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Abstract
This paper presents an approach for deriving the continuum sensitivity of superconducting systems operating at critical 
current densities and an optimization method based on the continuum sensitivity. In the sensitivity problem, the supercon-
ducting systems is represented by a variational state equation, wherein the magnetic permeability depends on the magnetic 
field, which is transformed from a state equation with a field-dependent source. The design sensitivity is derived using the 
material derivative concept of continuum mechanics and the adjoint variable method. The adjoint system has a material 
property represented as a symmetric tensor that contains the sensitivity of the current density with respect to the magnetic 
field. The design sensitivity is represented in the analytical form of a surface integral on the interface between the supercon-
ducting material and its surroundings, which depends on the sensitivity of the current density. The optimization scheme is 
constructed based on the continuum design sensitivity. In the design optimization, the level set method is used to express the 
shape variation of the superconducting materials. The numerical example of infinite solenoids demonstrates that the design 
sensitivity provides an accurate design solution considering the critical current condition. In addition, the design example 
of a magnetic resonance imaging solenoid shows that the derived design sensitivity has the inherent ability for attaining the 
compact design by treating the input current of a superconducting system as a critical condition.

Keywords Superconducting system · Critical current density · Continuum sensitivity · Adjoint variable method · Design 
optimization · Level set method

1 Introduction

Superconducting technology has attracted particular atten-
tion in recent years owing to the significant improvement 
in the electromagnetic and mechanical properties of high-
temperature superconductors (HTS). The high current 
density of HTS allows the operation of intense magnetic 
fields and the compact design of electromagnetic devices 
in advanced applications (Bruzzone et al. 2018; Hahn et al. 
2019; Parkinson et al. 2017; Sykes et al. 2018; Uglietti 

2019). Superconducting materials have a characteristic 
critical current density above which the superconductivity 
is destroyed. In addition, the critical current density depends 
on the magnetic field applied to the superconducting materi-
als (Hu et al. 2016; Molodyk et al. 2021; Zhang et al. 2018). 
The non-linearity of the critical current density with respect 
to the magnetic field is a characteristic of type-II supercon-
ductors, which are made of alloys or impure metals and 
have inherent features different from those of type-I. All 
HTS belong to the type-II superconductors. The relationship 
between the critical current density and the magnetic field is 
important for practical applications. The magnetic field may 
hinder any increase in the current required by the system or 
may force the design of bulky systems operating at current 
densities significantly below the critical current. Therefore, 
it is necessary to design superconducting systems consider-
ing the critical current conditions to prevent a phase transi-
tion to the normal resistive state and to operate at maximum 
performance.
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Design optimization problems can be solved using gradi-
ent-free or gradient-based methods. Gradient-free optimiza-
tion methods, such as genetic algorithm, simulated anneal-
ing, and particle swarm optimization, do not require gradient 
information from the simulation model and have been gen-
erally applied to superconducting system design problems 
(Hekmati and Hekmati 2016; Jang et al. 2020; Miura et al. 
2019; Shen et al. 2020). These optimization algorithms have 
a high probability of searching for a point near a global opti-
mum. However, numerous iterations are required to obtain 
an optimal solution. In particular, a large number of over-
head computations are involved in solving large-scale shapes 
or increasing the number of design variables. Gradient-based 
methods use the sensitivity information obtained by calculat-
ing the derivatives of the objective functions with respect to 
the design variables. The main advantage of this approach is 
that it can converge to an optimal solution with fewer func-
tion computations than those in the gradient-free approach 
(Izui et al. 2015; Li et al. 2019). Therefore, gradient-based 
methods may perform more efficiently than gradient-free 
methods in a shorter time period and with minimum cost 
for design problems in complex and large-scale applications.

Design sensitivities can be obtained by utilizing either the 
finite difference method or analytic differentiation method. 
The finite difference method computes the sensitivities by 
approximating derivatives with finite differences. Therefore, 
its accuracy depends on the size of the perturbation step. The 
analytic differentiation method can be divided into discrete 
and continuum methods (Choi and Kim 2004). The discrete 
method involves the derivative of the discretized system 
equation, which is obtained using an applied numerical 
analysis method. Optimization schemes using the discrete 
approach were introduced to design superconducting sys-
tems operating under critical current conditions (Byun et al. 
2003, 2004; Kang et al. 2003; Lee et al. 2004; Park et al. 
2003). In this approach, although the design sensitivities 
are more accurate than those utilizing the finite differential 
approach, the computation is still significantly expensive 
because of the mesh sensitivity. For the continuum method, 
the material-derivative concept of continuum mechanics 
is used to derive the design sensitivity (Kim et al. 2001; 
Wang and Li 2013; Xia et al. 2011). Continuum sensitiv-
ity is expressed in a simple analytical form of the surface 
integral on the design boundary. The continuum approach 
facilitates to determine sensitivity more accurately and effi-
ciently, regardless of the discrete condition of the numerical 
method. The continuum method has already been applied to 
various design problems of electromagnetic systems, includ-
ing electrostatic systems, magnetostatic systems, eddy cur-
rent systems, and DC conductor systems (Cheon et al. 2018; 
Lee et al. 2018; Park 2019; Seo and Park 2019; Seo et al. 
2018). In the continuum sensitivity problem of magneto-
static systems, the source current density was regarded as a 

