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Abstract
Design variables in density-based topology optimization are typically regularized using filtering techniques. In many cases,
such as stress optimization, where details at the boundaries are crucially important, the filtering in the vicinity of the
design domain boundary needs special attention. One well-known technique, often referred to as “padding,” is to extend the
design domain with extra layers of elements to mitigate artificial boundary effects. We discuss an alternative to the padding
procedure in the context of PDE filtering. To motivate this augmented PDE filter, we make use of the potential form of the
PDE filter which allows us to add penalty terms with a clear physical interpretation. The major advantages of the proposed
augmentation compared with the conventional padding is the simplicity of the implementation and the possibility to tune
the boundary properties using a scalar parameter. Analytical results in 1D and numerical results in 2D and 3D confirm the
suitability of this approach for large-scale topology optimization.

Keywords Topology optimization · PDE filter · Boundary effects

1 Introduction

Topology optimization is a computational design method-
ology that is widely used in industry, in particular for
aerospace and automotive applications. Common structural
objectives are to find optimal trade-offs between weight,
stiffness, strength, and natural frequency. One of the leading
approaches to topology optimization, which is also the one
followed in this article, is the density-based approach where
the topology is described by a density, i.e. volume fraction
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of solid isotropic material variable at each discretization
point in the design domain (Bendsøe 1989; Bendsøe and
Sigmund 2003). As the underlying density variables are
continuous between zero and one, penalizing intermediate
density values using certain material interpolation schemes
is necessary to obtain crisp 0/1 layouts. The most pop-
ular material interpolation functions are the SIMP (Solid
Isotropic Material with Penalization, cf. Bendsøe (1989),
Zhou and Rozvany (1991), and Mlejnek (1992)) and the
RAMP stiffness interpolation (Rational Approximation of
Material Properties, cf. Stolpe and Svanberg (2001).)

A well-known issue associated with penalization of
diffuse designs is that the penalized formulation is lacking
an intrinsic length scale which causes numerous problems
(Diaz and Sigmund 1995). A remedy to these problems uses
a filter-based regularization, similar to those used in image
processing, to introduce a length scale. One such early filter
is the sensitivity filter (Sigmund 1994; Sigmund and Maute
2012) that essentially averages the design sensitivities over
a neighborhood of each design point. This idea was later
applied directly to the density variables, leading to the
widely used density filter (Bruns and Tortorelli 2001;
Bourdin 2001; Bruns and Tortorelli 2003). Filtering in
topology optimization has evolved into a research topic
as the filtering operation has tremendous impact on the
geometry of the resulting design. Among many extensions
and variations, one can find smooth Heaviside projections
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(Guest et al. 2004); morphological filters (Sigmund 2007);
manufacturing-tolerant formulations (Sigmund 2009; Wang
et al. 2011); density filters based on geomteric, harmonic
and quasi-arithmetic means (Svanberg and Svärd 2013;
Wadbro and Hägg 2015); and recently also spatial variation
of the length scale (Amir and Lazarov 2018; Schmidt et al.
2019). Several alternatives to the filtering do exist, e.g., the
perimeter control method (Haber et al. 1996), the gradient
control scheme (Peterson and Sigmund 1998; Borrvall and
Petersson 2001), and the MOLE method (Poulsen 2003);
see also the surveys (Sigmund and Peterson 1998; Borrvall
2001). Furthermore, other, non density-based, topology
optimization approaches use alternate means for controlling
the length scale, for example phase-field methods (Wallin
and Ristinmaa 2013, 2015) and level-set methods (Allaire
et al. 2016; Wang et al. 2016). However, the density-based
approach with a density filter remains the most widely
used method, both in research and in practice. Hence, the
current contribution focuses solely on issues arising with
this method, specifically with boundary effects.

Recently, issues regarding the consistent treatment of
filtering along the boundaries of the design domain
have arose. Indeed, upon observing the many topology
optimization results in the literature, it can clearly be seen
that filtering causes an artificial “attraction” of the design
towards the boundaries. This anomaly is a result of the
nonuniformity of the filtering operation in the boundary
regions. This matter is of particular importance for stress-
constrained topology optimization since the maximum
stress likely occurs at the design domain boundary.

