space of 
admissible structural designs due to its ability to produce 
complex geometries at very fine scales. Designs based on 
topology optimization, concerning the optimal distribution 
of material within a structure to meet functional objectives, 
is one such example (Yi et al. 2019). However, a general 
framework of optimizing directly on a free parameterization 
of the material tensor, called Free Material Optimization 
(FMO), is often regarded as the ultimate generalization of 
the structural optimization problem (Bendsøe et al. 1994; 
Zowe et al. 1997; Kočvara and Stingl 2007; Kočvara et al. 
2008). The FMO framework employs the components of the 
constitutive material tensor as design variables which are 
free to vary spatially throughout the domain of the structure. 
By definition, FMO yields the optimal structural solution 
as there exist no restrictions on local properties except that 
the elastic tensor be symmetric and positive semi-definite—
a physical constraint (Kočvara and Stingl 2007). Though 
optimization using the unrestricted set of components of the 
constitutive material tensor as design variables makes no 
considerations for the physical realization of local structure, 
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mechanics of advanced materials present a means to inte-
grate admissible local structure within an FMO framework.

Thermal optimization of metamaterials is a subject of 
notable interest (Dede et al. 2018). Thermal metamaterials, 
are materials that derive their thermal performance char-
acteristics from their underlying micro-architecture rather 
than their bulk material composition. The design of these 
materials to match predefined homogeneous material prop-
erties is well developed. However, the integration of these 
materials into thermal and structural optimization strategies 
to achieve heterogeneous, spatially varying properties is an 
active research field (Panetta et al. 2015; Schumacher et al. 
2015; Wu et al. 2017). These metamaterials can be incor-
porated towards attaining optimal heat management within 
heat diffusers and cooling fins (Roman et al. 2011; Yan et al. 
2015; Li et al. 2018). Thermo-structural optimization has 
been proposed for designing injection moulds that mini-
mize the mould mass while satisfying structural and thermal 
constraints (Wu et al. 2017). By controlling the geometric 
parameters of their micro-architectures, metamaterials can 
be designed to exhibit interesting macroscopic thermal and 
thermo-mechanical behavior, so that properties of structures 
built up from these metamaterials can be tailored to sat-
isfy predefined objectives (Lee et al. 2012). Equipped with 
the free parameterization of thermal and elastic material 
property driven by the free design of local architecture, an 
extension to the FMO framework can be derived that deliv-
ers manufacturable optimal thermal and thermo-structural 
designs without sacrificing precision.

The goal of the work described in this paper is to demon-
strate a multiscale approach for mechanically and thermally 
optimized structures using a spatially varying lattice design. 
A robust optimization framework is derived that executes 
macroscale thermal and thermo-structural optimization 
using geometry parameters of constituting micro-architec-
tures, leading to a design of local architecture as well as 
material layout. Mapping of compatible and connectable 
micro-architectures is not required, rather, lattice micro-
architectures are derived automatically as optimal values of 
lattice radii parameters are computed. The novelty of this 
research lies in the use of multiple geometry-based small-
scale design parameters for thermal and thermo-structural 
optimization problems in three-dimensional real space, 
moving beyond the previously demonstrated structure-only 
optimized lattice. This allows complex thermo-structural, 
temperature gradient-based prescribed displacements prob-
lems to be demonstrated along with a range of other com-
plex problems. The inclusion of a SIMP-like design variable, 
controlling whether lattice is present or not, also provides 
significant improvements in optimum lattice geometry when 
compared to either SIMP-based topology optimization or 
continuous lattice-based optimization. The parameterization 
implemented supports full control over all components of 

anisotropy with the potential for interesting results. The final 
outcome is a functional grading of the material of structures, 
mechanically and thermally tailored to satisfy functional 
objectives.

2  Overview

This paper extends the framework derived by Imediegwu 
et al. (2019), that enables functional grading of material 
properties towards satisfying predefined macroscale objec-
tives using small-scale lattice geometry parameters as con-
trol variables. This work builds on this linear structural opti-
mization to include thermal and thermo-structural response, 
of the lattice. The ability to have no lattice present is also 
explored with the addition of a SIMP-like variable, signifi-
cantly improving the response relative to the continuous lat-
tice solution.

The sequential multiscale framework comprises two 
computational phases. The first phase is an off-line discrete 
evaluation of effective macroscale properties in the space of 
microscale lattice geometry parameters. This precomputa-
tion involves a parameterization of the small scale that sup-
ports a smoothly changing architecture for smooth pertuba-
tions of the geometry parameters. A full-factorial design of 
experiments (DoE) is set up to discretely populate the mate-
rial space of small-scale parameters by perturbing the geom-
etry parameters over several levels and executing numerical 
homogenization to derive effective material properties of the 
corresponding micro-architectures.

The second phase of the framework constitutes the for-
mulation of thermal and thermo-structural optimization at 
the macroscale using the lattice micro-parameters of the 
first phase as control variables. Both scales are coupled 
by polynomial response surface models. The polynomial 
approximations, constructed as continuous functions to the 
discrete evaluations of effective material properties, repre-
sent functional relationships between the components of the 
material tensors and lattice geometry parameters in the form 
of explicit expressions, hence enabling significant savings in 
computational cost. These polynomial models also facilitate 
explicit derivations of sensitivities as is demonstrated in this 
paper.

Though the first phase is associated with significant com-
putational effort, the off-line sampling of the property space 
needs to be executed only once as the material’s Young’s 
modulus and thermal conductivity scales linearly with the 
elastic and conductivity tensor components, respectively 
(Bendsøe and Sigmund 2003). The microscale parameteriza-
tion implemented supports all components of anisotropy so 
that optimization formulations in this work have potential to 
yield interesting results. It is not claimed that the exploration 
of the property space is exhaustive given the parameterization 
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scheme employed. However, the truss-like parameterization 
implemented is known to span broad extents of material prop-
erty (Hughes et al. 2010), providing a broad range of material 
behaviors. It also ensures connectivity of adjacent micro-archi-
tectures and does not support enclosed voids which is suited 
to the manufacturing techniques intended for this framework.

Figure 1 illustrates the hierarchical organization of the 
framework showing material mechanical and thermal proper-
ties of a macroscale problem as functions of lattice geometry 
parameters.

3  Methodology

In this section, the theory upon which the multiscale frame-
work presented by Imediegwu et al. (2019) is extended to 
thermal and thermo-structural formulations. Fundamental 
assumptions are stated to define the class of problems to which 
this work applies. A process flow chart presents a visual rep-
resentation of the framework. A description of the theory and 
numerical implementation of its phases and sub-processes is 
given. Finally, general mathematical formulations are pre-
sented for the macroscale optimization problems of the next 
section.

