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Abstract
Density-based topology optimization and node-based shape optimization are often used sequentially to generate production-
ready designs. In this work, we address the challenge to couple density-based topology optimization and node-based shape 
optimization into a single optimization problem by using an embedding domain discretization technique. In our approach, a 
variable shape is explicitly represented by the boundary of an embedded body. Furthermore, the embedding domain in form 
of a structured mesh allows us to introduce a variable, pseudo-density field. In this way, we attempt to bring the advantages 
of both topology and shape optimization methods together and to provide an efficient way to design fine-tuned structures 
without predefined topological features.
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1  Introduction

Combining shape and topology optimization is favourable 
due to their dissimilar but complementary nature. The inher-
ent limitations of the first method are overcome by the sec-
ond method and vice versa. On the one hand, density-based 
topology optimization is capable of producing complex 
structures, but fails to represent the component boundary 
exactly. On the other hand, shape optimization represents 
the component boundary exactly, but it does not support 
topological changes and it is not well suited for large design 
changes. A coupling of topology and shape optimization 
is possible when an embedding domain discretization is 
employed. The embedding domain discretization method 
allows us to incorporate both the density and nodal design 
variables. The structured mesh that serves as a computa-
tional (embedding) domain is assigned with pseudo-densi-
ties, whereas the vertices of the discretized boundary of the 
embedded body serve as nodal design variables.

Shape optimization in its original form treats the finite 
element nodes directly as design variables (Zienkiewicz 
1973). Another approach is to use a parametrized boundary 
description to improve the smoothness of the final design. 
Some of the approaches involve using cubic spline functions 
(Luchi et al. 1980) or B-spline polynomials (Braibant and 
Fleury 1984) which are used for CAD parametrization. To 
improve the smoothness of the optimized geometries and the 
convergence of the optimization algorithms, regularization 
techniques are employed. Some of these techniques include 
sensitivity filtering (Bletzinger 2014), sensitivity weight-
ing (normalization) (Kiendl et al. 2014; Wang et al. 2017) 
or the traction method (Azegami and Wu 1996; Azegami 
and Takeuchi 2006). The latter treats the sensitivity vector 
as an external force in a fictitious boundary value problem 
(BVP). The solution of such BVP yields a smooth, mesh-
independent update vector which also handles the update of 
internal nodes. The traction method is exceptionally attrac-
tive due to its flexibility, i.e. the formulation of the ficti-
tious BVP can be modified to obtain any desired smoothing 
behaviour. Therefore, it is adapted for the shape optimization 
used in this work. Thanks to these developments, node-based 
shape optimization is capable of generating smooth, mesh-
independent designs. Therefore, it lends itself as a good 
choice for optimization problems requiring an exact bound-
ary representation. Despite all the improved methodology 
in shape optimization, its application is still usually limited 
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to problems involving small design changes, the so-called 
fine tuning steps.

As opposed to node-based shape optimization, topology 
optimization offers almost unlimited flexibility in design-
ing geometrically complex structures. Without doubt, the 
most extensive research was devoted to the density method 
introduced by Bendsøe (1989). For the past three decades, 
density-based topology optimization has been continuously 
improved and it successfully found its way into a number of 
commercial software applications. For a detailed description 
of the method, we refer to the book by Bendsoe and Sigmund 
(2013) and the review article by Sigmund and Maute (2013), 
which also studies the similarities to other approaches in 
topology optimization. The density-based topology optimi-
zation is offered as an easy to implement, powerful tool, see 
for instance the work by Sigmund (2001a) and by Andreas-
sen et al. (2011), in which compact topology optimization 
codes are outlined. An inherent challenge of density-based 
topology optimization is the placement of a crisp boundary 
based on the grey transition regions. There are a number 
of methods that treat this matter, including various projec-
tion and filtering techniques, see for instance the work by 
Wang et al. (2011). Additionally, regarding the accuracy of 
stress computation, De Troya and Tortorelli (2018) incor-
porated an adaptive mesh refinement scheme in topology 
optimization to increase the accuracy of stress computation. 
da Silva et al. (2019) achieved very good accuracy in stress 
computation using the robust approach, in which smoothed 
heaviside projection is employed to obtain three black and 
white density fields to consider manufacturing uncertainties.

In the context of this article, another approach worth dis-
cussing is the levet set method (LSM) (Allaire et al. 2002; 
Wang et al. 2003). Conceptually, LSM can be positioned 
between density-based topology optimization and node-
based shape optimization as it offers a possibility to per-
form topological changes, namely it allows topological holes 
to be merged (however, it inherently does not support hole 
nucleation), and it provides an exact boundary representa-
tion. Nevertheless, as pointed out by Sigmund and Maute 
(2013), most approaches to the LSM, which use an ersatz 
material for the geometry mapping, do suffer from blurred 
(grey) boundary regions in the mechanical model, similar to 
the density-based topology optimization. In the approaches 
involving an ersatz material for the geometry mapping, the 
challenge of hole nucleation has been addressed e.g. in the 
works by Burger et al. (2004) and Allaire et al. (2005), in 
which topological derivatives (Sokolowski and Zochowski 
1999) are incorporated and holes are systematically intro-
duced. While these methods fully support topological 
changes, their boundary representation is not mechanically 
crisp due to the fact that mechanical models are based on 
a density distribution. An alternative formulation utilizing 
the LSM has been proposed by Yamada et al. (2010), which 

incorporates a fictitious interface energy. In this method, 
full topological flexibility is allowed, at the same time guar-
anteeing a mechanically crisp mechanical model by using a 
Heaviside function in the equilibrium equation.

One way to ensure a mechanically crisp boundary repre-
sentation in LSM is to employ a conforming discretization 
(Ha and Cho 2008). However, this approach shares the draw-
backs of node-based shape optimization due to the neces-
sary mesh deformation during design updates. Therefore, to 
overcome the difficulties that arise with mesh deformation, 
more preferable approach is to incorporate immersed bound-
ary techniques (IBTs). One of such technique is the extended 
finite element method (XFEM). The core concept in XFEM 
is the introduction of additional shape functions to handle 
discontinuities of the solution fields and their spatial gradi-
ents within the elements. XFEM in combination with LSM 
(LSM-XFEM) has been successfully applied in the works 
by Belytschko et al. (2003) for simple 2D elasticity, by 
Kreissl and Maute (2012) for fluid flow, by Villanueva and 
Maute (2014) for 3D elasticity and by Jenkins and Maute 
(2015) for fluid-structure interaction. Villanueva and Maute 
(2017) incorporate CutFEM for fluid flow problems, which 
is a combination of LSM, XFEM and face-oriented ghost 
penalty method. Moreover, stress-based topology optimiza-
tion using LSM-XFEM has been introduced by Sharma and 
Maute (2018), in which an improved stress computation is 
carried out using an XFEM informed stabilization scheme. 
The LSM-XFEM for structural optimization proves to be a 
successful approach thanks to the mechanically exact repre-
sentation of the boundary and the ability of hole elimination. 
Nevertheless, in the context of topological flexibility, LSM 
for structural optimization involving IBTs still exhibits the 
abrupt nature of hole nucleation schemes.

Due to the fact that each of the previously introduced 
methods exhibits a certain set of advantages and draw-
backs, it is generally not simple to indicate a single method 
that is definitely superior over the others. Hence, there 
is recently a growing number of publications that treat 
ways to combine different approaches in structural opti-
mization. Eschenauer et al. (1994) introduced a bubble 
method, in which shape optimization is followed by an 
introduction of a topological change in form of a spheri-
cal hole (bubble). The sequence is then repeated until a 
certain number of holes were introduced. This allows one 
to select an optimal topology out of a series of solutions 
with varying number of holes. Hassani et al. (2013) pro-
posed a method, in which a shell structure is designed at 
the same time by density variables and, in the out of plane 
direction, by shape optimization. Christiansen et al. (2014) 
and Lian et al. (2017) presented a topology optimization 
using the Deformable Simplicial Complex (DSC) method 
which utilizes an unstructured mesh able to represent the 
boundary exactly. The optimization problem is driven by 
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shape sensitivity information and the topological changes 
are performed using the topological derivatives. Riehl 
and Steinmann (2015) proposed a staggered approach in 
which optimization is driven concurrently by an element 
removal scheme and shape refinement steps. Andreasen 
et al. (2020) incorporated a cut element discretization used 
in LSM into a density-based optimization problem. The 
methodologies adopted in aforementioned contributions 
incorporate hole insertion schemes, which generally pro-
vide good results, and the boundary is represented exactly 
before and after the topological change. However, the hole 
insertion schemes often utilize simple spherical or mesh-
dependent geometrical forms (single element removal or 
element patch removal) and exhibit a sudden solid-to-void 
transition. For further discussion about the hole insertion 
schemes and their comparison to the shape generation 
scheme used in this work, please consult Sect.  3.3.4. 
Alternatively, Nguyen et al. (2020) combined implicit and 
explicit discretizations to optimize the topology and gen-
erate a structure with crisp interfaces with adaptive mesh 
coarsening using the DSC method, respectively. In other 
words, this approach provides an automated transition step 
from topology to shape optimization.

