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Abstract
In this article, we derive an adjoint fluid-structure interaction (FSI) system in an arbitrary Lagrangian-Eulerian (ALE)
framework, based upon a one-field finite element method. A key feature of this approach is that the interface condition is
automatically satisfied and the problem size is reduced since we only solve for one velocity field for both the primary and
adjoint system. A velocity (and/or displacement)-matching optimisation problem is considered by controlling a distributed
force. The optimisation problem is solved using a gradient descent method, and a stabilised Barzilai-Borwein method is
adopted to accelerate the convergence, which does not need additional evaluations of the objective functional. The proposed
control method is validated and assessed against a series of static and dynamic benchmark FSI problems, before being
applied successfully to solve a highly challenging FSI control problem.

Keywords Optimal control · Adjoint optimisation · Fluid-structure interaction · Finite element ·
Arbitrary Lagrangian-Eulerian

1 Introduction

Fluid-structure interactions (FSI) are ubiquitous throughout
natural and industrial flow systems. In the human body, for
example, almost all fluid-conveying vessels are flexible with
even small changes in internal fluid pressure inducing strong
FSI which can determine a vessel’s biological function or
dysfunction (Grotberg and Jensen 2004). Important physi-
ological examples include pulse-wave propagation in arter-
ies, wheezing during exhalation and flow-induced deforma-
tion and ultimate rupture of arterial and cerebral aneurysms
(Heil and Hazel 2011). Industrial examples are equally
common, and the motion of fluid through a domain with
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elastic boundaries is extremely important in, for example,
the adhesion of elastic elements and in hydraulic fractur-
ing for shale-gas production (Box et al. 2018). Aeroelas-
tic phenomena are also extremely important in aviation,
and in particular FSI determine whirl flutter instabilities
associated with rotorcraft and propeller systems, buffet
responses and dynamic responses of aero-structures in gusts
(Beran et al. 2017).

Computational FSI has developed rapidly and reached a
significant level of maturity, with broad applications includ-
ing aerodynamics (Bazilevs et al. 2013; Tezduyar and Sathe
2007; Davidson et al. 2012), biomechanics (Moireau et al.
2012; Bazilevs et al. 2010a, b) and ocean mechanics (Bai
and Taylor 2009; Finnegan and Goggins 2012; Calderer
et al. 2014). A general FSI system has a solid surrounded
by a fluid (such as aeroplane) or a solid surrounding a fluid
(such as for blood vessels). The interface between the fluid
and solid of a FSI system is an unknown of the coupled sys-
tem, which can be solved by imposing continuity conditions
through the interface, such as continuity of velocity and nor-
mal stress. Numerical methods for FSI problem have been
intensively studied during the past decades. Based upon
mesh types, the FSI numerical methods can be broadly cat-
egorised into fitted-mesh methods (Heil 2004; Hecht and
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Pironneau 2017; Tanaka and Kashiyama 2006) and unfitted-
mesh methods (Peskin 2002; Zhang et al. 2004; Baaijens
2001; Boffi and Gastaldi 2016; Kreissl and Maute 2012);
based upon solving strategies, these numerical methods
include partitioned/segregated methods (Küttler and Wall
2008; Degroote et al. 2009, 2013; Bazilevs et al. 2013) and
monolithic/fully coupled methods (Heil 2004, 2008; Mud-
dle et al. 2012; Wang et al. 2017, 2020); and based upon
solving variables, there are one-field (one velocity) methods
(Wang et al. 2017, 2019a, b; Hecht and Pironneau 2017) and
multi-field (velocity, displacement and Lagrange multiplier)
methods (Muddle et al. 2012; Boffi et al. 2015, 2016). In
a recent study (Wang et al. 2020), we proposed an energy-
stable one-field monolithic method based on an ALE fitted
mesh, which is adopted to derive the optimality condition
for the FSI control formulation in this article.

Optimal control is a classical theory which seeks solu-
tions for a stationary or dynamical system such that an
objective function can be optimised (Tröltzsch 2010).
Adjoint-based methods have solid mathematical founda-
tions which can efficiently compute the gradient of a func-
tion, and have been widely adopted to solve optimal control
problems. Optimal flow control has been fully developed
in the past decades, including distributed control (Gun-
zburger 2003; Abergel and Temam 1990; Hinze et al. 2012):
solution existence of a static flow control by a distributed
force is analysed in Abergel and Temam (1990) and a
piecewise optimal control method for dynamical case has
been presented at the same time; a distributed flow control
method is implemented by the multigrid method in Hinze
et al. (2012). Optimal flow control also includes shape opti-
misations from pioneering work (Pironneau 1973; 1974;
Glowinski and Pironneau 1975; Mohammadi and Pironneau
2010) to recent developments in Montenegro-Johnson and
Lauga (2015), Henrot and Privat (2010), Dapogny et al.
(2018), and Jenkins and Maute (2016): the first-order opti-
mality condition is derived for the Stokes flow (Pironneau
1973) and Navier-Stokes flow (Pironneau 1974) by a vari-
ational approach, and a numerical algorithm is presented in
Glowinski and Pironneau (1975); a different minimum-drag

profile of Stokes flow has been derived in Montenegro-
Johnson and Lauga (2015) given a fixed surface, which
has a slender shape compared with the classical results in
Pironneau (1973, 1974) given a fixed volume; the classi-
cal optimisation of a solid surrounded by a fluid has been
extended to the case of a solid surrounding a fluid in Henrot
and Privat (2010), in which the authors prove that a cylindri-
cal pipe is not the optimal shape for minimising the viscous
dissipation of its inside flow, and a useful implementation
of this method using FreeFEM++ is presented in Dapogny
et al. (2018). However, few studies of optimal FSI control,
in particular time-dependent FSI problems, have appeared
in the literature to date and there is no recognised bench-
mark solution for comparison. Although there has been
some progress reported in Heners et al. (2018), Chirco and
Manservisi (2020), Failer and Richter (2020), and Wick and
Wollner (2020), these are still very challenging both analyti-
cally and numerically. The problem falls into the category of
inverse FSI problems of moving shape control (Moubachir
and Zolesio 2006). The main challenges are summarised
below.

A particular challenge in achieving optimal FSI control is
to formulate the coupling conditions on the fluid-structure
interface into the optimality system (Chirco et al. 2017;
Failer et al. 2016). For example, Failer et al. (2016) enforce
the coupling condition weakly to analyse optimal control
for a linear FSI problem, whereas Chirco and Manservisi
(2020) and Chierici et al. (2019) introduce an auxiliary
mesh displacement in the solid domain to enforce the
coupling condition. In Failer and Richter (2020) and Wick
and Wollner (2020), the authors solve both solid velocity
and displacement, together with fluid velocity and pressure
using a monolithic Newton solver. In our previous work,
we formulated the FSI problem using a one-field FEM
scheme (Wang et al. 2017, 2019a) and solved it in a fully
coupled system, so that the interface conditions are satisfied
automatically in the primal FSI equations and are therefore
not present in the adjoint FSI equations. As a result, both the
primal and adjoint FSI system may be solved in the same
manner as a fluid-only problem.

Fig. 1 Diagram of the FSI
benchmark from Turek and
Hron (2006) (not in scale), with

Γt = Ω
f

t ∩ Ω
s

t
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Another difficulty in the optimal dynamic control, of
either fluid or FSI problems, is that the adjoint equations are
coupled with the primal equations in both time and space
(Hinze et al. 2012; Abergel and Temam 1990). A major
challenge in the time coupling arises because the adjoint
problem is propagated backwards in time, which uses the
solution of the primal problem as initial conditions. The
space coupling challenge is due to the non-linear terms
in the primal equations, which introduce the solution of
the primal equations to the adjoint equations. In Degroote
et al. (2013), a multigrid is used to solve a single space-
time discretisation of the primal problem. Alternatively, one
may apply the piecewise-in-time optimal control approach,
i.e. approximating the dynamic control by a sequence of
local steady-state problems (Abergel and Temam 1990).
The time-coupled primal and adjoint problems can also
be decoupled and solved in an iterative manner as done
in Heners et al. (2018), which also solves the FSI sub-
problems using a partitioned/decoupled method. In this
article, we decouple the primal and adjoint equations in
time; however, we solve both the FSI system and the
adjoint FSI system using a one-field monolithic approach
(Wang et al. 2020).