The thermal formulations of this work are governed by 
steady-state pure conduction across both scales given by the 
steady-state heat equation

and Fourier’s law

where qi is the heat flux vector, f� is heat source per unit 
volume, Kij is the symmetric thermal conductivity tensor, � 

(1)qi,i + f� = 0

(2)qi = −Kij �,j

is temperature difference and �,j is the temperature gradient 
in the direction j for j = 1, 2 and 3. It is also assumed that 
material thermal conductivity tensor remains unchanged and 
insensitive to temperature changes.

For large-scale thermo-elastic formulations of this 
work, the total Cauchy stress tensor is given as

where �T
ij comprises a linear combination of mechanical 

strain-induced and thermal strain-induced stresses. The 
strain-induced stress is given by Hooke’s law

and the thermally induced stress due to a temperature dif-
ference, � , is given as

where Eijkl and � ij are the 4th-rank elasticity tensor and the 
thermo-elasticity tensor, respectively. Deformations are gov-
erned by the linear elastic theory as presented by Imediegwu 
et al. (2019). Static equilibrium mechanics is also assumed 
where applicable. A diagrammatic description of the derived 
framework is shown in Fig. 2. The framework is sequential 
consisting of two separate computational phases. A descrip-
tion of the framework now follows.

The first phase is the precomputation phase featuring 
a one-off development of a microscale model that facili-
tates the development of the multiscale framework through 
discrete evaluation of the microscale model at design 
points in the material property space. It culminates in the 
generation of continuous functions of material interpo-
lation derived from the precomputed discrete material 

(3)�T
ij = �ij + �′

ij

(4)�ij = Eijkl �kl

(5)�′

ij = � ij �
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Fig. 1  Hierarchical organization of framework illustrating macroscale domain built up of periodic lattice micro-architectures with elastic and 
thermal properties controlled by lattice micro-parameters
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property evaluations called response surface models or 
meta-models.

3.1  Micro‑architecture parameterization

The objective of the microscale model development is to 
derive an efficient parameterization of the small-scale geom-
etry that facilitates a robust population of material property 
spaces.

Hughes et al. (2010) and Panetta et al. (2015) demon-
strated that parameterization with beam-like structures had 
the potential to cover large extents of the material property 
space.

Lattice Unit Cells (LUCs) are employed for the microscale 
parameterization of this work as presented by Imediegwu 
et al. (2019). The parameterization provides smoothly chang-
ing geometry for slowly changing lattice radii parameters. 
Sufficient scale separation is an assumption of heterogeneous 
multiscale methods (Weinan et al. 2007) that validates the 
homogenization theory as implemented. The scale separation 
ensures that the micro-architecture length scales are much 
smaller than the characteristic length over which macroscale 
field variables change (Geers et al. 2010) so that material prop-
erty variations are efficiently captured by the smooth varia-
tion of microstructure parameters. The parameterization is also 
suited to the intended manufacturing techniques presenting 
no enclosed volumes within the unit cell. It should be noted 
that any parameterization that is periodic, evolves smoothly 

with smoothly changing micro-parameters, and does not sup-
port enclosed volumes or suspended solids is suited to the 
described framework. The microstructure parameterization 
chosen is one example of many that satisfy these requirements.

Each LUC is characterized by four strut-like members con-
necting opposite corners (termed diagonal members) and three 
similar members connecting opposite face centers (termed 
face members). The lattice configuration comprises members 
of circular cross-section as shown in Fig. 3. By varying the 
radii of each of these lattice members, the material property 
of the unit cell is altered, hence leading to a parameterization 
scheme. Each of the seven radii is normalized by the unit cell 
length. Figure 3 illustrates a typical microstructure with its 
vector of normalized radii parameters, r as well as its orienta-
tion in three-dimensional space. This orientation of the micro-
structure is preserved for subsequent macroscale analyses.

3.2  Fixed‑discretization property assignment

Local property assignment within the LUC is based on the 
structured element-based material assignment as presented by 
Imediegwu et al. (2019) so that element-wise Young’s modu-
lus and thermal conductivity is given as

and

(6)Ee = nf Es + (1 − nf )Ev
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respectively, where nf  is the node fraction for each ele-
ment, Es = 209 GPa and Ev = 10−7 GPa represent the 
Young’s moduli of the base material and void (modeled as 

(7)Ke = nfKs + (1 − nf )Kv

a weak material) respectively and Ks = 40 Wm−1K−1 and 
Kv = 0.024 Wm−1K−1 represent the thermal conductivity of 
the base material and void, respectively. The Poisson’s ratio 
for both materials is, � = 0.3 . The structured discretization 
supports the implementation of periodic boundary condi-
tions but also eliminates unstructured mesh-related compli-
cations for complex geometries. Mesh convergence studies 
show convergence for 703 hexahedral finite elements within 
the LUC. To satisfy geometry periodicity requirements, 
material assignment for diagonal members 1–4 features 
an adaptation based on translated centroidal axes for each 
diagonal member along each of the three orthonormal axes 
(Imediegwu et al. 2019). Figure 4 shows examples of micro-
architectures that can be derived from the parameterization 
scheme described by Imediegwu et al., along with their 
fixed-discretization representations. The fixed-discretization 
representations have been thresholded for visualization at 
Evis = 0.01Es . Having derived an efficient parameterization, 
the microscale model is completed by evaluating the effec-
tive mechanical and thermal properties of the micro-archi-
tectures achievable by the parameterization implemented.

4  Homogenization

In this section, the numerical approach to obtaining the 
homogenized thermal conductivity tensor, KH of the lat-
tice-based micro-architecture is summarized. The process 
follows the principles of asymptotic expansion homog-
enization which is suited to periodic microstructures as 
described in (Hollister and Kikuchi 1992; Pinho-da Cruz 
et al. 2009; Oliveira et al. 2009; Arabnejad and Pasini 

Fig. 3  Microstructure parameterization: The properties of the micro-
architecture are controlled by the components of its vector of normal-
ized radii parameters. Each member has a fixed orientation and the 
coordinate axes of the microscale are consistent with the macroscale 
so that the orientations of each member remains unchanged within 
the large-scale optimization domain

Fig. 4  Example micro-architectures with vector of normalized radii 
parameters, r :– (0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0.13, 0.13, 0.13), (0.13
, 0.13, 0.13, 0.13, 0, 0, 0), (0, 0.19, 0.06, 0, 0.13, 0.06, 0.13), (0.25, 0.

