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Abstract
This paper introduces a novel methodology for the optimisation of resonant frequencies in three-dimensional lattice
structures. The method uses a multiscale approach in which the homogenised material properties of the lattice unit cell are
defined by the spatially varying lattice parameters. Material properties derived from precomputed simulations of the small
scale lattice are projected onto response surfaces, thereby describing the large-scale metamaterial properties as polynomial
functions of the small-scale parameters. Resonant frequencies and mode shapes are obtained through the eigenvalue analysis
of the large-scale finite element model which provides the basis for deriving the frequency sensitivities. Frequency tailoring
is achieved by imposing constraints on the resonant frequency for a compliance minimisation optimisation. A sorting method
based on the Modal Assurance Criterion allows for specific mode shapes to be optimised whilst simultaneously reducing
the impact of localised modes on the optimisation. Three cases of frequency constraints are investigated and compared
with an unconstrained optimisation to demonstrate the algorithms applicability. The results show that the optimisation is
capable of handling strict frequency constraints and with the use of the modal tracking can even alter the original ordering
of the resonant mode shapes. Frequency tailoring allows for improved functionality of compliance-minimised aerospace
components by avoiding resonant frequencies and hence dynamic stresses.

Keywords Homogenisation · Heterogeneous multiscale methods · Resonant frequency optimisation · Lattice · Additive
manufacturing

1 Introduction

Lightweight structures that are able to mitigate or avoid
dynamic loading are a key area of development within
the aerospace industry. Failure caused by resonance is
of particular interest in areas such as engine design and
other applications involving vibration or shock loading.
The design of lightweight structures capable of avoiding
resonance is the primary focus of this work and is achieved
using a novel, multiscale lattice-based method of structural
optimisation.

Responsible Editor: Axel Schumacher

� Morgan Nightingale
mn2814@ic.ac.uk

1 Department of Aeronautics, Imperial College London,
London, UK

Previous research into the optimisation of resonant
frequencies has resulted in several methods being adopted
within the industry, such as topology optimisation based
on the Solid Isotropic Material with Penalisation (SIMP)
(Bendsøe 1989) and Bi-directional Evolutionary Structural
Optimisation (BESO) methodologies (Huang et al. 2009;
Sivapuram and Picelli 2018). Resonant frequencies have
also been optimised for using a level set shape and topology
optimisation method (Xia et al. 2011; Xu et al. 2019).

A common issue associated with the SIMP approach
when resonance is considered is the occurrence of localised
modes corresponding to artificially low natural frequencies.
These localised modes occur in regions of low-density
material where the ratio between the penalised stiffness and
the unpenalised mass is very small. The SIMP method has
previously been adapted for solution of dynamic problems
by adapting the formulations of both the stiffness and mass
at these low densities (Pedersen 2000; Huang et al. 2009).
However, the resulting designs may not be representative of
a manufacturable structure and often still require heuristic
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post-processing, causing the resulting structures to be sub-
optimal (Xu et al. 2019).

An alternative approach to topology optimisation which
bypasses these issues is through the use of multi-scaled
metamaterials. A metamaterial is one which exhibits
different properties from its constituent base material.
It achieves this through micro-architectures which allow
for radically different properties to the bulk material.
Vicente et al. (2016) implemented a multiscale BESO
method in conjunction with metamaterials to optimise
for dynamic properties using a uniform micro-scale
architecture, potentially limiting the range of structures
attainable by the macro-optimisation.

The objective of the work described in this paper
is to produce varying lattice structures with functionally
graded material properties capable of attaining specific
natural frequencies. This is achieved using a two-scale
approach where the microscale metamaterial properties of
a parameterised and periodic lattice cell are computed
and arranged to generate a continuous response surface
of material properties. These material properties are then
used as the basis for a structural optimisation algorithm
implementing the small-scale lattice parameters as the large-
scale design variables. The scales are coupled by the
homogenised material properties of the lattice cell which
are explicit functions of the small-scale parameters. This
method avoids the issue of localised modes due to the lack
of penalisation which causes the imbalance between the
mass and stiffness of an element.

The small-scale formulation was introduced by Ime-
diegwu et al. (2019) and features a parameterised, peri-
odic lattice structure with 7 design variables representing
the thickness of cylindrical members. These parameters
are utilised in the macroscale optimisation as the con-
trol variables, providing a direct link between the macro-
and microscales. This parameterisation allows the lattices
to exhibit a wide range of metamaterial properties whilst
maintaining an easily defined structure for manufacturing.
Murphy et al. (2019) expanded this work by introducing
a concurrent coupling of scales. This approach is capa-
ble of computing new microscale lattice permutations and
their homogeneous properties as and when they are needed
by the large-scale optimisation. This negates the need for
a computationally expensive material database to be fully
populated.