The need for consistent treatment of length scale control
at the boundaries was discussed by several authors, cf.
Poulsen (2003) and Lazarov et al. (2016). A recent article
demonstrates the artifacts clearly and resolves the issue by
extending the design domain for the purpose of consistent
filtering (Clausen and Andreassen 2017). Two techniques
have been discussed in the literature: we will refer to both as
“padding.” In the first padding method, the filter operation
is performed on an extended design domain so that the
boundary and interior regions of the original design domain
(being solid or void) are filtered in a consistent manner
(Zhou et al. 2014; Lazarov et al. 2016). In the second
padding method, both the filter operation and the finite
element analysis are performed on the extended design
domain (Clausen and Andreassen 2017). The latter method
has resolved stress concentrations at re-entrant corners
in stress-based topology optimization (Amir and Lazarov
2018; de Troya and Tortorelli 2018).

Due to the maturity of 2D topology optimization, as
well as the industrial need for 3D design, research focus is
currently being shifted from 2D applications to 3D topology
optimization. This trend puts new emphasis on efficient
computational methods such as parallel computing, cf. e.g.

Aage et al. (2015, 2017). Notably density filters which
are costly to use in parallel algorithms are supplanted
by the PDE filter introduced in Kawamoto et al. (2011)
and Lazarov and Sigmund (2011). This requires the
solution of an elliptic PDE, whose discretized form is
solved using conventional finite elements and parallel
algorithms. In most topology optimization procedures, the
additional computational cost for solving the PDE filter
equations is small compared to solving the state equations.
Unfortunately, the anomalies in the boundary regions still
arise. But fortunately, they are mitigated by using padding.
In this paper, we discuss an alternative to padding whereby
we augment the potential functional whose minimization
generates the PDE filter. This augmentation results in a
Robin boundary condition that eliminates the need for
padding while preserving the effect of padding. As such, the
proposed scheme will not resolve issues that are associated
with padding (Clausen and Andreassen 2017). That said, the
computational cost for the proposed scheme is slightly less
than that of the padding procedure, but the implementation
complexity is significantly reduced.

The remainder of the paper is organized as follows: Basic
preliminary concepts are reviewed in Section 2, including
a review of the standard density and PDE filters. The
main contribution of the article is presented in Section 3
where we discuss the augmented PDE filter and shed light
on the additional length scale parameter that controls the
boundary condition of the filter. Several numerical examples
of minimum compliance optimization in 2D and 3D are
presented in Section 4. Finally, conclusions are drawn in
Section 5.

2 Preliminaries

In this section, we first review several basic features of the
topology optimization formulation considered throughout
the article. Then, we provide background on density filtering,
in its standard form and in the PDE-based approach.

2.1 Problem formulation

For simplicity, we consider the problem of minimum
compliance topology optimization subject to a constraint on
the total volume fraction, i.e.,

minimize :
ρ

FT a

subject to :

∑Nelm
e=1 ρeVe∑Nelm
e=1 Ve

− Vf ≤ 0

: 0 ≤ ρe ≤ 1, e = 1, . . . , Nelm

with : Ks(ρ) a = F (1)
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where Ks(ρ) a = F is the discretized equilibrium equations
for a linear elastic body occupying the design domain
volume V under the assumption of quasi-static conditions;

is the structural stiffness

matrix with the assembly operator denoted . The nodal
displacement vector is a and the external load vector is
F. The explicit format of the discrete strain-displacement
operator, Bs , can be found in, e.g., Ottosen and Petersson
(1992). In each element e = 1, . . . , Nelm in the finite
element discretization, we assign a design variable ρe.