In the following work, we exploit the shape optimization 
method using an embedding domain technique, introduced 
by Riehl and Steinmann (2017), and couple it with a den-
sity-based topology optimization. The optimization prob-
lem now operates on design variables adopted from both 
methods, namely the pseudo-densities of the inner elements 
and the degrees of freedom of the vertices of the embedded 
boundary. The key feature of the coupling is that both sets 
of design variables operate on the same mechanical model. 
This provides full flexibility to perform topological changes 
using the variable density in the embedding domain and 
at the same time, define a mechanically crisp interface by 
means of embedded boundary.

In this coupling method, there is no need to include a 
hole nucleation scheme, because the holes emerge naturally 
as a consequence of the pseudo-density updates. Instead, 
we provide a functionality that recognizes topological holes 
and introduces a variable shape. This approach is character-
ized by a significantly less discontinuous nature as compared 
to the standard hole nucleation schemes. Furthermore, by 
employing the embedding domain discretization, the shape 
updates only require the deformation of the embedded 
boundary as opposed to classical shape optimization using 
an explicit mesh, in which mesh movement strategies are 
necessary for the update of dependent nodes. Therefore, 
larger shape design changes are easy to handle and, con-
sequently, the regularization is simpler. At the end of the 
optimization run, the design is in general free from grey 
regions and is defined by an exact boundary.

Thus, this article’s contribution to the field of structural 
optimization can be understood twofold. (1) It extends the 
shape optimization approach of Riehl and Steinmann (2017) 
by introducing density design variables into the embedding 
domain. This allows to perform topological changes in a 
flexible manner, characteristic to density-based topology 
optimization. (2) It enhances the density-based topology 
optimization with a d-1 dimensional (where d corresponds 
to the number of dimensions of the computational space) 
boundary mesh which serves as a variable, mechanically 
crisp boundary that clearly defines the shape of the opti-
mized structure. Our method brings a number of advantages 
as compared to other methods of combining topology and 
shape optimization and, naturally, at the same time intro-
duces a set of challenges, which are thoroughly studied in 
the scope of this article.

At this point we would like to remark that the purpose 
of this article is not to strive for an approach that is ulti-
mately superior over the other, well-established methods, but 
rather to show that (1) an actual coupling of density-based 
topology optimization and node-based shape optimization is 
indeed possible and (2) it offers a certain set of advantages 
that makes this approach a reasonable choice for a number of 
engineering problems. Nonetheless, the scope of this article 
is limited to a number of simple, benchmark problems of 
linear elasticity.

2 � Embedding Domain method

We consider a body B , embedded into a d-dimensional 
domain Ω ⊂ ℝ

d such that B ⊂ Ω (see Fig. 1). The boundary 
of B is defined by the Dirichlet portion ΓD and the Neumann 
portion ΓN , such that ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = �.

2.1 � Physical problem

For the verification of the proposed coupling method by 
means of classical benchmark examples, we employ the 
BVP formulation based on linear isotropic elasticity, which 
is given by the following system of equations:

where � is the Cauchy stress tensor, b body forces, n outward 
pointing normal to ΓN , t̄ prescribed traction forces, u the 
sought-after displacement vector, ū imposed displacement 
and ℂ the fourth-order elasticity tensor.

(1)

div� + b = 0

� ⋅ n = t̄ on ΓN

u = ū on ΓD

� = ℂ ∶ �

� =
1

2

[
∇u + ∇uT

]
,
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The weak form of equilibrium, adapted for the embedding 
domain method, is given by

where � is a characteristic function defined as

Equation (2) represents the principle of virtual work, given 
by

where a� (u, �u) is the bilinear form representing the varia-
tion of stored energy

and l� (�u) is the linear form representing the variation of 
external energy

The treatment of the Dirichlet boundary conditions cannot 
be realized directly due to the misalignment of the finite ele-
ment nodes of Ωh with the boundary ΓD . Thus, we introduce 

(2)
∫Ω

𝜒[� ∶ 𝛿�] dV − ∫Ω

𝜒[b ⋅ 𝛿u] dV

− ∫ΓN

t̄ ⋅ 𝛿u dA = 0

,

(3)� = �(x) =

{
1, if x ∈ B

0, if x ∈ Ω ⧵ B.

(4)�W� (u, �u) = a� (u, �u) − l� (�u) = 0,

(5)a� (u, �u) = ∫Ω

�[� ∶ ��] dV,

(6)l𝜒 (𝛿u) = ∫Ω

𝜒[b ⋅ 𝛿u] dV + ∫ΓN

t̄ ⋅ 𝛿u dA.

a penalty functional to Eq. (4), so that the total (penalized) 
variation of the virtual work is given by

where the penalty factor is in the range � ∈
�
106, 109

�
× ‖ℂ‖.

2.2 � Discretization

In order to solve the equilibrium equation given by Eq. (2), 
we introduce an approximation of the embedding domain Ω 
by d dimensional finite elements

Consequently, we introduce a piecewise linear representa-
tion of the boundary Γ ≈ Γh consisting of d − 1 dimensional 
element-like segments Γs , i.e. (1) line segments for d = 2 , 
(2) polygons for d = 3

where ns corresponds to the number of segments that belong 
to Γh . As depicted in Fig. 2a, the embedded boundary Γh 
assigns the finite elements Ωe of the embedding domain 
Ωh into three sets: inner elements Ωe

in
 that are completely 

enclosed within the embedded body, boundary elements 
Ωe

bnd
 collecting all the elements intersected by the embed-

ded boundary, and outer elements Ωe
out

 that lie outside of the 
embedded body.

Following the isoparametric concept, the geometry and 
the solution field are both interpolated using the same (vec-
tor-valued) shape functions

The system of equations resulting from discretization of Eq. 
(2) is then given by

where the IJ-th contribution (capital letters I,J indicate 
global numbering of the DoFs) of the stiffness matrix � 
reads

(7)𝛿Wp
𝜒
(u, 𝛿u) = 𝛿W𝜒 (u, 𝛿u) + 𝛽 ∫ΓD

[u − ū] ⋅ 𝛿u dA,

(8)Ω ≈ Ωh =

ne⋃
e=1

Ωe.

(9)Γ ≈ Γh =

ns⋃
s=1

Γs,

(10)X
e(�) =

ndof∑
n=1

N
(i)(�)X(i),

(11)u
e(�) =

ndof∑
n=1

N
(i)(�)u(i).

(12)��
h = � ,

Fig. 1   Embedded body
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and the force vector is given by

2.3 � Integration schemes

Evaluation of the domain integrals in the inner elements Ωin 
incorporates the usual Gaussian quadrature rule as in the 
standard finite element discretization (see Fig. 2b). The ele-
ments that lie entirely outside of the embedded domain Ωout 
are excluded from the assembly routine and, thus, the size of 
the mechanical problem is greatly reduced. Boundary elements 
Ωbnd are only partially enclosed within the embedded body 
and, hence, they require a special treatment during numeri-
cal integration. There are several different approaches for the 
integration of cut elements advocated in the literature, which, 
for instance, involve the area weighting method (Dunning 
et al. 2011; García-Ruíz and Steven 1999), subtriangulation 
of the boundary elements (Nadal et al. 2013) or introduction 
of additional, discontinuous shape functions (XFEM) (Chessa 
et al. 2002). The first approach does not capture the actual 
location of the boundary resulting in a low accuracy, whereas 
the second method loosens the concept of a structured mesh. 
On the other side, XFEM formulation does not suffer from 
these drawbacks. In our work, we employ a simple method 
of integration points oversampling (Riehl 2019) in which a 
larger amount of integration points, which are usually in the 
range nip = (5. .10)d , is considered. As depicted in Fig. 2b, 
for each integration point, we individually decide whether it 

(13)

(14)

contributes to the integral, based on the value of the charac-
teristic function �

To avoid numerical instabilities due to sharp material dis-
continuity at the boundary of the embedded body, we slightly 
regularize the definition of the characteristic function

in which x ∈ B indicates that x belongs to the inside ele-
ments Ωin and inside portion of the boundary elements Ωbnd . 
The treatment of the boundary integrals is more straight-
forward as compared to the domain integrals. As shown in 
Fig. 2c, one needs to further split each segment Γs at their 
intersections with the element boundaries �Ωe (coloured 
white in Fig. 2c) and integrate each of the subsegments 
using the standard Gauss quadrature rule. Contributions 
from these subsegments (see for instance the subsegments 
s1
i
 and s2

i
 in Fig. 2c) are then assembled at the respective 

nodes of the boundary elements Ωe (coloured red in Fig. 2c).
Contribution of the k-th node in the element e from the 

tractions is then given by

(15)∫Ωe

𝜒̄(x(�))f (�) dV ≈

nip∑
m=1

𝜒̄ f
(
�m

)
J
(
�m

)
wm.