constant value (Park 2019; Seo et al. 2018). For the efficient 
use of superconducting materials with high input currents, it 
is necessary to design superconducting systems by consider-
ing critical current conditions. Therefore, the conventional 
sensitivity of magnetostatic systems is not suitable for the 
design optimization of superconducting systems in which 
the input current depends on the applied magnetic field.

In this study, the design sensitivity of the superconduct-
ing system was derived using the continuum method, and a 
design optimization was constructed based on the continuum 
sensitivity. The superconducting system was intended to 
operate at critical current densities, which are expressed as 
a function of the magnitude and orientation of the magnetic 
field applied to the superconducting material. The design 
sensitivity of the superconducting system was derived using 
the material derivative concept of continuum mechanics. In 
addition, an adjoint variable technique was introduced to 
explicitly express sensitivity in terms of the design velocity 
field. The derived design sensitivity was applied to an opti-
mization scheme and was used to obtain the design veloc-
ity field that changes the material shape to optimize system 
performance. The shape variation was expressed using the 
level set method. The proposed optimization method was 
verified using numerical examples.

2  Continuum sensitivity of superconducting 
systems under critical current densities

In this section, we present a general three-dimensional 
sensitivity to shape variations of superconducting systems 
under critical current conditions. The design sensitivity was 
derived using a continuum method based on the material 
derivative concept of continuum mechanics.

2.1  Definition of design problem

The superconducting system described for designing the 
shape of the superconducting material is shown in Fig. 1. 

Fig. 1  Superconducting system for describing the shape design of the 
interface between superconducting material and magnetic material
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The system domain Ω consists of domains Ω1 and Ω2 , which 
are referred to as a magnetic material with a reluctivity 
�1 and a superconducting material with reluctivity �2 and 
current density J2 , respectively. The system materials are 
assumed to have linear magnetic properties. In addition, the 
superconducting system operates under critical current con-
ditions. Therefore, the operating current density depends on 
the magnitude and orientation of the magnetic field, Bc and 
�c , which makes the critical current density the lowest in the 
superconducting material. The shape of the superconducting 
material is represented by the interface � between Ω1 and Ω2 . 
The domain Ω1 has the outer boundary Γ , which consists of 
the Dirichlet boundary Γ0 and Neumann boundary Γ1 . The 
unit vector n is the outward normal vector on � and Γ.

A general objective function for designing a supercon-
ducting system is defined as follows:

where g is a continuously differentiable function with respect 
to its arguments, A is the magnetic vector potential, and B( ) 
is the curl operator, where B(A) is the magnetic flux density. 
Subscripts 1 and 2 indicate that the functions and variables 
belong to Ω1 and Ω2 , respectively. The characteristic func-
tion mp is expressed as follows:

where Ωp is the integral domain of the objective function.

2.2  Variational formulation

The governing differential equations for state variables A1 
and A2 in the superconducting system are as follows:

These equations have a unique solution for A, which is 
obtained by applying the outer boundary conditions of the 
homogeneous Dirichlet and homogeneous Neumann bound-
ary conditions to Γ0 and Γ1 , respectively.

If the superconducting and magnetic materials have different 
values of reluctivity, the magnetic field B has a discontinu-
ity at �.

(1)F =∫
Ω

g1(�1,�(�1))mp
dΩ + ∫

Ω

g2(�2,�(�2))mp
dΩ

(2)m
p
≡
{

1 � ∈ Ω
p

0 � ∉ Ω
p

(3)∇ × �1∇ × �1 = � inΩ1

(4)∇ × �2∇ × �2 = �2(B
2

c
, �

c
) inΩ2

(5)�1 = � inΓ0

(6)
��1

�n
= � inΓ1

The variational state equation can be derived using the vari-
ation method of the virtual work principle (Sabonnadiere 
and Coulomb 1987). The differential state Eq. (3) and (4) 
are multiplied by arbitrary virtual vector potentials �̄�1 and 
�̄�2 , respectively, and are integrated over the system domain. 
Thereafter, using the boundary and interface conditions of 
the magnetic vector potential and field given in (5), (6), and 
(7), we can obtain a variational state equation in an integral 
form with the first-order derivatives of A as follows:

where Φ is the space of the admissible vector potential 
(Adams and Fournier 2003). This variational equation is 
derived from a magnetostatic system composed of linear 
magnetic materials with constant values of reluctivity and 
driven by a field-dependent source current. To avoid the 
derivative of the current density in the source term while 
deriving the sensitivity, we divide (8) by the magnitude of 
the current density J2(B2

c
, �c).