The design variables, ρe, do not directly enter the
equilibrium equations, rather they are mapped to the filtered
field ρ̃. As per usual, ρ̃ = 0 denotes locations devoid
of material and ρ̃ = 1 denotes locations filled with solid
material. The connection between ρe and ρ̃ is the topic of
the present paper, and in particular, we are interested in
filters which are suitable for large-scale computations. Once
ρ̃ is established, the stiffness tensor, D, is evaluated as

D = (
ρ̃p(1 − ε) + ε

)
Do (2)

where the penalty exponent is taken as p = 3, the uniform
elastic isotropic stiffness tensor is denoted by Do and the
residual stiffness factor, ε = 10−9, used to avoid a singular
finite element stiffness matrix. In our simulations, we use
Young’s modulus E = 1 and Poisson’s ratio ν = 0.3.

2.2 Filters in topology optimization

Here, we compare the PDE filter to the density filter.

2.2.1 Density filtering and padding

The density, i.e., convolution filter was first proposed in
Bruns and Tortorelli (2001) and is based on the convolution

ρ̄(x) =
∫
�f

w(y − x) ρ(y) dV∫
�f

w(y − x) dV
, (3)

where �f is the support domain of the filter and w is
the weighting kernel function. We denote the convolution
filtered density ρ̄ to distinguish the results of the standard
density filter from that of the PDE filter that is denoted ρ̃.
The support domain is given by a sphere with “filter” radius
r . Common weight function are the Gaussian bell, hat, and
cone functions. In practice, the filtering is performed on
the finite element discretization and therefore the filtered
density element f is evaluated as

ρ̄f ≈
∑

e∈Ne
f

w(xe − xf )ρeVe∑
e∈Ne

f
w(xe − xf )Ve

, (4)

where xe represents the centroid of element e with volume
Ve and Ne

f defines the list of elements in the support

region of element f . The explicit expression for the weight
function used in this work is given by

w(x) = max

(
0, 1 − |x|

r

)
, (5)

which frequently is referred to as “hat” or “cone” density
filter. To eliminate boundary effects, the design domain is
padded, by the distance r , so that Ne

f includes elements
outside the original design domain, V . The elements in the
padding region are either assigned a density of zero or one.

2.2.2 Conventional PDE filter

In the PDE filter, the filtered density ρ̃ is obtained from
the nominal design variable density ρ in a competition
between (1) the difference between ρ̃ and ρ and (2) the
spatial variations in ρ̃. This competition is formulated as a
minimization of the potential Π defined as

Π(ρ̃) = 1

2

∫
V

l2o |∇ρ̃|2dV

︸ ︷︷ ︸
cost for spatial variations in ρ̃

+ 1

2

∫
V

(ρ − ρ̃)2dV

︸ ︷︷ ︸
cost of the difference between ρ and ρ̃

. (6)

We do not want ρ̃ to be significantly different than ρ and
thereby we see that the second integral above is reduced to
zero if ρ̃ = ρ. But ρ is highly oscillatory so to limit the
oscillations in ρ̃ we add the first integral. And thus, regions
where ∇ρ �= 0, i.e., interface regions, in the domain defined
by ρ̃ field are limited. The compromise between these two
effects is determined by the (bulk) length scale parameter lo.

Minimizing Π with respect to the filtered density ρ̃, i.e.,
requiring δΠ(ρ̃; δρ̃) = 0 ∀δρ̃, allows us to establish the
PDE filter that commonly appears in the literature (Lazarov
and Sigmund 2011), i.e.,

−l2o�ρ̃ + ρ̃ = ρ, in V, (7)

with the homogeneous Neumann boundary conditions ∇ρ̃ ·
n = 0, where n is the outward normal unit vector to the
design domain, V .

3 Augmented PDE filter

From (6), we see that the classical PDE filter associates
no cost for placing interfaces along the design domain
boundary since ∇ρ̃ · n = 0 along ∂V and therefore does
not contribute to the cost for spatial variations in ρ̃, cf. (6).
Consequently, the PDE filter favors designs having their
boundaries coincident with the design domain boundaries
rather than interfaces within the design domain. This effect
is well-known and clearly seen by optimized designs that
“stick” to the design domain boundaries.

