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Abstract
Structural topology optimization (STO) is usually treated as a constrained minimization problem, which is iteratively
addressed by solving the equilibrium equations for the problem under consideration. To reduce the computational effort,
several reduced basis approaches that solve the equilibrium equations in a reduced space have been proposed. In this work,
we apply functional principal component analysis (FPCA) to generate the reduced basis, and we couple FPCA with a
gradient-based optimization method for the first time in the literature. The proposed algorithm has been tested on a large STO
problem with 4.8 million degrees of freedom. Results show that the proposed algorithm achieves significant computational
time savings with negligible loss of accuracy. Indeed, the density maps obtained with the proposed algorithm capture the
larger features of maps obtained without reduced basis, but in significantly lower computational times, and are associated
with similar values of the minimized compliance.

Keywords Structural topology optimization · Gradient-based approach · Functional principal component analysis ·
Computational efficiency

1 Introduction

The need for optimized solutions in structural applications
has increased over the years and has become nowadays fun-
damental because of the limited availability of commodities,
environmental impacts, increasingly stringent industrial
time-to-market requests, and emerging manufacturing pro-
cesses as additive manufacturing. In this framework, struc-
tural topology optimization (STO) aims at obtaining opti-
mized performance from a structure while satisfying some
functional constraints, e.g., bounds on total mass or stresses.
In particular, we focus on STO, whose goal is to pro-
duce optimized structures by determining an optimal mass
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or volume distribution in a given design domain. Unlike
other alternatives as shape and size optimization, which deal
with predefined configurations, STO can virtually produce
any mass distribution within the design domain.

In the literature, STO is treated as a constrained mini-
mization problem, for which several approaches and numer-
ical schemes have been proposed (Sigmund and Maute
2013; van Dijk et al. 2013; Munk et al. 2015). Almost all
the proposed approaches are iterative, which means that
the optimized mass distribution is determined by repeat-
edly performing structural finite element analyses (FEA)
that involve the solution of the equilibrium equations for
the problem under consideration. On the one hand, iterative
approaches are very effective because they allow to obtain
optimized solutions in a variety of situations without requir-
ing additional assumptions. On the other hand, however,
their bottleneck is the computational effort, as they require
solving FEA a large number of times. For example, in a
minimum compliance problem, up to 97% of the total com-
putational time could be spent for numerically solving the
equilibrium equations (Alaimo et al. 2018; Petersson 1999).

From these considerations, it becomes evident the need
for reducing the computational time to solve the equilibrium
equations in STO, which is a key requirement for large
problems and three-dimensional applications. Reduced
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basis approaches represent a valid solution to such an issue,
because they allow to reduce the dimensionality of the
structural problem, i.e., the number of equilibrium equations
to solve and, therefore, the related computational effort.

However, reduced basis approaches have been exploited
in a very limited number of recent works. Gogu (Gogu
2015) constructed reduced basis on-the-fly by using the
previously generated solutions of the equilibrium equations,
and the reduced basis was adaptively enriched based on the
STO convergence. Ferro et al. (Ferro et al. 2019) applied
the principal component analysis (PCA) to the density map,
obtaining an efficient numerical scheme for STO. Xiao
et al. (Xiao et al. 2020) proposed a proper orthogonal
decomposition (POD) scheme, related to PCA, to construct
a reduced basis for the displacement field solution of
FEA, to be used during the optimization; subsequently, the
reduced basis is adaptively updated on-the-fly according to
an error metric. Less recently, Wang et al. (Wang et al. 2007)
proposed a method based on the Krylov subspaces, while
Amir et al. (Amir et al. 2009) proposed the construction of
a reduced order model using the combined approximations
method. Finally, Yoon (Yoon 2010) used eigenmodes along
with Ritz vectors for the construction of a reduced model in
dynamic STO.

In this work, we propose and test a reduced basis method
that relies on functional PCA (FPCA). FPCA for FEA is
quite new in STO since it has only been exploited for the
variable thickness sheet design problem in combination with
a simulated annealing optimization heuristic (Alaimo et al.
2018); moreover, it was initially developed for uncertainty
quantification (Bianchini et al. 2015). We extend the use
of FPCA in STO by applying it to the class of gradient-
based optimization methods, which are the most commonly
used. We demonstrate that significant savings in STO
computational times can be achieved with negligible loss of
accuracy. In this sense, the novelty of our work is not to
introduce a new numerical technique but to appropriately
combine two consolidated STO methods in order to save
computational time. Such methods are the gradient-based
optimization, (see for example Sigmund and Maute (2013)),
and the reduced basis method (FPCA), able to reduce the
dimensionality of the problem.