where

This variational equation indicates that the magnetostatic 
system is transformed from a linear magnetic system to a 
field-dependent nonlinear magnetic system and is given a 
unit current density. Equation (9) can be rewritten with an 
energy form a(�J(B2

c
, �c),𝐀, �̄�) and a source form l(�̄�) as 

follows:

where

(7)� × �1�(�1) = � × �2�(�2) on �

(8)
∫
Ω1

𝜈1�(�1) ⋅ �(�̄1) dΩ + ∫
Ω2

𝜈2�(�2) ⋅ �(�̄2) dΩ

= ∫
Ω2

�2(B
2

c
, 𝜃

c
) ⋅ �̄2 dΩ ∀�̄1, �̄2 ∈ Φ

(9)

∫
Ω1

𝜈
J1(B

2

c
, 𝜃

c
)�(�1) ⋅ �(�̄1) dΩ + ∫

Ω2

𝜈
J2(B

2

c
, 𝜃

c
)�(�2) ⋅ �(�̄2) dΩ

= ∫
Ω2

�2 ⋅ �̄2 dΩ ∀�̄1, �̄2 ∈ Φ

(10)�J(B
2
c
, �c) ≡ �

J2(B
2
c
, �c)

(11)a(�J(B
2
c
, �c),𝐀, �̄�) = l(�̄�)

(12)

a(𝜈
J
(B2

c
, 𝜃

c
),�, �̄) ≡ �

Ω1

𝜈
J1(B

2

c
, 𝜃

c
)�(�1) ⋅ �(�̄1) dΩ

+ �
Ω2

𝜈
J2(B

2

c
, 𝜃

c
)�(�2) ⋅ �(�̄2) dΩ
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The variational state equation is treated as an implicit equal-
ity constraint in this design problem. This implies that the 
critical current condition is included in the constraint when 
applied to the state equation.

2.3  Adjoint variable method

An adjoint variable technique is introduced to explicitly 
express sensitivity in terms of the design variables. The 
adjoint equation is expressed as follows:

where the notations � and �̄ describe the adjoint variable and 
virtual potential, respectively. �J� is defined as a symmetric 
tensor, which can be expressed as follows:

where

I is the identity tensor, B is the magnitude of the magnetic 
field, and Bc∥ and Bc⟂ are the parallel and perpendicular com-
ponents of the magnetic field, respectively. The parameter 
� is derived from the partial time derivative of �J , which 
is detailed in the following subsection, and it includes the 
sensitivities to changes in the critical current density with 
respect to changes in the magnitude and orientation of the 
magnetic field. gA and gB denote the derivatives of g in (1) 
with respect to A and B, respectively.

Equation (14) represents an adjoint system with the adjoint 
vector potential � , where the material property is described 
by �J� corresponding to the magnetic reluctivity of a mag-
netostatic system, and the sources are given by ��mp and 
��mp corresponding to the current density and permanent 
magnetization, respectively.

(13)l(�̄�) ≡ �
Ω2

𝐣2 ⋅ �̄�2 dΩ

(14)

∫Ω1

�
J𝜅1 ⋅ �(�1) ⋅ �(�̄1) dΩ + ∫Ω2

�
J𝜅2 ⋅ �(�2) ⋅ �(�̄2) dΩ

= ∫Ω1
(

��1 ⋅ �̄1 + ��1 ⋅ �(�̄1)
)

m
p
dΩ + ∫Ω2

(

��2 ⋅ �̄2 + ��2 ⋅ �(�̄2)
)

m
p

dΩ ∀�̄1, �̄2 ∈ Φ

(15)�J� ≡ �J� + 2��(�)�(�)T

(16)� ≡ ��J

�B2
c

�B2
c

�B2
+

��J

��c

(

��c

�B2
c∥

�B2
c∥

�B2
+

��c

�B2
c⟂

�B2
c⟂

�B2

)

(17)�� ≡ �g

��
=

[

�g

�Ax

,
�g

�Ay

,
�g

�Az

]T

(18)�� ≡ �g

��
=

[

�g

�Bx

,
�g

�By

,
�g

�Bz

]T

2.4  Derivation of continuum sensitivity

Objective function (1) has an implicit dependency on state 
variable A, which is obtained from the state equation. In this 
continuum approach, the Lagrange multiplier method was 
employed for the implicit equality constraint of the vari-
ational state equation. An augmented objective function G 
is defined by adding the variational state Eq. (11) to the 
objective function (1).