Consistent boundary conditions for PDE filter regularization in topology optimization 1301



Inspired by Wallin and Ristinmaa (2014), we will
mitigate this artificial “sticking” by assigning a cost
for interfaces that are located along the design domain
boundaries. To this end, we add a boundary term to the
potential Π , i.e.,

Πaug(ρ̃) = 1

2

∫
V

l2o |∇ρ̃|2dV + 1

2

∫
V

(ρ − ρ̃)2dV

+ 1

2

∫
∂V

ls ρ̃
2dS

︸ ︷︷ ︸
cost for material along design domain boundaries

, (8)

where ls is the (surface) length scale parameter. Minimiza-
tion of (8) results in

δΠaug(ρ̃; δρ̃) =
∫

V

l2o∇ρ̃∇δρ̃dV −
∫

V

(ρ − ρ̃)δρ̃dV

+
∫

∂V

ls ρ̃δρ̃dS = 0, (9)

for all δρ̃. Making use of the Green-Gauss theorem on
the first volume integral on the right hand side of (9) renders

δΠaug(ρ̃; δρ̃) = −
∫

V

l2o�ρ̃δρ̃dV −
∫

V

(ρ − ρ̃)δρ̃dV

+
∫

∂V

(l2o∇ρ̃ · n + ls ρ̃)δρ̃dS = 0, (10)

which should be fulfilled for arbitrary variations, δρ̃. Using
the arbitrariness of δρ̃, we find the (Robin) boundary
condition

l2o∇ρ̃ · n = −ls ρ̃, on ∂V, (11)

which ensures that the boundary term in (10) is annihilated.
To extract the governing PDE from (10), we again use the
arbitrariness of δρ̃ to again obtain (7).

To conclude, instead of solving (7) with homogeneous
Neumann boundary conditions∇ρ̃·n = 0, we solve (7) with
the Robin boundary condition (11). Obviously, by letting
ls → 0, we recover homogeneous Neumann boundary
conditions, i.e., the conventional PDE filter is obtained.
Similarly, by increasing ls → ∞, interfaces along external
boundaries become prohibitively costly and designs that
adhere to the design domain boundaries are eliminated.

3.1 FEM formulation

The governing equations (7) and (11) are discretized using a
standard Galerkin-based finite element formulation; i.e., we
use the element interpolation ρ̃ ≈ Neρ̃e where Ne and ρe

are the element shape functions and nodal filtered density
vectors, respectively. Using Galerkin weight functions,
i.e., δρ̃ = Neδρ̃e, and making use of the arbitrariness of δρ̃
results in(
l2oK + Mvol + lsMsurf

)
ρ̃ = Tρ, (12)

where

(13)

Each Nelm column in T contains∫
V

NeT dV, (14)

and as per usual, Be contains the spatial gradient of the
shape functions Ne. From (12), we conclude that imple-
mentation of the augmented PDE filter only requires minor
changes in an existing PDE filter implementation since the
new surface term only contributes to the matrix lsMsurf. The
proposed surface treatment (12) reduces the computational
cost slightly compared to the padding approach. However,
since the computational cost of the filter is a small fraction
of the overall effort that is required to solve the optimization
problem, the new scheme and the padding scheme can,
computational-wise, be considered to be equal. The primary
advantage of this new surface treatment is its simple
implementation and its ability to control the attraction
towards the boundaries using a single parameter.

1Our implementations for 2D and 3D minimum compli-
ance topology optimization are provided as Supplementary
Material to this article. Both implementations are extensions
to widely used open-source codes in MATLAB and C++
(Aage et al. 2015; Andreassen et al. 2011).

3.2 Relation between the length scales lo and ls

As the two length scales lo and ls in (8) are measures
of the cost for interfaces within the design domain and
interfaces along the boundary of the design domain, they are
not independent. To find the connection between them, we
consider the 1D version of (7), i.e.,

−l2o
d2ρ̃

dx2
+ ρ̃ = ρ, x ∈ V =

[
−L

2
,

L

2

]
(15)

with

ρ(x) = H(x), (16)

where H(x) is the Heaviside function. Essentially, we view
this as a design with boundary at x = 0, and padding
region −L/2 < x < 0. Equation (15) is solved with
the homogenous Neumann boundary conditions dρ̃

dx
= 0

at x = ±L/2, and with lo = L/50, to compute the
conventional PDE filter density ρ̃. This is compared to the
convolution filtered density ρ̄, obtained using r = 2