More specifically, we employ FPCA along with a
gradient-based approach, considering the code proposed
in Sigmund (2001) and his gradient-based approach as a
starting point for incorporating FPCA reduced basis. At
each STO iteration, we convert the FEA problem into a
smaller one by projecting it onto a reduced space by means
of a data-driven FPCA reduced basis. The reduced problem
is solved and, if error measures associated with the solution
are below the given thresholds, the reduced solution is
accepted; otherwise, the original FEA problem is solved and
the complete solution is used to update the FPCA basis.

We decided to embed FPCA rather than PCA in the
optimization because of the results reported in Bianchini
et al. (2015), where FPCA has been employed for
uncertainty quantification purposes. Indeed, the authors
showed that FPCA clearly outperforms PCA, i.e., FPCA
always turned out to be faster than PCA and well captured
the behavior of the solution with less elements in the
basis than PCA. As the description of the FEM solution
in a reduced space is the same both for uncertainty
quantification and our optimization purposes, we can
consider that these results are also valid in our setting.

The remainder of the paper is structured as follows: the
proposed gradient-based optimization method with FPCA
is presented in Section 2; the test case used to validate our
algorithm is described in Section 3, while the results are
reported in Section 4; finally, discussions and conclusion of
the work are drawn in Section 5.

2 Gradient-based optimization with FPCA

In this section, we present the addressed STO problem
(Section 2.1), the gradient-based optimization of Sigmund
(2001) (Section 2.2), and the novel contribution included
in the optimization, i.e., the FPCA to generate the reduced
basis (Section 2.3). Finally, we detail the overall algorithm
in Section 2.4. Without loss of generality, we present the
approach for two-dimensional cases; from a conceptual
point of view, the approach is the same also for three-
dimensional cases while, from an operational point of view,
the extension is very straightforward.

2.1 Structural topology problem

We address a STO problem in which a given mass is
distributed over the domain Ω in order to minimize the
structural compliance:

c =
∫

Ω

σ · ε dΩ

where ε is the strain tensor, σ = Dε the stress tensor, and
D the fourth-order linear elastic tensor. We assume that D
depends on the mass density distribution as D = ρp

D̃,
where ρ ∈ [ρmin, 1] is the mass density, p ≥ 1 a penalty
coefficient, D̃ the fourth order elastic tensor of the isotropic
homogeneous bulk material, and ρmin a positive value close
to 0.

Finally, ε is defined in terms of the displacement field
u as ε = 1

2

(∇u + ∇uT
)
, where superscript T denotes

transposition.
The problem is discretized following a classical FEA

approach, using four-node elements with bilinear displacement
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functions. Accordingly, the compliance c is expressed in the
form:

c = ûT f =
Nel∑
i=1

ûT
i fi =

Nel∑
i=1

ûT
i Ki ûi (1)

where Nel is the number of elements in the discretized
domain, ûi the vector of the nodal displacements of element
i, fi the vector of the nodal forces of element i, and Ki

the stiffness matrix of element i, while û and f are the
assembled (over all elements) displacement vector and the
applied force vector, respectively. Assuming a uniformmass
density ρi over each element i,Ki depends on ρi in the form
Ki = ρ

p
i K̃i , where K̃i is the stiffness matrix of element i

analogous to D̃, which corresponds to a homogeneous and
isotropic material.

The minimization of c, expressed as in (1), is subject to
mass (volume) constraint expressed in the form:

Nel∑
i=1

ρiVi = ρ∗V

ρi ∈ [ρmin, 1] ∀i = 1, . . . , Nel

where ρ∗ is the imposed mean density that uniquely defines
the overall mass, and Vi and V are the volume of element i

and the overall domain volume, respectively.
Finally, the equilibrium equations are expressed in

compact form as:

Kû = f (2)

where K is the assembled stiffness matrix.

2.2 Gradient-based optimization

The gradient-based minimization is an iterative procedure
in which, at each iteration, the new solution in terms of ρi in
all elements i is obtained following an optimality criterion,
as proposed in Bendsøe and Sigmund (1995) and applied in
Sigmund (2001).