This function G can be regarded as a domain integral of a 
function h(�J(B2

c
, �c),𝐀, �̄� ) over Ω , as follows:

The design sensitivity is derived by taking the material 
derivative of the augmented objective function. By applying 
the material derivative formula to (20), Ġ can be obtained 
as the sum of the domain and boundary integrals as follows 
(Haug et al. 1986):

where Vn is the normal component of the velocity vector 
V on � . The partial derivatives of A and �̄� with respect to 
time t are obtained from the material derivative expression 
(Park 2019).

The partial time derivative of �J(B2
c
, �c) can be achieved as 

follows:

where � is defined in (16).
Using the adjoint equations, variational identities, and 

boundary conditions, a formula for the design sensitivity 
can be derived in an analytical form of a surface integral 
on the interface between the superconducting and magnetic 
materials as follows:

(19)G = F + l(�̄�) − a(�J(B
2
c
, �c),𝐀, �̄�) �̄� ∈ Φ

(20)G = ∫
Ω

h(�J(B
2
c
, �c),𝐀, �̄�) dΩ �̄� ∈ Φ

(21)
Ġ =∫

Ω

h
�(𝜈

J
(B2

c
, 𝜃

c
),�, �̄) dΩ

− ∫
Γ

h(𝜈
J
(B2

c
, 𝜃

c
),�, �̄)V

n
dΓ �̄ ∈ Φ

(22)�� = �̇ − � ⋅ ∇�

(23)�̄�� = ̇̄𝐀 − 𝐕 ⋅ ∇�̄�

(24)

�
�

J
(B2

c
, �c) =

��J

�B2
c

�B2
c

�B2

�B2

�t

+
��J

��c

(

��c

�B2
c∥

�B2
c∥

�B2
+

��c

�B2
c⟂

�B2
c⟂

�B2

)

�B2

�t

= 2��(�) ⋅ �(��)
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The design sensitivity of the superconducting system pro-
vides information about the variation rate of the system per-
formance with respect to the velocity field, Vn . The interface 
variation causes changes in the material properties, source 
conditions, and magnetic fields on both sides. The first term 
of the sensitivity describes the influence of the magnetic 
permeability exchange on the system performance. The sec-
ond term results from a change in the magnetic field, which 
affects the current density in the superconducting material. 
The third term indicates the effect of changes in the current 
density region. Moreover, each integrand has � or � related 
to the sensitivity of the current density with respect to the 
magnetic field. Therefore, the dependence of the design sen-
sitivity on the critical current condition is confirmed.

3  Design optimization based on continuum 
sensitivity analysis

An optimization scheme using the derived continuum sen-
sitivity for designing superconducting systems is presented 
in this section. The shape of the superconducting materi-
als evolves with the design velocity field obtained from the 
design sensitivity. The shape evolution was expressed using 
the level set method.

3.1  Optimization scheme

The optimal design presented in this paper is a simulation-
based design procedure that improves the performance of 
the superconducting system by evolving the design variables 
of the superconducting material shapes. A schematic of the 
design procedure is presented in Fig. 2. The flow chart addi-
tionally indicates the tools used in each procedure during the 
design optimization.

The definition of the optimization problem at the begin-
ning of the procedure is important to attain a successful 
design. In this step, the objective function was determined to 
represent the system performance numerically and apply to 
the sensitivity evaluation. Thereafter, we created the initial 
geometry of the superconducting system and set the design 
variables. The governing equation of the superconducting 
system was employed with the applied magnetic permea-
bility and critical current conditions. The numerical model 

(25)

Ġ = ∫
Γ

[(

𝜈J2 − 𝜈J1

)

�(�1) ⋅ �(λ2)

− 2𝜅
(

�(�2) − �(�1)
)

⋅ �(�2) �(�2) ⋅ �(�2)

−�2 ⋅ �2
]

Vn dΓ

was completed using the boundary conditions for the state 
variables.

After specifying the design problem, an optimization iter-
ation was performed. A numerical analysis of the supercon-
ducting system was conducted using a numerical method. 
In this study, the finite element method (FEM) was used to 
solve partial differential equations. The results of the sys-
tem analysis were used to evaluate the objective function. 
When it was confirmed that the objective function does not 
converge to a solution, a sensitivity analysis was performed. 
To calculate the design sensitivity, we analyzed the adjoint 
system by solving the adjoint equation in (14) using the 
FEM. In this numerical analysis, calculations of the material 
property �J� and the sources ��mp and ��mp are involved, in 
which the critical current condition and the objective func-
tion are used. Thereafter, the design velocity field Vn was 
obtained such that the shape of the superconducting material 
evolves and the system performance is optimized. Design 
optimization requires a geometry modeling technique for 
expressing the shape variation. In this study, we introduced 
a level set method to express the shape of the superconduct-
ing material that evolves according to Vn . After the shape 
deformation, the finite element mesh is regenerated to match 
the material interface with the boundaries of finite elements. 
This technique is called the adaptive level set method and 
allows the interface to clearly distinguish between different 
materials (Lee et al. 2014; Park 2019). The numerical analy-
sis of the superconducting system is performed again, and 
the iterative procedure is continued until the convergence 
criterion is attained.