√
3lo,

in Fig. 1. We find that the convolution filter and the PDE
filter densities take on equal values ρ̄ = ρ̃ = 0.5 at the
interface, x = 0. We also see that the derivatives at x = 0
are dρ̄

dx
= 1

r
and dρ̃

dx
= 1

2lo
− 1

2lo(e1/lo+1)
≈ 1

2lo
, i.e., the slopes

1For details regarding the FEM formulation of the conventional PDE
filter, we refer to Lazarov and Sigmund (2011).
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Fig. 1 Unfiltered, convolution, and PDE-filtered densities (a) and their derivatives (b). Design variable ρ (solid blue), convolution filter ρ̄ (dashed
green), PDE filter ρ̃ (dotted red)

differ by approximately a factor of
√
3 at the interface. This

difference is clearly visible in Fig. 1b.
To identify the length scale ls , we now solve (15) over the

trimmed design domain V = [0, L/2] and enforce Robin
boundary condition l2o

dρ̃a

dx
= ls ρ̃

a at x = 0. The augmented
PDE density filter at the interface equals

ρ̃a(0) = exp( L
lo

) − 1

exp( L
lo

)(1 + ξ) + ξ − 1
, (17)

where ξ = ls/ lo. Based on (17), the augmented density at
the boundary can for small lo/L be estimated as

ρ̃a(0) ≈ 1

ξ + 1
. (18)

Fig. 2 Design variable ρ (solid blue), conventional PDE filter ρ̃

(dotted red), and augumented PDE filter ρ̃a (dashed green) for ξ =
1/30, 1/3, 1, 3, 30

From (18), we conclude that if ξ = 1, the value of the
filtered density at the interface ρ̃a(0) = 0.5 equals the
convolution and the conventional PDE filter values ρ̄(0) =
ρ̃(0) = 0.5 computed over the padded domain. Moreover,

upon equating the slopes dρ̃a

dx

∣∣∣
x=0

= dρ̃
dx

∣∣∣
x=0

, we find the

condition

ξ = ls

lo
= exp( L

lo
) − 1

exp( L
lo

) + 1
, (19)

which for small lo/L suggests that ξ ≈ 1, i.e., ls ≈ lo.
In conclusion, for the particular choice ls = lo, the values
of the augmented filtered density and its slope over the
domain V = [0, L/2] equal those obtained over the padded
domain. To further highlight the influence of ls = ξ lo,
the interface profile ρ̃(x) for this example is plotted for
ξ = 1/30, 1/3, 1, 3, 30.

Again, we conclude that for ξ = ls
lo

= 1, the augmented
density profile, ρ̃, coincides with that of the padding
procedure, ρ̄. Furthermore, in Fig. 2, we see how the choice
of ξ affects the maximum filtered value on the boundary.
This suggests that the filtered ρ̃ value in the boundary region

Fig. 3 MBB beam

Consistent boundary conditions for PDE filter regularization in topology optimization 1303



Fig. 4 Optimized MBB beam for the a density convolution filter and b PDE filter, using the top88 and top82MATLAB codes, respectively

can take on values from zero to one. Such cases arise when
using the robust topology optimization approach that is
based on uniform dilations and erosions (Wang et al. 2011).

4 Numerical examples

To evaluate the effect of the proposed augmented PDE filter,
we apply it to several representative test cases in 2D and 3D.
The computations are based on the 88-line MATLAB code in
Andreassen et al. (2011) and its 82-line PDE filter extension
(http://www.topopt.mek.dtu.dk/apps-and-software/efficient-
topology-optimization -in-matlab). The 3D computations
are based on the PETSc-based code (Aage et al. 2015), with
changes made primarily to the PDEfilter class.

4.1 2D examples

The first topology optimization problem we consider is
the well-known MBB beam minimum compliance problem.
The geometry and boundary conditions are illustrated in
Fig. 3, where the height is L = 100. The design domain
is discretized using 300× 100 4-node plane stress elements
and the allowable volume fraction of the design domain is
Vf = 0.4. The “standard” parameter settings, as presented
in Andreassen et al. (2011) are used, e.g., the penalization
exponent is p = 3 and the move limit is m = 0.2. However,
in addition to the stopping criteria while change >
0.01, we set the maximum number of design cycles
(loop) to 200.

