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Abstract
Microchannel reactors are critical in biological plus energy-related applications and require meticulous design of hundreds-
to-thousands of fluid flow channels. Such systems commonly comprise intricate space-filling microstructures to control
the fluid flow distribution for the reaction process. Traditional flow channel design schemes are intuition-based or utilize
analytical rule-based optimization strategies that are oversimplified for large-scale domains of arbitrary geometry. Here, a
gradient-based optimization method is proposed, where effective porous media and fluid velocity vector design information
is exploited and linked to explicit microchannel parameterizations. Reaction-diffusion equations are then utilized to generate
space-filling Turing pattern microchannel flow structures from the porous media field. With this computationally efficient
and broadly applicable technique, precise control of fluid flow distribution is demonstrated across large numbers (on the
order of hundreds) of microchannels.
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1 Introduction

Microchannel flow structures are found in a range of
important industrial applications involving water purifica-
tion (Wang et al. 2014), pharmaceuticals (Gutmann et al.
2015), electronics (Chen and Cheng 2002), and green chem-
istry (Lerou et al. 2010). Such systems require careful
handling of fluid species to control reaction processes. Par-
ticularly, the flow distribution of fluids is critical, and intri-
cate space-filling channel structures are employed for flow
control through single- or multi-layered (e.g., 100–10,000)
microchannels.
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Design optimization schemes for uniform fluid deliv-
ery to arrays of microchannels include approximation
techniques, heuristic strategies, bifurcation methods, and
gradient-based algorithms; see Rebrov et al. (2011). One
approximation technique (Commenge et al. 2002) treats
flow friction via a resistive network of ducts to understand
pressure drop across a flow distribution chamber (or man-
ifold). Using analytical expressions, the influence of the
manifold geometry is understood, and flow uniformity is
optimized for simplified (e.g., trapezoidal) geometries. A
heuristic technique (Luo et al. 2015) involves perforated
baffles upstream of microchannels to homogenize fluid dis-
tribution, although added pressure drop is a concern. The
use of constructal theory (Bejan and Errera 1997) is popu-
lar with some (Senn and Poulikakos 2004) using tree-like
flow distributors for fuel cells and others (Tondeur and Luo
2004), applying fractal manifolds to hundreds of channels
in an adsorbent monolith. An associated challenge may be
the spatial requirements for series configured branching.

Borrvall and Petersson (2003) pioneered gradient-based
topology optimization for Stokes flow, and this was
extended to higher Reynolds numbers (Gersborg-Hansen
et al. 2005; Olesen et al. 2006). The method was employed
(Dede et al. 2014) to optimize manifolds with less than 10
fluid outlets in an electronics heat sink. Recently,
researchers (Liu et al. 2011; Zeng and Lee 2018)
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incorporated mass flow rate constraints for a slightly greater
number of outlets, e.g., ∼ 20. We leverage these formu-
lations, where Navier-Stokes laminar incompressible fluid
flow (for Reynolds numbers, Re < 2100) in an idealized
porous medium is assumed with a friction force proportional
to the fluid velocity, viz. Darcy’s law, (Olesen et al. 2006;
Kaviany 1995),

∇ · u = 0, and (1)

ρ (u · ∇u) = −∇P+∇·
{
η

[
∇u + (∇u)T

]}
−ηα (γ )u. (2)

Fluid incompressibility is governed by (1), and flow in
the idealized porous medium is defined by (2). The fluid
pressure and velocity vector state variables are given by
P and u, respectively. The fluid dynamic viscosity is η.
The effective inverse permeability is a function of a design
variable, γ , and in standard formulations, Olesen et al.
(2006), is interpolated using the convex function α = αs ,

αs (γ ) = αmin + (αmax − αmin)
q(1 − γ )

q + γ
. (3)

A low permeability quasi-solid state exists for γ → 0 by
αmax = 1/l2Da , where Da is the Darcy number, and l is the
characteristic length. A fluid state, where the friction force
term goes to zero when γ → 1, emerges with αmin = 0.
The goal in adopting (3) with the tuning parameter, q, is to
obtain completely fluid or solid states. However, challenges
arise in selecting the appropriate Darcy number, Da, to
eliminate gray-scale designs that permit undesirable flow
seepage through quasi-solid material.