The optimality criterion is based on the sensitivity of c

with respect to the densities ρi in the form:

∂c

∂ρi

= ∂ûT

∂ρi

f (3)

However, there is no explicit formula that links the
displacements to the density distribution. For this reason,
the computation of derivatives (3) is performed by adding
an adjoint term to c, in the form:

c = ûT f = fT û = fT û − ũT (Kû − f) (4)

where ũ is an arbitrary term, and the difference in paren-
theses is equal to 0 thanks to (2). The gradient of c is then
expressed, for each component, as:

∂c

∂ρi

= (fT − ũT K)
∂û
∂ρi

− ũT
∂K

∂ρi

û (5)

which is simplified if the arbitrary term ũ is chosen equal to
the actual displacement field û, turning into:

∂c

∂ρi

= −ũT
∂K

∂ρi

û (6)

Considering the expression of the stiffness matrix K and
that ρi is constant over each element i, the gradient of the
compliance can be computed element-wise and expressed
as:

∂c

∂ρi

= −pûT
i ρ

(p−1)
i Ki ûi (7)

Let us remark that (7) is valid when û represents the exact
solution of the equilibrium equations. This is of particular
importance when considering a solution ûrec reconstructed
from the reduced space, which can be slightly different from
the exact solution û; in this case, the complete expression (5)
must be considered, or the problemmust be adapted in order
to use (7). In this work, as detailed in Sections 2.3 and 2.4,
we consider the second alternative and we solve the problem
with a modified force fcurr in such a way that Kû = fcurr.

With (7), it is possible to iteratively update ρi to minimize
the compliance c step by step. In particular, the new density
distribution can be computed with the following heuristic
approach proposed by Bendsøe and Sigmund (Bendsøe and
Sigmund 1995):

ρN
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max(ρmin, ρi − m)

if ρiα
η
i ≤ max(ρmin, ρi − m)

ρiα
η
i

if max(ρmin, ρi − m) ≤ ρiα
η
i ≤ min(1, ρi + m)

min(1, ρi + m)

if min(1, ρi + m) ≤ ρminα
η
i

(8)

where ρN
i denotes the new density of element i, m is a

positive coefficient that limits density variation, η = 1
2 is

a damping coefficient, and αi is given by the optimality
condition as:

αi = − 1

κ

∂c/∂ρi

∂V/∂ρi

(9)

where κ is a Lagrangian multiplier found through a
bisectioning algorithm (Sigmund 2001).
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2.3 FPCA for reducedmodel

The idea behind the use of FCPA in STO is to solve the
equilibrium (2) in a reduced space for as many gradient-
based iterations as possible. Such a reduced space, whose
dimension is given by a limited number of principal
displacement components, is generated by applying FPCA
to a set of previously obtained solutions (Alaimo et al. 2018;
Bianchini et al. 2015).

To this aim, let us consider M displacement solutions
û(ρm) of the equilibrium equations (with m = 1, . . . , M)
corresponding to several realizations ρm of ρ, where ρ

denotes the vector including all ρi .
The subspace spanned by these M solutions represents

an approximation of the entire solution space U(Θ) =
{u(ρ), ρ ∈ Θ}, where Θ = [ρmin, 1]Nel gathers all possible
solutions of the structural problem. By applying FPCA to
the subspace, we obtain the set of the K orthonormal basis
functions (with 1 ≤ K ≤ M) that optimally approximate
U(Θ) in terms of total explained variance.

These basis functions can be obtained by solving an
eigenvalue problem that involves the covariance operator.
Let us denote by {vm(x), m = 1, . . . , M} a set of M

functions with cross-sectional mean 1
M

∑M
m=1 vm(x) equal

to 0 for each x. The corresponding empirical covariance
function is:

V(s, t) = 1

M

M∑
m=1

vm(s)vm(t)

and the covariance operator is:

Vξ : ξ(·) �→
∫

Ω

V(·, t)ξ(t)dt

Based on that, each basis function solves the following
eigenproblem:

Vξ(x) = γ ξ(x) (10)

Operatively, we start from M displacement solutions
û(ρ1), . . . , û(ρM) corresponding to different ρm. We build

a M × 2L matrix , where L

is the number of nodes in the mesh and 2L the number of
degrees of freedom.

The buffer matrix U is then split into two parts: the
average part Uav and the residual part Ucov = U − Uav

that stores the fluctuations of the solution with respect to the
average.

The orthonormal basis is obtained with the functional
principal components of . We use the method of
snapshots as in (Alaimo et al. 2018; Bianchini et al. 2015),
which is valid if 2L > M as in our case. Accordingly, the
basis of rank K is obtained as follows:

1. Define a 2L × M matrix with

where φk are the finite element shape functions, and M

is a 2L × 2L matrix that can also be intended as a mass
matrix.