3.2  Design velocity field

The design sensitivity in (25) is expressed in terms of the 
design velocity field Vn . In other words, the sensitivity indi-
cates the variation rate of the objective function owing to Vn . 

Fig. 2  Flowchart of the design optimization based on the continuum 
sensitivity analysis
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For instance, when Vn is determined such that the sensitivity 
becomes negative, the shape of the superconducting materi-
als evolves such that the objective function is reduced. An 
approach to determine the function Vn for an optimization 
problem is to make the integrand of the design sensitivity a 
perfect square.

where the coefficient kopt determines the sign of the design 
sensitivity in (25) and is assigned -1 or 1, respectively, to 
minimize or maximize the objective function. When a mate-
rial forming the design interface � with the superconducting 
material is set to have the same magnetic permeability as 
that of the superconducting material, the first and second 
terms of the design sensitivity in (25) disappear. In this case, 
the design velocity field can be simply represented by the 
current density and adjoint variable as follows:

The shape of the superconducting material is evolved based 
on kopt and materialized using a geometric modeling method 
for the design optimization.

3.3  Level set method

The level set method is a geometric modeling tool that 
provides easy and efficient schemes for expressing shape 
variations (Deaton and Grandhi 2014; van Dijk et al. 2013; 
Lin et al. 2021; Liu et al. 2014). The level set method was 
applied to design optimization for the numerical analysis of 
superconducting material shapes.

The surface of the superconducting material � is implic-
itly represented using a level set function �.

where x=(x,y,z). This closed curve is called the zero level set 
of � . Figure 3 shows an illustration of the level set function 
representing the geometry a superconducting system. The 
level set function � is assumed to have negative values inside 
the superconducting material and positive values outside it.

The shape variation of the superconducting material can 
also be expressed using the level set function as a function 
of time t, and the zero-level set is

The level set function � satisfies the level set equation 
derived as the total derivative of � with respect to t.

(26)

Vn =kopt
[(

�J2 − �J1

)

�(�1) ⋅ �(�2)

− 2�
(

�(�2) − �(�1)
)

⋅ �(�2) �(�2) ⋅ �(�2)

−�2 ⋅ �2
]

(27)Vn = −kopt �2 ⋅ �2

(28)� = {� |�(�) = 0}

(29)� = {(�(t), t) |�(�(t), t) = 0}

where Vn denotes the normal component of the interface 
velocity as shown in Fig. 3. By considering that the surface 
shape changes with respect to Vn , the level set equation can 
be applied to design optimization. The design velocity in 
(26) is substituted into the level set equation in (30). The 
level set equation, a type of the first-order Hamilton–Jacobi 
equation, is then solved numerically using the FEM. The 
solution � provides a change in the shape of the supercon-
ducting material to optimize system performance.

4  Numerical examples

The design optimization method based on the continuum 
sensitivity analysis was applied to the design problems of 
superconducting systems. The design problem of infinite 
solenoids was intended to validate the design sensitivity of 
the superconducting systems derived in this study. Addi-
tionally, in the design problem of the magnetic resonance 
imaging (MRI) solenoid, the intrinsic ability of the derived 
sensitivity to design the superconducting system was com-
pared with that of the sensitivity for magnetostatic systems 
with constant current density.

4.1  Infinite superconducting solenoid

In this example, we considered the shape design for two 
types of two-dimensional (2D) axisymmetric infinite sole-
noids in which superconducting coils were used. One was 
assumed to have a different magnetic permeability between 
the superconducting coil and the material inside. The other 
was set to the same permeability for both materials.