Finally, efficiently selecting a step size for a minimisa-
tion algorithm, such as the gradient descent (GD) method,
is usually costly. The Armijo rule is widely used in the
context of the GD algorithm (Mohammadi and Pironneau
2010; Gerdes et al. 2014); however, this is computationally
expensive for dynamic control problems because one needs
several evaluations of the objective function, consequently
several computations of the state equations. A constant step
size (Heners et al. 2018) does not need evaluation of the
objective functional; however, this is typically quite ineffi-
cient since it may need many iterations in order to reduce the
objective sufficiently. In this article, we adopt a stabilised
Barzilai-Borwein (BB) method to accelerate the iteration
(Burdakov et al. 2019), which saves significant numerical
effort and guarantees the quality of step size at the same
time.

The original contributions of the paper are summarised
as follows: (1) we consider general boundary and initial
conditions, consider a complete coupling between the
adjoint FSI velocity and the velocity of configuration, and
derive the optimality conditions for optimal control of
dynamic FSI problems in an arbitrary Lagrangian-Eulerian
(ALE) formulation; (2) we formulate the whole control
system using one velocity field, and consequently reduce
the number of degrees of freedom of the FSI problem. This
one-field formulation is very similar to a pure fluid-control
formulation, which allows us to do similar analysis as a fluid
control method (Abergel and Temam 1990); (3) we adopt

a stabilised BB method to select the step size, which does
not need additional evaluations of the objective, and has
the same cost as using a constant step size but converges
faster. Because of the above features, we demonstrate that it
is computationally feasible to solve extremely challenging
optimal FSI problems, by solving tens (at most hundreds) of
CFD simulations.

The paper is organised as follows. In Section 2, the
control equations for the FSI problem are introduced in an
ALE framework. In Section 3, the optimisation problem
is introduced, followed by gradient descent method in
Section 4. The main derivation of the optimality system
using the Lagrange multiplier method is presented in
Section 5. Discretisation and implementation are considered
in Section 6. Numerical results are reported in Section 7,
with conclusions drawn in Section 8.

2 PDE for the FSI system in an ALE
formulation

We introduce the FSI system using a benchmark test,
sketched in Fig. 1, which was first proposed in Turek and
Hron (2006) (named FSI3). Let Ω

f
t ⊂ R

d and Ωs
t ⊂

R
d be the fluid and solid domain, respectively (which

are time-dependent regions), and Γt = Ω
f

t ∩ Ω
s

t is the
moving interface between the fluid and solid, where the
superscripts f and s denote fluid and solid, respectively,
and the subscript t explicitly highlights when regions are

time dependent. Ω = Ω
f

t ∪ Ω
s

t is a fixed domain with an
outer boundary Γin + Γw1 + ΓN and inner boundary Γw0

(the circle, as shown in Fig. 1). For notational convenience,
denote by Γw = Γw0 + Γw1 the wall boundaries, ΓD =
Γin + Γw on which the Dirichlet boundary condition (BC)
is imposed, and Γ = ΓD + ΓN all the boundaries with
ΓN being the Neumann boundary on which the zero-normal
stress is enforced. In this case, an ALE frame of reference is
convenient to describe the FSI system, because it can track
the fluid-solid interface Γt and move arbitrarily elsewhere.

In this article, we consider both an incompressible fluid
and an incompressible hyperelastic isotropic solid. We shall
only solve for one velocity field in the whole domain, and
the conservation of momentum and conservation of mass
take the same form in the fluid and solid (just differing in
the specific expressions of the stress tensor). Therefore, it is
convenient to introduce an indicator function 1ω(x) = 1 if
x ∈ ω and 1ω(x) = 0 otherwise. Let ρ = ρf 1

Ω
f
t

+ ρs1�s
t
,

u = uf 1
Ω

f
t

+ us1Ωs
t
, σ = σf 1

Ω
f
t

+ σ s1Ωs
t
denote

the density, velocity vector and stress tensor respectively.
The control partial differential equations, with initial and
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boundary conditions, for the FSI problem can then be
expressed as follows.

Momentum equation: ρ
∂u
∂t

+ ρ ((u − w) · ∇) u

−∇ · σ = f1Ωs
t
, (1)

Continuity equation: ∇ · u = 0, (2)

ALE equation: ρ
∂w
∂t

− ∇ · (μDw

+λ (∇ · w) I) = 0, (3)

Initial condition: u|t=0 = u0, (4)

Dirichlet BC: u|ΓD
= ū1Γin

, (5)

Neumann BC: σn|ΓN
= h̄, (6)

ALE initial condition: w|t=0 = w0, (7)

ALE Dirichlet BC: w · n|Γ −Γw0

= 0, w|Γw0
= 0, (8)

ALE Neumann BC: n · (μDw) ·
τ |Γ −Γw0

= 0, (9)

Continuity of velocity:
(
us − uf

)∣∣∣
Γt

= 0, (10)

Continuity of ALE velocity: (w − u)|Γt
= 0, (11)

Continuity of normal stress:
(
σ s − σf

)
ns

∣∣∣
Γt

= 0. (12)

In the above, w is the velocity vector of the ALE frame, f
is a distributed control variable, μ and λ are artificial Lamé
constants for the ALE equation (Richter and Wick 2010),
and n and τ are the normal and tangential direction of the
outer boundary, respectively, as shown in Fig. 1. The stress
tensor of an incompressible Newtonian flow is expressed as:

σf = μfDuf − pf I, (13)

with D(·) = ∇(·) + ∇T (·), and μf being the viscosity
parameter (which is unrelated to the artificial Lamé
constant μ used in the ALE (3)). The stress tensor of an
incompressible neo-Hookean solid is expressed as Hecht
and Pironneau (2017):

σ s = c1

(
Dd − ∇T d∇d

)
− psI, (14)

with d being the solid displacement, and c1 being the
elasticity parameter. Notice that although the solid stress
tensor is expressed as a function of displacement d, we shall
not solve for d as an independent variable. Instead we view
it as a function of velocity, and solve the whole FSI problem
based upon a one-field-velocity method, which uses an ALE
description for both the fluid and solid equations. When
solving the mesh equation, the mesh velocity follows the
fluid velocity only at the interface. Afterwards, both the
fluid and solid meshes are updated based on the mesh
velocity, and this can improve the mesh quality for the fluid
as well as the solid (Wang et al. 2020).

3 The optimisation problem

Let L2(ω) be the square integrable functions in domain ω

with inner product (u, v)ω = (∫
ω

uvdx
)
, ∀u, v ∈ L2(ω),

and the induced norm ‖v‖L2(ω) = (v, v)
1/2
ω , ∀v ∈ L2(ω).

For a vector function v ∈ L2(ω)d , the norm is defined
component-wise as ‖v‖2

L2(ω)d
= ∑d

i=1 ‖vi‖2L2(ω)
. Then, let

H 1(ω) = {
v : v, ∇v ∈ L2(ω)d

}
, and denote by H 1

u(Γ )(ω)

the subspace of H 1(ω), which has the boundary data u on
Γ . We also denote by L2

0(Ω) the subspace of L2(Ω) whose
functions have zero mean values.

We consider the following optimisation problem: reduc-
ing the discrepancy between the state velocity u (and/or
displacement d) and the goal velocity ug (and/or displace-
ment dg) profile, in a control region Ωc ⊆ Ω (and/or Ωs

t ),
by controlling a distributed body force f.

