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Abstract
In this paper we present a new procedure using the graph and heuristic based topology optimization in order to find layouts
for three-dimensional frame structures under crash loads. A three-dimensional graph describes the geometry and is used
to derive a finite element shell model. The model of the frame structure consists of different profiles with continuous
cross-sections. The ends of the profiles are currently rigidly connected. Each cross-section is defined by an individual two-
dimensional graph. After performing a simulation its results are used by competing heuristics to propose new topologies
for the frame structure. Most of these heuristics are derived from expert knowledge. Over several iterations, the goal is to
improve the structures mechanical behavior. Typical objectives are the minimization of the structural intrusion in a crash
scenario or the minimization of the maximal contact force between structural components. The presented method includes
topology optimization by heuristics and shape optimization respectively sizing by mathematical optimization algorithms.
The new flexible syntax for three- and two-dimensional graphs, the optimization process and the currently used heuristics
are described. The performance is demonstrated for two examples, each optimized twice with opposing objectives.

Keywords Crashworthiness · Heuristic algorithms · Topology optimization · Frame structures

1 Introduction

Crashworthiness requirements play an important role in the
process of vehicle development. Residual spaces have to be
preserved in a crash accident, while limiting acceleration
peaks to avoid injuries. This results in the need for stiff
structures on the one hand and energy absorbing structures
on the other hand. Most of the kinetic energy is absorbed
by deformation of metal structures. In addition, there
are further requirements regarding structural fatigue or
noise, vibration and harshness (NVH). Furthermore, the
mass of the vehicle should be decreased to increase the
range and efficiency of the car while leaving more light
weight capacity. This paper focuses on the crashworthiness
design process in the early concept phase. Numerical
simulations based on the explicit finite element methods
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help to evaluate the above goals in the developing process.
For layout finding, density-based topology optimization
methods are often integrated in the design processes, since
they can handle a vast amount of design variables through
evaluating gradient information coming directly from the
simulation (Bendsøe and Kikuchi 1988). For various
reasons, the approach is not applicable when designing
crashworthiness structures. The dynamic simulations with
time dependencies, contact and nonlinear deformations and
material properties prevent the usage of gradient based
optimization algorithms since the sensitivities regarding an
objective function cannot be analytically derived.

Current research activities focus on alternative optimiza-
tion methods. Weider et al. (2018, 2019) calculate the sensi-
tivity of, e.g., a displacement field not directly, but by an
adjoint sensitivity analysis. The sensitivities are determined
using a geometric substitute model consisting of a variable
shaped hole. The aim is to solve an adjoint equilibrium equa-
tion and apply material dependencies and partial integra-
tions in the time domain in order to receive inertia effects.

Ivarsson et al. (2018) use the adjoint method for cal-
culating nonlinear sensitivities by involving a finite strain
linear isotropic hardening material model. The sensitivities
are determined depending on the material model properties.
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Other research activities regarding topology optimization
of crash structures use simplified objectives and constraint
functions. Pedersen (2003, 2004) proposed a ground
structure approach for transient frame structures. The
topology optimization uses lattice beams with rectangular
cross-section to model crashworthiness structures. The
rectangular 2D beams can consider large displacements and
rotations with a plastic zone formulation.

The following provides some examples of state-of-the-
art topology optimization methods without mathematically
calculated gradients which are addressing highly nonlinear
problems.

The Hybrid Cellular Automata (HCA) (Patel et al. 2007,
2009) is a heuristic based method for crashworthiness
topology optimization and does not use gradients. Its goal is
to homogenize the distribution of internal energy densities
inside a structure. The entire design space is discretized with
solid finite elements. Each element represents an individual
cell with an artificial density. A cell can consist of a group
of elements. A derivate of the HCAmethod is commercially
implemented in the software LS-TASC.

Hybrid Cellular Automata for Thin-Walled Structures
(HCATWS) (Hunkeler 2013; Zeng and Duddeck 2017) is a
variation of the HCA. It uses a lattice grid structure made of
shell elements for the design space discretization.

The Equivalent Static Loads Method (ESL) (Choi and
Park 2002; Park 2011) uses another approach by converting
the nonlinear problem into multiple static problems. This
enables the use of gradient based optimization algorithms.
The optimization problem can contain responses that can
be extracted from linear static simulations. In a first step
a nonlinear finite element analysis is carried out and
the displacement fields are extracted. Then, the loads are
calculated, that would lead to the same deformation in
a linear finite element analysis. These equivalent static
loads can be created for different discrete time steps. The
optimization process is then carried out on the linear static
domain where the time steps are introduced as multiple
loading conditions. The optimum from the linear static
optimization is used as an initial design for the next iteration
to generate a new deformation field. The ESL method is
implemented in the commercial software solution Altair
OptiStruct together with Radioss as well as GENESIS
together with LS-DYNA.