2. Solve the eigenvalue problem

where the eigenvalues λk are in descending order along
k.

3. Choose the value of K by retaining all eigenfunctions
that correspond to an eigenvalue λk > Λλ1, where λ1
is the maximum eigenvalue and Λ assumes very small
values (Dulong et al. 2007).

The projection of (2) onto the reduced space of
dimension K is carried out using the 2L × K matrix
[ξ1, . . . , ξK ], where

Let now consider the problem Kû = fcurr, where fcurr is
the modified force that allows to exploit (7). With the above
projection, we may solve the following reduced problem,
instead of the complete one, in the subspace spanned by the
principal components:

Kred ûrs = fred (11)

with

Kred = U
T
rbKUrb (12)

fred = U
T
rb (f − Kū) (13)

where ûrs denotes the solution of the problem in the reduced
space and ū = 1

M

∑M
m=1 ûi is the average of the solutions

stored in buffer U.
After solving (11) in the reduced space, the displacement

solution is reconstructed as:

ûrec = ū + Urb ûrs (14)

where subscript rec indicates that the solution is recon-
structed starting from ûrs.

Although ûrec is computationally cheaper to obtain, it
is only an approximation of the actual û. Therefore, we
must decide whether to accept ûrec or not based on the
approximation error and the quality of the solution.

The approximation error is evaluated by computing the
errors e1 and e2 between the reconstructed force frec =
Kûrec and fcurr and between frec and f, respectively:

e1 = (frec − fcurr)T Mρ (frec − fcurr)

e2 = (frec − f)T Mρ (frec − f)
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The global mass matrix Mρ is introduced to weigh less
or exclude the elements with lower density ρi from the
computation of the errors. It is computed as the assembly of
elementary mass matrices, obtained for each element as

Mρk
= ρk

∫
Ωk

φiφjdΩ (15)

Finally, the compliance c generally decreases with the
iterations in gradient-based approaches (Sigmund 2001).
Therefore, to avoid too large deviations from this decreasing
behavior, a reduced solution is also evaluated in terms of
the difference δc between the compliance c obtained in the
current iteration and that at the previous one.
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If e1 < τ1, e2 < τ2, and δc < τ3, where τ1, τ2, and
τ3 are fixed positive thresholds, the reconstructed solution
urec is accepted. Otherwise, it is discarded and the complete
problem (2) is solved.

2.4 Overall integrated algorithm

The algorithm reflects the iterative structure of the gradient-
based optimization in Sigmund (2001), enriched by the
proposed reduced basis approach based on FPCA. The
basic structure of each iteration g (with g = 1, . . . ,G)
consists of solving equilibrium equations for the current
density solution ρg , and computing the new solution ρg+1
according to (8).

The buffer U contains a number M of solutions between
Mmin and Mmax. This basic structure of the gradient-
based optimization, which consists of solving the complete
problem (2), is repeated for the first Mmin iterations while
considering the nominal force f of the problem and storing
the displacement solutions in U. At iteration g = Mmin, the
matrix Urb is also built from U.

Starting from iteration g = Mmin + 1, the problem
is projected onto the reduced space exploiting Urb, and
the equilibrium equations are solved in the reduced space
according to (11–14).

As mentioned, the reconstructed solution ûrec is accepted
if e1 < τ1, e2 < τ2, and δc < τ3. In this case, the
reconstructed force frec is also kept as the force fcurr to solve
the problem at the next iteration.

If ûrec is not accepted, the complete problem (2) is solved
while considering the nominal force f. At the same time, the
force fcurr to solve the problem at the next iteration is reset
equal to f. Moreover, the new complete solution is included
in U; if the number of already stored solutions is equal to
Mmax, the oldest solution is also removed. The new Ucov is
then computed with the updated U.

At the end of each iteration g, the new density map
ρg+1 is generated according to the updating scheme (8),
either considering the solution û of the complete problem
(in the first Mmin iterations or when the reduced solution
is rejected) or the reconstructed solution ûrec (when the
reduced solution is accepted starting from iteration g =
Mmin + 1).

A detailed pseudo-code of the algorithm is reported in
Algorithm 1.