Recent works by Schumacher et al. (2015), Zhu et al.
(2017), and Xia and Breitkopf (2018) all feature a simi-
lar approach of relating the required structural properties
to corresponding micro-architectures. The advantage of the
current work is provided by the use of a parameterised
micro-architecture having parameters which are the control

variables in the macro-optimisation, as opposed to optimis-
ing for material properties and later assigning corresponding
metamaterials to the structure.

The additional features built upon from the work of Ime-
diegwu et al. (2019) are the investigation into the dynamic
properties of the resulting structures and incorporating them
into the constraints of the optimisation process. This is
achieved by specifying a required range within which the
natural frequency must reside. Frequency tracking is incor-
porated into the algorithm to improve control over the
desired frequencies as well as to ensure localised modes
do not interfere with the optimisation. Several examples are
provided to illustrate the effectiveness of the algorithm.

2Method

The multiscale approach relies on the separation of the
problem into the two distinct scales. The microscale
involves relating the micro-architecture of the lattice unit
cell into homogenised metamaterial properties whilst the
macroscale utilises these material properties in the structural
and dynamic finite element simulations used to solve the
optimisation problem.

2.1 Microscale model

The small lattice is based on the parameterization used
by Imediegwu et al. (2019), shown in Fig. 1. It is
characterised by seven cylindrical members orientated in
a face-centred cubic arrangement. Members labelled 1 to
4 in Fig. 1 run diagonally through the structure whilst
members 5 to 7 are orientated in the orthogonal coordinate
directions. This micro-architecture has been selected due
to its periodic and parameterisable structure. Each of the
7 radii constitute a spatially varying design variable in
the large-scale optimisation with each lattice unit cell
being represented by an element in the global mesh. Each
element has a homogenised anisotropic stiffness matrix and
a homogenised unit cell lattice density which is defined by
its 7 design variables and are determined from micro-scale
simulations.

These micro-scale simulations are performed on a 60 ×
60 × 60 cube mesh of hexahedral elements. Material
properties are assigned to the elements as either void or
solid to create a representation of the particular micro-
architecture being simulated. Periodic boundary conditions
are imposed to simulate the micro-architecture as a unit
cell within a larger lattice. Strain deformation analysis,
consisting of three direct strains and three shear strains,
is used to determine the homogenised stiffness tensor of

1188



Multiscale optimisation of resonant frequencies...

Fig. 1 Microscale lattice and parameterisation showing the orientation
of each of the seven cylindrical members

the micro-architecture. The homogenised unit cell lattice
density is determined from volume averaging of the element
densities of the mesh.

The radius of each member is discretised into 7 levels
with a micro-scale simulation run for each possible lattice
permutation, hence requiring 77 (823,543) permutations.
However, due to the symmetry of the unit cell, only 40,817
simulations are required. Response surfaces can be gener-
ated to describe the properties as functions of the 7 member
radii by fitting multi-variable polynomials of the design
variables to the pre-computed material property database.

These homogenised stiffness matrices and densities
are utilised as the spatially varying material properties
for the large-scale optimisation and provide the crucial
link between the micro- and macroscales. Further details
on the extraction of the metamaterial properties and
their application within the macroscale optimisation are
described in Imediegwu et al. (2019).

2.2 Macroscale optimisation

The constraints of the large-scale optimisation are handled
using a primal dual-interior point algorithm, the implemen-
tation of which is provided by the open-sourced optimi-
sation software, IPOPT (Wachter and Biegler 2006). The
large-scale finite element (FE) solutions were obtained
using the open-source FE solver, FEniCS (Alnæs et al.
2015), and its subsidiary python library, DOLFIN (Logg
and Wells 2010). The structural optimisation problem can
be defined as

Minimise:

J (u(rηγ ), rηγ ) (1)

Subject to:

F(u(rηγ ), rηγ ) = Ku − f = 0 (2)

[K − λnM]φn = 0 (3)

V (rηγ ) ≤ VD (4)

flower ≤ fn ≤ fupper (5)

rmin ≤ rηγ ≤ rmax (6)
where J represents the objective function and rηγ represents
the vector of design variables corresponding to a lattice
member η within an element γ . The constraint F =
Ku − f = 0 dictates that the global stiffness matrix,
K , the vector displacement field, u, and the global force
vector f , satisfy the static linear elastic partial differential
equation which governs the physics of the problem. The
eigenvalue equation, [K − λnM]φn = 0, describes the
dynamic properties of the structure where K and M are the
global stiffness and mass matrices respectively, φn is the nth
mass-normalised eigenmode, and λn is the corresponding
eigenvalue. The eigenvalues and eigenmodes of the system
are extracted using the iterative Krylov-Schur algorithm
due to its robustness in handling large, sparse matrices
(Hernȧndez and Romȧn 2007). The eigenmode corresponds
to the resonant mode shape of the structure whilst the nth
natural frequency (Hz) of the problem is found from

fn =
√

λn

2π
(7)

The volume constraint V ≤ VD imposes an upper limit
on the available material for the optimal design where the
volume fraction, V , is a measure of the average unit cell
lattice density and is calculated from

V =
∫

ργ dΩ

V ol
(8)

where ργ is the homogenised unit cell lattice density and
V ol is the volume of the design space.