The graph and heuristic based topology optimization
(GHT) (Ortmann and Schumacher 2013) is developed for
the optimization of profile structures with a constant cross-
section. The three-dimensional structure is described by a
two-dimensional mathematical graph for the cross-section
and an extrusion spline. It modifies the topology of the
cross-section to improve its mechanical behavior. The
method is able to handle highly nonlinear crash load cases.

The optimization problem is divided into two different
optimization loops. The outer loop performs topological
modifications on the graph domain and the inner loop eval-
uates the design by a single function call, a sizing optimiza-
tion (e.g., scaling the thickness) or a shape optimization.
The heuristics for the topological modifications are devel-
oped for the improvement of crash loaded structures and are
knowledge based rules.

Up to now only a two-dimensional graph description
is used. The implementation of a new three-dimensional
graph description, representing three-dimensional frame
structures, is presented in this paper. The new graph still
uses two-dimensional graphs to describe the cross-sections
of the profiles. Both graph descriptions use the same new
syntax. The finite element model of the frame is modelled
with shell elements and the profiles are currently connected
by rigid elements. The existing knowledge based heuristics
(Ortmann and Schumacher 2013) are adapted for the new
three-dimensional application.

In the following, the graph syntax of this new graph
and heuristic based topology optimization for 3D-structures
(GHT3D) is described. The derived shell model, the used
heuristics and the optimization process are lined out. Two
optimization examples are presented.

2 Optimization procedure

In the GHT multiple designs are calculated and evaluated
within an iteration of the outer optimization loop. Each
design proposal is generated by an individual heuristic. In
each iteration the Nh competing heuristics generate up to
Nh · Nke new designs for the Nke best designs from the previ-
ous iteration. This approach leads to a selective process.

In this paper, we use 6 different heuristics (Nh = 6) and
Nke = 5 best designs are transferred to the next iteration.
These option results in 30 new designs in each iteration All
proposals are evaluated by a finite element solver and sorted
according to their objective.

The procedure is terminated if no further improvements
towards the previous iteration can be achieved or when a
maximum number of iterations is reached.

3 Three-dimensional graph description

The mathematical graph is used to describe the layout of
a frame structure and the cross-sections of its profiles. It
is used for the manipulation of the geometry and to check
various geometrical constraints like minimum distances or
connection angles. For describing a frame structure a set
of vertices that defines the connection nodes and a set
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of edges are needed. Edges are established between two
vertices. The edges of the 3D graph represent profiles whose
cross-sections are defined by assigning an additional 2D
graph to them. A 2D graph only uses coordinates in the
two-dimensional space and its edges represent the walls of
the cross-section. The schematic relation between the graph
domain and the finite element domain is shown in Fig. 1.

Each of those graph elements are internally identified by
a unique identification number and a label that allows to
associate all the elements with its corresponding graph. A
type is used to allow different usages of the graph elements
in different applications. Additional keywords define the
properties of the graph element. Table 1 gives an overview
of the available keywords for an edge.

Edges are directed, this means that they start at the first
given vertex and end at the second one. For asymmetric
cross-sections structural differences may result when the
vertex-sequence of a 3D edge changes. The cross-section
is oriented normal to the extrusion axis with its local y-
axis turned in the direction of the given orientation vector
around its origin. The extrusion axis is aligned along the x-
axis of the local profile coordinate system. The extrusion
length of a profile is limited by its bounding vertices. To
avoid intersections and to leave space for the modeling of
potential joints, the profile can be shortened by specifying
an offset at the start and the end in the keyword length.

Using a graph to describe the geometry gives possibilities
inside the optimization process:

– The graph can be easily manipulated with internal meth-
ods.

– The graph can be used to check manufacturing con-
straints like minimum distances and connection angles
before simulating the designs.

– Not much work is needed to interpret the optimized
structures since they are based on geometries that can
be exported with an interface, e.g., to a STEP-file.

– The graph can be used for further structural opti-
mization with cross-sections like filament winding
profiles (Schneider et al. 2019), rib layouts (Schneider
and Schumacher 2018) or flange structures (Link et al.
2019).

Fig. 1 The visualization of a 3D graph with a 2D graph cross-section
(left) and a derived finite element model (right)

4 Derived finite element model

The finite element models are created by an internal
scheme that uses the graph and additional information like
the desired element length from a configuration file to
automatically create a finite element model. Alternatively, a
tcl-script can be created that translates the necessary steps
in commands to allow their execution in a commercially
available preprocessor. In a first step, the profiles are created
by extruding their cross-section with the corresponding
length along the z-axis and meshing them. Components,
properties and materials are created and assigned to the
created elements. Through using the label of the graph
element in the part name, the finite element results can later
be associated with the correct graph element. All the profiles
are then moved to the position defined by the 3D edge,
considering the given orientation point or orientation vector.
The whole model is generated without any penetrations.