The dynamic management of the buffer dimension M

starting from Mmin allows to calculate, and possibly accept,
reduced solutions even in the very first iterations without
waiting for the first Mmax complete solutions. In fact,
accepting reduced solutions even in the very first iterations
is a key requirement for increasing the computational
efficiency. At the same time, the upper limit Mmax allows
to replace the oldest solution with the new one, thus giving

preference to more recent displacement solutions that are
associated with closer density distributions than the older
ones.

Let us remark that, due to the approximation induced by
the reconstructed displacement solution ûrec, the quantity
Kûrec − f is not exactly null and, therefore, expression (7)
is not exact in relation to problem (2). In the literature,
such an expression has been modified by adding additional
terms that compensate the error, as in (Gogu 2015), but this
approach requires additional computational effort at each
iteration. In this work, we deal with the issue by replacing
the nominal force f with fcurr. In this way, expression (7)
becomes correct for the problem Kû = fcurr without the
need to calculate additional terms. Obviously, the problem
with fcurr is representative of (2) if the distance between fcurr
and f is limited, as verified by the conditions e1 < τ1 and
e2 < τ2 together.

3 Experimental validation

We compare our algorithm with the case in which the
reduced basis approach is not exploited and all gradient-
based iterations are performed with the complete problem,
as in (Sigmund 2001).

Analyses have been conducted on the well-known
Messerschmitt-B̈olkow-Blohm (MBB) beam problem. It
consists of a simply-supported rectangular domain of size
2nx×ny elements, with a vertical downward force F applied
in the midpoint of the lower side (force module equal to
1). Thanks to the symmetry, only half of the domain is
studied, as represented in Fig. 1. We consider nx = 2000
and ny = 1200 elements in the analyses, which define a
computationally demanding problem having more than 4.8
million degrees of freedom.

Moreover, the following parameter values are assumed:

– penalty p = 3;

Fig. 1 Structural scheme of the considered MBB beam with domain
Ω , boundary conditions, symmetry boundary conditions on the left,
and applied force F
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– minimum density ρmin = 0.001;
– number M of solutions in the buffer between Mmin = 2

and Mmax = 20;
– parameter Λ to include eigenfunctions equal to 10−12;
– error threshold τ1 = 10−4;
– error threshold τ2 = 4τ1;

Experiments have been conducted by considering the
following three factors and related levels:

– mean density ρ∗ for mass constraint: {0.3, 0.5, 0.7};
– radius for mesh filter r: {5, 10, 15} nodes;
– increment threshold τ3: {2, 4, 8};

In addition to these experiments, different Mmin and
Mmax values were tested for ρ∗ = 0.5, r = 5, and τ3 = 2.

Each setting of ρ∗ and r is also solved with no
reduced basis to get a reference solution for comparison.
In particular, a number of iterations G = 100 are assumed
to get the reference compliance c̃ of the setting without
reduced basis. This value of G has shown to be large
enough to guarantee convergence; indeed, we also tested
greater numbers of iterations, up to G = 1000, and
we observed very limited variations of c̃, lower than 2%,
between iteration g = 100 and iteration g = 1000.

4 Results

Table 1 shows the reference c̃ obtained with no reduced
basis with G = 100 iterations for each setting of ρ∗
and r , together with the corresponding computational time.
Moreover, it shows the CPU time to reach the reference c̃

plus 5% and 10% for each τ3, and the percentage reduction
with respect to the CPU time to reach the same compliance
without reduced basis.

The results show that the proposed algorithm is almost
always able to find similar values of compliance c with
respect to the reference c̃ obtained with no reduced basis
by the original method of Sigmund (Sigmund 2001), for
at least one value of τ3. Moreover, a significant CPU time
saving is always obtained. A reduction up to 52% and equal
to at least 25% in most cases is observed when considering
the reference c̃ plus 5%, and the reduction is even higher
when considering c̃ plus 10%, being up to 68%. These
higher reductions show that the largest gain is obtained in
the first iterations, where the gradient-based optimization
gives higher c reduction per iteration. Thus, the algorithm
proved to be effective in these iterations, and this confirms
the effectiveness of the dynamic buffer management to start
using reduced problems early.

It is worth remarking that the reduced solutions are
rejected because the condition δc < τ3 is not respected,
while the conditions e1 < τ1 and e2 < τ2 are always

respected even with the low imposed thresholds. Moreover,
a deeper analysis of Table 1 shows that the computational
gain is not strictly correlated to the value of τ3, due to the
fact that the time gain is affected by competing factors.
On the one hand, smaller τ3 values prevent instability of
the whole algorithm and the need of restarting from higher
values of c; on the other hand, this greater stability is paid
for with a higher number of complete FEA iterations, which
are clearly more expensive in terms of CPU time.