Problem 1 Given an objective velocity profile ug and a
time interval � = [0, T ],

minimise
f∈L2(Θ×Ω)d

Ĵ (u (f)) = J (u (f)) + θ

2
‖f‖2

L2(Θ×Ω)d
, (15)

with

J (u (f))= β1
2 ‖u − ug‖2

L2(Θ×Ωc)d
+ β2

2 ‖d − dg‖2
L2(Θ×Ωs

t )d

+ γ1
2 ‖u(T )−ug(T )‖2

L2(Ωc)d
+ γ2

2 ‖u(T ) − ug(T )‖2
L2(Ωs

t )d
,

(16)

subject to (1)–(12), where f are the control variables, β1 and
β2 are the weights of controlling velocity and displacement,
respectively, and γ1 and γ2 are the weights in order to control
the final velocity profile inΩc andΩs

t respectively. The first
term J (·) in (15) is the real objective to be minimised, and
the second term is a regularisation term with a regularisation
parameter θ . If θ is too large then the real objective is not
achieved accurately, whereas if θ is too small, this may
cause convergence issues for the numerical scheme.

4 The gradient descent algorithm

A general method of iteratively solving the optimisation
Problem 1 is to use, from an initial point f0, the Taylor
expansion to expand J (u (f)) around fk:

Ĵ (u (f)) ≈ Ĵ
(
u

(
fk

))
+ δĴ

(
u

(
fk

))
[δf], (17)

with δĴ
(
u

(
fk

)) [δf] being the Gâteaux variation (see Rall
(2014) or A) with respect to f (NOT u) at point fk along the
direction δf:

δĴ
(
u

(
fk

))
[δf] = d

dε
Ĵ

(
u

(
fk + εδf

))∣∣∣∣
ε=0

. (18)

The gradient descent with a line search algorithm seeks a
direction ‖δfk‖ = 1 such that:
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1. It is a descent: δĴ
(
u

(
fk

)) [δfk] < 0;

2. It is the negative gradient: δfk =argmax
‖δf‖=1

|δĴ (u(fk))[δf]|;
3. And it is the steepest: αk = argmin

α
Ĵ

(
u

(
fk + αδfk

))
.

Then, f is updated as:

fk+1 = fk + αkδfk, k = 0, 1, 2, . . . (19)

The exact line search for the step size αk is costly. In this
paper, we use a stabilised Barzilai-Borwein (BB) method
proposed in Burdakov et al. (2019) to optimise analytical
functions (k > 0):

αk =
{

min
(
αk
1, α

k
3

)
αk
1 > 0

min
(
αk
2, α

k
3

)
αk
1 < 0

, (20)

where

αk
1 =

(
fk − fk−1, δfk−1 − δfk

)
L2(Θ×ω)

‖δfk − δfk−1‖2
L2(Θ×ω)

, (21)

αk
2 = ‖fk − fk−1‖L2(Θ×ω)

‖δfk − δfk−1‖2
L2(Θ×ω)

, (22)

and

αk
3 = ‖fk − fk−1‖L2(Θ×ω)

‖δfk‖2
L2(Θ×ω)

. (23)

In the above, (21) is the original BB formula (Fletcher 2005;
Dai et al. 2006). Formula (22) is an improvement for non-
convex functions if αk

1 < 0 (Dai et al. 2015), and formulae
(20) and (23) are introduced in Burdakov et al. (2019) in
order to avoid too large a step size.

Notice that formula (20) does not specify how to compute
α0 which is used to start the iteration. In this paper, we man-
ually choose a relatively small α0 so that Ĵ

(
u

(
f0 + α0δf0

))
< Ĵ

(
u

(
f0

))
to start off — the magnitude of α0 can be

determined by f0 + α0δf0 ∼ ρs ∂u
∂t
. In order to compute

δĴ (·)[δf], we introduce the Lagrange multiplier method in
the following section.

5 The Lagrangemultiplier method

The constraints for the optimisation Problem 1 can be
eliminated by introducing the Lagrange multipliers û, p̂, ŵ
as follows:

L
(
u, p,w, f, û, p̂, ŵ

) = Ĵ (u)

+ ∫
Θ×Ω

(
ρ ∂u

∂t
+ ρ ((u − w) · ∇) u − ∇ · σ − f1Ωs

t

) · û
+ ∫

Θ×Ω

(
ρ ∂w

∂t
− ∇ · (μDw + λ (∇ · w) I)

) · ŵ

− ∫
Θ×Ω

p̂∇ · u + ∫
Ω (u(0) − u0) · û

+ ∫
Θ×ΓD

(
u − ū1Γin

) · û + ∫
Ω (w(0) − w0) · ŵ

+ ∫
Θ×ΓN

(
σn − h̄

) · û + ∫
Θ×Γw0

w · ŵ
+ ∫

Θ×(
Γ −Γw0

) (w · n)
(
ŵ · n) + ∫

Θ×Γt
(w − u) · ŵ

+ ∫
Θ×Γt

(
σ s − σf

)
ns · û + ∫

Θ×(
Γ −Γw0

) n
· (μDw) · τ

(
ŵ · τ

)
.

(24)

Notice that the condition of velocity continuity (10) is not
included in the above Lagrangian functional, because it is
automatically satisfied by treating the FSI system as a one-
field velocity problem (Wang et al. 2019a). The following
Karush-Kuhn-Tucker (KKT) conditions are the first-order
necessary conditions to minimise (24):

δL
(
u, p,w, f, û, p̂, ŵ

) [
δû, δp̂, δŵ

] = 0, (25)

δL
(
u, p,w, f, û, p̂, ŵ

)
[δu, δp, δw] = 0. (26)

These equations will be solved in order to further compute
δL(·) [δf] ≡ δĴ (·) [δf] due to the arbitrariness of û, p̂, ŵ
in the Lagrangian functional (24). Notice that the fluid
domain Ω

f
t , solid domain Ωs

t and the fluid-solid interface
Γt are all functions of the ALE velocity w, so these shape
variations should be considered when taking variation with
respect to w. We will compute the shape variation in the
Hadamard form (Schmidt and Schulz 2010; Mohammadi
and Pironneau 2010), i.e.
∫

δΩ
f
t

(·) =
∫

Γt

(δw · nf )(·),
∫

δΩs
t

(·) =
∫

Γt

(δw · ns)(·),
(27)

and∫

δΓt

(·) =
∫

Γt

(
δw · ns

) [∇ns (·) + (∇Γt · ns
)
(·)] , (28)

where ∇ns is the normal gradient operator, and ∇Γt is
the tangential gradient operator on Γt , with the tangential
divergence being defined as:

∇Γt · v = ∇ · v − (
ns · ∇)

v · ns , (29)

for a given function v. Note that replacing ns by nf = −ns

in (28) does not change the sign of
∫
δΓt

(·).
Notice that if we apply the domain variation (27) to the

momentum (1), which is a term in (24), its shape variation
is zero.

5.1 State equation

Taking Gâteaux variation of (24) with respect to the
Lagrange multipliers û, p̂ and ŵ gives the state equations in
a weak formulation (see Appendix 2 for more details):

Problem 2 Given u0 in (4) and w0 in (7), for t ∈ (0, T ],
find w ∈ H 1

D1
(Ω)d , u ∈ H 1

D2
(Ω)d and p ∈ L2

0(Ω), such

1943
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that ∀δŵ ∈ H 1
D1

(Ω)d , ∀δû ∈ H 1
0(ΓD)(Ω)d and ∀δp̂ ∈

L2(Ω):

ρ
∫
Ω

∂u
∂t

· δû + ρ
∫
Ω ((u − w) · ∇)u · δû

+ μf

2

∫
Ω

f
t
Du : Dδû − ∫

Ω
p∇ · δû − ∫

Ω
δp̂∇ · u

+ c1
∫
Ωs

t

(
Dd − ∇T d∇d

) : ∇δû
= ∫

ΓN
h̄ · δû + ∫

Ωs
t
f · δû,

(30)

and

ρ
∫
Ω

∂w
∂t

· δŵ + μ
2

∫
Ω
Dw : Dδŵ

+ λ
∫
Ω (∇ · w)

(∇ · δŵ
) + ∫

Γt
(w − u) · δŵ = 0,

(31)

where H 1
D1

(Ω)d and H 1
D2

(Ω)d are the subspaces of

H 1(Ω)d , with boundary conditions (8) and (5) being
satisfied respectively.