After that the profiles are connected with each other and
this is done by a node to node connection. Currently, only
rigid bodies can be used and this allows to connect the edges
at their ends without penetrations. More realistic connection
nodes can be implemented in the future. In the last step the
input deck is written to a file, so that it can be imported by
the remaining input decks specifying the load case, material
data and other components. When creating the load case,
it is necessary to factor in, that new parts will be created
and have to be included, e.g., in contacts or that constraints
have to be defined for the newly created structure. Creating
groups that exclude the fixed parts or box selections can help
setting up the finite element model.

5 Developed heuristics for the new
application

Heuristics are rule based procedures and generate new
design proposals on the graph domain. The new three-
dimensional graph framework allows topology changes
while fulfilling geometrical constraints. Generally, the
heuristics can create arbitrary graph structures consisting
of connected straight profiles. The geometry is checked
by manufacturing constraints. Every heuristic deals with
certain mechanical behaviors like buckling. In a first
step, the phenomena are detected by analyzing the crash
simulation data. Then, a change of the geometry is
proposed, that should lead to an improved mechanical
behavior. Velocities, displacements and internal energies
from the simulation data are used for the evaluation.
The heuristics partly act in opposition to each other in a
competing process. The heuristics are not directly related
to a certain objective but try to improve their mechanical
behavior in a general manner. The original heuristics for 2D
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Table 1 Keywords for graph
element “EDGE” Keyword Possible properties

vertex Vertex IDs between which a connection should be established

type ExtrudedP rof ile: represents a profile (3D), name of 2D graph

is stated; ExtrudedWall: represents a wall in a 2D cross-section

length (2D/3D) Two positions between the start and end vertex, where

the extrusion of the profile/wall should begin and end

orientationvector Orientation of the cross-section around the 3D edge axis;

rotation axis of the cross-section is the local coordinate origin

f ix (2D/3D) Allows or forbids geometrical changes of the edge during the optimization

outer (2D/3D) Indicates that an edge is located at the outer side

material (2D) Identification number of the material that should be used

profile structures that change the cross-section are presented
in Ortmann and Schumacher (2013). Based on the new
requirements and the gained knowledge, the heuristics are
further developed for the optimization of three-dimensional
frame structures. In addition to the competing heuristics,
some heuristics are defined, which, e.g., scale the thickness
or straighten the graph and might be activated for all
proposals. The evaluation of the simulation data for this new
application is revised and enhanced to work in the three-
dimensional design space. The consideration of buckling for
example is no longer limited to a single wall (2D edge).
Now, one of the heuristics analyzes the lateral deformation
of the entire profile when a frame layout is optimized. In the
following the used heuristics are described.

5.1 Support fast deforming edges

In a crash scenario it is possible that a single 3D edge
buckles. It is useful to check buckling by detecting fast
deforming edges and try to support the areas of instability.
Figure 2 shows a schematic sequence on how edges could be
supported due to fast deformations. The figure shows how a
single new edge is generated. To detect buckling, the profile
is divided in several sections along the extrusion axis and for
each section the center point is calculated. The buckling in
lateral direction is determined by high velocity differences
due to fast deformations orthogonally to the 3D edge axis.

(a) (b) (c)

Fig. 2 Scheme for the heuristic Support Fast Def orming Edges.
Initial design (a). Fast deformation under loads (b). New structure with
supported edge (c)

Figure 3 shows the evaluation scheme between the
timesteps t0 and t1 for an exemplary 3D edge. The global
coordinates are defined with x, y, z and the local coordinates
are ζ , ξ , η. The edge axis is aligned in the direction of η.
Only velocities in lateral directions (ζ ξ -plane) from each
time step are used to calculate a deformation index. The
axial crushing velocities are not taken into account in order
to avoid distorting the values. For the lateral velocities it
is necessary to transform the deformation steps over all
timesteps T = {t0, t1, ..., tnt } into a local coordinate system.

The set of the 3D edges is I = {i1, i2, ..., ini
} and the

center points are J = {j1, j2, ..., jm} for the edge i andNf e

is the number of finite element nodes. �p (t)
j is the location

of a center point. The deformation index for buckling αi for
edge i is based on Ortmann and Schumacher (2014) and
calculated by:

αi = 1

(N2
f e − Nf e) · 1

2 |T |
∑

t∈T

∑

k∈J

∑

j∈J

|�v (t)
j -�v (t)

k |2
| �p (t)

j − �p (t)
k |

(1)

whereby k �= j and the resulting lateral velocity vector vj
(t)

of a point j at time t contains the two velocities in ζ and ξ

direction:

�v (t)
j =

[
v

(t)
ζ j

v
(t)
ξ j

]
(2)

Fig. 3 Evaluation scheme for buckling in lateral direction based on
weighted middle points of a 3D edge
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In addition, a normalization with the average deformation
index of all edges is applied:

α̃i = αi

1
|I | · ∑

j∈I aj

(3)

The heuristic tries to support the edge with the largest value
in the middle by connecting it orthogonally with a new
edge towards another already existing edge. Furthermore,
the first point that was found is used. If it is not possible due
to manufacturing constraints for example, the next possible
point is used.