Figure 2a, b and c show the evolution of the best known
compliance c as a function of the CPU time and the number
of iterations, respectively, for ρ∗ = 0.5 and r = 5, under the
different values of τ3 together with the case with no reduced
basis. We may observe a faster reduction of the objective
function c over time when adopting our algorithm with
FPCA reduced basis, which corresponds to the shorter CPU
times reported in Table 1 to get c̃ plus 5% and 10%. In fact,
although the convergence is slower in terms of iterations,
the lower computational time required to solve the reduced
problem makes the overall computational time shorter when
exploiting FPCA. The red points in Fig. 2a and c highlight
that the best known c always decreases in correspondence of
a complete solution, and that a complete solution is required
on average in only 26% or 27% of the iterations. Anyway,
even when the objective function increases due to a bad
representation of the solution with few bases (and the best
known c remains constant over a certain time period), our
algorithm is still able to redirect to acceptable values of c,
which are even better than the case with no reduced basis at
the same CPU time.

Figures 3, 4, and 5 show the density maps obtained
with the proposed algorithm when c̃ plus 5% is reached
and the corresponding maps from the case with no reduced
basis after G = 100 iterations. The maps are reported
for each setting of ρ∗ and r , and for τ3 = 2. When c̃

plus 5% is not reached within G = 100 iterations by our
algorithm for τ3 = 2 (i.e., with {ρ∗, r} equal to {0.3, 15} and
{0.5, 10}), the map obtained from the algorithm at iteration
g = 100 is reported. The maps from our algorithm show
to capture the larger features of the solution. Moreover,
although topologically different for some details, compared
with the maps obtained with no reduced basis, our maps
correspond to similar values of compliance c.

To clean the maps obtained by the algorithm from zones
with intermediate density, a post-processing of the solution
is considered, which consists of executing 5 additional
iterations in which the complete problem is solved. Results
show the effectiveness of this post-processing. In fact, it
does not significantly change the structure of the maps,
but at the same time, it effectively cleans intermediate
density regions and eliminates local irregularities. Table 2
also shows that the modulus of the compliance variation
induced by post-processing is always less than 1.20% and
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Table 1 Results from the experiments for each combination of ρi , r, and τ3 with Mmin = 2 and Mmax = 20: reference c̃ with G = 100 iterations
without reduced basis and corresponding CPU time; time to reach the reference c̃ plus 5% and 10% with the proposed algorithm and percentage
reduction with respect to the computational time to reach the same value without reduced basis

To reach c̃ plus 5% To reach c̃ plus 10%

ρ∗ r τ3 Reference c̃ CPU time [105s] CPU time % reduction CPU time % reduction

from complete from complete [105s] [105s]
with G = 100

2 1.14 38.29 0.83 55.27

5 4 94.41 4.70 1.16 37.25 0.84 54.92

8 0.98 47.41 0.77 58.48

2 1.21 9.72 1.00 25.47

0.3 10 4 94.89 4.92 — — — —

8 1.05 21.75 0.74 45.25

2 — — — —

15 4 96.09 5.14 — — — —

8 — — — —

2 0.93 22.77 0.81 32.78

5 4 65.02 5.12 0.63 47.76 0.51 57.81

8 0.86 28.11 0.64 46.24

2 — — 0.49 43.57

0.5 10 4 65.26 4.95 0.61 30.80 0.55 37.00

8 0.61 30.83 0.45 49.23

2 0.70 14.94 0.47 43.21

15 4 65.71 5.20 — — 0.54 35.03

8 0.77 7.17 0.48 41.89

2 0.43 52.14 0.33 63.17

5 4 53.39 5.04 0.64 28.72 0.28 68.77

8 0.51 43.60 0.33 62.86

2 0.48 43.54 0.36 57.16

0.7 10 4 53.57 5.12 0.69 17.67 0.30 64.23

8 — — — —

2 0.48 38.02 0.36 53.14

15 4 53.76 5.34 0.75 36.35 0.30 60.85

8 — — — —

“—” denotes that c̃ plus both 5% or 10% was not reached by our algorithm in G = 100 iterations

on average equal to 0.78%. Therefore, we may argue that
the presence of intermediate material in the maps obtained
with the proposed algorithm involves only a small variation
on the compliance which is, on average, less than 0.78%. At
the same time, the maps cleaned by the post-processing are
different from those in the case with no reduced basis. This
could highlight the presence of local optimal solutions, or
that the gap requires other iterations to be eliminated. We
highlight that the post-processing has a limited impact on

the computational time. In fact, assuming that all complete
solutions require the same time, the percent gain obtained
by the algorithm is reduced by only the 5%.