The frequency constraints, flower ≤ fn ≤ fupper , dictate
the range of resonant frequencies that the optimal design
must occupy. The constraint rmin ≤ rηγ ≤ rmax also
enforces bounds on the local design variables. The member
radii are all non-dimensionalised and represent a fraction
of the side length of their respective element. The bound
rmin corresponds to the manufacturing constraint for the
smallest possible radii whilst also preventing the formation
of artificial localised modes in the optimisation by removing
the possibility of empty space. The maximum radius, rmax ,
is represented as the highest perturbation of the microscale
parameters which corresponds to a fully dense block of
material where all radii are equal to 38% of the unit cell side
length.

For the case of compliance minimisation with frequency
and volume constraints the objective function is defined as

J = uT Ku (9)

in which u is the displacement vector subject to loading. The
sensitivity of the objective function to the design variables
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was determined using adjoint equations due to the fact
that both the stiffness matrix, K, and the displacement, u,
are both functions of the design variable. These gradients
are obtained using the built-in adjoint capabilities in the
DOLFIN package (Logg and Wells 2010).

The Jacobian of the constraints is also required by the
optimiser. The gradients of the frequency constraint are
determined from differentiation of (7) with respect to rηγ ,
yielding

∂fn

∂rηγ

= 1

4π
√

λn

∂λn

∂rηγ

= 1

8π2fn

∂λn

∂rηγ

. (10)

The sensitivity of the eigenvalue, ∂λ
∂rηγ

can be derived from
[K − λnM]φn = 0 by differentiation with respect to rηγ to
produce

∂[K − λnM]
∂rηγ

φn + [K − λnM] ∂φn

∂rηγ

) = 0. (11)

Premultiplication by φT
n then results in

φT
n

∂[K − λnM]
∂rηγ

φn + φT
n [K − λnM] ∂φn

∂rηγ

) = 0. (12)

Due to the symmetric nature of [K − λnM], the
premultiplication is commutative; hence, substitution of (3)
results in the second term of (12) being null,

φT
n [K − λnM] = [K − λnM]φn = 0, (13)

which after expansion of the first term in (12) results in

φT
n

[
∂K

∂rηγ

− λ
∂M

∂rηγ

]

φn − φT
n Mφn

∂λ

∂rηγ

= 0. (14)

The mode shape φn represents a mass-normalised eigenvec-
tor, defined as

φT
n Mφn = 1. (15)

Substituting this definition into (14) results in

∂λ

∂rηγ

= φT

[
∂K

∂rηγ

− λ
∂M

∂rηγ

]

φ (16)

where the matrices ∂K
∂rηγ

and ∂M
∂rηγ

are the globally assembled
sensitivity matrices,

∂K

∂rηγ

=
NE∑

γ=1

∫

Ωγ

BT ∂Cγ

∂rηγ

BdΩ (17)

∂M

∂rηγ

=
NE∑

γ=1

∂ργ

∂rηγ

∫

Ωγ

NT NdΩ (18)

in which Cγ is the homogenised stiffness matrix of
the element and ργ is the homogenised density of the
element. The terms B and N are the strain-displacement
matrix and the vector of finite element shape functions,
respectively, both of which are independent of the small-
scale lattice parameters. An element’s stiffness and mass

sensitivities are therefore direct functions of its local lattice
parameters. The volume fraction sensitivities are found by
pure differentiation of the governing microscale equations
for density. These sensitivities of constraints were verified
by comparing with a finite differencing scheme to ensure
that the formulation provided the expected outputs.

2.3 Filtering of design variables

All evaluations of the objectives, constraints and gradients
are performed using filtered design variables as this
promotes the gradual variation in the lattice geometry and
eliminates the presence of numerical checkerboarding in
the solution. Filtering is achieved using a Helmholtz filter
(Lazarov and Sigmund 2011) which is described as the
solution to

−α2∇2r̂ηγ + r̂ηγ = rηγ (19)

where r̂ηγ is the vector of filtered design variables and α is
the filter radius defining the extent of the filtering.

This filtering results in all gradients being calculated
with respect to the filtered design variables. To obtain the
gradient with respect to unfiltered design variables, the
gradients are multiplied by the sensitivity of the filtered
design variables with respect to unfiltered design variables
as dictated by the chain rule

∂J

∂rηγ

= ∂J

∂ r̂ηγ

∂ r̂ηγ

∂rηγ

. (20)

Due to the objectives and constraints being calculated
with respect to the filtered design variables, the original
unfiltered variables no longer hold physical meaning, as
discussed in Sigmund (2006). The final solution must
therefore be presented as the filtered design variables.