25, 0.25, 0.25, 0.25, 0.25, 0.25),(0.38, 0.38, 0.38, 0.38, 0.38, 0.38, 0.3
8) (left-to-right)
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2013; Andreassen and Andreasen 2014). The objective 
of the homogenization process is to substitute the inher-
ent heterogeneities of the lattice microstructure with an 
equivalent homogeneous media with the benefit of a mas-
sive reduction in the degrees of freedom associated with 
modeling materials composed of architectures. The theory 
of homogenization as applied to linear elastic structures 
with periodic micro-architectures is well developed. The 
fundamental assumption associated with the correct imple-
mentation of homogenization is that the macroscale media 
is built up of periodic representative volume elements 
(RVEs) at a distinctly separate length scale from the scale 
of the structure. Mathematically,

where x′ and x are the coordinate systems of the micro-
scale and macroscale, respectively. The value of the scale 
separation parameter, � is often chosen as 𝜖 << 1 so that 
local microscale field variables vary 1∕� times more rapidly 
than corresponding macroscale field variables. All relevant 
field variables are therefore approximated by an asymptotic 
expansion that captures their macroscopic uniform distribu-
tion as well as their periodically fluctuating distribution on 
the microscale.

4.1  Thermal analyses

Extending asymptotic expansion homogenization the-
ory (Pinho-da Cruz et al. 2009; Oliveira et al. 2009) to the 
determination of effective thermal properties of periodic 
structures is analogous to the process described by Ime-
diegwu et al. (2019) for mechanical properties. For com-
pleteness, the theory is briefly summarized as follows.

The exact temperature field of periodic structures of this 
work are given as

where �0 is the macroscopic uniform temperature field and 
�1 , �2 , etc., represent the microscale fluctuations in the field 
variable as a consequence of underlying heterogeneities of 
the microscale. A difference is that where displacement is a 
vector field in elastic theory, temperature is a scalar field as 
indicated in Eq. 9. Since 𝜖 << 1 , it suffices to represent the 
field by a first order approximation. As a consequence, Eq. 9 
can be expressed as

Derivatives of any of the variables in the multiscale frame-
work follow the chain rule of function differentiation given 
as

(8)x′ =
x

∈

(9)��(xi, x
�
i
) = �0�0(xi, x

�
i
) + ��1(xi, x

�
i
) + �2�2(xi, x

�
i
) + ...

(10)��(xi, x
�
i
) = �0(xi, x

�
i
) + ��1(xi, x

�
i
)

By Eq. 11 and neglecting terms O(�) and higher, temperature 
gradient based on the multiscale framework is expressed as

where

are the macroscale average temperature gradient and micro-
scale periodically fluctuating temperature gradient, respec-
tively. As a consequence, Eq. 12 gives the microstructural 
temperature gradient and can be expressed as

Substituting the microstructural temperature gradient into 
the variational form of the Poisson equation for heat con-
duction gives

where ∇w0
i
 and ∇w1

i
 are the virtual macroscopic and micro-

scopic temperature gradients respectively with f as the heat 
source on the part of the boundary it acts on, �f  . If the vir-
tual temperature is chosen such that it varies periodically 
on the microscale but remains constant on the macroscale, 
Eq. 15 becomes

Taking an integral over the representative volume element, 
Eq. 16 can be expressed as

Provided periodic boundary conditions are imposed on 
the boundaries of the RVE, Eq. 17 presents the variational 
form with which the periodically fluctuating temperature 
gradient, ∇�∗

i
 of a representative unit volume of any periodic 

structure can be derived, given any arbitrary macroscopic 
temperature gradient, ∇�̄�i . The formulation of Eq. 17 can 
be solved by finite element analysis in its discretized form. 
Three independent macroscale unit temperature gradients 

(11)
�( )

�xi

�

=
�( )

�xi
+

1

�

�( )

�x�
i

(12)
���

�xi
=

��0

�xi
+

��1

�x�
i

(13)

∇�̄�i =
𝜕𝜃0

𝜕xi

∇𝜃∗
i
=

𝜕𝜃1

𝜕x�
i

(14)∇𝜃i = ∇�̄�i + ∇𝜃∗
i

(15)∫
𝛺𝜖

Kij (∇w
0
i
+ ∇w1

i
) (∇�̄�i + ∇𝜃∗

i
) d𝛺𝜖 = f w d𝛤f

(16)∫
𝛺𝜖

Kij ∇w
1
i
(∇�̄�i + ∇𝜃∗

i
) d𝛺𝜖 = 0

(17)∫V

Kij ∇w
1
i
∇𝜃∗

i
dV = −∫V

Kij ∇w
1
i
∇�̄�i dV
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are shown in Fig. 5. The solution to each thermal analysis is 
the microscale periodic temperature distribution, from which 
the periodically fluctuating temperature gradient vector is 
determined. By applying Eq. 14, the microscale temperature 
gradient vector is derived. Finally, the microscale heat flux 
vector at each element of the discretized unit cell is given by

where Ke is the element-wise constant thermal conductiv-
ity coefficient defined by the fixed-discretization property 
assignment of Sect. 3.2. The macroscopic heat flux vector is 
derived from a volume-averaging of the element-wise heat 
flux vector of Eq. 18 so that

Having obtained q̄i for each unit macroscopic temperature 
gradient, ∇�̄�i , all 9 terms of the homogenized conductivity 
tensor is obtained from

for i and j = 1 , 2, and 3. Inherent properties of symmetry 
must be satisfied by KH

ij
 . Strain deformation analyses to 

determine the homogenized elasticity tensor, EH
ijkl

 are analo-
gous to that reported here for thermal analyses and have been 
described by Imediegwu et al. (2019).

4.2  Periodic boundary conditions (PBC)

Considerations for geometry periodicity (Imediegwu et al. 
2019) ensures that there is member continuity across neigh-
boring micro-architectures. Periodic boundary conditions 
(PBC) have also been applied as constraints on the LUC by 
an association of degrees of freedom on opposite external 
surface boundaries.

These constraints ensure that the response (structural and 
thermal) of the unit cell will be representative of the periodic 
material they form. Imposing PBC ensures that the micro-
structure boundaries deform identically so that neighboring 
micro-architectures are compatible. For a hexahedral unit 

(18)qi = Ke (∇𝜃
∗
i
+ ∇�̄�i)

(19)q̄i =
1

V ∫v

qi dV

(20)q̄i = KH
ij
∇�̄�j

cell in x�
1
∈ [0, 1] , x�

2
∈ [0, 1] and x�

3
∈ [0, 1] (See Fig. 6), 

PBC implementation for thermal problems of this work are 
temperature constraint equations applied to solve the discre-
tized form of Eq. 17

due to macroscopic temperature gradient, ∇�̄�i in the i-th 
direction for i = 1 , 2 and 3.