The integral domain of the objective function and initial 
geometry of an infinite solenoid are shown in Fig. 4, where 
the superconducting coil and magnetic material have differ-
ent values of permeability. The relative permeability of the 
magnetic material was set to 2. The superconducting coil 

(30)
��

�t
+ Vn|∇�| = 0

Fig. 3  Level set function representing the shape of a superconducting 
system that changes according to the design velocity
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is regarded to be wound by an HTS and modeled with a 
relative permeability of 1. The current density in the super-
conducting coil is given according to a critical current condi-
tion, where the critical current density depends on the mag-
nitude and orientation of the magnetic field (Ainslie et al. 
2010; Gömöry 2006).

where Jc0 is the zero-field critical current density, k is the 
anisotropy factor, and B0 is the characteristic magnetic field. 
Each parameter is given by Jc0 = 108 A/m2 , k = 0.186 , and 
B0 = 0.653 T. The orientation angle �c is defined with 
respect to the z-axis. The design objective was to distribute 
a uniform field in the domain Ωp . The objective function 
defined to be minimized in the design optimization is as 
follows:

where �obj is the target magnetic field and is set to 3 T in the 
z-direction. The optimal shape of the infinite solenoid can 
be analytically predicted by calculating the current density 
in (31) and using Ampere’s law. It is evident that the optimal 
coil has a hollow cylindrical shape. As a design problem 
to validate the derived sensitivity, the initial geometry of 
the solenoid was artificially set to deviate from the solu-
tion. The design variable was defined as the shape of the 
inner surface of the superconducting coil. The shape of the 
outer surface of the coil was fixed. A numerical model of the 
superconducting solenoid was completed by employing the 
governing equations in (3) and (4) with the given material 
and source properties as well as the boundary conditions 
shown in Fig. 4.

The iterative design optimization procedure was per-
formed as described in Sect. 3.1. The numerical analysis 
was conducted using the FEM software package COMSOL 

(31)
J(B2

c
, �c) =

Jc0

1 +

√

B2
c(k

2 cos2 �c+sin
2
�c)

B2
0

(32)F = ∫
Ω

(

� − �obj

)2
mp dΩ

Multiphysics. In the sensitivity analysis, � in (16) was 
obtained using the function given in (31) as the critical cur-
rent density. The adjoint sources �� in (17) and �� in (18) 
were calculated by substituting the objective function in 
(32). The design sensitivity was calculated from the solu-
tion of the state and adjoint equations. The design velocity 
field Vn in the design sensitivity was determined as (26) with 
kopt = −1 to minimize the objective function. The computed 
Vn was applied to the level set equation in (30).

Figure 5 shows the changes in the shape of the super-
conducting coil and the magnetic field distribution in the 
design optimization. As expected, the coil finally attained 
the optimal shape of a hollow cylinder. The solenoid had a 
coil thickness of approximately 0.017 m. The magnetic field 
was also formed in the desired distribution with a magni-
tude of 3 T inside the solenoid. The current density of the 
superconducting coil was adjusted each time the coil shape 
varied during the optimization process. In the optimal con-
figuration, the coil had a current density of approximately 
7 × 107 A/m2. It was confirmed that the design result was 
consistent with the analytic solution satisfying Ampere’s law 
with the given critical current condition in (31). The vari-
ation of the objective function presented in Fig. 6 numeri-
cally demonstrated that the design of the superconducting 
solenoid decreased the objective function and improved the 
system performance.

In the following design, shape optimization was per-
formed for another infinite superconducting solenoid in 
which the materials on both sides of the design interface had 
the same permeability. Fig. 7 shows the initial configuration 
of a solenoid consisting of a superconducting coil and air 
inside. The relative permeabilities of the two materials were 
set to 1. The current density of the superconducting coil 
follows the current condition given in (31). The objective 
function, design variable, governing equations, and bound-
ary conditions were provided with the same specifications 
as those in the previous design problem. In the sensitiv-
ity analysis and shape deformation, as the superconducting 
coil and air had the same magnetic permeability values, the 
design velocity field Vn was presented as (27) with kopt = −1.

Figure 8 shows the variation in the shape of the coil and 
magnetic field during the optimization process. The shape 
of the solenoid becomes a hollow cylinder, consistent with 
previous design results. However, the thickness of the coil 
increased owing to the decrease in the permeability of the 
material inside the solenoid. The superconducting coil had a 
thickness of approximately 0.044 m, and the magnetic field 
was 3 T inside the solenoid. As the magnitude of the mag-
netic field in the superconducting coil was larger than that 
in the previous design, the applied current density decreased 
to 5.39 × 107 A/m2 . These design results were in agreement 
with the analytic solution. Further, the objective function Fig. 4  Initial configuration of infinite superconducting solenoid with 

magnetic material inside
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converges to a minimum value through design optimization, 
as shown in Fig. 9.

4.2  MRI solenoid

In this example, the optimal design of a 2D axisymmet-
ric MRI solenoid was performed for each case in which a 
superconductor and a normal conductor were applied. The 
continuum sensitivity derived in this study was used for the 
design optimization of the superconducting solenoid. The 
design results were compared with those obtained through 
the sensitivity analysis of the magnetostatic system with a 
normal conducting coil and constant current density.