(16)

𝜒̄ = 𝜒̄
�
x
e
�
�m

��
=

⎧
⎪⎨⎪⎩

1, if x ∈ B

10−3, if x ∈ Ωh ⧵ B and e ∈ Ωbnd

0, if e ∈ Ωout.

(17)∫ΓN∩Ωe

t̄ ⋅ N
k
dA =

ns∑
i=1

∫si
t̄ ⋅ N

k
dA.

Fig. 2   Embedding domain discretization
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3 � Optimization method

In the following work, we employ the augmented Lagran-
gian formulation for a constrained optimization problem 
and solve it using the Multiplier Method (Hestenes 1969; 
Rockafellar 1973). Since the purpose of this article is to 
primarily demonstrate a method to unify topology and shape 
optimization, we restrict ourselves to a standard compliance 
minimization problem with a volume constraint.

3.1 � Tackling shape

The boundary of the embedded body Γ explicitly represents 
the variable shape. Discretization of Γ into segments Γs 
introduces vertices, which are naturally adopted as a vector 
of discrete design variables � for shape optimization. At this 
point we would to like remark that working directly with 
the vertices � is essentially equivalent to working with the 
finite element nodes of an explicit mesh in a standard shape 
optimization procedure. The difference is that in case of an 
embedded body we deal with a d − 1 dimensional mesh, 
which can be imagined as a hollow body. This fact means 
that no morphing of the so-called dependent nodes of the 
interior of a shape is necessary to maintain mesh regularity. 
Thus, by using the embedding domain discretization, we 
overcome one of the main difficulties associated with the 
classical shape optimization method. Furthermore, easier 
manipulation of the shape means that much larger design 
changes can be handled without sacrificing the mesh quality.

The shape sensitivity information is obtained on the con-
tinuum level and transformed into boundary integral form 
(Choi and Kim 2004). For a detailed account on this matter, 
see the Appendix in Sect. 1.

No need for expensive remeshing/morphing schemes for 
the dependent, inner nodes does not mean that we can directly 
treat the sensitivity information as the design update. Jag-
ged boundaries and mesh dependency is an integral part of 
any shape optimization routine and need to be addressed in 
any event. To handle this issue, we have adapted the traction 

method by Azegami and Takeuchi (2006) for the embedded 
body. For details, please consult Sect. 1.

In Fig. 3, a benchmark compliance minimization problem 
was solved with a volume fraction constraint of 0.5. Fig. 3a 
depicts the problem setup and Fig. 3b, c show the optimized 
shape together with the embedding mesh. The material param-
eters used are E = 70 GPa; � = 0.3 ; the bending load equals 
F = 0.1 N for an assumed thickness of t = 1 mm . One can 
immediately notice the large shape change to reach the opti-
mal state. In particular, the left hand side region was updated 
towards the inside of the cantilever by more than half of the 
cantilever length. Instead, if a standard approach with an 
unstructured mesh were used, the optimization would lead to 
severe mesh distortion and, thus, the usability of the solution 
would be questionable.

3.2 � Tackling topology

The mechanical model in density methods for topology opti-
mization is based on a perfectly structured mesh, which also 
is the case with an embedding domain discretization. Upon 
further inspection, one can come to the conclusion that the 
characteristic function � (see Eq. (2)) and the pseudo-density 
field � used in density methods are in a certain sense equiv-
alent. Both of the functions indicate how much material is 
stored (or whether there is material or not) in each finite ele-
ment. Hence, one can understand the characteristic function � 
as a pseudo-density that is 1 only within the embedded body 
B . The difference is that the original pseudo-density can take 
intermediate values within the range � ∈ [0, 1] and it cannot 
assign two distinct values within a single element. The similar-
ity between � and � can be used to our advance. In the follow-
ing, we introduce the pseudo-density field to the inner domain 
by defining a hybrid function �

which is a slight enhancement of the characteristic function 
� in which all the points x within the body B are assigned 

(18)� = �(x, �(x)) =

{
�(x), if x ∈ B

0, if x ∈ Ω ⧵ B

Fig. 3   Shape optimization of the cantilever using embedding domain discretization
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a pseudo-density � . The weak form of equilibrium is then 
given by

where a penalization parameter is chosen as p = 3 . Based on 
our experiments, the discretized version of the hybrid func-
tion � performs best when adapted in the following manner

in which the only difference with respect to the characteristic 
function 𝜒̄ (see Eq. 16) is that the inner elements Ωin are 
assigned the pseudo-density field � (see Fig. 4a for a graphi-
cal intepretation of the regions defined in Eq. (20)). The ele-
ments that belong to the boundary set Ωbnd are excluded from 
the pseudo-density field and, thus, treated in an unchanged 
manner. The motivation behind this exclusion comes from 
the fact that the shape sensitivities would otherwise show 
dependence on the value of the pseudo-density. This depend-
ency occurs when coupling of shape and topology optimiza-
tion is considered and can be avoided by assigning full den-
sity to the boundary elements. That is, as already mentioned 
in Sect. 3.1, due to the fact that the shape sensitivities are 
expressed exclusively in terms of boundary integrals.

The authors are aware that assigning full density to 
boundary elements is not conforming with the continuous 
formulation of the problem and it is, indeed, a discretiza-
tion related simplification. However, we observe that the 
finer the embedding domain mesh, the narrower the band 
of full density along the boundary. The thickness of this 
band is on average half of the element size. Hence, we dis-
cuss that for a fine enough discretization, the "full density" 

(19)
∫Ω

𝜁p[� ∶ 𝛿�] dV − ∫Ω

𝜁[b ⋅ 𝛿u] dV − ∫ΓN

t̄ ⋅ 𝛿u dA = 0,

(20)𝜁(xe, 𝜌(xe)) =

⎧⎪⎨⎪⎩

𝜌(xe), if e ∈ Ωin

1, if e ∈ Ωbnd and x
e ∈ B

10−3, if e ∈ Ωbnd and x
e ∈ Ωh ⧵ B

0, if e ∈ Ωout.

band is small enough to be considered negligible. See 
Fig. 4b for an exemplary distribution of pseudo-density.

3.3 � Coupled optimization

In Sects. 3.1 and 3.2 we have introduced the design vari-
ables of shape and topology into a model defined using the 
embedding domain discretization technique. In the follow-
ing, we setup an optimization problem that involves both 
sets of design variables simultaneously. In a continuum 
sense, we consider the shape of the embedded body and 
the pseudo-density of its interior as design variables. In 
the discretized model, the vector of design variables is 
given by concatenation of the vector of vertices of the 
embedded boundary � and the vector of pseudo densities 
� of the inner elements Ωin of the embedding domain

3.3.1 � Optimization workflow

The coupling of topology and shape optimization mani-
fests itself in two ways: (1) there is a single mechanical 
model that contains both shape and density variables; (2) 
each iteration of the augmented Lagrange (AL) subprob-
lem involves both shape and density sensitivity analy-
sis, regularization and update. However, we cannot state 
that this is a fully coupled approach, since the update of 
shape and density is realized in separate line search steps 
(although in the same iteration). That means, the density 
and shape variables are treated in a different manner and 
they could not be randomly intermixed. In Algorithm 1, 
we show the workflow for the coupled optimization. 

(21)�̄ =

[
�

�

]
.

Fig. 4   Pseudo-density field in the discretized embedding domain
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The workflow is modified to account for the coupling 
between topology and shape optimization. Tracking of den-
sity variables is a consequence of changing the number of 
discrete density variables. Shape projection deals with open 
void regions, that is, zero or close to zero density regions 
adjacent to the shape. Shape generation introduces shape 
elements in place of closed void regions (topological holes). 
Furthermore, adaptive shape refinement is implemented to 
refine those shape elements, that elongate or create sharp 
corners as a consequence of design update.

In the following sections, we address these steps and the 
aspects related to coupling of shape and topology optimiza-
tion and discuss both the profits and the limitations related 
to them.

3.3.2 � Tracking of density variables

Update of the shape might result in truncated (shape con-
traction) or newly introduced (shape expansion) discrete 
density variables. Most of the time, due to the volume frac-
tion constraint, the variable shape is contracted and, as a 
consequence, density design variables are eliminated. While 
this occurrence is trivial to handle, a special treatment has to 

be introduced when the shape expands and introduces new 
inner elements.