Table 1 illustrates example micro-architectures enabled 
by the parameterization scheme employed. The mechanical 
and thermal properties of all simulated micro-architectures 
of this work have been determined by the homogenization 
process described above.

5  Response surface models

In this paper, the mechanical property space population by 
Imediegwu et al. (2019) is updated to include thermal prop-
erties. It involves the determination of a property vector, 
�p , associated with each micro-architecture derived in the 
full-factorial design of experiments. This constitutes discrete 
property evaluations within a 7-dimensional space—an eval-
uation of the components of the stiffness and conductivity 
matrices as well as volume fraction as functions of the vector 
of radii parameters. Mathematically, each micro-architecture 
simulation yields

where p = 1 , 2, ..., NT  . The total number of evalua-
tion points, NT  was determined by Imediegwu et  al. as 
823,543 with a symmetry-based computation reduction as 
described (Imediegwu et al. 2019).

Response surface models generated for components 
of elasticity and thermal matrices as well as the volume 
fraction are consistent with the polynomial approxima-
tion functions presented by Imediegwu et al. (2019). These 
meta-models are differentiable and continuous functions 
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ent on the LUC
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which facilitate the rapid evaluation of local material 
properties given the vector of radii parameters. They are 
therefore suited to gradient-based optimization. Table 2 
shows the coefficients of determination ( R2-values) and 
root mean square errors (RMSEs) associated with all con-
structed meta-models.

6  Problem formulation

The optimization phase consists of macroscale optimiza-
tion formulation in the space of the microscale parameters 
enabled by the meta-models generated in the preceding 
section. Equipped with explicit expressions of large-scale 
(homogenized) properties as functions of the small-scale 

Table 1  Sample micro-architectures enabled by parameterization

Type/
parameters

Geometry
-

Elasticity
matrix (GPa)

Conductivity
matrix (Wm−1 K−1)

Orthotropic
(0.1,0.1,0.1,0.1,0.2,0.1,0.1)





35.1 7.29 7.29 0 0 0
17.8 7.64 0 0 0

17.8 0 0 0
7.21 0 0

sym 7.05 0
7.05




[
7.68 0 0

5.45 0
sym 5.45

]

Monoclinic
(0.2,0.1,0.1,0.2,0.1,0.1,0.1)





33.1 18.0 15.5 0 0 9.54
33.1 15.4 0 0 9.54

42.1 0 0 6.42
15.6 6.75 0

sym 15.6 0
17.4




[
9.87 3.32 0

9.87 0
sym 11.2

]

Anisotropic
(0.12,0.08,0.06,0.2,0.1,0.07,0.2)





23.1 12.1 10.4 3.09 1.77 7.68
18.2 9.85 3.18 2.31 7.54

44.0 3.58 2.24 5.40
10.3 5.91 2.36

sym 10.7 3.08
11.7




[
7.52 3.23 0.78

6.70 1.29
sym 10.01

]

Isotropic
(0.38,0.38,0.38,0.38,0.38,0.38,0.38)





281 120 120 0 0 0
281 120 0 0 0

281 0 0 0
80.4 0 0

sym 80.4 0
80.4




[
39.9 0 0

39.9 0
sym 39.9

]

The base material properties for these micro-architectures are consistent with those of Sect.  3.2 and for all micro-architectures of this work. 
However, the components of the elasticity and conductivity matrices scale linearly with those of the base material so that the database of mate-
rial properties is suited to all other base materials, provided the Poisson’s Ratio remains unchanged

x'1

x'3

x'2

(1,1,0)

(1,0,1)

(1,0,0)
(0,0,1)

(0,1,1)

(0,1,0)

(1,1,1)

Fig. 6  Coordinate system for PBC implementation

Table 2  Table of R2-values and RMSEs for 6th-order polynomial 
meta-models

Property Type R
2 RMSE

K
11

 , K
22

 , K
33

– 0.9986 0.0071
K
12

 , K
13

 , K
23

– 0.9928 0.0140
E
11

 , E
22

 , E
33

Direct/Direct Extension 0.9975 0.0118
E
12

 , E
13

 , E
23

Direct/Normal Extension 0.9969 0.0136
E
15

 , E
16

 , E
24

Shear/Extension 0.9923 0.0185
E
26

 , E
34

 , E
35

Shear/Extension 0.9923 0.0185
E
14

 , E
25

 , E
36

Shear/Extension 0.9934 0.0172
E
44

 , E
55

 , E
66

Shear/Shear 0.9987 0.0080
E
45

 , E
46

 , E
56

Shear/Shear 0.9938 0.0128
Vf – 0.9991 0.0021
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lattice parameters, functional grading of the material of 
structures is formulated in the space of the precomputed 
material properties. The design domain is defined and 
discretized into finite elements. In contrast to the SIMP 
approach, where each cell of the discretized domain is 
assigned an artificial density function as a measure of local 
stiffness to derive the optimal distribution of material, this 
framework leverages the continuous functions of material 
property evaluation derived in the precomputation phase. 
As a consequence, local properties are controlled at the 
scale of the lattice micro-architectures by controlling the 
value of the components of the vector of lattice param-
eters, r within each cell.

Consider the domain of an externally loaded and con-
strained initial structure discretized into Ne elements and 
with Nn nodes. The scale of this structural component 
defines the macroscale. Recall that an assumption upon 
which the theoretical concepts of homogenization rely is 
that there is sufficient separation between the macroscale 
and the scale of the micro-architectures (Eq. 8). The general 
formulation of the optimization problems is given as

for � = 1 , 2, ...Nn and i = 1 , 2, ...m where

is the stacked vector of control variables with length 8Nn . 
The real-valued objective functional, J depends on the solu-
tion, u , of a PDE that defines the physics of the problem. 
It also depends on the stacked vector of control variables, 
r� . The solution to the PDE must also satisfy a prescribed 
equilibrium constraint, F = 0 . There is an optional cost 
constraint that controls the overall volume fraction of the 
optimized structure as shown in Eq. 23 for which the volume 
fraction meta-model is evaluated at each node as

A pseudo-lattice-density variable, �� is introduced in the 
formulation as shown in Eqs. 24 and 25. Penalizing this 
variable in a SIMP-like manner discourages intermediate 
values of the variable so that it defines a macroscale lattice 
density distribution in the optimal solution. Finally, there 
exist bound constraints on the components of the stacked 
vector of control variables as shown in Eq. 23. The lower 
bound is set based on a limiting computational ability to 