5.2 Adjoint equation

Taking Gâteaux variation of (24) with respect to the
variables u, p and w, we have

δL
(
u, p,w, f, û, p̂, ŵ

)
[δu, δp]

= β1
∫
Θ×Ωc

(
u − ug

) · δu + β2
∫
Θ×Ωs

t

(
d − dg

) · δd
+ γ1

∫
Ωc

(
u(T ) − ug(T )

) · δu(T )

+γ2
∫
Ωs

t

(
u(T ) − ug(T )

) · δu(T )

− ρ
∫
Θ×Ω

∂û
∂t

· δu + ∫
Ω

(
û(T ) · δu(T ) − û(0) · δu(0)

)
+ ρ

∫
Θ×Ω (δu · ∇)u · û + ρ

∫
Θ×Ω ((u − w) · ∇) δu · û

+ μf

2

∫
Θ×Ω

f
t
Dδu : Dû − ∫

Θ×Ω
δp∇ · û − ∫

Θ×Ω
p̂∇ · δu

+ c1
∫
Θ×Ωs

t
δ
(
Dd − ∇T d∇d

)
[δu] : ∇û − ∫

Θ×Γ
δ(σ )n · û

+ ∫
Ω

δu(0) · û(0) + ∫
Θ×ΓD

δu · û + ∫
Θ×ΓN

δ(σ )n · û
− ∫

Θ×Γt
δu · ŵ = 0,

(32)

and

δL
(
u, p,w, f, û, p̂, ŵ

)
[δw]

= β2
2

∫
Θ×Γt

(δw · ns ) ‖d − dg‖2
L2(Ωs

t )
+ γ2

2

∫
Γt

(δw(T ) · ns ) ‖u(T ) − ug(T )‖2
L2(Ωs

t )

− ρ
∫
Θ×Ω

∂ŵ
∂t

· δw + ∫
Ω

(
ŵ(T ) · δw(T ) − ŵ(0) · δw(0)

)
+ μ

2

∫
Θ×Ω

Dŵ : Dδw + λ
∫
Θ×Ω

(∇ · ŵ)
(∇ · δw)

− ∫
Θ×Γ

n · (μDδw + λ∇ · δwI) · n (
ŵ · n)

− ∫
Θ×Γw0

n · (μDδw) · τ
(
ŵ · τ

)

− ρ
∫
Θ×Ω (δw · ∇)u · û + ∫

Ω
δw(0) · ŵ(0)

+ ∫
Θ×Γw0

δw · ŵ
+ ∫

Θ×(
Γ −Γw0

) (δw · n)
(
ŵ · n) + ∫

Θ×Γt
δw · ŵ = 0.

(33)

In the above, we adopt the integration (in time) by parts to
obtain
∫

Θ×Ω

∂

∂t
δu · û =

∫

Ω

(
û · δu)∣∣T

0 −
∫

Θ×Ω

∂û
∂t

· δu, (34)

and similarly for
∫
Θ×Ω

∂
∂t

δw · ŵ. We also integrate the
stress-tensor term by parts (in space) and eliminate the
normal-stress term on Γt using the interface condition (12).
In addition, notice that the shape variation

∫
Θ×δΓt

(w − u) ·
ŵ = 0 due to the interface condition (10) using (28).

If we choose the initial condition for û at time t = T

(notice that the adjoint equation is solved backwards in
time) as

û(T ) = −γ1
(
u(T ) − ug(T )

)
1Ωc − γ2

(
u(T ) − ug(T )

)
1Ωs

t
, (35)

and the boundary condition

û
∣∣
ΓD

= 0, (36)

rearrange and integrate the convection terms by parts:

∫
Ω (δu · ∇)u · û + ∫

Ω ((u − w) · ∇) δu · û
= ∫

Ω

(
û · ∇u

) · δu + ∫
ΓN

(u · n)
(
û · δu

)
− ∫

Ω ((u − w) · ∇) û · δu + ∫
Ω (∇ · w)

(
û · δu

)
,

(37)

and if we also choose the initial condition for ŵ at time
t = T as

ŵ(T ) = −γ2

2
‖u(T ) − ug(T )‖2

L2(Ωs
t )
1Γtn

s , (38)

and boundary condition

ŵ
∣∣
Γ

= 0, (39)

then the adjoint-ALE-FSI equation for (û, p̂, ŵ) is given by:

Problem 3 Given û(T ) in (35) and ŵ(T ) in (38), for t ∈
[0, T ), find ŵ ∈ H 1

0(Γ )(Ω)d , û ∈ H 1
0(ΓD)(Ω)d and p̂ ∈

L2
0(Ω), such that ∀δw ∈ H 1

0(Γ )(Ωt )
d , δu ∈ H 1

0(ΓD)(Ωt )
d

and ∀δp ∈ L2(Ωt ):

−ρ
∫
Ω

∂
∂t
û · δu + ρ

∫
Ω

(
û · ∇u

) · δu
−ρ

∫
Ω ((u − w) · ∇) û · δu + ρ

∫
Ω (∇ · w)

(
û · δu

)

+μf

2

∫
Ω

f
t
Dû : Dδu − ∫

Ω
δp∇ · û − ∫

Ω
p̂∇ · δu

+c1
∫
Ωs

t

(
Dδd − ∇T δd∇d − ∇T d∇δd

)
[δu] : ∇û

+β1
∫
Ωc

(
u − ug

) · δu + β2
∫
Ωs

t

(
d − dg

) · δd
− ∫

Γt
ŵ · δu + ∫

ΓN
(u · n)

(
û · δu

) = 0,

(40)

and

− ρ
∫
Ω

∂
∂t
ŵ · δw + μ

2

∫
Ω
Dŵ : Dδw

+λ
∫
Ω

(∇ · ŵ)
(∇ · δw)

− ρ
∫
Ω (δw · ∇)u · û + ∫

Γt
ŵ · δw

+β2
2

∫
Γt

(δw · ns) ‖d − dg‖2 = 0.

(41)

Remark 1 We give the Dirichlet boundary condition in
(36) for Problem 3 in the weak form, where the Neumann
boundary condition has been included. If the stress term is
integrated by parts in (40), we would have the Neumann
boundary condition σ

(
û, p̂

)
n + (n · u) û = 0 on ΓN for

the corresponding problem in the PDE (partial differential
equation) form.
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Fig. 2 Vertical velocity of fully
developed NS and Stokes flow

Fig. 3 Convergence of the
objective functional J (·)

Fig. 4 L2 nor/m of the control
force f(t) (left) and the gradient
descent direction δf(t) (right)
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5.3 Gradient descent direction

Taking Gâteaux variation of (24) with respect to f, we have

δL(·) [δf] = −
∫

Θ×Ω

δf · û1Ωs
t
+ θ

∫

Θ×Ω

δf · f

= −
∫

Θ×Ω

δf · (
û1Ωs

t
− θ f

)
. (42)

From which it can be seen the gradient descent direction is
δf1Ωs

t
= û − θ f.

6 Discretisation for the FSI control system

We discretise the time interval [0, T ] as t0 = 0, t1, t2, . . . ,
tM = T with tn+1 − tn = �t (n = 0, 1, . . . , M), and
then discretise the displacement using the backward Euler
scheme:

dn+1 = d̃n + �tun+1, d̃n = dn ◦ A−1
tn,tn+1

, (43)

where Atn,tn+1 is the ALE mapping from state Ωtn to Ωtn+1 :
xn �→ xn +�tun+1. At the same time, we have δd = �tδu.
The state equations (30) and (31) can then be discretised
forward in time, and the adjoint equations (40) and (41) can
be discretised backward in time below in Problems 4 and 5
respectively.