For a design space, �, an accepted (Borrvall and
Petersson 2003; Olesen et al. 2006; Gersborg-Hansen et al.
2005; Dede et al. 2014) objective function, fo, is to
minimize power dissipation or flow resistance, as follows:

fo =
∫

�

⎡
⎣1

2
η

∑
i,j

(
∂ui

∂xj

+ ∂uj

∂xi

)2

+ η
∑

i

αs (γ ) u2i

⎤
⎦d�.

(4)

A volume constraint is typical to control the amount
of fluid in the result (Olesen et al. 2006; Gersborg-
Hansen et al. 2005; Dede et al. 2014). However, space-
filling structures are not obtainable since channel-to-wall
spacing is not enforced. In contrast, removal of the volume
constraint produces large open flow channel designs to
naturally minimize flow resistance.

For uniform mass flow through discrete fluid outlets, a
mass flow rate constraint is common (Liu et al. 2011; Zeng
and Lee 2018):
(

ṁk

ṁt,k

− 1

)2

≤ δ2 fork = 1, 2, 3, . . . , n, (5)

where ṁk and ṁt,k are the individual and target mass
flow rate, respectively, at the kth outlet, and δ is an

outlet flow rate error tolerance. To represent large gradients
in the flow solution (e.g., near outlets), many channels
require an extremely fine computational grid, per Reddy
and Gartling (2000). Thus, effective optimization strategies
for fluid flow control to hundreds of microchannels in
application is still a critical field of research. Complex
space-filling microchannel patterns are common, and for
arbitrary domains, configurations may not be expeditiously
found using approximation, rule-based, or modern gradient-
based techniques.

Complex patterns also exist in nature at multiple scales
(e.g., mammalian markings, fish skin, and seashells),
and reaction-diffusion equations replicate irregular spatio-
temporal Turing patterns (Pearson 1993; Gray and Scott
1985; Garikipati 2017; Kondo and Miura 2010). Here, we
combine gradient-based porous media optimization in an
arbitrary fluid flow domain with a reaction-diffusion model
for computationally efficient development of intricate
space-filling microchannel architectures. Explicit modeling
of channels is abandoned, and channel synthesis is realized
through a Turing pattern generation algorithm.

2Methodology

The approach comprises two steps. First, to scale up
to manifolds with hundreds of outlets, the problem is
re-framed to design a homogenized porous fluid flow
structure, where all material states are physically feasible.
Following Kim and Kim (1999), the porous media is
parameterized in two-dimensions (2-D) based on a spatially
varying local microchannel structure; see Fig. 1. The
porosity, ε, and permeability, κ , are as follows:

ε = wc

w
, κ = εw2

c

12
, with w = wc + ww, (6)

where wc and ww are the channel and wall widths,
respectively.

A linear interpolation function for the channel width
relates any porous media state to a microstructure, as
follows:

wc (γ ) = wcmin + (wcmax − wcmin) γ, (7)

where wcmin and wcmax are minimum and maximum
microchannel widths, respectively.

Combining (6) and (7), and assuming ww is constant, a
new inverse permeability expression, α → αn, is as follows:

αn (γ ) = 1

κ(γ )
= 12

[
1

wc(γ )2
+ ww

wc(γ )3

]
. (8)

Thus, 0–1 (fluid solid) designs are not required, flow
seepage is not a concern, a volume constraint is unnecessary,
and hundreds of discrete fluid flow outlets are exchanged
for an aggregated fluid outlet with specified flow profile.
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Fig. 1 2-D flow distribution
manifold concept; the porous
media has porosity, ε, and
permeability, κ , that vary
spatially and are parameterized
by the microstructure wall
width, ww , channel width, wc,
and channel plus wall spacing, w

The second step of the algorithm to find the Turing
pattern is an expansion of the anisotropic thermal-composite
design approach explained in Petrovic et al. (2018). The
Turing reaction-diffusion system is a mathematical model
of the morphogenesis of the embryo proposed by Turing
(1952), involving two interacting hypothetical chemical
substances U and V, which diffuse in the space around and
enhance or suppress the reproduction of themselves (Kondo
and Miura 2010). The dimensionless equations for this
process are as follows:

∂U

∂t
= ∇ · Du∇U + Ru(U, V ), (9)

∂V

∂t
= ∇ · Dv∇V + Rv(U, V ), (10)

where Ru(U, V ) and Rv(U, V ) are interactive reaction
terms. In this study, the reaction terms are augmented
following (Kondo and Miura 2010; Petrovic et al. 2018):

Ru(U,V ) = (auU+buV +cu)− duU =F(U,V )−duU,(11)

Rv(U,V ) = (avU+bvV +cv)−dvV =G(U, V )−dvV,(12)

where

0 ≤ F(U, V ) = auU + buV + cu ≤ Fmax, (13)

0 ≤ G(U, V ) = avU + bvV + cv ≤ Gmax. (14)

For 2-D flow systems, we extend the diffusion coef-
ficients as 2 × 2 tensors, Du and Dv , with anisotropic

diffusion terms derived from local permeability field val-
ues and perturbed over time between weakly and strongly
anisotropic states. By aligning the principal axis of the dif-
fusion tensors with the fluid velocity vector, the microstruc-
ture pitch (i.e., the distance between microstructures) and
length are controlled with length periodically elongated
along the fluid flow direction.

For example, Du is written using the normalized fluid
flow velocity vector, ū, as follows:

Du(ū) = (Lu − Wu)ū ⊗ ū + Wuδij. (15)

where ⊗ is the dyadic product operator. The coefficients
in (15) are defined as Lu = l2uWu and Wu = (wuw)2 with lu
set to control the magnitude of anisotropy and wu specified
as a constant value that associates the channel pitch and
generated microstructure pattern. By specifying the channel
pitch, w, the lateral magnitude of the diffusion, i.e., Wu, is
proportional to w2, and thus, we recover the porous media
permeability distribution, w = wc +ww in (6), where ww is
constant in the numerical examples. Similarly,Dv is defined
as follows:

Dv(ū) = (Lv − Wv)ū ⊗ ū + Wvδij, (16)

where Lv = l2vWv and Wv = (wvw)2.
The magnitude of the Turing pattern anisotropy repeti-

tively varies temporally by changing lu between ∼ 1 and 10.
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Larger anisotropy generates a pattern strongly affected by
the fluid velocity vector field, and smaller anisotropy gener-
ates a newmore tightly packed pattern based on the previous
final state; refer to the Supplementary Movie. Figures 2 a–
e show an example with an optimized fluid flow velocity
field in an effective porous medium with varying permeabil-
ity and the evolution of the Turing pattern microstructure.
The algorithm beneficially combines homogenization of the
design space for the computationally expensive flow field
optimization with efficient dehomogenization of the porous
media. This dehomogenization process may uniquely vary,
and other approaches to dehomogenization for topology
optimization in linear elasticity are available; see for
example (Groen and Sigmund 2018; Allaire et al. 2019).
However, here, to render the structure on to a physical
scale, a self-organizing system based on Turing patterns is
selected.

2.1 Implementation

The algorithm is implemented in COMSOL v.5.3a. The
optimization objective function is set to minimize an equally
weighted linear combination of two terms including (4) and
variation of the fluid velocity normal to the outlet boundary.

The latter term is derived from the uniform mass flow
constraint, (5), as follows:

fm =
∫

d�o

(
uj − ūj

)2 d�, (17)

where ūj is the average velocity in the j -direction, and
�o is the outlet boundary. Channel and wall width values,
more precisely, the minimum and maximum value of
the channel width and the wall width, are specified to
parameterize the effective inverse permeability, αn, of
the flow space. The flow optimization uses a method of
moving asymptotes (MMA) optimizer that converges within
∼ 100 iterations. From the porous media field results, the
anisotropic diffusion coefficient tensors for the reaction-
diffusion equations are determined, and the equations are
propagated through time (∼ 1800 s) to generate the Turing
pattern microstructure.