(23)

minimize: J
(
u(r� ), r�

)

subject to: F(u(r� ), r� ) = 0

�
�

V(r� ) d� ≤ VD

rmin ≤ ri� ≤ rmax

�min ≤ �� ≤ �max

(24)r� = [r1� , r2� , r3� , r4� , r5� , r6� , r7� , �� ]
⊺

(25)V(r� ) = ��V(r1� , r2� , r3� , r4� , r5� , r6� , r7� )

determine true material behavior with decreasing member 
radii at the chosen mesh discretization. The lower bound 
must also satisfy manufacturing constraints as there are limi-
tations to the smallest permissible thickness associated with 
every base material. Below a specific length scale for a given 
homogeneous base material, the material properties deviate 
from documented structural behavior (Doerner et al. 1986; 
Pantano et al. 2012). The upper bound is set by the highest 
level of perturbation of the lattice parameters for the micro-
architecture to attain the properties of a fully dense block. 
The bounds of the pseudo-lattice-density variable �min = 0 
and �max = 1 define the regions of no lattice micro-archi-
tecture and lattice-micro-architecture respectively since the 
variable is penalized to discourage intermediate values. The 
optimization framework as defined was applied to thermal 
and thermo-structural problems. The numerical implementa-
tion of the derived framework to these classes of optimiza-
tion problems are described below.

6.1  Thermal optimization

According to the steady-state pure conduction assumptions 
stated in Sect. 3, the heat equation can be expressed in its vari-
ational form as

where the heat flux is given as

for which K(r� ) = �
p
�K(r1� , r2� , r3� , r4� , r5� , r6� , r7� ) is con-

structed from the meta-models generated in Sect. 5 with a 
penalization parameter, p on the pseudo-lattice-density func-
tion that defines the macroscale lattice density distribution. 
A test function, w is defined that belongs to the space of all 
admissible temperature functions W , f� represents the sum 
of all internal heat sources within the domain of the struc-
ture, � , T� represents the sum of all external heat sources 
on the boundary of the domain, �  and � is the solution to 
the PDE satisfying the steady-state constraint. For thermal 
compliance minimization problems (average temperature 
minimization problems), the objective functional for pure 
thermal conduction problems of this work is given as

(26)
∫
�

q(�, r� ) ∶ ∇w d� − ∫
�

f� ⋅ w d�

− ∫
�

T� ⋅ w d� = 0 ∀w ∈ W

(27)q(�, r� ) = −K(r� ) ⋅ ∇�

(28)J�c
(
�(r� ), r�

)
= ∫

�

f� ⋅ � d� + ∫
�

T� ⋅ � d�
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6.2  Thermo‑structural optimization

Based on the assumptions of linear elastic static equilibrium 
and steady-state pure conduction as presented in Sect. 3, 
the variational form of a weakly coupled thermo-structural 
equation for this work is given as

where �T is the total stress induced by mechanical and ther-
mal strains as in Eq. 3 and with all other symbols remaining 
as denoted in 6.1. Another test function, v is defined that 
belongs to the space of all admissible displacement functions 
V . The formulation is referred to as weakly coupled because 
the temperature field is decoupled from the displacement 
field, however, the mechanical response depends on the tem-
perature field due to the presence of thermal strains in the 
thermo-elastic constitutive relation as shown in Eq. 3. The 
objective functional for the thermo-structural problem of 
this work is given as

where uD is a prescribed target displacement function.

6.3  Filtering of control variables

The direct implementation of the derived framework using 
low-order finite element discretization is prone to the 
checker-boarding instability (Bendsøe and Sigmund 2003; 
Lazarov and Sigmund 2011). It also yields mesh-dependent 
optimal solutions. Checker-boarding can be minimized by 
regularization or the use of higher-order finite elements with 
concomitant increase in computational cost. To eliminate 
checker-boarded solutions and to ensure mesh-independent 
optimal results, this work features the filtering of the stacked 
vector of radii parameters using a Helmholtz-type filter as 
described by Lazarov and Sigmund (2011). The idea of 
this filtering technique is to define the control variables at 
a particular node as a function of the variable field within a 
support neighborhood defined by a filter radius. The filter 
is defined implicitly as a solution to the Helmholtz PDE in 
its strong form as

(29)

∫
�

�T(u, �, r� ) ∶ �(v) d� + ∫
�

q(�, r� ) ∶ ∇w d�

− ∫
�

f ⋅ v d� − ∫
�

T ⋅ v d�

− ∫
�

f� ⋅ w d� − ∫
�

T� ⋅ w d� = 0

∀v ∈ V, ∀w ∈ W

(30)Ju�d
(
u(�(r� )), r�

)
= ∫

�

||u − uD||2 d�

(31)−z2∇2r̃� + r̃� = r�

where r� is the unfiltered stacked vector of radii parameters, 
r̃� is the filtered stacked vector of radii parameters and z 
is the filter radius. Homogeneous Neumann boundary con-
ditions are applied to the boundary of the domain of the 
structure so that

where n is the unit normal vector. The weak form of Eq. 31 
is given as

where S is the space of all admissible control test functions, 
s. It should be noted that considerations must be made for 
design variable filtering order to maintain the correct evalu-
ations of the volume constraint given by

The sensitivity of the volume fraction to the stacked vector 
of radii parameters as well as the sensitivity of the objec-
tive functionals of this work make considerations for the 
implementation of variable filtering as will be clearly dem-
onstrated in Sect. 6.4.

6.4  Sensitivity analyses

The computational cost of evaluating the PDEs of this 
work motivate the implementation of a gradient-based 
optimization approach. It follows that the sensitivities of 
the objective functional to the stacked vector of control 
parameters, dJ

dr�
 are to be determined in addition to the 

value of the objective functional, J so that gradient infor-
mation is used in the search-direction computations. It is 
assumed that all derivatives exist and are sufficiently 
smooth.

Consider the objective functional of the general prob-
lem formulation of Eq. 23. Let M denote the dimension of 
the solution space and L = 8Nn denote the dimension of the 
parameter space. The objective functional can be written as

since the solution of the PDE is dependent on the mate-
rial properties controlled by the stacked vector of control 
parameters. Recall that the meta-models generated in Sect. 5 
are explicit expressions of material property (structural and 
thermal) as functions of the stacked vector of control vari-
ables so that

(32)
�r̃

�n
= 0

(33)
∫
�

z2∇r̃� ∶ ∇s d�

+ ∫
�

r̃� ⋅ s d� − ∫
�

r� ⋅ s d� = 0 ∀s ∈ S

(34)V = V(r̃)

(35)J
(
u(P(r̃� )),P(r̃� )

)
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where i, j = 1, 2, ...6 and p, q = 1, 2 and 3. The sensitivities 
of J are given as

The first term of the r.h.s of Eq. 37, dJ
dP

 is determined by the 

adjoint method (Farrell et al. 2013). The second term, dP
dr̃�

 is 

the sensitivity of material property matrices, (Eij,Kpq) to the 
filtered stacked vector of control parameters—available as 
explicit expressions. The sensitivity of the filtered stacked 
vector of control parameters to the stacked vector of control 

parameters, 
dr̃�

dr�
 is a consequence of variable filtering.