Problem 4 Given un and wn, find wn+1 ∈ H 1
D1

(Ω)d ,

un+1 ∈ H 1
D2

(Ω)d and pn+1 ∈ L2
0(Ω), such that ∀δŵ ∈

H 1
D1

(Ωt )
d , ∀δû ∈ H 1

0(ΓD)(Ωt )
d and ∀δp̂ ∈ L2(Ωt ):

ρ
∫
Ω

un+1−un

�t
· δû + ρ

∫
Ω ((un+1 − wn+1) · ∇)un+1 · δû

+ μ̄
2

∫
Ω
Dun+1 : Dδû − ∫

Ω
pn+1∇ · δû − ∫

Ω
δp̂∇ · un+1

− �tc1
∫
Ωs

tn+1

(
∇T un+1∇d̃n + ∇T d̃n∇un+1

)
: ∇δû

= ∫
Ωs

tn+1
fn+1 · δû + ∫

ΓN
h̄ · δû

−c1
∫
Ωs

tn+1

(
Dd̃n − ∇T d̃n∇d̃n

)
: ∇δû,

(44)

and

(45)

with μ̄ = μf 1
Ω

f
t

+ �tc11Ωs
t
, and Ωs

tn+1
= {x : x = xn+

�tun+1, ∀xn ∈ Ωs
tn
}.

Remark 2 Coupling between un+1 and wn+1: the contribu-
tion of un+1 to wn+1 is through Γtn+1 in the boxed term in

(45). In practice we may replace un+1 by un in this boxed
term, decouple (44) and (45), solve them one by one.

Problem 5 Given û(tn+1) and ŵ(tn+1), find ŵn ∈ H 1
0(Γ )

(Ω)d , ûn ∈ H 1
0(ΓD)(Ω)d and p̂n ∈ L2

0(Ω), such that ∀δw ∈
H 1

0(Γ )(Ωt )
d , ∀δu ∈ H 1

0(ΓD)(Ωt )
d and ∀δp ∈ L2(Ωt ):

(46)

and

ρ
∫
Ω

ŵn−ŵn+1
�t

· δw + μ
2

∫
Ω
Dŵn : Dδw

+λ
∫
Ω

(∇ · ŵn

)
(∇ · δw)

+ ∫
Γtn

ŵn · δw = ρ
∫
Ω

(
ûn · ∇un

) · δw

−β2
2

∫
Γtn

(δw · ns) ‖dn − dg‖2.
(47)

Remark 3 Coupling between ûn and ŵn: the only contribu-
tion of ŵn to ûn is through the boxed term in (46). In practice
we may replace ŵn by ŵn+1 in this boxed term, decouple
equations (46) and (47) and solve them one by one. We have
numerically investigated the boxed term in (46), and plotted
its values for tests 7.3, 7.4 and 7.6. We find that this term
is very small and can be neglected, which means it is not
necessary to solve (47).

The optimality condition (42) gives the update of the
control variable:

fk+1
n+1 = fkn+1 + αk

(
ûn+1 − θ fkn+1

)
, k = 0, 1, 2, . . . (48)

with αk being computed using the modified Barzilai-
Borwein method (20).

We use a standard Taylor-Hood finite element (Q2/Q1)
for the velocity-pressure pair to discretise (44) and (46), and
Q2 element for the mesh velocity to discretise (45) and (47).
Finally the whole algorithm is summarised in Algorithm 1.
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Remark 4 For time-dependent control problems, the classic
piecewise static control method cannot guarantee a global opti-
misation solution (Abergel and Temam 1990). In the pro-
posed algorithm, if we just run the algorithm in one time step,
the algorithmwould be one step of the piecewise static control.

7 Numerical experiments

Considering the complicated features of the control prob-
lems, we discuss in this article, namely time-dependent,
fluid-structure interaction problems with finite solid defor-
mations, there are limited cases considered in literature.
Therefore, in Section 7.1, we first validate the proposed
optimal control method against an existing fluid-control
result, obtained using a different approach to ours. We then
test the proposed method using three dynamic FSI prob-
lems in the rest of this section: test 7.3 is a modification
of the fluid problem 7.1, which shows that the control vari-
able, the body force f, is feasible; test 7.4 is a static FSI
control problem from the literature, for which we use our
dynamic control method and show that the FSI control
is also tractable. Finally, test 7.6 is a dynamic FSI prob-
lem involving complicated solid oscillations, which does
not have a steady-state solution, and we show that it is
controllable using the proposed methodology.

7.1 Lid-driven cavity flow— forcing a Navier-Stokes
flow to a Stokes flow

In this example, we reproduce published results for control
of a dynamic cavity pure fluid flow, which has been studied

in Failer and Richter (2020) using a space-time multigrid
method. We show that the proposed scheme, requiring only
a relatively small number of CFD simulations, can achieve
equivalent results to those reported in Hinze et al. (2012).
To achieve this in our algorithm, we turn off the solid
part of the proposed scheme, remove the integration in the
solid domain, set the ALE velocity w = 0 and apply the
control force f in the whole domain (fluid only in this case).
Specifically speaking, we only solve (44) and (46) without
terms of integration on Ωs

tn
, Ωs

tn+1
and Γtn .

The cavity flow is defined in domain Ω = [0, 1]×[0, 1],
with velocity being prescribed as u = (1, 0) at the top of
the boundary and u = (0, 0) at all the other boundaries. The
fluid’s density and viscosity are ρf = 1.0 and μf = 0.01
respectively. We use 30 × 30 Q2/Q1 elements, and a fully
developed Navier-Stokes (NS) and Stokes flow are shown
in Fig. 2a and b respectively. In this flow control test, we
choose the fully developed NS flow as the initial flow and
determine the body force distribution needed to create the
fully developed Stokes flow as the target flow (we run the
simulation up to t = 10 using Δt = 0.01), and solve
Problem 1 with Ωc = Ω , T = 1, β1 = 1, β2 = 0, γ1 = 1
and γ2 = 0.

We first test the influence of the regularisation parameter
θ as shown in Fig. 3a, from which it can be seen that larger
θ stops the objective decreasing at a earlier stage. We then
compare the BB method against gradient descent using a
constant step size, and the convergence of the objective
functional J (·) is shown in Fig. 3b, from which it can
be seen that the BB method is not sensitive to the initial
step size and converges slightly faster. It may also be seen
that a constant step size α = 4 does not converge, while
starting from a different initial step size (α0 =1, 2 or 4)
presents similar convergence for the BB method. Overall,
the BB method reduces the objective by over 80% after
10 iterations. We also report the L2 norm of the control
force and the gradient descent direction in Fig. 4. Notice
that this problem has a steady-state solution and we have a
control for the final velocity profile (γ1 = 1); this is why
the control force tends to a δ−function at t = 0 and t = T

(see Remark 5). Figure 5 depicts the controlled flow and the
control force at different times, from which we can see the
two main vortices quickly “push” the NS flow to the Stokes
flow. These results are very similar to Figure 2 in Hinze et al.
(2012).

Remark 5 If the control problem has a steady-state solution,
then the inertia tends to 0 as time involves. In this case, we
know that (1) becomes a stationary PDE equation, which
naturally holds without any initial conditions or control
force. Therefore, if we want u|t=0 = u0 (initial condition
(4)), we expect a control force f that tends to a δ−function
at t = 0 in order to balance this initial condition. If we also
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Fig. 5 Vertical velocity of the
controlled flow (left) and the
control force (right)
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Fig. 6 Velocity field of the goal
and controlled flow at t = 1,
‖u − ug‖ = 0.1041

want u|t=T = ug(T ) (objective in (16)), we also expect the
control force f tends to a δ−function at t = T .