2.4 Localisedmodes and frequency tracking

A localised mode is one which does not accurately represent
the true vibrational response of a structure and results
from regions in the finite element model having non-
physical material properties. Figure 2 shows an example of a
localised mode that appears during a conventional topology
optimisation. In this solution, the pseudo-density in the
lower tip corners has been reduced to almost zero. This
results in their stiffness being greatly penalised with respect
to the mass as described by the penalisation formulation
used in SIMP,

Ee = E0ρ
p
e (21)

where Ee and ρe (0 < ρmin ≤ ρe ≤ 1) are Young’s modulus
and relative material density of the element respectively,
E0 is Young’s modulus of the solid material and the
penalisation factor, p, is equal to 3. At ρe = ρmin, the
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Fig. 2 Example of a localised mode forming during a topology
optimisation due to low-density regions of the solution

extremely penalised stiffness coupled with the unpenalised
mass results in artificially large displacements in localised
areas relative to the rest of the structure. They would not
realistically exist due to there being effectively zero material
in those regions. Without a method of frequency tracking,
these localised modes would interfere with the optimisation
if they exhibit a lower natural frequency than the expected
global resonant mode.

Localised modes during the optimisation process can
greatly impede convergence to a realistic result. They are
a significant problem in topology optimisation requiring
reformulation of the SIMP problem (Pedersen 2000; Du
and Olhoff 2007). Localised modes could also potentially
pose an issue if the minimum lattice member radii are
not constrained. If the member radius is allowed to reach
zero, then localised modes can form during the course of
the lattice optimisation and begin to dominate the lowest
natural frequencies, much like what occurs during topology
optimisation. This would mean the algorithm would be
optimising these unwanted localised modes instead of the

global bending and torsional modes that are the usual focus
of a typical engineering optimisation.

In order to ensure that the desired modes are being
considered, a frequency tracking methodology has been
implemented. This relies on comparing the mode shapes of
the optimised structure to the original mode shapes of the
unoptimised structure before any localised modes develop.
The coherence between two mode shapes is defined as the
Modal Assurance Criterion (MAC) given by

MAC(φa, φb) = |φT
a φb|2

(φT
a φa)(φ

T
b φb)

(22)

where φa and φb represent the two mode shapes being
compared. In the case of frequency tailoring, they would be
the mode shapes of the current topology iteration compared
with the original mode shapes.

A MAC number of 1 represents identical mode shapes.
Within each iteration of the macroscale optimisation, after
natural frequencies and mode shapes are calculated, the
MAC number between every mode (lowest n frequencies)
and every initial mode is calculated. The frequencies are
then rearranged to the original order that initial mode shapes
were found based on which of the current mode shapes best
match the initial equivalent. This also allows the resonant
modes to swap positions in the eigenvalue analysis without
impeding the optimisation algorithm from satisfying the
resonant frequency constraints, an example of which is
detailed in Section 3.4. It also allows for any localised
modes that appear to be disregarded by the optimiser. The
process of ensuring that the correct modes are captured
using an improved MAC tracking is the subject of future
work.

3 Results and discussion

Four different test cases were considered for this work.
The objective remained constant across all cases as the
minimisation of the compliance of a cantilevered beam
subject to a volume constraint, V ≤ 0.3. The base material
used in the microscale simulations has Young’s modulus of
E = 209 GPa, a Poisson’s ratio of ν = 0.3, and a density of
ρ = 7800 kg m−3.

The structure to be optimised is shown in Fig. 3. A
Dirichlet boundary condition was imposed on the root of
the cantilever to constrain the displacement to 0 in all three
directions and a uniformly distributed load, and F = 1000
was imposed on the top surface in the negative y direction.
The member radii were also bounded to between rmin =
0.068h and rmax = 0.38h, where h represents the length
of the side of the lattice unit. These values represent the
minimum diameter that the scale abstraction is able to
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Fig. 3 Test case geometry

accurately represent and the diameter corresponding to a
fully dense unit cell when all members are at this value.

A rectangular cross section was selected as it allowed
for two bending modes whose frequencies were not initially
equal to each other, hence avoiding repeated resonant
frequencies. The expected mode shapes of the cantilever,
shown in Fig. 4, will be the first two cantilever bending
modes in the y and z directions followed by the torsional
mode. Figure 4 also details the starting frequencies of these
mode shapes for the initial conditions of a uniform lattice
with a volume fraction V = 0.3. The dimensions of the
cantilever were chosen to ensure that the first bending mode
would be parallel to the direction of loading as well as the
direction that compliance is being minimised for. The four
test cases to be demonstrated are:

1. No frequency constraint applied, simple compliance
minimisation.

2. Compliance minimisation with the first bending mode
constrained to below 700 Hz and the second bending
mode constrained to above 900 Hz.

f1 ≤ 700 Hz

f2 ≥ 900 Hz

3. Compliance minimisation with the second bending
mode constrained to below 400 Hz.

f2 ≤ 400 Hz

4. Compliance minimisation with the torsional mode
constrained to below 600 Hz.

f3 ≤ 600 Hz

A further investigation was conducted by minimising
compliance whilst also varying the constraint on the second
bending mode to investigate the relationship between the
constraint boundaries and the objective function achieved.