The jacobian matrix (the matrix of constraint sensitivi-
ties to the unfiltered stacked vector of control parameters) 
is required for problems with a constraint on the availability 
of material. This is given as

All sensitivities are rigorously verified by finite differencing 
so that the derivative of the objective functional with respect 
to the i-th component of the stacked vector of control vari-
ables is given as

where the perturbation is h = 0.0001 and �i is the vector of 
zeros of the same length as r� with 1 in the i-th entry.

With the ability to evaluate objective functionals con-
strained by partial differential equations as well as capability 
for an efficient evaluation of objective functional sensitivi-
ties, large-scale optimization was executed in the space of 
the small-scale design variables. Adjoint sensitivities were 
obtained using dolfin-adjoint (Farrell et al. 2013). Dolfin-
adjoint is a Python library in FEniCS (Logg et al. 2012; 
Alnæs et al. 2015), the open source finite element solver 
implemented for the large-scale optimization algorithms of 
this work.

6.5  Computational implementation of macroscale 
optimization

In its discretized form, Eq. 23 was solved with a robust gra-
dient-based numerical optimizer based on an interior point 
algorithm, Ipopt Wächter and Biegler (2006). Ipopt is 
an open source software package for large-scale non-linear 

(36)P(r̃� ) =

{
Eij(r̃� ), if elasticity matrix component

Kpq(r̃� ), if conductivity matrix component

(37)
dJ

dr�
=

dJ

dP

dP

dr̃�

dr̃𝜸

dr�

(38)
dV

dr�
=

dr̃�

dr�

dV

dr̃�

(39)dJ

dri
= lim

h→0

J(r� + h�i) − J(r� )

h

optimization. To implement Ipopt within FEniCS, a 
python connector, PyIpopt was used. PyIpopt uses the 
definition of the optimization start point from the domain 
initialization, objective functional evaluation, gradient eval-
uation, constraint evaluation (if required) and jacobian eval-
uation (if required) to derive the next design iteration (See 
Fig. 7). It is important to note that derivatives of the objec-
tive and constraint are with respect to the unfiltered stack of 
control variables. However, the forward solve and global vol-
ume fraction are evaluated with the filtered stacked vector of 
control variables. On an Intel(R) Core(TM) i7-5600U CPU 
@ 2.60 GHz system with 2 processors, a typical thermal 
simulation takes approximately 16 hours for 120,000 dofs. 
A similarly sized thermo-structural problem takes approxi-
mately 22 hours. For micro-analyses, it took approximately 
5.3 minutes to determine the elasticity matrix (1.8 min to 
determine the conductivity matrix) of any given microstruc-
ture with a single processor. However, by parallelizing the 
six deformation analyses (or three thermal analyses), the 
duration for the homogenization process to determine elas-
tic and thermal properties was reduced to approximately 2 
minutes and 30 seconds per micro-architecture for deforma-
tion and thermal analyses, respectively. The response sur-
face models are evaluated in 0.001 seconds at every dof. It 
becomes easy to appreciate the efficiency in evaluating mate-
rial point properties with the response surface models for a 
120,000-dof problem over several optimization iterations. 
The large-scale optimization is terminated when an iterate 
satisfies the conditions of a firstorder Karush–Kuhn–Tucker 
(KKT) point, indicating that the solution at the current point 
is a strict local minimizer of the constrained optimization 
problem or by a limit on the maximum number of optimiza-
tion iterations.

Domain 
Initialization

Helmholtz 
filtering

rri

Objective 
(Forward solve)

Gradient Constraint* Jacobian*

IPOPT

Converged/ 
Max. Iter.?

Yes

No

Terminate

rri+1

Macroscale optimization

dJ/drri

dV/drri

*optional
i – iteration number

~rri

V(     )~rr i
J(u,     )~rr i

RSM

E, K

rropt

rri+1

Initial Design

Fig. 7  Macroscale optimization loop showing how next design itera-
tion is derived towards attaining optimal design
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7  Results and discussion

In this section, the robustness of the derived optimization 
framework is investigated by its application to large-scale 
thermal and thermo-structural optimization problems fol-
lowed by a discussion of the results obtained. For each sam-
ple case, a description of the initial design dimension with 
thermal loads and boundary constraints is given. The results 
for each case comprises figures showing the volume frac-
tion distribution within the design domain, the optimal radii 
distribution for each component of the vector of radii param-
eters within the design domain as well as a convergence plot 
of the objective functional through the optimization itera-
tions. The coordinates of large-scale optimization domain 
coincide with those of the micro-architecture of Fig. 3. This 
work demonstrates extended capabilities of the framework. 
The first test case demonstrates that the framework outper-
forms an equivalent SIMP formulation of a thermal problem 
that minimizes thermal compliance given a constraint on 
available material. A second test case features thermo-struc-
tural optimization in the space of lattice parameters, yielding 
a solution beyond the capabilities of optimization strategies 
based on isotropic material models.

7.1  Case 1: Cylindrical Heat Sink

Consider the Cylindrical Heat Sink (CHS) with thermal and 
geometric properties specified in the problem definition of 
Fig. 8 and Table 3. The design region generates an internal 
heat source, F� and a heat sink is defined at the internal sur-
face of the hollow cylinder. A non-design region is specified 
about the internal radius as shown in Fig. 9. The temperature 
profile of the CHS is shown for the thermal properties speci-
fied at the beginning of the optimization search in Fig. 10. 
The goal of the optimization formulation is to determine the 
optimal layout of material that minimizes the average tem-
perature (thermal compliance) of the cylinder based on the 
lattice and SIMP frameworks. This optimization problem is 
constrained by the PDE that governs steady-state pure heat 
conduction phenomenon given by Eq. 26. It is also subject to 
a constraint on the availability of base material such that the 
volume fraction of the optimized design, VD = 0.37 . Bound 
constraints on the components of the stacked vector of con-
trol variables confine the optimization search to the space of 
precomputed thermal properties. The optimal distribution of 
radii parameters at termination of the search are displayed in 
Figs. 11 and 12 for the diagonal and face members, respec-
tively. The solid regions in the solutions depict ri� ≥ 0.25.