3 Results

A 200 × 100 mm2 2-D space is considered in the upper
image of Fig. 3a in a first numerical experiment with air
flow at 20 ◦C. A uniform +y-direction fluid velocity of
0.2 m/s (Re = 133) is fixed over the 10-mm wide fluid inlet

Fig. 2 Turing microstructure evolution: a gray-scale porous medium
with fluid velocity vectors (light blue), where lighter regions indicate
greater permeability; b random, t = 0, condition for reaction-diffusion

algorithm; c t = 100 s, with anisotropic diffusion coefficients; d
t = 1000 s, with anisotropic coefficients; e t = 1800 s, with isotropic
coefficients
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Fig. 3 a Top - porous media
optimization result with
streamlines (gray) and
normalized pressure contours
(zero pressure at outlet) for 200
× 100 mm2 design domain;
light-colored regions have
greater permeability. Bottom -
Turing pattern microstructure;
light regions = fluid, black
regions = solid. b Fluid velocity
contours (top). Mass flow
distribution with average outlet
variation of 1.3% for 166 fluid
outlets (bottom,
optimized-dehomogenized
data). Maximum variation at a
single outlet is 4.6%
(optimized-dehomogenized)
versus 52.9% for a flow domain
without any microstructure
features (baseline)
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positioned 15 mm from the domain lower left corner. This
asymmetric inlet-to-outlet configuration represents typical
microchannel reactors and produces significant outlet flow
maldistribution; see Commenge et al. (2002). A zero
pressure outlet boundary condition (BC) is applied along
the top edge of the flow space. A Dirichlet BC for the
reaction-diffusion model is applied along the same top edge
of the domain and on a horizontal inner boundary slightly
(3 mm) below the top edge (and meshed to have element
edges at the desired segment) to enforce a precise channel
width distribution. A second Dirichlet BC is applied on the
remaining domain boundaries. The minimum and maximum
channel width is wcmin = 0.6 mm and wcmax = 1.8 mm,
respectively. The wall width between channels is uniformly
fixed to ww = 0.6 mm. Thus, porosity, ε, ranges from 0.5 to
0.75 throughout the domain, while permeability, κ , ranges
from 1.5E-8 m2 to 2.025E-7 m2. The channel width at the
top outlet boundary is set to 0.6 mm, and ∼ 166 uniform
width outlets are implicitly defined. The parameter values
for the Turing pattern generation are provided in Table 1.

The gray-scale fluid flow optimization result for the
effective porous media is shown on top in Fig. 3a including
streamlines and normalized pressure contours with the
Turing pattern microstructure shown below. Note that
intricate patterned island wall structures are built following
the above parameters. Fluid velocity contours from a flow
verification analysis under the same inlet/outlet BCs are
shown in Fig. 3b. Observe that the average variation,

(1/n)

n∑
k=1

| (ṁk − ṁavg)/ṁavg |, (18)

in the mass flow at each outlet, ṁk , is very low and
within 1.3% of the mass flow average, ṁavg, across the
n = 166 outlets; the maximum variation, max[| (ṁk −
ṁavg)/ṁavg |], at a single outlet is 4.6%. For comparison,
the maximum variation in ṁk for the flow domain without
any microstructures is 52.9%; see Fig. 3b. Additionally,
the mass flow performance of the homogenized gray-
scale design across the 166 outlets is shown in Fig. 3b

Table 1 Turing pattern generation parameters

Parameter Value Parameter Value

lu 1.0∼4.5 lv lu

wu 0.015 wv 0.24

du 0.035 dv 0.08

au 0.08 av 0.1

bu − 0.065 bv 0

cu 0.04 cv − 0.15

Fmax 0.2 Gmax 0.1

with very good agreement between the homogenized and
dehomogenized designs.