7.2 Cavity flowwith an initial pulse— forcing
a Navier-Stokes flow to a predefined
time-dependent fluid field

In this example, we consider again a fluid-control problem
but with a different objective: steering the velocity to be a
complicated predefined velocity profile with vortices, which
is taken from Hou and Yan (1997). The computational
domain and mesh are exactly the same as the test in
Section 7.1. We use a wall boundary condition for all four
sides of the cavity, and the fluid with ρf = 1 and μf = 0.1
is initially driven by:
u0(x, y) = ((cos(2πx) − 1) sin(2πy),

sin(2πx) (1 − cos(2πy))) . (49)

The goal velocity

ug(x, y, t) =
(

∂

∂y
Ψ (x, y, t), − ∂

∂x
Ψ (x, y, t)

)
, (50)

is derived from the following stream function:

Ψ (x, y, t) = ψ(x, t)ψ(y, t), (51)

Fig. 7 Convergence of the objective
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Fig. 8 L2 norm of the control force f(t)

with

ψ(s, t) = (1 − s)2 (1 − cos(4πst)) , s ∈ [0, 1]. (52)

We use a time step of Δt = 0.01, run the simulation
from t = 0 to 1, and compute the control force f(x, y, t)

in the whole fluid domain. We compare the goal velocity
and the controlled velocity in Fig. 6, from which it can be
seen the four vortices have been clearly captured, and the
L2 error has the same magnitude reported in Figure 10 of
Hou and Yan (1997). We test three different regularisation
parameter θ , and its influence on the objective reduction
may be observed from Fig. 7, from which we see again that
the BB method performs better than a constant step method
(Fig. 8).

Fig. 9 Computational domain for test 7.3

Fig. 10 The steady-state vertical velocity and the deformed solid mesh

7.3 Lid-driven cavity flowwith an elastic solid wall
— reducing the solid deformation

The next problem increases in complexity to consider the
case of lid-driven cavity flow with a deformable solid as
considered by Zhang et al. (2012), which has the same
geometry as the above test in Section 7.1. However, there
is a rectangular solid at the bottom of this square as shown
in Fig. 9 (l = 1 and h = 0.25). In this case, there is
no interior boundary Γw0 as shown in Fig. 1. However,
this would not change (4) to (47) that we solve. The fluid
and solid properties are ρf = ρs = 1, μf = 0.01
and c1 = 0.2. The purpose of this test is to demonstrate
the feasibility of using the proposed algorithm to reduce
the solid deformation/displacement. Using the one-field

Fig. 11 Convergence of the objective
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Fig. 12 Steady-state displacement at the FSI interface

monolithic algorithm, there is little difference (compared
with the NS flow in Section 7.1) from the computational
point of view. We can use the same boundary conditions,
the same mesh and time step Δt = 0.01 as used for the NS
flow in Section 7.1. We first run the forward simulation up
to t = 10 in order to get a steady-state solution: the vertical
velocity and the deformed solid mesh are shown in Fig. 10.
We then compute a distributed force, and enforce it on the
solid to reduce the solid displacement. This is to say we
solve Problem 1 by setting dg = 0, β1 = 0, β2 = 1, and
γ1 = γ2 = 0.

We compare again gradient descent using a constant step
size and using the BB method to compute a step size. The
BB method still performs better than a constant step size as
shown in Fig. 11, while it is as cheap as the constant step

Fig. 13 L2 norm of the control force f(t)

Fig. 14 Boxed term in (46)

size: using formula (20) to compute the step size. It can be
seen from Fig. 11 that the objective is reduced by more than
70% at 30 iterations, although the convergence becomes
slow afterwards. Figure 11 also shows the influence of
regularisation parameter θ , and we can see that using a
smaller θ allows a greater reduction of the objective to be
achieved. However, we have observed numerical instability
using θ = 10−5 for this test. The fluid-solid interface
is plotted in Fig. 12, from which it can be seen that the
additional iterations from 31 to 120 mainly contribute to
changing to another mode, with only slight reductions in
the magnitude of the displacement. Notice that the objective
(15) has an integration through the time and space domain,
so it is not a point-wise reduction of the displacement
for this example. We also test this example using a finer
mesh (40 × 40), and it can be seen from Figs. 11 and 12
that both the objective the FSI interface show very similar
performance when using these two different meshes. For
this example, the problem has a steady-state solution and we
have no control for the final velocity profile (γ1 = γ2 = 0),
so we observe that the control force tends to a δ−function
at t = 0 as shown in Fig. 13. This is consistent with Remark
5. Finally, we investigate the boxed term in (46) in Fig. 14,
from which it can be seen that this term is very small. We
have tested the case of neglecting this term and found that
all the results were identical.

7.4 Channel flow interacting with two flexible
beams—minimising the velocity discrepancy
in a specified region

This example is taken from Cerroni et al. (2016) which
solves a quasi-static problem. Here we solve the full

1951



Y. Wang et al.

Fig. 15 Computational domain
for the oscillating beams

dynamic FSI problem and show that it also converges to
the same stationary solution as reported in Cerroni et al.
(2016). The computational geometry is shown in Fig. 15
which is symmetric about the x-axis. For this example, there
is no interior boundary Γw0 . However, this would not change
(4) to (47) that we solve. A parabolic velocity profile is
prescribed at the inlet Γin:

ūx = 4(0.5 + y)(0.5 − y). (53)

The fluid and solid parameters are ρf = ρs = 1, μf =
0.01, and c1=66.67.We use 1210Q2/Q1 elements with 5019
nodes as shown in Fig. 16, and a converged time step size of
Δt = 0.1. We run the forward FSI simulation up to t = 50
until a steady-state flow is obtained, with the flow field and
the solid displacement being displayed in Fig. 16, which is
consistent with Fig. 3 in Cerroni et al. (2016). We then use
this solution for the control problem: increasing the veloc-
ity by 20% for all t = 0 to T in a control region Ωc (see
Fig. 15) by controlling a distributed force on the solid. This
is to say we solve Problem 1 with β1 = 1, β2 = 0 = γ1 =
γ2 = 0 and ug = (

1.2ux(t), uy(t)
)
in Ωc, where (ux(t), uy

(t)) is the solution (from t = 0 to t = 50) of this forward
FSI problem without control (notice that the solution con-

verges to a steady state at t = 50). It can be seen from Fig. 17
that the BB method still performs better than the constant step
method, and reducing the regularisation parameter θ from
0.01 to 0.001 allows us to reduce the objective more (Fig. 18).
It can also be seen from Fig. 19 that the control force con-
verged to a complicated time-dependent distributed force
for this FSI control problem (Fig. 20). The final converged
velocity is reported in Fig. 21, and the final controlled veloc-
ity matches the target velocity well as plotted in Fig. 18.
Finally, we plot the boxed term in (46) in Fig. 20, from
which it can be seen that this term is negligible.

7.5 Oscillating leaflet oriented across the flow
direction— forcing the solid tomatch
a time-dependent displacement

We consider an oscillating leaflet in a fluid channel, which
has been widely studied in the FSI literature (Baaijens 2001;
Heil 2004; Wang et al. 2017; Chierici et al. 2019). The
computational domain is a L × H channel with a h × w

leaflet located across it as sketched in Fig. 22, and L =
4.0m, H = 1.0m, w = 0.1m and h = 0.8m in this example.
A periodic flow condition is prescribed on the inlet and
outlet boundaries, given by ūx = 15y (2 − y) sin (2πt).

Fig. 16 Uncontrolled flow:
vertical displacement in the
solid domain, and flow field in
the fluid domain
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Fig. 17 Convergence of the objective for the two oscillating beams

The fluid and solid properties are ρf = ρs = 100 kg
/

m3,
μf = 10 N · s

/
m2 and c1 = 108 N

/
m2.