5.2 Use deformation space tension and compression

The heuristics try to detect parts of the structure that
get closer towards each other or increase their distance
during the simulation. Introducing a new edge between
them can lead to a higher energy absorption resulting from
its deformation. It can increase the stability of the other
two edges or it can transfer the deformation and energy
absorption to previously inactive parts of the structure. This
two cases lead to tension or compression conditions in
the new edge. For evaluation, the same geometrical center
points are used as in Support Fast Def orming Edges.
The schemes are shown in Figs. 4 and 5. In essence the
heuristics check the distances d

(t)
jk between the center points

�p (t)
j and �p (t)

k , j ∈ J , k ∈ K from different 3D edges over
the time t by:

d
(t)
jk = | �p (t)

j - �p (t)
k | (4)

Furthermore the criteria dcom for compression and dten for
tension are calculated whereby d

(t0)
jk is the distance from the

initial time step:

dcom = min(d (t)
jk -d

(t0)
jk ), t ∈ {T , t �= t0}, k ∈ K, j ∈ J (5)

dten = max(d (t)
jk -d

(t0)
jk ), t ∈ {T , t �= t0}, k ∈ K, j ∈ J (6)

It is necessary to check all edges with each other. At the
end two edges are found for each heuristic which should be
supported at the points j , k and thus the location with the
biggest increase or decrease of distance.

(a) (b) (c)

Fig. 4 Scheme for heuristic Use Deformation Space Compression.
Initial design (a). Case of bending (b). New structure with compression
loaded edge (c)

(a) (b) (c)

Fig. 5 Scheme for the heuristic Use Def ormation Space T ension.
Initial design (a). Case of bending (b). New structure with tension
loaded edge (c)

5.3 Split long edges

The idea of this heuristic is to reduce the chance of buckling
due to reducing the length of a structural element. After
the edges have been sorted according to their length, the
longest edge is connected through the shortest distance
towards another long edge. No simulation data is used for
this heuristic.

Long profiles have a high length to width ratio. The
buckling tendency depends on this ratio so that shortening
the lengths also reduces the buckling tendency (see Fig. 6).

5.4 Balancing energy density and delete needless
edges

Large deformations lead to high internal energies. The
heuristic Balancing Energy Density tries to connect
edges with a high energy density to edges with a low energy
density to homogenize the internal energy inside of the
frame structure (see Fig. 7). The internal energy density
EDi is related to the initial volume Vi of a single edge i and
is calculated by:

EDi =
max

( ∑
w∈W

E
(t)
i,w

)

V
(t0)

i

, t ∈ {T , t �= t0}, i ∈ I (7)

whereby E
(t)
i,w is the internal energy for a single cross-

section wall w in time step t of the 3D edge i. Here
the energies for each time step are summed up in order
to consider between various events of deformation. Often
in the 3D case there are more than one deformation
scenarios happening over the length of an edge over time.

(a) (b)

Fig. 6 Scheme for the heuristic Split Long Edges. Initial design (a).
New edge between long edges (b)
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(a) (b) (c)

Fig. 7 Scheme for the heuristic Balancing Energy Density. Initial
design (a). Case of high internal energy at the top. (b) Design with a
new edge (c)

Furthermore, the maximum sum is divided by the volume of
the whole 3D edge i.

The heuristic evaluates the energy density differences
between the 3D edges i, u ∈ I and i �= u which can be
determined as:

�EDiu = |EDi-EDu| (8)

In addition there is a division by the mean value of
differences i, u:

ẼDiu = �EDiu

1
N�ED

∑
�EDiu

(9)

where N�ED is the number of density energy differences.
As Balancing Energy Density, the heuristic Delete

Needless Edges is also based on the internal energy
density. The underlying idea is, that if the maximum internal
energy of an edge is small compared to other edges, it can
be removed from the structure without affecting it. Ideally
it has no effect on the whole mechanical behavior of the
structure. The energy density is normalized by the mean
value of the maximum internal energy density from equation
(7) with:

ẼDi = EDi

1
|I |

∑
EDi

(10)

The edge with the lowest value is deleted from the
structure.

5.5 Scale wall thicknesses and straighten graph

The heuristic Scale Wall T hicknesses and Straighten

Graph are passive and non-competing in the optimization
process. The heuristic Scale Wall T hicknesses (see
Fig. 8) scales the wall thicknesses after a topological
modification towards the previous mass in order to prevent
an objective jump between iterations. Furthermore, the
heuristic enables to create a mass equality constraint for the
optimization. Due to the creation of new 3D edges inside
of the structure, the mass of the frame structure would
actually increase. By using the wall thickness scaling factor
k with the desired target mass mtarget and the current mass

(a) (b)

Fig. 8 Scheme for heuristic Scale Wall T hicknesses. Initial design
(a). Scaled wall thickness (b)

mcurrent the new wall thicknesses can be calculated by
multiplying the old wall thickness with the factor k:

k = mtarget-mf ixed

mcurrent-mf ixed

(11)

As a result of different thicknesses between 3D edges
the primal thickness ratio should be retained. Furthermore,
upper and lower bounds for the thickness can be defined.
If the current thickness of an edge or wall is already at the
allowed bound, its mass is fixed and the remaining walls
have to be further scaled. The heuristic Straighten Graph

(see Fig. 9) searches all edge connections with only two
connected edges and a connection angle > 160◦. If such a
connection is found, the heuristic substitutes both edges by a
single edge and deletes the vertex at their former connection
point. The process is necessary as a supplement for the
heuristic Delete Needless Edges to avoid free edges.