Figure 10 shows the integral domain of the objective 
function and the initial geometry of the MRI solenoid. The 
design objective was to obtain a uniform magnetic field of 
2 T in Ωp . The objective function was represented by (32) 
with �obj = 2� and was minimized through optimal design. 
The surface of the superconducting coil was considered as 
the design variable. In this study, there were no additional 
constraints related to the artificial shape, such as position, 
size, or volume.

In the superconducting solenoid, the coil had the same 
material and source properties as those of the previous 
design problem for an infinite superconducting solenoid. 
The design optimization was also performed similar to 
that in the previous example. As the relative permeability 

Fig. 5  Variation of coil shape and magnetic field in the design optimization of infinite superconducting solenoid with magnetic material inside: 
Design time of a 0 s, b 1 s, c 1 × 10

2 s, and d 2 × 10
4 s

Fig. 6  Objective function with respect to the design time correspond-
ing to infinite superconducting solenoid with magnetic material 
inside shown in Fig. 5

Fig. 7  Initial configuration of infinite superconducting solenoid with 
air inside
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of the coil and air is set to 1, Vn in the design sensitivity 
and level set equation can be given as (27) with kopt = −1.

Figure 11 shows the change in the shape of the coil and 
field distribution of the superconducting solenoid in the 
design optimization. During initial optimization iterations, 
the volume of the superconducting coil increased rapidly, 
and the magnitude of the magnetic field in Ωp approached 
2 T. Subsequently, the shape of the coil evolved to improve 
the homogeneity of the magnetic field. Eventually, the coil 
split into two parts to form another topology. Figure 12 
shows that these shape variations cause the objective func-
tion to decrease.

In addition to the superconducting solenoid, an optimal 
design of the MRI solenoid with a normal conducting coil 
was performed. This design problem is identical to the 
previous MRI solenoid design, except for the current con-
dition of the normal conducting coil. The current density 
was set to a constant value of 3.01 × 107 A/m2 , which was 
applied to the optimal coil of the superconducting MRI 
solenoid as a critical current density. During the optimiza-
tion process, the design sensitivity was calculated using 
the sensitivity formula derived for magnetostatic systems 
with a constant current density (Park 2019).

The adjoint variable � was obtained by solving the adjoint 
equation as follows:

(33)Ġ = ∫
Γ

[(

𝜈2 − 𝜈1

)

�(�1) ⋅ �(�2) − �2 ⋅ �2
]

Vn dΓ

Fig. 8  Variation of coil shape and magnetic field in the design optimization of infinite superconducting solenoid with air inside: Design time of a 
0 s, b 1 s, c 1 × 10

2 s, and d 2 × 10
4 s

Fig. 9  Objective function with respect to the design time correspond-
ing to infinite superconducting solenoid with air inside shown in 
Fig. 8

Fig. 10  Initial configuration of MRI solenoid
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In this design problem, with the same permeability setup of 
the normal conducting coil and air, the design velocity field 
can be presented as follows:

where kopt was set to −1 to minimize the objective function.
The variation of the normal conducting solenoid and 

its magnetic field during design optimization is shown in 
Fig. 13. The solenoids shown in this figure have the same 
objective function values as those of the superconducting 

(34)

∫
Ω1

�1�(�1) ⋅ �(�̄1) dΩ + ∫
Ω2

�2�(�2) ⋅ �(�̄2) dΩ

= ∫
Ω1

(

��1 ⋅ �̄1 + ��1
⋅ �(�̄1)

)

m
p
dΩ

+ ∫
Ω2

(

��2 ⋅ �̄2 + ��2 ⋅ �(�̄2)
)

m
p
dΩ ∀�̄1, �̄2 ∈ Φ

(35)Vn = kopt �2 ⋅ �2

Fig. 11  Variation of coil shape and magnetic field in the design optimization of MRI solenoid with superconducting coil: Design time of a 0 s, b 
10 s, c 5 × 10

2 s, d 1 × 10
4 s, e 1.8 × 10

4 s, and f 8 × 10
4 s

Fig. 12  Objective function with respect to the design time corre-
sponding to MRI solenoid with superconducting coil shown in Fig. 11



3947Continuum sensitivity and design optimization of superconducting systems under critical…