Simulation of the forward FSI problem can be achieved
by solving the state equations (Problem 4) without control.
We use a 80 × 20 uniform mesh and time step Δt = 0.01
and solve the forward problem from t = 0 to t = 1

Fig. 18 Horizontal velocity profile at the boundary ΓN (point A to B

in Fig. 15) at t = T

Fig. 19 L2 norm of the control force f(t)

(around one period of the leaflet’s oscillation). The velocity
norm (when leaflet reaches its maximal deformation) and
the horizontal displacement of the leaflet tip are presented
in Figs. 23a and 24 (dashed green curve) respectively. Let(
dx(t), dy(t)

)
denote the solid displacement of the solution

of this uncontrolled problem. For the control problem, we
target to increase the leaflet’s deflection by 50%, i.e. we
solve Problem 1 with dg = (

1.5dx(t), dy(t)
)
, γ1 = γ2 =

Fig. 20 Boxed term in (46)
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Fig. 21 Controlled flow:
deformed solid and horizontal
velocity in the fluid domain

β1 = 0 and β2 = 105. The whole control is tractable, which
can be seen from the convergence of the objective function
as depicted in Fig. 25 for three different regularisation
parameters θ . It can be seen from Fig. 23b that the
leaflet’s deformation has be dramatically increased, and the
deflection of the leaflet is very close to the target as shown
in Fig. 24. We also investigate the control force, and it
can be seen from Fig. 26 that the magnitude of the control
force is a periodic function which converges to a fixed
function of time. The norm of the gradient descent direction
δf and the increment of the control force (αδf) are plotted in
Fig. 27, from which it can be seen that the BB method cam
successfully compute a varying iteration step α so that the
increment of the control force converges, and consequently
the control force converges as well.

7.6 Oscillating flag oriented along the flow direction
— reducing the solid deflection

In this section, we consider the FSI control problem of
an oscillating flag attached to a cylinder, where the goal
is to minimise the solid deflection through the controlled
application of a force. The computational domain is a
rectangle (L × H ) with a cut hole of radius r and centre
(c, c) as shown in Fig. 28. A leaflet of size l × h is attached

to the boundary of the hole (the mesh of the leaflet is fitted
to the boundary of the hole, see the solid mesh in Fig. 29).
The geometry parameters are L = 2.5, H = 0.41, l = 0.35,
h = 0.02, c = 0.2 and r = 0.05. The fluid and solid
parameters are as follows: ρf = ρs = 103, μf = 1 and
c1 = 2.0 × 106. The inlet flow is prescribed as:

ūx = 12y

H 2 (H − y) , ūy = 0. (54)

We use a mesh of 10,054 nodes and 2448 biquadratic
elements as shown in Fig. 29, and a converged time step
of Δt = 10−3. The simulation results are first validated
against the data provided in Turek and Hron (2006) through
the oscillation period and amplitude at the tip of the flag
as shown in Fig. 30, with the period and amplitude being
around 0.526 and 0.035 respectively. These figures have a
good agreement with the reference values given in Turek
and Hron (2006) with a period and amplitude being 0.530
and 0.034 respectively. We note here that although our
neo-Hookean solid model is different from the Saint Venant-
Kirchhoff model in Turek and Hron (2006), however, these
two models are equivalent when applying to solving this
FSI benchmark problem (Kadapa et al. 2018; Hecht and
Pironneau 2017; Wang et al. 2020), in the sense that they

Fig. 22 Computational domain
and boundary conditions for the
test of an oscillating leaflet
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Fig. 23 Velocity norm at
t = 0.32

present the same numerical results as first presented in
Turek and Hron (2006).

We now extend the analysis to consider the control of
this FSI system, using the results of this fully converged FSI
system as initial conditions. We use the results of t = 6 as
initial values and run the simulation from t = 0 to 0.05.
The aim of the control problem is to reduce the oscillation
amplitude by solving Problem 1 with dg = 0, β1 = 0,
β2 = 106, and γ1 = γ2 = 0. The BB method converges
rapidly and reduces the objective by 60% as shown in
Fig. 31, which is also faster than using a constant step size.
It can also be seen from Fig. 31 that θ = 10−8 and 10−9

presents similar convergence for the objective functional
J , but θ = 10−7 stops the reduction of J at an earlier
stage, with the magnitude of the control force being plotted

Fig. 24 Horizontal displacement at the tip of the leaflet

in Fig. 32. For a long-term control, such as from t = 0
to t = 0.40 (about one oscillation period), we insert 8
control points at t = 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35
and 0.40, and continuously solve Problem 1: the following
control results use the results of the previous time as initial
values for the next time (Fig. 33). We then patch together
all these piecewise-in-time results as shown in Fig. 34 from
which it can be seen that the oscillation magnitude has been
dramatically reduced. Notice that our objective is to reduce
the solid deflection by a time-dependent body force, and the
solution (body force) of this problem is generally not unique
or periodic. Therefore, after applying the control force, we
would not expect (as observed in Fig. 34) an oscillation of
fixed period and amplitude of the flag. For this problem, we
also test a case of applying the control force only at the tip
(x > 0.57) of the flag, and we find that the whole control

Fig. 25 Convergence of the objective for the oscillating leaflet
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Fig. 26 L2 norm of the control
force f(t) for the oscillating
leaflet (θ = 10−7)

Fig. 27 L2 norm of the gradient
descent direction (left) and the
increment of the control force
(right) for the oscillating leaflet
(θ = 10−7)

Fig. 28 Computational domain
and boundary conditions for the
oscillating flag

Fig. 29 A snap shot of the velocity norms at t=4.9 when the flag is maximally deformed

Fig. 30 Vertical displacement at
the flag tip as a function of time
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Fig. 31 Convergence of the
objective and displacement
profile for the oscillating flag

is still tractable as shown in Fig. 34. We patch together
the control force in Fig. 35 after gradually solving eight
control problems by using the previous results as initial
conditions for the following one. Although the continuity
of the control force cannot be guaranteed, the displacement
is still continuous in the whole time domain. The control
force gradually decreases to zero in one phase of control,
and then flips its direction (see Fig. 36) in the following
phase and gradually decreases to zero again. It can be seen
from Fig. 35 that the magnitude of the overall control force
decreases as the solid deflection is reduced. Notice again
that the control force is not unique, different piecewise
control results would lead to different distributions of the
control force, although they all may be able to successfully
reduce the solid deformation. Finally, we investigate the
boxed term in (46) in Fig. 33, and we find that it is negligible
again.

Fig. 32 L2 norm of the control force f(t)

8 Conclusion and future work

Time-dependent FSI control problems with large solid
deformations are very challenging to solve and very few
examples have appeared in the literature. This paper has
made a number of original contributions to this area,
including (1) derivation of the optimality condition for
optimal control of time-dependent FSI problems in an ALE
formulation; (2) formulation of the whole control system
using one velocity field, thereby reducing the size of the
FSI problem; and (3) adopting a stabilised Barzilai-Borwein
(BB) method to select the gradient descent step size, which
does not need additional evaluations of the objective, and
has the same cost as using a constant step size but converges
faster.

Gradient descent methods are widely used in the context
of the adjoint-optimal control, with either the Armijo
rule (Mohammadi and Pironneau 2010; Gerdes et al.

Fig. 33 Boxed term in (46)
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Fig. 34 Convergence of the
piecewise control, with
reduction of the oscillation
magnitude being around 80%.
“At the tip” means the control
force is only applied at the tip
(x > 0.57) of the flag

Fig. 35 Magnitude of the
control force applied at the tip
(x > 0.57) of the flag

Fig. 36 Distribution of the
control force at different control
points: t = 0, t = 0.05, t = 0.1,
t = 0.15, t = 0.2, t = 0.25,
t = 0.3, t = 0.35 (left to right,
top to bottom)
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2014) or constant (Heners et al. 2018) step size typically
being adopted; however, the former is costly and the
latter is inefficient when applied to time-dependent control
problems. In this paper, we use a stabilised BB method to
accelerate the iteration which has the same cost as a constant
step size and does not need additional evaluations of the
objective function.

The proposed optimal control method is validated and
assessed by six numerical tests: two pure fluid-control
problems, two FSI problems which have steady-state
solutions, and two dynamic FSI problems with complicated
solid oscillation. It is shown that the complex FSI control
systems can be solved using the proposed numerical
method. More generally, the above features mean that
it is now computationally feasible to solve extremely
challenging optimal FSI problems, by solving as few as tens
(at most hundreds) of CFD simulations.