Fig. 4 First three modes of the rectangular cantilever and their
respective resonant frequencies for a uniform lattice with a volume
fraction V = 0.3
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3.1 Mesh convergence

The finite element method relies heavily on the concept of
scale abstraction and will obtain more accurate results from
a more refined mesh and better resolution (Hughes 2000).
A mesh convergence study was conducted on the large-
scale structure to determine the minimum number of cells
required for a suitable mesh convergence.

The compliance and the first three natural frequencies
of increasingly fine meshes were obtained as well as the
processor time taken for both the compliance calculation
and the eigenvalue extraction algorithm to run; the results of
which are shown in Fig. 5. A mesh density of 27,000 nodes
was selected as this results in an error below 0.25% for both
the natural frequencies and compliance whilst also avoiding
significantly computationally intensive mesh densities.

3.2 Case 1: no frequency constraint applied

In order to understand the effects of the frequency
constraint, the optimisation is first performed for the case
with no frequency constraint to identify the expected
compliance values as well as the structure to which the other
designs can be compared against. The material distribution
of the optimised case, which is a representation of the
homogenised density of each lattice unit cell, is shown
in Fig. 6. This representation has been clipped to only
show regions with a lattice density greater than the domain
average of 0.3.

Figure 7 shows the progression of the optimisation in
terms of the compliance, volume fraction, and the values of
the first three resonant frequencies. The compliance of all
optimisations is normalised with respect to the compliance
of a fully dense structure (V = 1.0). This removes
the arbitrary comparison of compliance between two
differently dimensioned structures as well as demonstrates
the effectiveness of the optimisation against the most stiff
structure achievable in a defined volume.

Fig. 5 Mesh convergence of the first two natural frequencies and
compliance

Fig. 6 Material distribution within the bounding volume. All cells with
a density less than 0.3 have been removed to highlight the structurally
significant portions of the cantilever

Fig. 7 Convergence plots of the relevant properties over the course of
the optimisation
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It can be noted from Fig. 7 that the optimisation has
a relatively slow convergence at the start. This is due
to a feature of the IPOPT algorithm in which it can
adaptively change the step size between iterations. The first
few iterations are therefore used to determine the relative
scales between different constraints and objective functions
using initially small steps. IPOPT is then able to select the
most applicable step size, after which rapid convergence is
observed. The convergence criterion used in all simulations
was an acceptable tolerance of less than 0.1% change in
objective function between successive iterations. However,
all simulations were allowed to run on to the same iteration
number to standardise the plots and to make for a fairer
comparison of the structures after a set number of iterations.

I-beams are known for having a relatively high second
moment of area and hence stiffness for a given mass;
it can be seen that the optimised structure shown in
Fig. 6 resembles a pair of diverging I-beams orientated to
maximise the loading capability in the y direction. This
anisotropic strengthening is highlighted in the resonant
frequencies of the solution. All the frequencies have been
increased during the optimisation and the first bending
mode, which acts in the y direction, has been raised
significantly to a final value of 749 Hz. This is an increase
of 230% from its initial value as opposed to the less
significant increase of 100% seen in the bending mode
in the z direction. Table 1 compares both the normalised
compliance and the resonant frequency of the the first
bending mode amongst various material distributions. It
can be seen that the frequency of the optimised beam is
more than three times that of a uniformly distributed beam
with the same mass and is even greater than that of a
fully dense cantilever. This is due to the frequency being
a function of both the stiffness and the mass distributions,
and so simply adding more material does not necessarily
result in a higher resonant frequency. The compliance
obtained by the optimisation reaches a minimum of 2.53
times that of a fully dense beam but due to its mass
constraint it will never be able to be as stiff as the fully
dense case. Comparisons made by Imediegwu and Murphy
have shown that in compliance minimisation the lattice-
based method outperforms the traditional SIMP topology
optimisation when using a penalisation factor of 3 but does

not outperform the theoretical but non-physical best case
of an unpenalised topology optimisation (Imediegwu et al.
2019; Murphy et al. 2019).

A useful comparison is the normalised stiffness to weight
ratio of the cantilever, α, which is calculated using

α = 1

VDCmin

(23)

where VD is the volume fraction constraint used and Cmin

is the minimum normalised compliance achieved by the
optimisation. A fully dense cantilever would therefore have a
normalised stiffness to weight ratio of 1. Table 1 shows that the
the optimised structure has a 32% improvement in the stiffness
to weight ratio compared with the fully dense structure,
whilst the unoptimised structure of the same allowable
volume has an 80% lower stiffness to weight ratio.