4.1 Impact of buffer dimensionM

Additional experiments are run to analyze the impact of
the Mmin and Mmax. Figure 2b and d show the best known
compliance c as a function of the CPU time and the number

184



Gradient-based optimization with principal component analysis for structural topology

CPU time [CPU s] 105

70

80

90

100

110

120

co
m

pl
ia

nc
e 

[N
 m

]

complete

3 = 2

3 = 4

3 = 8

CPU time [CPU s] 105

70

80

90

100

110

120

co
m

pl
ia

nc
e 

[N
 m

]

complete
min = 2 - max = 25
min = 8 - max = 30
min = 8 - max = 100

iteration number

70

80

90

100

110

120

co
m

pl
ia

nc
e 

[N
 m

]

complete

3 = 2

3 = 4

3 = 8

0 0.5 1 1.5 2 0 0.5 1 1.5 2

0 20 40 60 80 100 0 20 40 60 80 100

iteration number

70

80

90

100

110

120

co
m

pl
ia

nc
e 

[N
 m

]

complete
min = 2 - max = 25
min = 8 - max = 30
min = 8 - max = 100

Fig. 2 Evolution of the objective function c. a Best known solution c

as a function of the CPU time (truncated at 2 · 105 s) for ρ∗ = 0.5,
r = 5, Mmin = 2, and Mmax = 20 under different τ3 values; b
best known solution c as a function of the CPU time (truncated at
2 · 105 s) for ρ∗ = 0.5, r = 5, and τ3 = 2 under different Mmin and
Mmax values; c best known solution c as s function of the number of

iterations (truncated at 100 iterations) for ρ∗ = 0.5, r = 5, Mmin = 2,
and Mmax = 20 under different τ3 values; d best known solution c as
s function of the number of iterations truncated at 100 iterations) for
ρ∗ = 0.5, r = 5, and τ3 = 2 under different Mmin and Mmax values. A
red marker indicates the execution of a complete problem

of iterations, under different Mmin and Mmax values, for
the case with ρ∗ = 0.5, r = 5, and τ3 = 2. As longer
tracts with a constant best known c correspond to solutions
with unstable c over the iterations, we may notice that the
solution is far more stable when using a higher buffer size in
terms of both Mmin and Mmax. In particular, a higher Mmin

value avoids the destabilization of the solution in the very
first iterations of the algorithm (red line in the figure), but
at the price of a higher computational cost during the initial
phase when the buffer starts to collect the solutions to build
up the first reduced basis.

5 Discussions and conclusion

In this work, we propose an algorithm that makes the
gradient-based optimization proposed by Sigmund and
Maute (2013) for STO more computationally efficient.
In particular, we couple this gradient-based optimization

with the FPCA method to generate reduced basis, onto
which the equilibrium equations are projected at several
optimization iterations. Unlike few similar works available
in the literature, we exploit FPCA rather than PCA or
POD because FPCA appears to be generally faster and well
captures the behavior of the solution with less elements in
the basis (Alaimo et al. 2018). Moreover, to face the gap
between the solution reconstructed from the reduced space
and the exact solution of the complete problem, we have
decided to modify the problem by means of fcurr, which
allows us to avoid the additional calculations required to
compute corrective terms. These two innovations have made
our approach alternative with respect to the others proposed
in the literature and suitable for practical applications,
where computational time is the bottleneck.

The proposed algorithm has been tested on a large
problem with more than 4.8 million degrees of freedom,
much larger than the problems considered to test similar
approaches. Results confirm that the reduced FEA problem
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Fig. 3 Density maps for
ρ∗ = 0.3 and r = 5 (left
column), r = 10 (central
column) or r = 15 (right
column). Upper row shows the
maps from the proposed
algorithm without post-
processing with τ3 = 2 when c̃

plus 5% is reached; central row
shows the post-processed maps
after 5 supplementary complete
solutions; lower row shows the
maps obtained with no reduced
basis at 100 iterations. a r = 5,
algorithm. b r = 10, algorithm. c
r = 15, algorithm. d r = 5,
post-processing. e r = 10,
post-processing. f r=15,
post-processing. g r = 5,
complete. h r = 10, complete. i r
= 15, complete

is exploited in the 73–74% of the optimization iterations
(Fig. 2a and c), guaranteeing limited errors below τ1, τ2, and
τ3. This allows to reduce the STO computational times by
the 50.3% on average (with minimum 25.5% and maximum

68.8%) to reach c̃ plus 10% and by the 31.4% on average
(with minimum 7.2% and maximum 52.1%) to reach c̃ plus
5% in the experiments.