6 Optimization workflow

The optimization process consists of two nested optimiza-
tion loops. In this combination it is possible to execute the
optimization strategy in a modular setup. The topological
modification is performed in the outer optimization loop
and the size and/or shape optimization in the inner loop
(Fig. 10).

The GHT3D can start with a single function call to
calculate the initial design or it can start with a size and/or
shape optimization with multiple function calls to adjust
the initial design to the given optimization problem. If the
objective cannot be improved any further in the outer loop,
a detailed size and shape optimization of the best design can
be conducted to make use of a greater design freedom.

(a) (b)

Fig. 9 Scheme for heuristic Straighten Graph. Initial design (a).
Straightened two edges (b)
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Fig. 10 GHT3D optimization flowchart. The process consists of two nested optimization loops. In the outer loop the topological modification and
in the inner loop the size and/or shape optimization is performed. Internal meshing tool creates 3D shell element simulation models based on the
3D graph

7 Additional graph functions

As mentioned earlier, it is easy to consider geometric
constraints on the graph domain. For example the length
of edges can be calculated as the distance between the
bounding vertices. A connection angle between edges can
also be easily calculated by using the corresponding vectors
of the edges. It can be important to generate symmetric
frame structures in order to lead the results to a better

design. With symmetry conditions it is also possible to
reduce the number of shape and size variables in the inner
optimization loop which is beneficial for most optimization
algorithms. The number of design variables should be as
small as possible. The number of size and shape variables
depends on the number of structural elements, the boundary
and symmetry conditions and the chosen optimization
options. The implementation of the symmetry is achieved
by mirroring a part of the graph by a given plane. In
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Table 2 Material card — LS-DYNA: MAT PIECEWISE LINEAR PLASTICITY (mm, t, s, N)

Mid rho E PR sigy

1 2.7e−9 70,000 0.33 311.0

eps1 eps2 eps3 eps4 eps5 eps6 eps7 eps8

0.0 0.0034373 0.0085932 0.016327 0.027928 0.045329 0.071431 0.11058

es1 es2 es3 es4 es5 es6 es7 es8

311.0 316.64 324.52 335.2 348.96 365.52 383.7 401.65

(a)

(b)

Fig. 11 Initial frame structure with quadratic cross-sections (12 × 12
mm) (a). Impacted by a rigid pole (b)

(a) (b) (c)

Fig. 12 Initial frame impacted by rigid pole: Initial state at t0 =
0.000 s (a) Deformed state at t = 0.015s b Deformed state at t =
0.030 s c

Table 3 Optimization config — objective: Minimize the intrusion of
the pole

Constraints bounds

Wall thickness 0.8 mm ≤ x ≤ 3.5 mm

Edge length ≥ 35.0 mm

Mass constraint = 500.0 g

Connection angle ≥ 15.0◦

Edge distances ≥ 35.0 mm

Symmetric line up xy-plane

the three-dimensional application symmetry can be defined
along the XY , YZ and ZX plane, which leads to seven
possible combinations for the symmetry condition. The size
variables are symmetric as well.

The thickness of thin-walled structures has a large
influence on the structural behavior. Three options are
available to define the thickness variables. The whole graph
can have the same thickness or each 3D edge has an
individual thickness or even each wall of each edge has its
own thickness.

Another kind of design variables exists for the shape of
the frame. The shape variables are automatically generated
by iteratively growing boundary boxes in Cartesian space to
check the explicit shape constraints. It is based on the idea of
the growing two-dimensional squared areas as implemented
in the primal GHT2D (Ortmann and Schumacher 2013). If
a 3D vertex is not limited by outer geometric constraints it
generates three shape variables.

8 Application example

In this section we demonstrate the performance of the
new three-dimensional layout optimization scheme. A cubic
frame structure with a dimension of 300 mm ×200 mm
×200 mm between the vertices and two different load
cases is modelled with shell elements. For each load case
two optimizations with different objectives are carried out.
Geometric constraints are added on the graph domain.
An additional displacement constraint is active in the last
iteration to allow starting from a non-feasible design.
The optimization strategy starts with a shape optimization
followed by automatic topological graph modifications
through heuristics and ends with a detailed size optimization
of the final draft. The shape design space is constrained
by the outer dimension of the 3D graph. The mass of
the cubic structure remains constant at 500 g in all
iterations. The finite element simulations are calculated
with the explicit solver LS-DYNA. For the size and shape
optimization an standard SRSM algorithm from LS-OPT
in the inner optimization loop with 600 function calls is
used. Further constraints are described in the following
application examples. The tables with the iterations show
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Fig. 13 Example 8.1.1, minimize the intrusion of the rigid pole, path towards the optimized design between iteration 0 and iteration 6 on graph
domain

the designs that result in the best design. The used material
card for aluminum behavior is described in Table 2. The
required computing time per function call is approximately
10–15 min on 16 CPUs, depending on the complexity of the
model.