Figure 8 provides a more detailed view of the contri-
butions that each of the seven members provide to the
structure. Members 1–4 are aligned diagonally across the
cell and are concentrated at the root of the cantilever where
the highest stresses are anticipated as well as the x − z mid-
plane of the beam where maximum shear stress is located.
The regions where these members are dominant run diago-
nally across x − y midplane with members 1 and 4 being
mirror images of each other, as are members 2 and 3. This
is due to the diagonal members in the macroscale being
dominant along their respective directions in the microscale.
This arrangement ensures connectivity between the thickest
members along the load path in which they are most needed.
Member 5 is aligned along the length of the cantilever, and
hence is the most dominant member in terms of supporting
the bending moments. It is therefore the most present mem-
ber in the design and forms the bulk of the cantilever shape.
It is most dominant on the upper and lower surfaces where
the tensile and compressive stresses in the x direction are
at their maximum. Member 6 is aligned in the y direction
parallel to the loading which explains its significant contri-
bution to the I-beam structure as well as its presence on the
top surface where the force is acting. Member 7 does not act
in the direction of either the loading or the stresses and so
has less of an impact on compliance minimisation; hence,
why it does not feature heavily in the structure. It should
be noted that member 7 is still present in all regions of

Table 1 Normalised compliance, resonant frequencies of the first bending mode, and normalised stiffness to weight ratio of various material
distributions

Material distribution Normalised 1st resonant Normalised stiffness

compliance frequency to weight ratio, α

Uniform V = 1 (solid beam) 1.00 518 Hz 1.00

Uniform V = 0.3 (allowable) 16.58 227 Hz 0.20

Compliance optimised VD = 0.3 2.53 749 Hz 1.32
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Fig. 8 Distribution of individual lattice members after compliance
minimisation with no frequency constraints applied. All members are
present throughout the domain but a visual threshold is used to hide
members below radius of 0.15

the structure, but does not have many radii greater than the
clip threshold of 0.15 and therefore does not appear signif-
icantly in Fig. 8. This unconstrained case provides a useful
comparison with the upcoming cases where the frequency
constraint has been applied.

3.3 Case 2: avoiding excitation frequency band

To demonstrate the effects of the frequency constraint, a
case has been selected which requires both a reduction
in the first bending mode and an increase in the second
bending mode whilst maintaining the same objective of
compliance minimisation in the y direction. From Fig. 7,
it was shown that when no frequency constraint is applied
both the first and second bending modes have a final
value close to 800 Hz. If the structure in a practical
application had an excitation frequency close to this value,
then undesired resonance of the cantilever would occur. It
may therefore be required to shift these resonant frequencies
away from this frequency. The constraints imposed are
a difference of 100 Hz above and below 800 Hz. The

Fig. 9 Material distribution within the bounding volume. All cells with
a density less than 0.3 have been removed to highlight the structurally
significant portions of the cantilever

first bending mode therefore has a maximum allowable
frequency of 700 Hz, whilst the second bending mode
has a minimum allowable frequency of 900 Hz. These
constraints were selected to demonstrate the effect of the
optimisation algorithm by simultaneously increasing and
decreasing resonant frequencies. The resulting structure
from this optimisation is shown in Fig. 9 and the resulting
frequencies and compliance are plotted in Fig. 10. It reveals
the final normalised compliance to be 2.68 which results in
a normalised stiffness to weight ratio of 1.24. The structure
still has a 24% increase in stiffness to weight ratio compared
with a fully dense beam despite the frequency constraints.

One means of maintaining the first resonant frequency
below 700 Hz would be to reduce the effective stiffness of
the cantilever in the y direction; however, this would be
in opposition to the compliance minimisation stated as the
objective function. An alternative would be to increase the
effective mass of the cantilever which is the mass that can be
used to represent the structure in an equivalent mass-spring
system. Increasing the effective mass decreases the resulting
natural frequency described by

fn =
√

Keff

Meff

(24)

where Keff is the effective stiffness and Meff is the
effective mass. To increase the effective mass requires
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Fig. 10 Convergence plots of the relevant properties over the course
of the optimisation

a portion of the allocated volume to be assigned as far
from the cantilever root as possible as mass located further
from the root has the greatest effect on decreasing the
natural frequency. Mass located at the end of the cantilever
is detrimental to the compliance minimisation because it
reduces the material available to stiffen the cantilever root.