Table 3  CHS: Problem definition

Domain

Design region Restricted
Ri , Ra , Ro , L 0.12, 0.25, 0.70, 4 m
Design space volume, V 5.37 m3

Heat Source, F� 1 W m
−3

Base material, K 40 W m
−1
K

−1

Mesh discretization
 Element type Unstructured tetrahedral
 No. of design nodes, Nn 117773 of 128255
 No. of variables 8 × Nn

Optimization settings
 Starting point, ri� , �� 0.113, 1 ( Vs = 0.295 × V)

Bound constraints, rmin , rmax 0.07, 0.38
Bound constraints, �min , �max 0, 1
Filter radius, z 0.02
Step-size update strategy Adaptive
Pseudo-lattice-density function penaliza-

tion
p = 3

Volume constraint, VD 0.37 × V

Max. Iter. 150
Tol. 1 × 10−5

z

x
y

Ro

θ = 0

Fθ

Ri

Ra

L

Fig. 8  CHS: Problem definition

z

x
y

Non-design region

Fig. 9  Cylindrical Heat Sink: non-design region definition
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It can be observed that radii distributions of Member 1 
and 3 (Figs. 11a, 11c) are similar by virtue of their orien-
tation. Similarly, Members 2 and 4 (Figs. 11b, 11d) share 
similar radii distributions. Member 5 (Fig. 12a) does not 
contribute significantly to the minimization of objective 
function since its orientation is co-linear with the centroidal 
axis. Members with orientations that facilitate the transfer of 
heat flux from the cylinder body to the heat sink are those to 
which average temperature is most sensitive and hence the 
most dominant. Members 6 and 7 (Figs. 12b, 12c) have sym-
metric distributions differing only based on their respective 
orientations. The pseudo-lattice-density function (Fig. 12d), 
describing the macroscale lattice density distribution indi-
cates that lattice is present in most of the design domain. The 
regions of no-lattice only exist at the radial extremities of the 
cylinder, where the magnitudes of the radii are mostly at the 
lower bound. The volume fraction distribution of Fig. 15a 
shows that, macroscopically, the layout of material corre-
sponding to the radii distributions forms structured projec-
tions that link the design region to the sink, with increasing 
radii magnitude as the radial distance to the sink decreases. 
Lower member radii values at radial extremities increase the 
surface area of the members so as to increase the efficiency 
of heat conduction. The SIMP implementation for the same 
problem yields the material layout shown in Fig. 16a with 
finger-like projections branching out into the heat-generating 
design domain.

The SIMP methodology yields a thermal compliance of 
5.34 WK at optimization convergence. The thermal com-
pliance, J�c attained at termination for the lattice-based 
approach is 0.062 WK which corresponds to a further 98.8% 
reduction in optimal thermal compliance. The optimization 
convergence plots are shown in Figs. 15b and 16b for the 
lattice-based and SIMP-based implementations, respectively. 
It is of note to appreciate the significant improvement ena-
bled by the lattice-based framework in the final objective 
function. Figure 13 shows the evolution of the temperature 
distribution against the optimization iterations at a through 
section X–X of the CHS. Figure 14 shows the lattice recon-
struction derived given radii distributions. The reconstruc-
tion is based on a marching cubes algorithm that converts 
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Fig. 10  Cylindrical Heat Sink: temperature, � (K) at Iteration 1
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(d) Member 4, rviz = 0.25

Fig. 11  Cylindrical Heat Sink: optimal radii distribution for diagonal 
members 1–4
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volume data generated from radii distribution data to lattice 
surface mesh (Lewiner et al. 2003; Murphy et al. 2020).

7.2  Case 2: Hollow‑pipe section

This test case minimizes the structural deformation of spe-
cific boundary surfaces of a restricted design domain as the 
structure expands under thermal load. It demonstrates the 
multiscale framework’s capability to the class of weakly 
coupled thermo-structural optimization problems.

Consider a 25 mm-section of a square hollow pipe with 
material properties and Dirichlet boundary conditions speci-
fied in the problem definition of Fig. 17 and Table 4. Given 
the displacement and temperature boundary conditions as 
shown, the steady-state temperature profile is projected unto 
the deformed domain mesh according to the displacement 
distribution—a consequence of the thermo-structural cou-
pling as introduced in Sect. 6.2 (see Fig. 19). Observe that 
due to the Dirichlet boundary conditions imposed on the 
near and far-side surfaces, the bottom and top surfaces, S1 
and S2 bulge out of the x–z plane as the structure expands 
under thermal load. The goal of the optimization is to mini-
mize the normal deformation of the target surfaces, S1 and 
S2 . It is assumed that the non-displacement of these surfaces 
in the y-axis is critical to the optimal design of this section 
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Fig. 12  Cylindrical Heat Sink: optimal radii distribution for face 
members 5–7
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Fig. 13  Cylindrical Heat Sink: section X–X showing temperature 
evolution through iterations
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of the pipe and indeed the entire pipe length (not shown). A 
non-design region surrounds the hollow as shown in Fig. 18.

The error functional is evaluated as the squared difference 
between the y-component of the displacement distribution 
of the target surfaces, uy and the y-component of a zero-
displacement distribution within the domain of the pipe sec-
tion. Bound constraints have been imposed on the stacked 
vector of control variables to confine the search within the 
precomputed mechanical and thermal property spaces. Static 
equilibrium mechanics as well as pure conduction steady-
state phenomenon govern the thermo-structural response of 
the section. Since there is no constraint on the availability 
of material, there exists no penalized pseudo-lattice-den-
sity function for this problem so that lattice structure exists 
everywhere within the design domain between the bounds 
specified in Table 4. The emphasis is on the design of local 
structure within the macroscale towards satisfying the mac-
roscale objective. The optimal distribution of radii param-
eters at termination of the search are displayed in Figs. 20 
and 21 for the diagonal and face members, respectively. The 
solid regions in the solutions depict ri� ≥ 0.28 . The pale blue 
regions depict regions where rmin ≤ ri𝛾 < 0.28.

The diagonal members demonstrate symmetries by vir-
tue of their orientation as shown by Fig. 20. They also 
exhibit more dominance than the face members as they 
yield micro-architectures with properties suited to meet-
ing the macroscale objective. Members 1 and 4 (Figs. 20a, 
20d) conduct heat flux towards the bottom-half near-
side heat sink as well as the top-half far-side heat sink. 