At this point, we would like to stress that the varying 
number of density design variables is related purely to the 
discretization. In a continuum formulation, understanding 
of what happens with the pseudo-density field as the shape 
expands (or contracts) is given more freedom. On the one 
hand, we might say that the pseudo-density field is being 
stretched since the amount of matter within the embedded 
body remains the same. On the other hand, the matter might 
be added or substracted but no stretching of pseudo-density 
field takes place. To the specifics of the embedding domain 
discretization, in particular, the use of a structured mesh, 
only the second interpretation is suitable.

In order not to over-complicate the method, we introduce 
a simple approach based on the filtering schemes of Bruns 
and Tortorelli (2001). In our approach, an initial density of 
a newly introduced design region x̄ is computed by

where NR(x̄) is a neighbourhood region of x̄ within a radius 
R. In a discrete variant, for a new, jth finite element, its den-
sity is computed by

where Sj is a set of support elements of the jth element, i.e. 
Sj = {e | e ∈ N

(
ej
)
and e ≠ ej and e ∉ Ωout} , see Fig. 5. The 

boundary elements are purposely included in Sj and we use 
�e = 1 for them. In this manner, we avoid a special case sce-
nario when Sj ∩ Ωin = � and the jth element is surrounded 
only by the boundary elements instead. By making sure that 

(22)𝜌(x̄) = ∫
NR(x̄)∩B

f (x̄ − x)𝜌(x) dV,

(23)𝜌̃ej =

∑
e∈Si

𝜌ew(xe)ve

∑
e∈Si

w(xe)ve
,

Fig. 5   Tracking of the density design variables. Initial density of the 
newly introduced density design variable is computed based on the 
density values of the neighbouring elements within radius R 
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Sj ∩ Ωbnd ≠ � , the starting density of the jth will be non-zero 
and, moreover, it would ensure a smooth density distribution 
in the proximity of the boundary. To maintain simplicity, 
the initial sensitivities of the new elements are computed in 
a similar fashion, i.e. utilizing the filtering scheme without 
density weighting

as proposed by Sigmund (2001b).

3.3.3 � Shape projection

The shape update is preferably limited to small step sizes 
in order to avoid unwanted distortions. On the contrary, the 
topology undergoes large design changes, especially at the 
early stage, as it evolves from an evenly distributed pseudo-
density to a recognizable skeleton of topological members. 
We observed that in a coupled optimization this phenomenon 
leads to creation of, what we call, open topological voids. That 
is, when the topology of a structure becomes clearly defined, 
regions of zero pseudo-density emerge, that are directly adja-
cent to the shape. Practice shows that these open topological 
voids eventually disappear as the shape approaches the closest 
topological feature. However, this might require a large num-
ber of iterations. Hence, in order to improve the robustness of 
our method, we introduce a shape projection step which aims 
to speed up the elimination of open topological voids.

In Fig. 6a, a raw projection vector is depicted that serves as 
a basis for the shape projection step. The raw projection vector 
defines the displacement of shape vertices along the normal to 
the shape direction, which is needed in order to eliminate the 
open topological void in one step. Our experience shows that 
the use of a raw projection vector is not robust enough to deal 
with certain, difficult scenarios. For example, it happens that 
the normal directions of neighbouring shape vertices differ to 
a level, that during projection the shape vertices interchange 
their positions. We resolved this issue by utilizing the regu-
larization scheme that is primarily used for shape sensitivity 
(see the Appendix in Sect. 1). As a result, we obtain a smooth 
projection vector that fixes the issue of interchanging vertices. 
Furthermore, we introduce a relaxation factor � to scale down 
the magnitude of the projection vector in order to limit its 
effect onto the property of the descent direction and to pre-
vent the shape from an eventual penetration of the topological 
features.

The regularized and relaxed projection vector is given by

(24)
̃𝜕F

𝜕𝜌

ej

=

∑
e∈Si

𝜕F

𝜕𝜌

ei

w(xe)

∑
e∈Si

w(xe)

,

(25)�̃ = 𝜃
[
𝛼
[
�

−1
�
]
+ [1 − 𝛼]�N

]
,

where � is a weighting parameter, �N is a nodal averaging 
vector, � is the raw projection vector, �−1� is a solution of 
the traction method BVP (for more details on these quan-
tities, see Sect. 1). In Fig. 6b, a regularized and relaxed 
(with � = 0.2 ) projection vector is shown. Simulations 
show, that the relaxation vector works best within the range 
� ∈ [0.2, 0.5].

We remark that this regularization procedure is not intro-
duced specially for the shape projection, rather we directly 
make use of the already available regularization for the 
shape sensitivities. From the implementation point of view, 
the only additional work related to a shape projection step is 
the computation of the raw projection vector.

The shape projection step is purely heuristic, therefore, 
the property of descent direction of the total shape update 
is not guaranteed anymore. Practice shows, however, that 
the addition of the regularized and relaxed projection step 
negligibly affects the final design.

3.3.4 � Shape generation

As the topology optimization converges, recognizable 
hole-like features of topological members evolve. We call 
these regions closed topological voids, as opposed to open 
topological voids defined in Sect. 3.3.3. The key difference 
between these two types of topological voids is that closed 
ones are not adjacent to the shape boundary. To obtain crisp 
boundaries in place of the closed topological voids, we add a 
framework to introduce an additional, variable shape enclos-
ing these regions. These newly introduced shape design vari-
ables will further undergo shape optimization to generate a 
smooth geometry.

Fig. 6   Shape projection
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The first step of shape generation is to identify the clus-
ters of void cells. To determine these clusters, we do a 
neighbourhood search for each cell that is classified as a 
member of a closed topological void. For this classification, 
we choose all cells which pseudo-density is less than half 
solid, that is 𝜌 < 0.5 . This way, the newly introduced shape 
can ideally be positioned in the middle of the grey transition 
zone from solid feature to void hole. All the connected cells 
with 𝜌 < 0.5 represent a cluster. In Fig. 7a these clusters are 
represented in different colours.

The second step is to establish a convex hull that encloses 
these clusters. To achieve this, we use a generic convex hull 
generation algorithm to develop a polygon that encloses a 
cluster. Our implementation is based on the algorithm pre-
sented in Cormen et al. (2009). Once the enclosing polygons 
are determined, we append them to the existing boundary of 
the embedded body. The updated shape is shown in Fig. 7b.

To prevent the generation of shape in place of closed 
topological voids too early, we introduce a control param-
eter that delays the shape generation until a desired "crisp-
ness" of the topological design is obtained. We measure the 
"crispness" by the percentage of grey cells remaining in the 
structure. We define a cell to be grey if its pseudo-density is 
in the range � ∈ [0.01, 0.99] . When the participation of the 
grey cells in all of the inside cells Ωin of the current iteration 
falls below a user-defined threshold

which we choose from the range �grey ∈ [0.01, 0.25] , the 
shape generation function is allowed to be invoked in any 
iteration.

Intersecting holes The selection of the grey cell threshold 
for the shape generation step is based on experience. The 
general rule is the lower the value for the grey cell threshold 
the better, because the topological features are then easier to 
recognize. User might, however, prefer to invoke the shape 
generation step as early as possible and, therefore, a greater 
value of the grey cell threshold will be selected. In such case, 
the shapes might be generated in place of the topological 
voids that are not fully formed. This sometimes leads to a 
scenario in which two newly introduced shapes attempt to 
combine into one, leading to an intersection of shapes, as 
depicted in Fig. 8a. In this scenario, the convex hull algo-
rithm is reinvoked to regenerate a single shape, see Fig. 8b.

Continuity of the optimization routine Any design change 
not based on a response gradient information with respect 
to the design variables introduces a certain amount of 
discontinuity to the optimization routine. That is particu-
larly pronounced in the hole insertion schemes, in which 

(26)
ngrey

|Ωin| < 𝜃grey,

a solid, spherical region is replaced with a void region 
or a patch of finite elements is removed with no allow-
ance for intermediate states. On the contrary, the aim of 
the shape generation step is not to introduce a new hole 
but rather to modify the discretization in a region that is 
already void, in order to allow for shape sensitivity to 
control the design. The main requirement for the shape 
generation step is to alter the design state in a minimal 

Fig. 7   Three steps in shape generation scheme. Note that the bound-
ary elements Ωbnd are depicted with full black colour due to limita-
tions of the visualization tool used
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amount. In other words, it is a quasi-void-to-void transi-
tion rather than solid-to-void transition. Moreover, shape 
generation does not suffer from the heuristics behind 
the choice of initial geometry in the hole nucleation 
schemes, which often assume a spherical form with a cer-
tain radius. Hence, we assess that the shape generation 
scheme exhibits a less abrupt nature as compared to hole 
insertion schemes. Although we believe that the discon-
tinuity introduced by the shape generation is negligible, 
a mathematical treatment on this aspect is necessary for 
a further discussion.