8.1 Rigid pole loadcase

In the first load case, an aluminum frame is impacted by a
rigid pole (Fig. 11b). The rigid pole has an initial velocity
of 10 m/s in z-direction and a mass of 9 kg. Two edges near

67



F. Beyer et al.

Table 4 Optimization history — rigid pole model: Minimize the intru-
sion

Iteration (-) Objective Action (-) Function

(mm) calls (-)

initial design 174.34 – 1

0 30.45 6 shape variables 600

1 25.29 Heuristic graph manipulation 6

2 22.88 Heuristic graph manipulation 28

3 20.71 Heuristic graph manipulation 26

4 20.42 Heuristic graph manipulation 19

5 19.72 Heuristic graph manipulation 24

6 15.60 15 size variables 618

(a) (b) (c)

Fig. 14 Optimum of the rigid pole model: Minimize the intrusion.
Initial state at t0 = 0.000 s (a). Deformed state at t = 0.003 s (b).
Deformed state at t = 0.010 s (c)

(a) (b) (c)

z
yx

Fig. 15 Optimum of rigid pole model: Minimize the contact force.
Initial state at t0 = 0.000 s (a). Deformed state at t = 0.010 s (b).
Deformed state at t = 0.030 s (c)

Table 5 Optimization
history — rigid pole model:
Minimize the contact force

Iteration (-) Objective (N) Displacement (mm) Action (-) Function calls (-)

initial design 10,015 174.34 – 1

0 8420 128.34 6 shape variables 600

1 8270 129.84 Heuristic graph manipulation 6

2 8169 98.88 Heuristic graph manipulation 28

3 7746 137.79 Heuristic graph manipulation 26

4 7447 137.79 Heuristic graph manipulation 19

5 6751 128.03 Heuristic graph manipulation 24

6 6733 128.48 Heuristic graph manipulation 24

7 6732 129.23 Heuristic graph manipulation 24

8 5387 149.99 19 size variables 627

Fig. 16 Initial frame structure with quadratic cross-sections (12 × 12
mm) (a). Impacted by a rigid wall (b)

the SPCs are declared as “fix” (Fig. 11) to prevent them
from being deleted. Furthermore, they are excluded from
shape optimization. The resulting mechanical loads consist
mostly of bending with plastic deformation. Each edge has
the same cross-section definition (Fig. 11a) with an initial
wall thickness of 1.7 mm. The frame has fixed boundary
conditions at the marked corners (Fig. 11b) in all degrees of
freedom. The deformation of the initial design is shown in
Fig. 12.

8.1.1 Objective: Minimize the intrusion of the pole

The first optimization is carried out with the objective of
minimizing the intrusion of the rigid pole whereby the
gravity point is used. The impact takes place in 0.040 s.
The initial structure has an intrusion of 174 mm. The
optimization objective and the constraints are shown in
Table 3. The best designs through the optimization are
shown in Fig. 13. It shows the path to the best design
between iteration 0 and iteration 6 on the graph domain.
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(a) (b) (c)

z
y x

Fig. 17 Initial frame impacted by rigid wall: Initial state at t0 = 0.000 s
a Deformed state at t = 0.020 s b Deformed state at t = 0.050 s c

Table 6 Optimization history— rigid wall model: Minimize the intrusion

Iteration (-) Objective Action (-) Function

(mm) calls (-)

initial design 209.84 – 1

0 116.53 3 shape variables 600

1 104.36 Heuristic graph manipulation 6

2 82.79 Heuristic graph manipulation 23

3 70.08 Heuristic graph manipulation 19

4 70.50 Heuristic graph manipulation 19

5 64.68 Heuristic graph manipulation 18

6 49.25 Heuristic graph manipulation 15

7 49.61 Heuristic graph manipulation 15

8 45.87 Heuristic graph manipulation 18

9 45.74 Heuristic graph manipulation 12

10 44.18 15 size variables 615

(a) (b) (b)

Fig. 18 Optimum of rigid wall model: Minimize the intrusion. Initial
state at t0 = 0.000 s (a). Deformed state at t = 0.010 s (b). Deformed
state at t = 0.020 s (c)