From Fig. 9, it can be seen that a combination of both
methods has been used to satisfy the constraints with the
mass distributed to the tip resulting in a smaller central I-
beam than observed in the unconstrained structure. This
increase in effective mass will also cause the second
resonant frequency to decrease which might violate the
constraint for the second bending mode to be above 900 Hz.
To meet this constraint, the cantilever has been greatly
stiffened in the z direction by assigning material to the left
and right edges of the cantilever. This increases the second
moment of area in the z direction and hence increases the
second bending frequency. Any remaining material after the
constraints have been met is focused on the central I-beam
to minimise compliance.

A more detailed view of each of the 7 members
contributing to the structure can be found in Fig. 11. The
diagonal members, 1–4, exhibit significant concentrations at
the root corners, primarily in the corner that aligns with their
respective directions. Member 5 remains the most dominant
as it serves to stiffen the beam in both bending modes as

Fig. 11 Distribution of individual lattice members after compliance
minimisation whilst avoiding an excitation frequency band. All
members are thresholded to eliminate members below radius of 0.15

well as the direction of dominant principal stress. It should
also be noted that member 7 now has a greater contribution
on the top and bottom surfaces and the root of the cantilever.
This is because it allows for anisotropic stiffening in the z

direction, whilst having less impact on the stiffness in the
y direction. This therefore makes it an important member
for increasing the frequency of the second bending mode
whilst not affecting the first bending mode. Material has
also been assigned to all members at the tip of the cantilever
to produce the effective mass required to lower the first
bending mode.

3.4 Case 3: swapping the order of the first two
bendingmodes

The third test case was performed to demonstrate the
effectiveness of the modal tracking. A constraint was
imposed to maintain the second bending mode at its starting
value of 400 Hz, which corresponds to a uniform lattice
where all unit cells have a lattice density equal to 0.3. This
constraint must also be applied to the bending mode in the z
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Fig. 12 Material distribution within the bounding volume. All cells
with a density less than 0.3 have been removed to highlight the
structurally significant portions of the cantilever

Fig. 13 Convergence plots of the relevant properties over the course
of the optimisation

direction regardless of the order of the resonant frequencies
in the eigenvalue analysis. This value is well below the
expected resonant frequency of the y bending mode of
749 Hz seen in the unconstrained case. The optimiser is
therefore required to successfully distinguish between the
two bending mode shapes and sort them to allow for the
correct resonant frequency constraints to be met.

The resulting structure can be seen in Fig. 12, which
resembles a much more narrow single I-beam compared
with the unconstrained structure in Fig. 6. This slender beam
shape is needed to reduce the second moment of area, and
hence stiffness, in the z direction. Material has also been
assigned to the tip, specifically on the left and right sides,
as this increases the effective mass of the second bending
mode whilst minimally affecting the other resonant modes.

Figure 13 shows that the frequencies are successfully
able to swap their order, with the first bending mode
reaching a final value of 591 Hz, 191 Hz greater than the
second bending mode. The minimum compliance reached is
3.06 with a normalised stiffness to weight ratio of 1.09. This
further proves that the optimiser is capable of producing

Fig. 14 Distribution of individual lattice members after compliance
minimisation with the second bending mode constrained below
400 Hz. All members are thresholded to eliminate members below
radius of 0.15
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structures with both better strength to weight ratios and
well-defined resonant frequency constraints.

Inspection of the individual lattice contributions in
Fig. 14 reveals that the most dominant member is now
member 6. This is due to the anisotropic stiffening which
increases stiffness greatly in the y direction to minimise
compliance but does not stiffen the structure in the z

direction. Member 7 does not feature significantly for a
similar reason in that it does not act in the direction
to minimise compliance and so is unfavourable for the
optimiser to assign mass to. Member 5 is also prevalent as
seen in previous cases to resist the tension and compression
in the x direction. The diagonal members are all very
similarly distributed at the root to resist the shear stresses
and also at the tip to generate an effective mass.

3.5 Case 4: constraint on torsional mode

The final test case that was investigated was to enforce a
significant reduction in the torsional natural frequency in an
attempt to test the limits of the optimiser. An upper limit
of 600 Hz was imposed on the third resonant frequency,
which represents a reduction of 48% from the unconstrained
value of 1158 Hz reached in Section 3.2 when no frequency
constraints are applied.

Fig. 15 Material distribution within the bounding volume. All cells
with a density less than 0.3 have been removed to highlight the
structurally significant portions of the cantilever

To achieve this significant change in frequency, a large
amount of material has been distributed to the tip of the
cantilever as seen in Fig. 15. The lattice is particularly dense
at the corners of the tip. This is done in order to increase
the moment of inertia which in turn reduces the resonant
frequency as described by

fn =
√

Kθeff

Jeff

(25)

where Kθeff is the effective torsional stiffness and Jeff

is the moment of inertia about the centre of rotation.
Figure 16 shows the final resonant frequency for the first
bending mode reaches 517 Hz which is the same resonant
frequency as the fully dense cantilever. It is also noted
that the compliance initially increases in order to satisfy
the frequency constraint before decreasing to a final value
of 3.56, which represents a normalised stiffness to weight
ratio of 0.94. This test case reveals that the optimiser is
robust towards many types of resonant mode and requires
a significantly restrictive constraint on the frequency before
resulting in a structure with a normalised stiffness to weight
ratio of less than 1.