3.3.5 � Adaptive shape refinement

Use of a d − 1 dimensional mesh makes large shape 
updates possible. Although we do not have to incorpo-
rate morphing algorithms to handle mesh deformation 
(at least in 2D optimization), we still need to put some 
effort to maintain regularity of the shape discretization. 
On the one hand, we utilize the traction method and dual 
descent smoothing to ensure a smooth, mesh-independent 
design update. On the other hand, we still need to make 
sure that the discretization is able to represent the shape 
accurately. In particular, we tackle two aspects of dis-
cretization: elongation of the segments and creation of 
sharp corners. We introduce two simple criteria, based on 
which a single shape segment can be refined. The length 
criterion is given by

where lavg is the average shape segment size from iteration 0 
and cl is a user-defined criterion for the allowable elongation. 
Most often, we choose cl = 1.5 . The curvature criterion is

where Nsi
 is a unit normal vector of the ith shape seg-

ment and ca is the angular criterion for the allowable angle 
between the normals of two adjacent shape segments. By 
default, we choose ca = 0.9 . See Fig. 9 for a comparison 

(27)l(Γsi
) < lavgcl,

(28)Nsi
⋅ Nsj

> ca,

between shape optimization of the cantilever from Fig. 3a 
without and with shape adaptive refinement.

4 � Results

We verify our method with two most commonly used 
benchmark examples: the cantilever and the Messer-
schmitt-Bolkow-Blohm (MBB) beam. Both examples are 
optimized with varying values of the filter radius for den-
sity sensitivities (please refer to the filtering scheme of 
Bruns and Tortorelli (2001). We also investigate the influ-
ence of the choice of the grey cell threshold for the delay 
of the shape generation. In particular, we are interested in 
how does the premature shape generation affects the final 
design. For the regularization of the shape sensitivities, 
we established a set of parameters that remains the same 
for all of the presented examples. We employ a standard 
setting for the optimization problem, that is minimization 
of the total compliance with an upper limit constraint on 
the volume fraction.

Cantilever In Fig. 10 we show a course of cantilever 
optimization using our method. For this, we choose an 

Fig. 8   Merging of two intersecting holes using the convex hull algo-
rithm. An example taken from the cantilever optimization

Fig. 9   Adaptive shape refinement in a shape optimization example of 
a cantilever. Large shape update of the left hand side wall caused the 
shape segments to elongate significantly and form a U-shaped feature 
with just three shape segments. When the shape adaptive refinement 
is utilized, the issues with elongated elements and sharp corners are 
overcome
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embedding domain discretization with element size of 
h = 0.007 and a filter radius for density-based sensitivities 
of r = 0.02 . The cantilever is constrained with a volume 
fraction of Vfrac = 0.5 . The BVP setup is the same as in 3a.

In the initial configuration (Fig. 10a) the variable shape is 
only present on the outside of a filled body (no initial holes). 
The initial pseudo-density of the inner cells is chosen to be 
0.5 so that the volume fraction constraint is only slightly 
violated1. In the initial iterations the topology undergoes 
large changes and open topological voids occur, as depicted 
in Fig. 10b. At this stage, the shape update is supported by 
the shape projection scheme. Within the next ten iterations 

the open topological voids are almost eliminated (Fig. 10c) 
and the topological features become recognizable. At this 
stage, the grey cell participation decreases rapidly until it 
reaches the threshold value of �grey = 0.1 in the 23rd itera-
tion (Fig. 10d). From this point, the shape generation func-
tion is allowed to introduce variable shapes in the place of 
the topological voids. Naturally, with a participation of grey 
cells below 10% the closed topological voids are recognized, 
therefore, variable shapes are introduced before the 24th 
iteration, see Fig. 10e. After invoking the shape generation 
step for the first time, the shape updates become dominat-
ing as compared to the density updates. Nevertheless, the 
density updates of the coupled optimization are still active 
and, as shown in Fig. 10f), the topology is further fine-tuned 
and two more pairs of topological holes are formed. Conse-
quently, the shape generation step is activated in the 30th and 

Fig. 10   Stages of cantilever optimization. The variable shape is depicted as red line. (Color figure online)

1  Note that the actual volume fraction is slightly greater than 0.5 
because the pseudo-density is not assigned to the boundary cells.
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the 31st iterations to complement these holes with variable 
shapes (Fig. 10g, h). It is worth a notice, that at this point 
the open topological voids are fully eliminated. Hence, the 
shape updates are driven exclusively by the optimizer. In the 
44th and the 51st iterations, a shape intersection occurred 
as the optimizer tried to eliminate two topological members 
(see Fig. 10i, j). To account for this, the shapes were merged 
to form a single hole. Although the design appears fully 
black and white, the density variables are still active and are 
free to react to the shape changes. As a consequence another 
topological void formed and a new shape was generated in 
the 63rd iteration, see Fig. 10k. The remainder of the optimi-
zation run fine-tunes the shape and converges in the 132nd 
iteration (Fig. 10l).

As the next step we examine the complexity of the 
design by choosing varying filter radii for the density sen-
sitivities and the robustness of the method against a choice 
of varying grey cells thresholds. In Fig. 11a–i filter radii 
of r = {0.04, 0.03, 0.02} (sorted row-wise) and grey cells 
thresholds of �grey = {20%, 10%, 2%} (sorted column-wise) 
were chosen. The element size for the embedding domain 
discretization is h = 0.007.

The optimized structures show a mechanically crisp, 
smooth boundary thanks to the variable shape. The method 
produces similar outputs for different settings of the grey 

cell threshold ranging from �grey = 20% to �grey = 2% for 
all the filter choices. This proves that the user has enough 
flexibility in the choice of the grey cell threshold. As the 
filter radius for density-based sensitivities decreases, the 
complexity of the topological design increases. This com-
plexity can be further increased by choosing smaller filter 
radii and, consequently, with finer embedding domain mesh. 
However, we believe that the advantage of our method is that 
we can achieve finely optimized geometries with relatively 
coarse discretization of the embedding domain, since the 
actual geometry is represented only by the boundary of the 
embedded body. In other words, by using a relatively coarse 
embedding domain discretization, thin geometrical features 
can still be represented smoothly as opposed to pure topol-
ogy optimization, in which a visible staircase-like pattern 
appears. Moreover, truncation of the outside elements Ωout 
means a smaller mechanical domain. On the top of that, 
the size of the problem decreases with the decreasing vol-
ume of the design. This is particularly pronounced after the 
shape generation step, during which the elements within the 
topological voids are excluded from the BVP. For instance, 
the initial configuration in the examples from Fig. 11 con-
tains 13944 inner e ∈ Ωh

in
 and boundary elements e ∈ Ωh

bnd
 

together. The BVPs of the final designs for all the setups 

Fig. 11   Optimized designs of the cantilever for varying filter radii and grey cell thresholds
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with �grey = 10% (see Fig. 11b, e, h) involve 7494, 7568 and 
7657 inner and boundary elements together, respectively.

In Fig. 12, the distribution of the shape vertices for the 
final designs from Fig. 11b, e, h are shown. The usage of 
the adaptive shape refinement scheme (see Sect.  3.3.5) 
for the length and curvature control allowed for a precise 

representation of the shape at the intersections of the topo-
logical features.

In Fig. 13, the participation of the grey cells in the first 50 
iterations is shown for the examples from Fig. 11. One can 
immediately see that for all the cases the grey cells (almost) 
fully disappear between the 30th and 40th iteration. This 
indicates that the topology forms and the problem transforms 
into a shape-driven optimization. Moreover, since in the final 
designs only two phases remain in the model: solid material 
and void, we deduce that the obtained structures are physi-
cally meaningful.

To gain an insight into the performance difference 
between the designs from Fig. 11, the final values of the 
compliance are shown in Table 1.

The differences in compliance values are exiguous, what 
suggests that the performance of the design is insensitive to 
the choice of grey cells threshold.

In the next step, the volume fraction constraint is set to 
Vfrac = 0.3 . Additionally, we use a relatively coarse mesh 
with element size of h = 0.015 and we test two cases of the 
grey cell thresold �grey = 30% and �grey = 5% . The filter 
radius is set to r = 0.04 for both cases. The shape generation 
steps and the final results are shown in Fig. 14. Moreover, 
the final results are depicted with shape vertices (Fig. 14c, 
f). As shown in Fig. 14a, b, d, e, although significantly var-
ying grey cell thresholds were used, the generated shapes 
in 14b, e are very similar. The final shapes in Fig. 14c, f are 
almost identical, what confirms that the method deals well 
with varying setting of the grey cell threshold. On the top of 
that, the usage of the adaptive shape refinement resulted in 
a finely rendered geometry.