In the future work, we shall consider minimising other
objectives, such as the drag force, and apply this FSI control
method to dynamic shape optimisation problems, such as
morphing structure in aerospace engineering.

Appendix 1. Gâteaux variation

Definition 1 The 1st-order Gâteaux variation of a func-
tional F(q) in the direction �q is defined by (Bazilevs et al.
2013; Rall 2014)

δF(q)[Δq] = d

dε
F (q + ε�q)

∣∣∣∣
ε=0

, (55)

The following properties of Gâteaux variation are straightfor-
ward to obtain from the above definition.

1. For two arbitrary functionals F(·) and G(·):
δ (FG) = (δF)G + F (δG) . (56)

2. For a linear functional L(·) and an arbitrary functional
F(·):
δ (L ◦ F) = L ◦ δF . (57)

3. For the linear functional L(q) = q, taking the 1st
variation in direction Δq:

δL = δq = Δq. (58)

4. For a constant functional F(q) = c:

δF = 0. (59)

Remark 6 It is notationally convenient to omit the direction
of a variation if it refers to an arbitrary direction δq, i.e.
δF (q) = δF(q)[δq]. One may further omit the inde-
pendent variable q if it is not a specified point (such as
q0, q̄ or q̃). This is consistent with the differentiation of

a scalar function f (x): df = f ′dx. The terminology
arbitrary δq is also consistent with the finite element
arbitrary test function.

Appendix 2. Variation to the Lagrange
multipliers

Taking Gâteaux variation of (24) with respect to the
Lagrange multiplier û in an arbitrary direction δû, using
properties (57) and (58), gives:

δL
(
u, p,w, f, û, p̂, ŵ

) [δû]
= ∫

Θ×Ω

(
ρ ∂u

∂t
+ ρ ((u − w) · ∇)u − ∇ · σ − f1Ωs

t

) · δû
+ ∫

Ω (u(0) − u0) · δû + ∫
Θ×ΓD

(
u − ū1Γin

) · δû
+ ∫

Θ×ΓN

(
σn − h̄

) · δû + ∫
Θ×Γt

(
σ s − σf

)
ns · δû.

(60)

Integrating the stress term by parts;

δL
(
u, p,w, f, û, p̂, ŵ

) [δû]
= ∫

Θ×Ω

(
ρ ∂u

∂t
+ ρ ((u − w) · ∇)u − f1Ωs

t

) · δû
+ ∫

Θ×Ω
f
t

σ f : ∇δû − ∫
Θ×∂Ω

f
t

σ f nf · δû

+ ∫
Θ×Ωs

t
σ s : ∇δû − ∫

Θ×∂Ωs
t
σ sns · δû

+ ∫
Ω (u(0) − u0) · δû + ∫

Θ×ΓD

(
u − ū1Γin

) · δû
+ ∫

Θ×ΓN

(
σn − h̄

) · δû + ∫
Θ×Γt

(
σ s − σf

)
ns · δû.

(61)

Noticing that ns = −nf on the interface Γt , and the whole
inner and outer boundary ∂Ω = Γ = ΓD + ΓN =(
∂Ω

f
t −Γt

)
+(

∂Ωs
t −Γt

)
, (61) can be further expressed as:

δL
(
u, p,w, f, û, p̂, ŵ

) [δû]
= ∫

Θ×Ω

(
ρ ∂u

∂t
+ ρ ((u − w) · ∇)u − f1Ωs

t

) · δû
+ ∫

Θ×Ω
σ : ∇δû − ∫

Θ×ΓD
σn · δû

+ ∫
Ω (u(0) − u0) · δû + ∫

Θ×ΓD

(
u − ū1Γin

) · δû
− ∫

Θ×ΓN
h̄ · δû.

(62)

Similarly, taking Gâteaux variation of (24) with respect to
the Lagrange multiplier p̂ in an arbitrary direction δp̂ gives:

δL
(
u, p,w, f, û, p̂, ŵ

) [δp̂] = −
∫

Θ×Ω

δp̂∇ · u. (63)

Noticing the initial and boundary conditions stated in
Problem 2, and also the space of test functions (in which
δû

∣∣
ΓD

= 0), we have (30) after letting both (62) and (63) be
zero based on the optimality condition (25).
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Taking Gâteaux variation of (24) with respect to the
Lagrange multiplier ŵ in an arbitrary direction δŵ, using
properties (57) and (58), gives:

δL
(
u, p,w, f, û, p̂, ŵ

) [δŵ]
= ∫

Θ×Ω

(
ρ ∂w

∂t
− ∇ · (μDw + λ (∇ · w) I)

) · δŵ
+ ∫

Ω (w(0) − w0) · δŵ + ∫
Θ×Γw0

w · δŵ

+ ∫
Θ×(

Γ −Γw0

) (w · n)
(
δŵ · n) + ∫

Θ×Γt
(w − u) · δŵ

+ ∫
Θ×(

Γ −Γw0

) n · (μDw) · τ
(
δŵ · τ

)
,

(64)

which may be further expressed as follows after integrating
by parts.

δL
(
u, p,w, f, û, p̂, ŵ

) [δŵ]
= ρ

∫
Θ×Ω

∂w
∂t

· δŵ + μ
2

∫
Θ×Ω

Dw : Dδŵ
+λ

∫
Θ×Ω (∇ · w)

(∇ · δŵ
)

− ∫
Θ×∂Ω

n · (μDw + λ (∇ · w) I) · δŵ
+ ∫

Ω (w(0) − w0) · δŵ + ∫
Θ×Γw0

w · δŵ

+ ∫
Θ×(

Γ −Γw0

) (w · n)
(
δŵ · n) + ∫

Θ×Γt
(w − u) · δŵ

+ ∫
Θ×(

Γ −Γw0

) n · (μDw) · τ
(
δŵ · τ

)
.

(65)

Because

n · (μDw + λ (∇ · w) I) · δŵ
= n · (μDw + λ (∇ · w) I) · n (

δŵ · n)
+n · (μDw + λ (∇ · w) I) · τ

(
δŵ · τ

)
= n · (μDw + λ (∇ · w) I) · n (

δŵ · n)
+n · (μDw) · τ

(
δŵ · τ

)
,

(66)

(65) can also be expressed as:

δL
(
u, p,w, f, û, p̂, ŵ

) [δŵ]
= ρ

∫
Θ×Ω

∂w
∂t

· δŵ + μ
2

∫
Θ×Ω

Dw : Dδŵ
+λ

∫
�×� (∇ · w)

(∇ · δŵ
)

− ∫
Θ×∂Ω

n · (μDw + λ (∇ · w) I) · n · (δŵ · n)
− ∫

Θ×Γw0
n · (μDw) · τ

(
δŵ · τ

)

+ ∫
Ω (w(0) − w0) · δŵ + ∫

Θ×Γw0
w · δŵ

+ ∫
Θ×(

Γ −Γw0

) (w · n)
(
δŵ · n) + ∫

Θ×Γt
(w − u) · δŵ.

(67)

Noticing the finite element spaces we use in Problem 2,
in which both the trial and test functions satisfy boundary
condition (8), we have (31), based upon the optimality
condition (25) and the initial condition w(0) = w0 stated in
Problem 2 as well.
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Hinze M, Köster M, Turek S (2012) A space-time multigrid method
for optimal flow control. In: Constrained optimization and optimal
control for partial differential equations. Springer, pp 147–170

Hou LS, Yan Y (1997) Dynamics and approximations of a velocity
tracking problem for the Navier–Stokes flows with piecewise
distributed controls. SIAM J Control Optim 35(6):1847–1885

Jenkins N, Maute K (2016) An immersed boundary approach for shape
and topology optimization of stationary fluid-structure interaction
problems. Struct Multidiscip Optim 54(5):1191–1208
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