1 3

solenoids shown in Fig. 11, except for the initial configura-
tion. The optimal solenoid generated a uniform magnetic 
field of 2 T in Ωp , similar to the design result of the super-
conducting solenoid. However, the shape of the normal 
conducting coil was found to be different from the optimal 
shape of the superconducting coil. Although the objective 
function value was the same, the width and height of the 
optimized coil in the normal conducting solenoid were larger 
than those in the superconducting solenoid, and the coil vol-
ume was also 1.24 times larger. In general, the magnetic field 
inside a solenoid is distributed uniformly by increasing the 
size of the coil. Additionally, the parallel and perpendicular 
components of the applied magnetic field in the normal con-
ducting coil that determine the critical current density in the 
case of a superconducting material were 0.374 T and 1.372 
T, respectively. These values were lower than the magnetic 
fields of 0.734 T and 1.513 T in the superconducting coil. 
When the magnetic field values of the normal conducting 

coil are substituted into (31), the critical current density 
is calculated as 3.23 × 107 A/m2 , which is higher than the 
applied current density of 3.01 × 107 A/m2 . This indicates 
that if a superconducting solenoid is designed to have a cer-
tain magnetic field by using the design sensitivity with a 
constant current density, the maximum performance deviates 
from the target design objective.

The difference in these design results arises from the 
state equations under different input current conditions and 
the design sensitivities derived using these state equations. 
The design sensitivity of the superconducting system was 
derived using the constraint of the variational state equation 
including the critical current condition. Therefore, design 
optimization using the derived sensitivity prevents the vol-
ume expansion of the superconducting material and leads 
to a compact design. Figure 14 shows that the objective 
function of the normal conducting solenoid decreases dif-
ferently with respect to the superconducting solenoid during 

Fig. 13  Variation of coil shape and magnetic field in the design optimization of MRI solenoid with normal conducting coil: Design time of a 0 s, 
b 3 s, c 4 × 10

2 s, d 5 × 10
3 s, e 2 × 10

5 s, and f 2.4 × 10
5 s
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the optimization process. It should be noted that, during the 
design optimization of superconducting systems, the criti-
cal current condition is involved in the overall optimization 
process, such as the current density in the superconducting 
system, the material property of the adjoint system, and the 
adjoint variable in the design sensitivity and velocity field.

5  Conclusion

In this study, the design sensitivity for superconducting 
systems under critical current conditions was derived using 
the material derivative concept of continuum mechanics 
and the adjoint variable method. Owing to the dependence 
of the current density on the magnetic field, the material 
property of the adjoint system depended on the sensitiv-
ity of the current density with respect to the magnetic field 
and was described using a symmetric tensor. The sensitiv-
ity formula was derived in the analytical form as a surface 
integral on the interface between the superconducting mate-
rial and its surroundings. The design sensitivity includes an 
integrand involving the differentiation of the current density 
with respect to the magnetic field. In addition, all integrands 
have an adjoint variable that depends on the sensitivity of 
the current density.

Based on the design sensitivity, an optimization scheme 
for the shape design of superconducting systems was 
developed. The shape variation in the design optimiza-
tion was expressed using the level set method. The level 
set equation and the design sensitivity were coupled by a 
common term of the velocity field, Vn . This coupling ena-
bles design optimization of superconducting systems by 

solving the level set equations in the time domain without 
additional boundary parameterization techniques.

The design sensitivity and optimization method were 
validated through design problems for superconducting 
systems. The design example of infinite superconducting 
solenoids indicates that the numerical results obtained by 
the design optimization are in agreement with the ana-
lytic solution. This confirms that the continuum sensitivity 
derived from this study works correctly in the design of 
superconducting systems. In a further example, the MRI 
solenoid design using the derived sensitivity demonstrated 
different results from those of the designs using the sen-
sitivity for magnetostatic systems with constant current 
densities. For the two optimal solenoids, although the cur-
rent density of the coil and the homogeneity of the target 
magnetic field were the same, the superconducting coil 
had a smaller size and volume. This validates the inherent 
ability of the derived design sensitivity to perform com-
pact designs of superconducting systems operating with 
critical currents.

The design sensitivity and optimization method pre-
sented in this paper can be applied to various design prob-
lems to attain the optimal structure and maximum perfor-
mance of superconducting systems under critical current 
conditions. The design sensitivity can be employed for 
various design purposes, such as magnetic field distribu-
tion, system energy, force/torque, and energy loss. Moreo-
ver, the optimization scheme can be effectively used in 
practical problems while meeting the structural require-
ments by adding constraints such as the size, location, and 
volume of superconducting materials.

Based on the design sensitivity, advanced studies of 
design sensitivity for superconducting systems can be con-
ducted in the future. In addition to the shape sensitivity, 
the sensitivity for the topology design of superconduct-
ing systems can be studied. Moreover, further studies on 
design sensitivity can be conducted by considering the 
temperature dependence of the current density and the 
magnetic nonlinearity of the material property. Further-
more, multi-objective optimization for the magnetic and 
mechanical design of superconducting materials can also 
be studied in conjunction with structural sensitivity.
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Fig. 14  Objective function with respect to the design time cor-
responding to MRI solenoid with normal conducting coil shown in 
Fig. 13
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