MBB Beam We continue benchmarking of our method 
with the MBB beam. In Fig. 15 we show the BVP setup for 
half of the beam with symmetry constraint on the left hand 

Table 1   Final compliance and grey cell participation for the cantile-
ver

Com. ×10−6 �grey = 20% �grey = 10% �grey = 2%

r = 0.04 5.278 5.302 5.280
r = 0.03 5.274 5.265 5.262
r = 0.02 5.265 5.263 5.268

Fig. 12   Optimized designs of the cantilever for varying filterradii. 
Distribution of the shape vertices

Fig. 13   Participation of grey cells as a function of iterationcount for 
the first 50 iterations
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edge. The material parameters used are E = 70 GPa; � = 0.3 ; 
the bending load equals F = 0.1 N for an assumed thickness 
of t = 1 mm.

The selected element size is h = 0.005 for all the pre-
sented designs. As demonstrated with the cantilever exam-
ple, the coupled optimization method is robust enough to 
produce similar results for different choices of grey cell lev-
els. Hence, this time we restrict the setup of the optimization 
problems to �grey = 10% only.

In Fig. 16, the design evolution of the MBB beam with 
filter radius of r = 0.01 is shown. In a similar manner to 
the cantilever design, in the early iterations (Fig. 16b) the 
topology undergoes large design changes, whereas the 
shape update is supported by the projection scheme. With 
the partial elimination of open topological voids the inner 
skeleton of topological features appear, see Fig. 16c. In 
23rd iteration (Fig. 16d), the grey cell participation drops 
below the threshold value of �grey = 10% and the shape 
generation step is invoked (Fig. 16e). Further development 

of the topology design yields a particular scenario in which 
an open topological void appears adjacent to a shape hole, 
see Fig. 16f. Subsequent iterations successfully deal with 
the elimination of the open topological voids and two addi-
tional shapes are introduced (see Fig. 16g, h). The remain-
ing iterations are naturally dominated by the shape update 
until the convergence is reached (Fig. 16i).

In Fig. 17, final designs of the MBB beam for varying 
filter radii are depicted. All three configurations shared the 
same initial step size for the shape update � init

x
= 0.015 and 

density update � init
�

= 0.2 . The only varying quantity is the 
filter radius for density sensitivities. The obtained topolo-
gies naturally become more complex with decreasing filter 
radius. In the cases from Fig. 17a,b the end results are 
not fully black and white. This is caused by the Lagrange 
updates which caused a sudden volume drop in the design. 
The Lagrange updates affected those regions, which for 
smaller values of the volume constraint would most prob-
ably become void.

Figure 18 depicts the distribution of the vertices for 
the designs from Fig. 17. As in the case of the cantilever, 
highly curved regions are rendered with finely discretized 
shape to avoid sharp corners.

The final value of compliance and grey cells participa-
tion are listed in Table 2.

One can see that with the decreasing filter radius the 
compliance of the final design also slightly decreases. The 
grey cells participation values are non-zero for the cases 
with r = 0.03 and r = 0.02 . Nevertheless, we consider the 
amount of the remaining grey cells as negligible. There-
fore, we can safely state that the optimized structures are 
physically realistic.

Fig. 14   Optimized cantilever with volume constraint of Vfrac = 0.3 , element size of h = 0.015 and filter radius of r = 0.04

Fig. 15   BVP setup of the MBB beam
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The evolution of the participation of grey cells is shown 
in Fig. 19. In all of cases the percentage drops to values 
close to zero between the 30th and 35th iterations. At this 
stage, the coupled optimization becomes dominated by the 
shape updates.

5 � Conclusions

In this contribution, we propose a method that is an alter-
native to the traditional, sequential approach to topology 
and shape optimization. By exploiting the specifics of the 
embedding domain discretization, we couple density-based 
topology optimization and node-based shape optimization. 
An embedding domain, which is discretized with a struc-
tured finite element mesh, is assigned a pseudo-density 
field, whereas the boundary of the embedded body serves 
as a variable shape. In this manner, we setup a single opti-
mization problem that operates on a hybrid design space 
that is comprised of two sets of design variables.

Our goal was to demonstrate that coupled topology and 
shape optimization might offer practical advantages. Con-
sidering the current state of our work, we discuss the char-
acteristics of the method as compared to sequential and 
other combinations of topology and shape optimization.

First and foremost, the usage of the same computational 
domain for shape and topology optimization is the key 
feature. We skip any transition steps that are necessary 
in transforming the topological results into a shape mesh, 
which is general practice in sequential topology and shape 
optimization.

Moreover, shape variation is given a larger flexibility as 
compared to the standard, node-based shape optimization 
due to the usage of embedded boundary. As a consequence, 
the shape sensitivity analysis is numerically less expensive 
and the regularization is much easier. Moreover, adaptive 
shape refinement becomes a relatively simple task as, for 
2D problems, it just requires vertex insertion in the segment 
centre. Besides that, the mechanical model relies upon the 
structured mesh that is made of quadrilateral elements (in 

Fig. 16   Stages of MBB optimization. The variable shape is depicted as red line. (Color figure online)

Fig. 17   Optimized designs of the MBB beam for varying filter radii
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case od 2D), whereas in shape optimization usually triangu-
lar elements are used, which offer a lower accuracy.

A common practice in a combined shape and topology 
optimization routines is to employ a hole insertion scheme. 
This approach shows a few inherent drawbacks, i.e. its 
abrupt and discontinuous nature and a limited flexibility in 
performing topological changes. In our work, we mitigate 
these issues by enabling a full topological flexibility by 
introducing a pseudo-density field and the shape generation 
scheme, which inserts a variable shape in place of already 
present topological holes.

Furthermore, the fact that the embedding domain must 
be larger than the design space means one can easily get 
rid of the bounding box constraints and allow for a geo-
metrically unrestricted setup. Furthermore, since the design 

is ultimately defined by the boundary of the embedded 
body, one can use a coarser discretization of the embedding 
domain and still achieve geometrically refined designs.

A typical phenomenon in our method is the constant 
interaction of the topology and evolving shape. Although 
in early iterations the topology changes are dominant and 
the shape changes are of low influence, in later stages the 
shape changes take over to position, form and smoothen the 
features. We are aware that this interaction might in fact 
be more of an issue than advantage. Practice shows, how-
ever, that the interaction is robust enough in a sense that the 
topological features manage to emerge in an early stage of 
optimization despite the shape changes. On the other hand, 
creation of the open topological voids takes place as a result 
of shape updates being more delicate than the topology 
changes. Although it is an unwanted phenomenon, the open 
topological voids are eventually eliminated within the course 
of optimization. Moreover, we enhance this elimination as 
described in Sect. 3.3.3.

The key drawback of our method is its inherent complex-
ity and, consequently, less freedom in the selection of an 
optimization algorithm. Besides the augmented Lagrange 
formulation, which is utilized in this work, no other approach 
was tested.

A Continuum approach to shape sensitivity

We perform shape sensitivity analysis using the continuum 
approach, as described in Choi and Kim (2004). We utilize 
the material derivative concept, which we do not introduce 
here, but refer interested readers to Arora (1993); Choi and 
Kim (2004). In the following, we define the compliance 
functional as

Fig. 18   Optimized designs of the MBB beam for varying filter radii. 
Distribution of the shape vertices

Table 2   Final compliance and grey cell participation for the MBB 
beam

Setting (r/�grey) Compliance Grey cells (%)

0.03/10% 1.543 × 10−5 0.563
0.02/10% 1.532 × 10−5 0.536
0.01/10% 1.515 × 10−5 0.000

Fig. 19   Participation of grey cells as a function of iteration count for 
the first 50 iterations
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We exploit the adjoint method and augment the compliance 
functional by a weak form of equilibrium equation, in which 
the variations of the state fields have been replaced by the 
adjoint variables:

By means of variational calculus it was proven that �Wa = 0 
(Arora and Cardoso 1992). Thus, we obtain

Next, the boundary integral method (Arora 1993) is 
employed to express the material derivative of the aug-
mented functional in the following form

We calculate the partial derivatives of the integrands Ḡ , ḡ 
and h̄ as follows:

Finally, we introduce A.29 and A.34 into A.33 to arrive at a 
full expression for the material derivative of the augmented 
compliance functional.

(A.29)F
com = ∫

B

b ⋅ u dV + ∫ΓN

t̄ ⋅ u dA.

(A.30)

L =Fcom +W
a = ∫

B

Ḡ dV + ∫ΓD

ḡ dA + ∫ΓN

h̄ dA,

(A.31)
W

a = − ∫
B

� ∶ �a dV + ∫
B

b ⋅ ua dV

+ ∫ΓN

t̄ ⋅ ua dA + ∫ΓD

t ⋅ ūa = 0.

(A.32)Ḟ
com

= L̇ − Ẇ
a = L̇.