First, we compare the convolution density filter to the
conventional PDE filter. We use the weight function w

defined in (5), and we do not impose any explicit modifica-
tions to the filter operator over any portion of the domain
boundaries including the symmetry face.2 For the PDE
filter, we apply homogeneous Neumann boundary condi-
tions on all design domain bondaries. The density filter
radius is chosen as r = 12, and thus, the PDE filter length

2Special treatment of the symmetry face boundary condition is
required when using the convolution density filter, i.e., the symmetry
face boundary should not be treated as the domain boundary. This fact
is often neglected in practice.

scale becomes lo = r/(2
√
3). Figure 4 shows the results

generated by running the 88-line and 82-line MATLAB

codes through top88(100,300,0.4,3,12,2) and
top82(100,300,0.4,3,12,2), respectively, with
minor modifications for the stopping criteria. Figure 4a and
b both show how material “sticks” to the boundary of the
domain, and that the design boundaries are forced to be
perpendicular to the design domain boundary. These are
well-known anomalies which arise both for density and
PDE filtering regularization.

Next, we demonstrate how the encountered anomalies
are mitigated via the padding and augmented PDE filter
approaches. In the former, the padding thickness equals
the filter radius r , no padding adjoins the left symmetry
face, and in regions indicated by the dashed and dotted
lines in Fig. 5, we assign ρ = 0 and ρ = 1. The width
of the latter dotted line regions which encompass the load
and support regions is r . We apply the PDE filter with
lo = r/(2

√
3) to the padded domain. Again, no special

care is given to the symmetry face; i.e., zero Neumann
boundary conditions are applied to the entire boundary of
the padded domain. Results for this optimization problem
are obtained by running the MATLAB code top82pad
provided in the Supplementary Material. The augmented
PDE filter approach is made possible by incorporating
Robin boundary conditions into the MATLAB top82
code, cf. top82augPDE provided in the Supplementary
Material. We specify ls > 0 on the external boundaries

Fig. 5 MBB beam with padded domain. Dashed and dotted regions
represent padding that contain no material and are filled with material,
respectively
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Fig. 6 Density fields of the optimized MBB beam. ρ̃6a , ρ̃6b, and ρ̃6c
corresponding to a PDE filter with homogeneous Neumann bound-
ary conditions, b PDE filter with homogeneous Neumann boundary

conditions and padding, and c augmented PDE filter with ls = lo.
Filtered density ρ̃6a , ρ̃6b, and ρ̃6c at d x = 5 and e x = 205. The
compliance values are a 315.8, b 377.3, and c 377.4

indicated by the dashed lines in Fig. 5, and ls = 0 on the left
symmetry face and dotted boundaries that adjoin the load
and support regions.

Figure 6a–c show three density fields, ρ̃6a , ρ̃6b, and
ρ̃6c, obtained using the PDE filter. Figure 6a is obtained
with homogeneous Neumann boundary conditions (see also
Fig. 4b), Fig. 6b with homogeneous Neumann boundary
conditions and padding, and Fig. 6c with the augmented
PDE filter using ξ = ls/ lo = 1. In Fig. 6d and e, we plot
the filtered element density values across vertical sections
of the three topologies, cf. the solid lines and dotted lines at
x = 5 and x = 205. As discussed in Section 3.2, we expect
the ξ = 1 choice to give ρ̃ ≈ 0.5 at domain boundaries
using the augmented PDE filter. These plots show that both
the padding technique (blue line with markers) and the

augmented PDE filter (black line) methods give practically
identical results and that indeed ρ̃ ≈ 0.5 on the boundaries.
Furthermore, in both of these methods ∇ρ̃ · n �= 0 at
y = 0 and y = 100 and hence the design boundary is not
forced to be perpendicular to the design domain boundary.
Finally, the filtered density fields ρ̃6b and ρ̃6c are compared
by evaluating (1) 1

V

∫
V
(ρ̃6b − ρ̃6c)

2dV = 2.9 · 10−5 and (2)
the compliance difference, 0.03 %, which further shows that
the padding technique and the augmented PDE filter give
almost identical results.