Table 7 Optimization
history — rigid wall model:
Minimize the contact force

Iteration (-) Objective (N) Displacement (mm) Action (-) Function calls (-)

initial design 89,856 209.84 - 1

0 89,856 209.84 3 shape variables 120

1 76,460 156.56 Heuristic graph manipulation 6

2 66,871 152.68 Heuristic graph manipulation 27

3 54,945 134.16 Heuristic graph manipulation 30

4 53,015 131.22 Heuristic graph manipulation 30

5 53,015 127.31 Heuristic graph manipulation 16

6 52,634 129.25 8 size variables 29

This picture only shows six from the up to 30 possible
designs generated in each iteration. The procedure is started
with a shape optimization to adjust the initial geometry to
the load situation. The initial layout has a huge influence on
the outcome of the optimization. Only six shape variables
are defined for the initial design due to a symmetric line up
and single point constraints in the finite element model on
one side. As Table 4 shows, the initial shape optimization
has a significant influence on the objective function. In
the following iterations the heuristics continue to lower the
intrusion while retaining a constant mass.

In the first iterations of heuristic manipulations there are
completely new different drafts with an improvement of the
objective. The heuristic modification stops after iteration 5
because no further improvement can be achieved. The final
draft as a finite element shell model with deformation is
shown in Fig. 14 and the pole is already moving back at
0.010 s.

The most obvious change in the first iteration is the
reduction to a triangular structure. In addition, the structure
is shortened so that the point of impact is at the outermost
border of the structure. The structure also becomes more
slender on this end. Afterwards, the heuristics create new
edges in a symmetric line up to support the profiles and
lower the intrusion. Furthermore, two edges are removed
near the single point constraints in iteration two and five.
This allows to redistribute the mass to other profiles. Each
profile has its own wall thickness. In example 8.1.1, due
to the symmetric line up the amount results in 15 design
variables. The objective is lowered by 20% from 19.72 to
15.60 mm during the sizing optimization, but only accounts
for 2.36% in the entire process.

8.1.2 Objective: Minimize the contact force of the pole

In the second optimization the same constraints are used
as in the previous optimization. An opposing objective is
set to lower the maximum occurring contact force between
the pole and the frame structure. Figure 15 shows the
deformation over time of the optimized geometry.
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In order to guarantee, that the pole is not flying
through the structure without resistance, its displacement
is constrained to 150 mm in the optimization problem,
so that the frame structure has to stop it. Table 5 shows
the optimization history with the contact force during the
optimization. In the last iteration, 19 variables are used for
the sizing of the wall thicknesses. After 601 function calls,
the allowed displacement of 150 mm is completely utilized.
All in all, the maximum contact force is lowered by 46.2%
during the optimization. The results show that the outer
front structure is narrowed. In seven iterations the heuristics
introduced inner structures to the side and the bottom. Near
the point of impact the structure is rather soft. In addition,
the created edges near the single point constraints generate
enough stiffness to meet the displacement constraint. The
force-displacement curve with a comparison of the initial
design and the final draft is presented in Fig. 21a.

8.2 Rigid wall loadcase

In the second load case the pole is replaced by a rigid wall
normal to the x-axis moving in negative x-direction. The
frame structure undergoes large deformations during the
compression. The cross-sections are equal to those in the
previous application. The initial velocity of the rigid wall
is 10 m/s and it has a mass of 65 kg. Two optimizations
with separate objectives are started. Figure 16 shows the
principle load case. Figure 17 shows the deformation over
time of the initial geometry. The rigid wall hits the front of
the frame structure in the negative x-axis direction. Due to
the mass and initial velocity, the rigid wall has a particular
momentum that has to be absorbed by the frame. The
simulation time is limited to 0.050 s. The initial design
cannot stop the rigid wall before the simulation ends. The
goal is to change the structure to minimize the displacement
or the contact force of the rigid wall. The rigid body
elements lead to deformations with tangent conditions at the
connection corners.

8.2.1 Objective: Minimize the intrusion of rigid wall

A double symmetry condition for this objective is defined
for the geometry along the xy and zx plane. The remaining
constraints are the same as in the previous optimization
examples. The optimization runs over 10 iterations and
detailed information are outlined in Table 6. Only 3 design
variables are defined in the first iteration due to the double
symmetry condition. As a result, it is possible to reduce the
intrusion by 44% in the first iteration.

In iteration 7 there is a slight increase of the objective
value. The optimization does not stop because of other
parallel drafts in the same iteration that still improved.
The heuristic modification stops because no further

(a)

(b)

(c)

Fig. 19 Force-displacement curve comparison of the initial design and
final draft of application 8.1.2 (a), application example 8.2.2 (b), and
application example 8.2.3 (c)

improvement can be achieved after 9 iterations. The number
of function calls during the heuristic graph manipulation
shows the amount of simultaneously calculated drafts.
Figure 18 shows the final draft for the minimization of the
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Table 8 Optimization history
rigid wall model: Minimize the
contact force, changed strategy