To compare the computational effort involved in our
approach with conventional flow channel topology opti-
mization, cf. Olesen et al. (2006), Liu et al. (2011), and
Zeng and Lee (2018), a simple 100 × 100 mm2 2-D flow
space is considered in a second numerical experiment. Here,
the 10-mm wide fluid inlet is positioned at the center of
the lower edge of the domain. A uniform +y-direction fluid
inlet velocity of 0.2 m/s (Re = 133) is again assumed;
the remaining BCs follow the prior example. The same
microchannel and wall widths are further assumed for 83
implicitly defined outlets; the optimized Turing pattern
microstructure is shown in Fig. 4. Three flow structures
from conventional topology optimization (TO1, TO2, and
TO3) are also shown with 10, 20, and 30 explicitly defined
fluid outlets obtained using (5). Convergence of designs
requires 70 iterations using Da =5E-7 in (3). To relax the
optimization problem and avoid local solutions, q is set to
0.01 and ramped up to 0.05 after the 30th iteration in 2E-
3 increments. Also, design variable regularization follows
(Kawamoto et al. 2011) with a Heaviside bandwidth, Hd ,
initially set to 0.6 and ramped down to 0.2 after the 20th
iteration in 1.33E-2 steps. For explicitly defined outlets, the
computational cost measured in CPU hours using a laptop
with 12, 2.71 GHz processors grows quadratically in Fig. 4
due to the progressively finer mesh requirement at the out-
lets. However, the total computational cost required to opti-
mize the porous media field plus generate the microstructure
Turing pattern for a design of any number of implicitly
defined outlets remains constant, assuming an initially suf-
ficiently refined mesh to ensure solution accuracy in both
algorithm solution segments. Thus, our computational pro-
cedure is efficient and additionally bounds the minimum
and maximum channel widths throughout the flow domain.

Table 2 provides details on the average outlet mass
flow variation, maximum outlet mass flow variation, and
pressure drop from an additional flow verification analysis
for each design. The computational cost to obtain the
various designs is also noted. Note that all pressure drop,
�P , values are normalized by the lowest value for the
30 outlet design. For the fully post-processed designs
optimized using conventional topology optimization, the
average outlet mass flow variation ranges from 7 to
12%, while the maximum outlet mass flow variation is
∼ 20%. For the post-processed designs obtained using
the dehomogenization procedure, the average outlet mass
flow variation is 0.75–2%, and the maximum outlet mass
flow variation is less than 5.9%. Observe that the pressure
drop for the dehomogenized Turing pattern designs is
approximately 4–6× that of the conventional topology
optimized designs. This greater flow resistance is logically
related to the assumption of porous media throughout the
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Fig. 4 Computational cost
versus number of outlets for the
full algorithm solution for a 100
× 100 mm2 manifold. TO,
conventional topology
optimization algorithm; RD,
reaction-diffusion algorithm.
Light regions = fluid, black
regions = solid

design space combined with an eventually large number of
very small diameter outlet channels as opposed to fewer
flow channels with unconstrained maximum size. Here,
wcmax andwcmin are fixed in all cases, and the 83 outlet case
shown in Fig. 4 is representative of all outlet configurations
with the exception of the microstructure as it approaches
the outlets. However, as a future extension of this work, we
may also modify/optimize wcmax, wcmin based on further
space-filling microstructure, fabrication, and flow resistance
constraints.

Table 2 Comparison of performance metrics and computational cost

10 20 30 83

outlets outlets outlets outlets

TO avg. variation 11.9% 7.19% 7.24% –

TO max. variation 22.4% 19.2% 22.9% –

TO normalized �P 1.19 1.02 1.00 –

TO total CPU hours 0.282 0.865 1.98 13.4†

RD avg. variation 1.50% 2.00% 1.94% 0.77%

RD max. variation 3.00% 5.67% 5.89% 4.56%

RD normalized �P 4.51 4.27 3.99 6.14

RD total CPU hours 0.295 0.303 0.296 0.312

RD Turing pattern 0.208 0.217 0.213 0.231

Generation CPU hours

TO, topology optimization; RD, reaction-diffusion
†Estimated value

4 Conclusions

An optimization method was proposed to design space-
filling Turing patterned microstructures for fluid flow con-
trol through a porous media field. Reaction-diffusion equa-
tions form the basis of the microchannel dehomogenization
post-processing technique, where the porous media field is
linked to explicit representation of the rendered microstruc-
ture. Numerical experiments highlight the capability to
produce precise flow control for manifolds involving hun-
dreds of microchannel outlets with a trade-off to higher
pressure drop due to the space-filling microstructures. The
method is effective, flexible, and may be applied to large
arbitrary geometries. Other porous media parameterizations
are feasible, including permeability mappings that account
for the flow structure out-of-plane depth, opening oppor-
tunities for design in three dimensions. Relevant uses of
this methodology include the design and additive fabrica-
tion of microchannel reactors, which are prevalent across
biological and energy-related applications.
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