4.1.1 Influence of ls

To further clarify the role of ls , we also solve the MBB
optimization problem using the augmented PDE filter for

Consistent boundary conditions for PDE filter regularization in topology optimization 1305



Fig. 7 Nodal filtered density ρ̃(5, 0) obtained from several optimizations of the MBB beam with the augmented PDE filter (red circles) versus
parameter ξ = ls/ lo, for a fixed lo. The dotted blue curve shows the function f (ξ) = 1/(1 + ξ), cf. (18)

various choices of ξ = ls/ lo for fixed lo = r/(2
√
3) and

plot the filtered nodal density ρ̃ at (x, y) = (5, 0) versus
ξ , cf. Fig. 7. It is clearly seen that the results from the
optimization practically overlap the 1D PDE solution with
Robin boundary condition, cf. (18) (blue dotted line). This
result is expected since the design along the x = 5 section
cut is nearly one-dimensional. Figure 7 also verifies that
the particular choice ξ = 1 gives ρ̃ ≈ 0.5 at the domain
boundary, similar to the padding technique. We also note
that as ls is increased, the filtered density, ρ̃(5, 0), at the
boundary decreases. Summarizing, an increase of ls , gives
less filtered material density at the boundary and results in
more compliant designs, cf. Table 1.

Table 1 Compliance values of the optimized MBB beam for varying
ls/ lo

ξ = ls/ lo Compliance Figure

0 315.8 7 (left) and 6a

0.25 341.8

0.50 358.4

0.75 369.3

1 377.4 7 (center) and 6c

5 415.7

100 428.2 7 (right)

4.1.2 2D structure subjected to tensile loading

To connect with the work in Wallin and Ristinmaa (2014),
we study the design problem shown in Fig. 8. The two
point loads are applied at distances L/4 and 3L/4 from
the bottom, respectively, and the left edge of the domain
is clamped. The same discretization as used for the MBB
beam is used herein, but to obtain topologies similar to those
presented in Wallin and Ristinmaa (2014), the filter length
scale is reduced to lo = 4/(2

√
3).

Figure 9 shows optimized topologies using the conven-
tional PDE filter with homogeneous Neumann boundary
conditions (Fig. 9a), the conventional PDE filter with homo-
geneous Neumann boundary conditions and padding over
the top and bottom boundaries (Fig. 9b) and the augmented
PDE filter with ξ = ls/ lo = 1 on the top and bottom bound-
aries and ls = 0 elsewhere (Fig. 9c). In all three cases, the
optimized topology consists of two curved bars connected
by a thin vertical bar. In Fig. 9a, we clearly see that the
conventional PDE filter favors material along the upper and
lower boundaries, whereas this “boundary sticking” is pri-
marily avoided using either the padding or augmented PDE
filter approaches, cf. Fig. 9b and c. The compliance val-
ues of the latter two designs are almost equal, 39.279 and
39.280, respectively, whereas the 39.674 compliance of the
conventional design is worse due to the artificial boundary
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Fig. 8 Design domain with
applied loads and boundary
conditions of the 2D axially
loaded structure

effect. These results also show that, similar to the results
presented in Fig. 6b and c, the padding technique is similar
to the augmented PDE filter method with ls = lo.

4.2 3D cantilever

In this example, we illustrate the effect of the surface length
scale for a 3D case. The particular example is the design of
a 2.0 × 1.0 × 1.0 cantilever beam that is fixed on the left
face and subjected to a transverse line load at the bottom
right edge. We discretize the domain with 256 × 128 × 128
brick elements and set the filter radius to r = 0.05, that is
in the range of values explored by Aage et al. (2015). First,
we present a reference case using the conventional PDE

Fig. 9 a Conventional PDE filter with homogeneous Neumann
boundary conditions. b Conventional PDE filter with homogeneous
Neumann boundary conditions and padding. c Augmented PDE filter
with ls = lo. The compliance values are a 39.674, b 39.279, and c
39.280

filter with homogeneous Neumann boundary conditions,
essentially reproducing a design similar to those shown in
Fig. 3 from Aage et al. (2015). Views of this design from
different angles are presented in Fig. 10. One can clearly see
the boundary sticking phenomenon.