Members 2 and 3 (Figs. 20b, 20c) serve a similar purpose 
but are oriented to conduct heat flux towards the bottom-
half far-side heat sink and top-half near-side heat sink. 
Diagonal members feature off-diagonal components in 
their conductivity matrices that essentially equips micro-
architectures to transfer heat flux in orthonormal direc-
tions to temperature gradient. The consequence of this 
radii distributions can be appreciated in the steady-state 
temperature distributions of Fig. 22 where the steady-state 
temperature profile within the design domain is altered 
with the radii distributions such that the predefined non-
displacement objective function is satisfied. The resulting 
orthotropic lattice micro-architectures offer increased mac-
roscale conductivity towards the heat sink but also feature 
diagonals that can expand in non-critical directions.

The face members feature much lower radii values as 
shown in Fig. 21 within the design domain. Member 5 
(Fig. 21a) is oriented to conduct heat towards the heat sink 
but cannot expand under thermal load due to the Dirichlet 
boundary conditions. Member 6 (Fig. 21b) works against the 
non-displacement objective, conducting heat flux towards 
the target surfaces and expanding in the y-direction. Mem-
ber 7 (Fig. 21c) does not improve conductivity towards the 
heat sink. The displacement of the target surfaces is also 
insensitive to the thermal expansion of Member 7. Figure 23 
shows the volume fraction distribution at the starting point 
and the final iteration projected unto a deformed domain. 
An optimization convergence plot for the problem is shown 
in Fig. 25b.

Fig. 14  Cylindrical Heat Sink: 
lattice reconstruction
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This capability exhibited by the orthotropic micro-archi-
tectures with diagonals to enhance macroscale conductiv-
ity in orthonormal directions to the temperature gradient is 
key to achieving the prescribed macroscale objective of this 
problem. This capability cannot be attained by optimization 
strategies that rely on isotropic material interpolation. Fig-
ure 24 shows the lattice reconstruction derived given radii 
distributions.

8  Conclusion

A robust multiscale framework was derived for the thermal 
and thermo-structural optimization of printable structures 
using lattice-based micro-architectures. Structured accord-
ing to HMM, the framework was derived over two com-
putational phases—a precomputation phase which featured 
the development of a lattice-based microscale model suited 
to additive manufacturing constraints and an optimization 
phase which executed thermal and thermo-structural tailor-
ing of properties in the space of lattice micro-parameters. By 

exploiting the homogenization theory, structural and thermal 
properties were derived given microscale lattice geometry 
parameters so that the properties represented material point 
properties within a large-scale design domain. The space of 
material properties covered by the lattice parameterization 
was populated by a full-factorial design of experiments at 
only 5% of the computational cost of evaluating the entire 
full-factorial DoE—facilitated by micro-architecture sym-
metry considerations. Material property response surface 
models were generated so that microscale material proper-
ties were efficiently integrated into the macroscale optimi-
zation framework. By the method of adjoints, sensitivities 
of prescribed objectives to the lattice micro-architecture 
parameters were determined, facilitated by the readily dif-
ferentiable explicit material response surfaces and the chain 
rule of differentiation. The outcome was the development 
of free material optimization executed in the space of physi-
cally realizable architected material properties. This paper 
demonstrates the capacity of the framework for thermal and 
thermo-structural optimization through typical problem 
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Fig. 15  Cylindrical Heat Sink: lattice-based material distribution and 
optimization convergence plot
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mization convergence plot



Multiscale thermal and thermo‑structural optimization of three‑dimensional lattice…

1 3

Page 17 of 21 13

cases. Both cases yielded solutions of superior optimality. 
The lattice-based framework of the first case yielded a 98.8% 
further reduction in thermal compliance compared to the 
SIMP-based framework. The second case demonstrates that 
the framework is capable of full control over local anisot-
ropy—a capability unachievable by optimization strategies 
based on isotropic material model. The derived solutions 
are also physically realizable through a process of lattice 
reconstruction given the optimal distribution of radii param-
eters. The precision and flexibility of additive manufacturing 
techniques have inspired the development of the framework 
and the realization of its optimal solutions.

The derived framework has its limitations. By definition, 
the theory of homogenization assumes an infinite separation 

of scales so that the micro-architectures represent material 
point properties within the macroscale design domain. This 
work aims for an ‘as-large-as-possible’ separation of scales, 
however, computational and manufacturing constraints pre-
vent the physical realization of an infinite scale separation. 
Consequently, the material response of our reconstructed 
lattice is only an approximation of the numerically computed 
response. The associated error with this approximation has 
not been determined in this work since direct numerical sim-
ulations on the reconstructed lattice proved an arduous task 
due to unmanageable mesh sizes. Indeed, such an endeavor 
has proven computationally intractable - the very chal-
lenge this framework circumvents by constructing response 
models. Experimental validation is currently underway as 
a viable alternative approach, the results of which will be 
published in future works. The framework also makes no 
considerations for local stress constraints which occur at the 
intersection of the lattice struts (Imediegwu 2020).

Inspired by the limitations of this work and signifi-
cant advancements in additive manufacturing, the capa-
bility of the derived framework should include local 

Table 4  Hollow-pipe section: problem definition

Domain

Design region Subdomain
L, W, R 0.05, 0.025, 0.011 m
Design space volume, V 5.3 × 10−5 m3

Base material, E, � 209 GPa, 0.3
Mesh discretization
Element type Unstructured tetrahedral
No. of design nodes, Nn 62,458 of 67,265
No. of variables 7 × Nn

Optimization settings
Starting point, ri� 0.113,(Vs = 0.295 × V)
Bound constraints, rmin , rmax 0.07, 0.38
Filter radius, z 0.001
Step-size update strategy Adaptive
Pseudo-lattice-density function penaliza-

tion
–

Volume constraint, VD –
Max. Iter. 200
Tol. 1 × 10−5

u = (0, 0, 0)
θ = 0 K

u = (0, 0, 0)
θ = 0 K θ = 100 K

S1

S2y

z

x

L

L

W

R

(Bottom surface)

(Top surface)

Fig. 17  Hollow-pipe section: problem definition
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Fig. 18  Hollow-pipe section: non-design region definition
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Iteration 1



 C. Imediegwu et al.

1 3

13 Page 18 of 21

stress considerations. Provided local stress data from the 
microscale deformation analyses is captured, local stress 
response models can be generated to facilitate the deriva-
tion of stress-constrained optimal solutions. This is the 
subject of current research (Thillaithevan et al. 2021). The 
principles of heterogeneous multiscale methods can be 
extended to acoustic, electro-magnetics as well as tailoring 
of structural properties to predefined resonant frequencies. 
Extending the methodology to non-linear elastic problems 
and fully coupled thermo-mechanical formulations has the 
potential to yield interesting solutions.
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