(A.33)

Ḟ
com

=∫
B

Ḡ� dV + ∫Γ

Ḡ[� ⋅ n] dV

+ ∫ΓD

ḡ� dA + ∫ΓD

[
∇ḡ ⋅ n + ḡH

]
[� ⋅ n] dA

+ ∫ΓN

h̄� dA + ∫ΓN

[
∇h̄ ⋅ n + h̄H

]
[� ⋅ n] dA.

(A.34)

Ḡ� = 𝜕uG ⋅ u� − �� ∶ �a − � ∶
[
�a
]�
+ b� ⋅ ua + b ⋅

[
ua
]�
,

ḡ� = t� ⋅ ūa + t ⋅
[
ūa
]�
,

h̄� = 𝜕th ⋅ t̄
�
+ 𝜕uh ⋅ u

� + t̄
�
⋅ ua + t̄ ⋅

[
ua
]�
.

By exploiting the variational principle for design sensitivity 
analysis, it is required that the variation of the augmented 
functional w.r.t. the primary and adjoint state fields vanishes. 
Hence, the sum of the two expressions within curly braces 
vanishes. Moreover, the first expression within curly braces 
represents the weak form of equilibrium for the primary 
structure, in which the explicit derivative of the adjoint state 
field [ua]� serves as a kinematically admissible test function 
and [�a]� is a compatible strain tensor. We may express the 
first expression in the curly braces as

and, consequently, we obtain

Now, we utilize the symmetry of the Cauchy stress tensor 
and major symmetry of the tangent tensor

to obtain the weak form of equilibrium for the adjoint 
structure

(A.35)

Ḟ
com

=∫
B

b� ⋅ ua dV

+ ∫Γ

[
b ⋅ u − � ∶ �a + b ⋅ ua

]
[� ⋅ n] dA

+ ∫ΓD

t� ⋅ ūa dA

+ ∫ΓD

[
∇
[
t ⋅ ūa

]
⋅ n +

[
t ⋅ ūa

]
H
]
[� ⋅ n] dA

+ ∫ΓN

𝜕th ⋅ t̄
�
+ t̄

�
⋅ ua dA

+ ∫ΓN

[
∇
[
t̄ ⋅ u + t̄ ⋅ ua

]
⋅ n

+
[
t̄ ⋅ u + t̄ ⋅ ua

]
H
]
[� ⋅ n] dA

+

{
−∫

B

� ∶
[
�a
]�
dV + ∫

B

b ⋅
[
ua
]�
dV

+ ∫ΓN

t̄ ⋅
[
ua
]�
dA + ∫ΓD

t ⋅
[
ūa
]�
dA

}

+

{
∫
B

𝜕uG ⋅ u� − �� ∶ �a dA + ∫ΓN

𝜕uh ⋅ u
� dA

}

(A.36)W

(
u,
[
ua
]�)

= 0,

(A.37)∫
B

�uG ⋅ u� − �� ∶ �a dA + ∫ΓN

�uh ⋅ u
� dA = 0.

(A.38)�� ∶ �a = �� ∶ � ∶ �a = �� ∶ �a = �a ∶ ��,

(A.39)
W
(
ua, u�

)
=∫

B

�uG ⋅ u� − �a ∶ �� dA

+ ∫ΓN

�uh ⋅ u
� dA = 0

,
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in which u′ is a kinematically admissible test function and 
�′ a compatible strain tensor. By evaluating the boundary 
conditions:

we realize that the loading of the adjoint structure is the 
same as of the primary structure. Thus, the problem is self-
adjoint and u = ua . Under the assumption that the explicit 
derivatives of the external loads are zero, i.e. b� = 0 , t̄� = 0 
and by using the fact that ūa = 0 we obtain the final expres-
sion for the continuum shape sensitivity of the compliance 
functional

If the body force b is zero and the region with traction force 
is not a part of the design space, then the sensitivity expres-
sion reduces to a very simple formula

The sensitivity of the volume functional, given by

is obtained by direct differentiation. Thus, it reads

The derived expressions for the continuum sensitivity are 
then discretized to obtain the nodal contributions in the form

where gI
n
 is the sought-after nodal shape sensitivity.

B Shape design update

B.1 Modified traction method

For the specifics of the embedding domain discretization we 
adapt the traction method, which was originally introduced 
in Azegami and Wu (1996); Azegami and Takeuchi (2006). 
Briefly explained, the traction method is based upon solv-
ing an auxiliary BVP, in which the raw shape sensitivity 
is employed in form of external, nodal traction forces. The 

(A.40)

b
a = 𝜕

u
G = b in B,

t̄
a
= 𝜕

u
h = t onΓN ,

ū
a = 𝜕

u
g = 0 onΓD,

(A.41)
Ḟ

com
=∫Γ

[2[b ⋅ u] − � ∶ �][� ⋅ n] dA

+ ∫ΓN

[
2∇

[
t̄ ⋅ u

]
⋅ n + 2

[
t̄ ⋅ u

]
H
]
[� ⋅ n] dA.

(A.42)Ḟ
com

= −∫Γ

� ∶ �[� ⋅ n] dA.

(A.43)F
vol = ∫

B

1 dV,

(A.44)Ḟ
vol

= ∫Γ

1[� ⋅ n] dA.

(A.45)Ḟ
I
= gI

n
⋅ �I ,

solution of such BVP yields a smooth, mesh-independent 
design update vector. The original traction method (using 
Robin conditions) relies upon an elasticity energy in form 
of a body integral. Our adaptation concerns (1) the integra-
tion domain, that is, all the energies are defined by means 
of boundary integrals and (2) the substitution of the elastic 
energy with a simple spring and Laplacian smoothing ener-
gies. In this way, the auxiliary BVP can be directly defined 
over the embedded boundary in which we treat the shape 
segments as d-1 dimensional finite elements.

The energy form of our version of the traction method 
is given by

where Πext is the energy of the external forces in form of 
the raw sensitivities, P is the penalty functional, which is 
responsible for the bounding box constraints and � is the 
scaling factor which ensures that the solution of the traction 
method BVP yields an exact design update vector.

The internal energy in our adapted formulation is defined 
as a sum of smeared spring and Laplacian smoothing ener-
gies as follows

At this point, we remark that the chosen smoothing pro-
cedure is based on the following boundary value problem:

where, as opposed to Poisson’s equation, the BVP solves 
for a vector field instead of a scalar field. The motivation 
behind using a vector field is that, besides the normal to 
shape smoothing, we additionally introduce the tangent to 
shape smoothing to control the node distribution of the vari-
able shape. The vector Laplacian, in the particular case when 
a cartesian coordinate system is utilized, is given by

Moreover, note that the spring energy is split into the 
normal to shape and tangent to shape contributions. This 
division is specifically introduced for the discrete variant 
of the sensitivity. This is because with help of the normal 
spring we eliminate the mesh dependency of sensitivities, 
whereas with the tangent spring, in conjuction with the 

(B.46)Πt = Πint + �
[
Πext + P

]
→ Min

(B.47)

Πint =Πsp + Πsm

=∫Γ

csp,N

2

[
uN

]2
dA

+ ∫Γ

csp,T

2

[
uT

]2
dA

+ ∫Γ

csm

2
∇u ∶ ∇u dA.

(B.48)
Δu = u on Γ,

u = 0 on �Γ
,

(B.49)Δu =
�2u

�x2
+

�2u

�y2
+

�2u

�z2
= div [∇u].



2706	 G. Stankiewicz et al.

1 3

Laplacian smoothing, we introduce and control the in-plane 
regularization.