Fig. 4 Density maps for
ρ∗ = 0.5 and r = 5 (left
column), r = 10 (central
column) or r = 15 (right
column). Upper row shows the
maps from the proposed
algorithm without post-
processing with τ3 = 2 when c̃

plus 5% is reached; central row
shows the post-processed maps
after 5 supplementary complete
solutions; lower row shows the
maps obtained with no reduced
basis at 100 iterations. a r = 5,
algorithm. b r = 10, algorithm. c
r = 15, algorithm. d r = 5,
post-processing. e r = 10,
post-processing. f r = 15,
post-processing. g r = 5,
complete. h r = 10, complete. i r
= 15, complete
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Fig. 5 Density maps for
ρ∗ = 0.7 and r = 5 (left
column), r = 10 (central
column), or r = 15 (right
column). Upper row shows the
maps from the proposed
algorithm without post-
processing with τ3 = 2 when c̃

plus 5% is reached; central row
shows the post-processed maps
after 5 supplementary complete
solutions; lower row shows the
maps obtained with no reduced
basis at 100 iterations. a r =
5,algorithm. b r = 10,algorithm.
c r = 15,algorithm. d r = 5,
post-processing. e r = 10,
post-processing. f r = 15,
post-processing. g r = 5,
complete. h r = 10, complete. i r
= 15, complete

We remark that, while the uniqueness of the STO optimal
solution has been proved for p = 1 (Petersson 1999), ill-
posedness of the problem for higher p values (e.g., p = 3
used in this work) is well known (Bendsøe and Sigmund
1995; Tovar and Khandelwal 2010). Consequently, rather
than simply being an approximation, the maps obtained
using FPCA could represent optimal alternative solutions.

Table 2 Compliance c for different values of r , ρ∗, and τ3 = 2
before post-processing (from the proposed algorithm) and after post-
processing (with 5 supplementary complete solutions), with relative
variation after post-processing

ρ∗ r c before c after Relative

post- post- c

processing processing variation

0.3 5 97.82 97.03 −0.80%

10 98.76 97.84 −0.93%

15 97.31 97.01 −0.30%

0.5 5 67.54 66.73 −1.20%

10 67.57 66.77 −1.18%

15 67.28 66.39 −0.32%

0.7 5 54.35 54.18 −0.31%

10 55.27 54.71 −1.01%

15 55.42 54.89 −0.96%

In fact, by modifying the problem by means of fcurr, we do
not follow the same sequence of solutions followed without
reduced basis, allowing the procedure to move to other
regions where different minima can be found. Obviously,
we stopped the iterations when we reached a predefined gap
with respect to the reference compliance c̃ to pursue time
savings, but the evolution could lead to a different solution
even in the subsequent iterations.

We believe this is the reason why our density maps with
5% or 10% gap are practically equivalent to those with
reference c̃ and those at convergence when the gradient-
based STO is performed without reduced basis, although
they are only similar from a topological point of view. But,
by exploiting reduced basis through FPCA, these solutions
are obtained in a drastically lower CPU time.

As mentioned, our strategy to include fcurr has avoided
additional calculations to compute corrective terms to adapt
relation (6), as carried out in Gogu (2015). However, in
this way, the reduced problems generate solutions with an
increase of c in a few iterations. But, at the same time,
the compliance c is reduced so much in the next iteration
with a complete FEA solution to provide significant gain
in the overall computing time. Our future work will consist
in defining the best thresholds τ1, τ2, and τ3 in order to
optimize this trade-off. Furthermore, we will compare the
proposed strategy with fcurr with different alternatives in
which corrective terms are added in (6).
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From an application point of view, we will apply the
proposed algorithm to several practical cases. For example,
we will consider the computational gain when performing
a pre-screening of different layouts, such as orientations or
alternative features, while limiting a finer analysis without
reduced basis to the selected layout only. At the same time,
we can exploit the computational gain to explore different ini-
tializations of the optimization procedure in a reduced time.
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