Iteration (-) Objective (N) Displacement (mm) Action (-) Function calls (-)

initial design 89 856.21 209.84 - 1

1 76 460.10 156.56 Heuristic graph manipulation 6

2 66 871.04 152.68 Heuristic graph manipulation 27

3 54 945.14 134.16 Heuristic graph manipulation 30

4 53 885.71 131.22 Heuristic graph manipulation 30

5 53 015.13 127.31 Heuristic graph manipulation 16

6 30 869.14 146.40 15 shape variables 601

7 30 607.32 149.72 19 size variables 608

intrusion of the rigid wall. The huge reduction of intrusion in
the first iteration is caused by the change of the outer shape
towards a trapezoidal structure. It increases the stiffness
and lowers the intrusion. New edges are introduced by
the heuristics while the wall thickness decreases to ensure
a constant mass. Most edges are created at the bottom
and at the top side with a centered connection through
the middle plane to protect against buckling. Two edges
between the single point constraints are removed, since they
have no influence on the structural behavior. The mass of the
removed edges is distributed among the other edges. At time
0.020 s (Fig. 18c) the four short edges near the fixed corners
undergo severe deformation and absorb much of the energy.
These short edges cannot be supported any further because
it would violate the minimum edge length constraint.

8.2.2 Objective: Minimize the contact force of rigid wall

The process for the force minimization runs through six itera-
tions and is shown in Table 7 in detail. In the first iteration it
is not possible to improve the objective value with the given
shape variables. If the outer shape changes to a trapezoid it
would get stiffer and increase the contact force.

The optimization runs further with the initial design and
improves the objective by activating the heuristics. After
five iterations the heuristic manipulation stops due to all
walls reaching the lower wall thicknesses bound.

(a) (b) (c)

Fig. 20 Optimum of rigid wall model, Table 7: Minimize the contact
force. Initial state at t0 = 0.000 s (a). Deformed state at t = 0.010 s
(b). Deformed state at t = 0.040 s (c)

The entire frame is with 0.804 mm very close to the
lower limit of the wall thickness. As a result, the thickness
optimization has nearly no room for improvements.

The shape variables are located at the connection nodes
and, as a result, there are more variables in higher iterations
with a higher number of edges. With this knowledge
in mind, another approach could be to move the shape
optimization to the end of the GHT3D process. Figure 19
shows the deformation of the final draft.

In the following, a modified variant of the last iteration
is shown. The heuristics create the same structure as in the
previous example (Table 8). With an additional subsequent
shape optimization with 15 variables it is possible to
reduce the objective further between iteration five and six.
The deformation of the final design is shown in Fig. 20.
In the last iteration the thickness is sized by using 10
design variables. The shape and size optimizations are
separated in order to keep the amount of design variables
in each optimization small. This draft does not violate
any constraint. The force-displacement curve is presented
in Fig. 21c and shows a steady energy absorption within
150 mm displacement. With this set up it is possible to use
the allowed displacement of the rigid wall and reduce the
objective by 66%. In the final draft there are less straight
parts which create less stiffness and smaller force peaks.
The rigid wall stops before 150 mm. Most of the structural
elements are involved in the deformation.

(a) (b) (c)

Fig. 21 Optimum of rigid wall model, Table 8: Minimize the contact
force. Initial state at t0 = 0.000 s (a). Deformed state at t = 0.010 s
(b). Deformed state at t = 0.040 s (c)

71



F. Beyer et al.

9 Conclusion

A new graph and heuristic based optimization approach is
proposed for finding three-dimensional layouts for individ-
ual crashworthiness load cases. The procedure is explained
and demonstrated with two examples, each with two differ-
ent objectives. In addition, the method can be started with
different strategies. The presented heuristics are derived
from the primal GHT2D, which uses a two-dimensional
graph to optimize cross-sections. Further research on exist-
ing and new heuristics for this three-dimensional case will
be needed in the future. Furthermore, different problem for-
mulations might need their own strategy for finding good
designs. In general, it could be a strategy to come from
a simple structure which becomes more detailed in every
iteration. It should be clear that the topology, shape and
thickness affect the structural behavior and should be con-
sidered. Until now the heuristics cannot perform shape
changes like the shortening of the frame in the first example,
but in combination with the size- and shape optimization it
is possible to achieve enormous improvements for the given
load cases.

One of the objectives of the optimizations is absorbing
energy for a given displacement without force peaks, but
in the finite element models the connection nodes are
represented by rigid body elements that generate an artificial
stiffness. This leads to a non-physical deformation behavior.
One of the next development steps of the GHT3D should be
the realization of more adequate connection elements in the
finite element models.

At this time, we have not performed any investigations
on robustness yet. The consideration of robustness is
particularly important when optimizing the behavior of
nonlinear crash models. It is possible to carry out the
confidences of robustness. However, the determination of
the confidences is very time consuming. Robust design
processes adapted to our task must be developed here.

Due to the dynamic changing loads and a lot of
phenomena for absorbing kinetic energies like buckling, it
is important to find not only straight connections between
loads and boundary conditions. New heuristics might be
developed to address this aspects.
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