B.2 Geometrical smoothing

While the traction method deals with sensitivity regulariza-
tion, it does not address the irregularities of the geometry 
itself, for instance, the ear formation problem. To account for 
that, we additionally introduce a geometric smoothing strat-
egy, in which the final design update is given as a weighted 
sum of the regularized design update and a nodal averaging 
vector in the following form

where � ∈ [0, 1] is a weighting parameter, ūupd is the final 
design update vector, uupd is the regularized design update 
vector and uavg is the nodal averaging vector, for the Ith node 
defined as

The weighting parameter � ∈ [0, 1] is automatically deter-
mined such that the following conditions are met

where ∇xL is the raw augmented Lagrange sensitivity (steep-
est descent direction) and � is the user-defined sufficient 
decrease parameter, usually in the range � ∈ [0.85, 0.95].
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ūupd,−∇xL

) ≥ 𝜂 cos
(
uupd,−∇xL

)
,

provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Allaire G, Jouve F, Toader AM (2002) A level-set method for shape 
optimization. Comptes Rendus Math 334(12):1125–1130

Allaire G, De Gournay F, Jouve F, Toader AM (2005) Structural 
optimization using topological and shape sensitivity via a level 
set method. Control Cybernet 34(1):59

Andreasen CS, Elingaard MO, Aage N (2020) Level set opology and 
shape optimization by density methods using cut elements with 
length scale control. Struct Multidiscip Optim 62:1–23

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O 
(2011) Efficient topology optimization in matlab using 88 lines 
of code. Struct Multidiscip Optim 43(1):1–16

Arndt D, Bangerth W, Blais B, Clevenger TC, Fehling M, Grayver 
AV, Heister T, Heltai L, Kronbichler M, Maier M et al (2020) 
The deal. II library, version 9.2. J Numer Math 28:131–162

Arora JS (1993) An exposition of the material derivative approach 
for structural shape sensitivity analysis. Comput Methods Appl 
Mech Eng 105(1):41–62

Arora JS, Cardoso J (1992) Variational principle for shape design 
sensitivity analysis. AIAA J 30(2):538–547

Azegami H, Takeuchi K (2006) A smoothing method for shape opti-
mization: traction method using the robin condition. Int J Com-
put Methods 3(01):21–33

Azegami H, Wu ZC (1996) Domain optimization analysis in linear 
elastic problems: approach using traction method. JSME Int J 
Ser A 39(2):272–278

Belytschko T, Xiao S, Parimi C (2003) Topology optimization with 
implicit functions and regularization. Int J Numer Methods Eng 
57(8):1177–1196

Bendsøe MP (1989) Optimal shape design as a material distribution 
problem. Struct Optim 1(4):193–202

Bendsoe MP, Sigmund O (2013) Topology optimization: theory, 
methods, and applications. Springer Science & Business Medi-
aSpringer Science & Business Media, New York

Bletzinger KU (2014) A consistent frame for sensitivity filtering and 
the vertex assigned morphing of optimal shape. Struct Multidis-
cipl Optim 49(6):873–895

Braibant V, Fleury C (1984) Shape optimal design using b-splines. 
Comput Methods Appl Mech Eng 44(3):247–267

Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear 
elastic structures and compliant mechanisms. Comput Methods 
Appl Mech Eng 190(26–27):3443–3459

Burger M, Hackl B, Ring W (2004) Incorporating topological deriva-
tives into level set methods. J Comput Phys 194(1):344–362

Chessa J, Smolinski P, Belytschko T (2002) The extended finite ele-
ment method (xfem) for solidification problems. Int J Numer 
Methods Eng 53(8):1959–1977

Choi KK, Kim NH (2004) Structural sensitivity analysis and optimi-
zation 1: linear systems. Springer Science & Business Media, 
New York

Christiansen AN, Nobel-Jørgensen M, Aage N, Sigmund O, 
Bærentzen JA (2014) Topology optimization using an 

http://creativecommons.org/licenses/by/4.0/


2707Coupled topology and shape optimization using an embedding domain discretization method﻿	

1 3

explicit interface representation. Struct Multidiscip Optim 
49(3):387–399

Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to 
algorithms. MIT Press, Cambridge

da Silva GA, Beck AT, Sigmund O (2019) Topology optimization of 
compliant mechanisms with stress constraints and manufacturing 
error robustness. Comput Methods Appl Mech Eng 354:397–421

De Troya MAS, Tortorelli DA (2018) Adaptive mesh refinement in 
stress-constrained topology optimization. Struct Multidiscipl 
Optim 58(6):2369–2386

Dunning PD, Kim HA, Mullineux G (2011) Investigation and improve-
ment of sensitivity computation using the area-fraction weighted 
fixed grid fem and structural optimization. Finite Elements Anal 
Des 47(8):933–941

Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method 
for topology and shape optimization of structures. Struct Optim 
8(1):42–51

García-Ruíz M, Steven GP (1999) Fixed grid finite elements in elastic-
ity problems. Eng Comput 16:145–164

Ha SH, Cho S (2008) Level set based topological shape optimization 
of geometrically nonlinear structures using unstructured mesh. 
Comput Struct 86(13–14):1447–1455

Hassani B, Tavakkoli SM, Ghasemnejad H (2013) Simultaneous shape 
and topology optimization of shell structures. Struct Multidiscip 
Optim 48(1):221–233

Hestenes MR (1969) Multiplier and gradient methods. J Optim Theory 
Appl 4(5):303–320

Jenkins N, Maute K (2015) Level set topology optimization of station-
ary fluid-structure interaction problems. Struct Multidiscip Optim 
52(1):179–195

Kiendl J, Schmidt R, Wüchner R, Bletzinger KU (2014) Isogeomet-
ric shape optimization of shells using semi-analytical sensitivity 
analysis and sensitivity weighting. Comput Methods Appl Mech 
Eng 274:148–167

Kreissl S, Maute K (2012) Levelset based fluid topology optimiza-
tion using the extended finite element method. Struct Multidiscipl 
Optim 46(3):311–326

Lian H, Christiansen AN, Tortorelli DA, Sigmund O, Aage N (2017) 
Combined shape and topology optimization for minimiza-
tion of maximal von mises stress. Struct Multidiscip Optim 
55(5):1541–1557

Luchi M, Poggialini A, Persiani F (1980) An interactive optimiza-
tion procedure applied to the design of gas turbine discs. Comput 
Struct 11(6):629–637

Nadal E, Ródenas J, Albelda J, Tur M, Tarancón J, Fuenmayor F (2013) 
Efficient finite element methodology based on cartesian grids: 
application to structural shape optimization. In: Abstract and 
applied analysis, Hindawi, vol 2013

Nguyen TT, Bærentzen JA, Sigmund O, Aage N (2020) Efficient 
hybrid topology and shape optimization combining implicit 
and explicit design representations. Struct Multidiscip Optim 
62(3):1061–1069

Riehl S (2019) Structural optimization of shape and topology using 
an embedding domain discretization technique. PhD thesis, 

Institute of Applied Mechanics, Friedrich-Alexander-Universität 
Erlangen-Nürnberg

Riehl S, Steinmann P (2015) A staggered approach to shape and topol-
ogy optimization using the traction method and an evolutionary-
type advancing front algorithm. Comput Methods Appl Mech Eng 
287:1–30

Riehl S, Steinmann P (2017) On structural shape optimization using an 
embedding domain discretization technique. Int J Numer Methods 
Eng 109(9):1315–1343

Rockafellar RT (1973) The multiplier method of hestenes and pow-
ell applied to convex programming. J Optim Theory Appl 
12(6):555–562

Sharma A, Maute K (2018) Stress-based topology optimization 
using spatial gradient stabilized xfem. Struct Multidiscip Optim 
57(1):17–38

Sigmund O (2001a) A 99 line topology optimization code written in 
matlab. Struct Multidiscip Optim 21(2):120–127

Sigmund O (2001b) Design of multiphysics actuators using topology 
optimization-part ii: two-material structures. Comput Methods 
Appl Mech Eng 190(49–50):6605–6627

Sigmund O, Maute K (2013) Topology optimization approaches. Struct 
Multidiscip Optim 48(6):1031–1055

Sokolowski J, Zochowski A (1999) On the topological derivative in 
shape optimization. SIAM J Control Optim 37(4):1251–1272

Villanueva CH, Maute K (2014) Density and level set-xfem schemes 
for topology optimization of 3-d structures. Comput Mech 
54(1):133–150

Villanueva CH, Maute K (2017) Cutfem topology optimization of 3d 
laminar incompressible flow problems. Comput Methods Appl 
Mech Eng 320:444–473

Wang F, Lazarov BS, Sigmund O (2011) On projection methods, con-
vergence and robust formulations in topology optimization. Struct 
Multidiscip Optim 43(6):767–784

Wang MY, Wang X, Guo D (2003) A level set method for struc-
tural topology optimization. Comput Methods Appl Mech Eng 
192(1–2):227–246

Wang ZP, Abdalla M, Turteltaub S (2017) Normalization approaches 
for the descent search direction in isogeometric shape optimiza-
tion. Comput-Aided Des 82:68–78

Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology opti-
mization method based on the level set method incorporating 
a fictitious interface energy. Comput Methods Appl Mech Eng 
199(45–48):2876–2891

Zienkiewicz OC (1973) Shape optimization and sequential linear pro-
gramming. Optimum Structural Design Theory and Applications

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Coupled topology and shape optimization using an embedding domain discretization method
	Abstract
	1 Introduction
	2 Embedding Domain method
	2.1 Physical problem
	2.2 Discretization
	2.3 Integration schemes

	3 Optimization method
	3.1 Tackling shape
	3.2 Tackling topology
	3.3 Coupled optimization
	3.3.1 Optimization workflow
	3.3.2 Tracking of density variables
	3.3.3 Shape projection
	3.3.4 Shape generation
	3.3.5 Adaptive shape refinement


	4 Results
	5 Conclusions
	Acknowledgements 
	References