We now repeat the optimization using the augmented
PDE filter with ls = 0 over the support and load boundary
regions and ls > 0 elsewhere. The resulting layouts with
ls = lo/4, ls = lo/2 and ls = lo are presented in Figs. 11,
12, and 13. As seen in Fig. 11, the ls = lo/4 design
is substantially different than the “conventional” Fig. 10
design as the boundaries at y = ymin and y = ymax are
completely avoided. With larger values of ls , this effect is
further exasperated. In the support and load regions where
we assign ls = 0 the structure “sticks” to the boundaries and
the filtered density values approach 1.

Finally, we repeat this example without the proposed
boundary treatment but with the padding method in which
both filtering and FEA are performed on the extended
domain. This padding choice is selected for its simplicity.
For this implementation, we extend the computational
domain by d = 0.0625 in −y, +y, −z, +z directions. Note
that d is slightly larger than r so that the added number of
elements is divisible by 16, and hence 5 multigrid levels
can be used for preconditioning of the linear elasticity
equations. We do not add padding adjacent to the x = 0
face because of the fixed boundary condition. Finally, we
extend the x = 2 face by d = 0.125, again in order to
fit 16 elements in the padding region. The region near the
load is filled with solid material, whereas all other padding
regions are devoid of material. The optimized “padded”
design is depicted in Fig. 14, once with and once without
the padded elements. We see that the topology is nearly
identical to the ls = lo design, cf. Fig. 13, thus confirming
the suitability of the augmented PDE filter as a means of
enforcing a consistent length scale on the domain boundary.
Slight differences in the loaded region between the Figs. 13
and 14 designs are observed—this is expected because
the solid padding is included in the structural analysis.
These differences could be avoided by using separate
finite element meshes for the PDE filter and structural
computations, i.e., by following the alternative padding
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Fig. 10 Optimized 3D cantilever with conventional PDE filter with homogeneous Neumann boundary conditions. The filtered density distribution
has a clear tendency to stick to the domain boundaries. The compliance after 200 design iterations is 6.337

Fig. 11 Optimized 3D cantilever using the augmented PDE filter with ls = lo/4. The filtered density is less than 1 where the “solid” design meets
the design domain boundary. The compliance after 200 design iterations is 6.730
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Fig. 12 Optimized 3D cantilever using the augmented PDE filter with ls = lo/2. The filtered density is approximately 0.5 where the “solid”
design meets the design domain boundary, except over the top surface. The compliance after 200 design iterations is 6.874

Fig. 13 Optimized 3D cantilever using the augmented PDE filter with ls = lo. The filtered density is 0.5 where the “solid” design meets the
design domain boundary. The compliance after 200 design iterations is 6.979
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Fig. 14 Optimized 3D cantilever with physical padding including solids adjacent to the load (left), and presented without the padding layers
(right). The topology is nearly identical to that of Fig. 13

method. However, this method requires more extensive
changes to the basic PETSc code and which is unnecessary,
as the proposed augmented PDE filter gives the same effect
with minimal implementation effort.

5 Conclusions

In this brief paper, we have shown that the PDE filter
commonly used in large-scale topology optimization can be
easily modified to treat the design domain boundaries in a
manner that is consistent with physical padding techniques,
without modifying the design domain. The formulation
augments the potential that governs the PDE filter with
an extra term to accommodate design interfaces located
along the design domain boundary. From an implementation
point of view, the new boundary term requires minor
changes in the PDE filter and it eliminates the need to
incorporate padding. To control the penalization of regions
adjacent to the design domain boundaries, an additional
scalar parameter, ls , is introduced. By equating ls to the bulk
penalization parameter, lo, we achieve the same effects of
that used in the padding method. Furthermore, ls can be
chosen to accommodate the uniform dilation and erosion of
some robust topology optimization techniques.
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