Figure 17 provides a detailed view of the contributions
from each lattice member. It should be noted that all
members feature heavily at the cantilever tip as they are

Fig. 16 Convergence plots of the relevant properties over the course
of the optimisation
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all required in order to maximise the lattice density of the
unit cells. This creates the significant effective mass which
is required to reduce the resonant frequency. The diagonal
members do not appear at the root of the cantilever. This
is because the diagonal members would help increase the
torsional stiffness of the beam which would undesirably
increase the torsional resonant frequency as described by
(25). Members 6 and 7 do not appear on the sides of the root
of the cantilever as they would also increase the torsional
stiffness, whereas member 5 acts in the x and therefore
does not significantly contribute to torsional stiffness. It can
therefore be found at the sides of the root without increasing
the torsional resonant frequency.

Figure 18 shows the resulting lattice structure when
reconstructed. The dense regions at the corners of the
cantilever tip can be clearly seen and are highlighted in the
zoomed in section A. Section B is a region of lower density
when all lattice members are at their minimum value.
The large amount of material located at the tip will also
affect the two bending modes which both have frequencies
considerably lower than the unconstrained compliance
minimisation.

Fig. 17 Distribution of individual lattice members after compliance
minimisation with the torsional mode constrained below 600 Hz. All
members are thresholded to eliminate members below radius of 0.15

3.6 Effect of frequency constraint on compliance

A further study was conducted to investigate the effect that
the frequency constraints has on the objective function. A
series of simulations were run with a range of frequency
constraints imposed on the second bending mode. This
mode acts in the z direction and therefore does not act in the
same direction as the compliance minimisation.

Section 3.2 describes the unconstrained second resonant
frequency as 826 Hz which will be the frequency at which
the lowest compliance is achieved. Figure 19 shows the
relationship between the minimum compliance reached in
each optimisation and the final value for the second resonant
frequency. It is revealed that the optimiser is able to achieve
a relatively consistent compliance for a wide range of
frequency constraints on the second bending mode. The
second resonant frequency is able to be within the range of
650 to 1050 Hz before a change in compliance greater than
2% is observed. This 400 Hz band of possible frequencies
is key to practical usage as it permits a wide range of
design options to avoid any operating frequencies that the
structure might be subjected to without compromising on
compliance.

The optimiser reaches its upper limit at 1125 Hz which
is an increase of approximately 300 Hz with the trade-off
being a lower stiffness to weight ratio of 1.25. This remains
considerably greater than the fully dense cantilever. The
upper limit occurs due to there being a finite stiffness that
can be reached with an allowable volume. However, the
lower limit is not reached as the relocation of material to
the tip of the cantilever greatly affects the compliance of
the structure. The stiffness to weight ratio falls below 1
at approximately 330 Hz. This allows the second resonant
frequency to be reduced by 495 Hz, or 60%, before it is no
longer as effective as the fully dense cantilever.

An evolution of the structures can also be seen in Fig. 19.
A shift of material from the tip towards the root is clearly
visible before the 826 Hz minimum and a further migration

Fig. 18 Reconstruction of the lattice structure with highlighted areas
of interest
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Fig. 19 Minimum compliance
attained subject to varying
constraints on the second natural
frequency

of material from the central I-beam towards the outer
edges is seen for frequencies greater than the minimum.
This highlights the range of possible structures that can be
achieved by the multiscale lattice method.

4 Conclusions

This paper has illustrated the use of a metamate-
rial lattice approach to produce frequency tailored light
weight structures. A seven-dimensional lattice microstruc-
ture uses a database of precomputed simulations to predict
homogenised material properties for use in the large-scale
optimisation.

Resonant frequency tailoring has been achieved by
implying constraints on a traditional compliance minimi-
sation problem, with frequency tracking implemented to
allow for frequency ordering. The effectiveness of the opti-
misation technique has been demonstrated in four separate
examples with comparisons made to both the unconstrained
and fully dense solutions. The results show that the fre-
quency constraints have a wide range of values that do not
significantly impede the minimum compliance obtained by
the optimiser. Introducing more strict frequency constraints
beyond this range results in an increase in the minimum
compliance. The increase in compliance not only appears
proportional to the amount of mass redistributed in order to
satisfy the frequency constraint, but is also affected by the
direction that the frequency is being pulled and the mode
shape that is being optimised for.

Frequency tailoring of lattice structures can offer
improvements and cost savings for a wide range of
applications within the aerospace industry and other
engineering disciplines. The work presented allows for
the rapid development of optimised structures that are

capable of avoiding resonance whilst also offering improved
strength to weight ratios.
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