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Abstract
The new “modified Tsai-Hill failure criterion” introduced in Shimoda et al. (SAMO, 2020) does not possess a convex fracture
envelope for all possible set of its coefficients. An extended version of the “modified Tsai-Hill failure criterion” is introduced. The
extended version encompasses several known failure criterions for the anisotropic materials. The convexity of the fracture
envelope for composite materials and metallic alloys is briefly discussed. Albeit the convexity of the failure envelope is not
necessary from the physical viewpoint, the convexity is favorable for the application of optimization methods.
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1 Modified Tsai-Hill criterion

In the article of Shimoda et al. (2020), the “modified Tsai-Hill
failure criterion” was introduced. The proposed criterion
could be considered to be pure phenomenological according
to definition (Wu 1974). Equation (18) (Shimoda et al. 2020)
reads:
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The new criterion (1) essentially linked to the directions of
the reinforcement elements of the composite. For example, the
axis “1” is preferably a fiber direction and axis “2” is normal
to fiber direction. In the state of plane stress, the criterion
possesses five positive coefficients X1P, X1M, X2P, X2M, S12
and distinguishes the compression and tension stresses paral-
lel and normal to fiber direction. Because the criterion is de-
fined in a special coordinate system, linked to the directions of
fibers or plies, the criterion is not invariant to the definition of
coordinate system.

The function (1) is a homogeneous function of the second
order in terms of stresses.

Each vector that initiates in the origin of the coordinate
system of stress space intersects (crosses) only once the failure
envelope. Thus, the failure envelope is a star-like surface.

The cited article uses the following values for optimization:

X 1P ¼ 1500MPa;X 1M ¼ 1005MPa;X 2P ¼ 40MPa;X 2M

¼ 246 MPa; S12 ¼ 68MPa:

The new criterion (1) can be considered a generalization of
the Tresca maximum shear criterion for isotropic materials as
well. The Tresca criterion expresses the difference between
the most positive and most negative principal stresses. For
plane stress conditions, when one of the principal stresses is
zero, one must use a different formula when the two plane
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principal stresses have the same sign and when they have
different signs. If the signs of two plane principal stresses
match, the zero third principal stress is used in the criterion.
Alternatively, when the signs of two plane principal stresses
are different, the zero principal stress is not used in the
equation.

The Tsai-Wu criterion (Tsai and Wu 1971) renders this
problem by adding linear terms to criterion. However, the
additional linear terms abolish the homogeneity of the failure
criterion (Groenwold and Haftka 2006). The citing article
studied the optimization of safety factors of composite lami-
nates with non-homogeneous failure criterions of Tsai-Wu.
The optimization results are proved to be dependent upon
the magnitude of the acting loads. Consequently, it is advan-
tageous to use a homogeneous criterion, but the criterions
have to distinguish the signs of stresses. The proposed criteri-
on (1) differentiates the sign of the stresses and is suitable for
the optimization purposes.

The application of the “modified Tsai-Hill failure criterion”
(1) for the analysis of composites is questionable. The reason
is the following. The correct failure criterion must define a
convex region, which corresponds to admissible region. The
proposed “failure criterion” defines for all possible values of
stresses a non-convex failure envelope.

2 Extended version of the Tsai-Hill criterion

To analyze this problem of the criterion (1), we introduce the
extended version of the “modified Tsai-Hill failure criterion”
with two additional dimensionless parametersm > 0, 0 ≤ κ ≤
2:
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Both criterions (1) and (3) are homogeneous functions. The
degree of homogeneity of the function (3) is 2m.

Figure 1 shows the isolines (isarithm of the value 1) of the
functionF(m, 0) for different exponentsm = 1,m = 2, andm =
4. The isolines of the value 1 represent the failure envelope of
the criterion (3) for the plane stress state. The criterion (1) is
similar to the Jenkins maximal stress criterion (Jenkins 1920),
but with the quarter-elliptical boundaries fracture envelope
instead of straight boundaries of Jenkins. In the state of plane
stress, the criterion possesses five coefficients and is able to
distinguish the compression and tension stresses parallel and
normal to fiber direction. With the increasing exponent m, the
failure envelope turns out to be increasingly rectangular. In the
limit case m→∞, the failure envelope of the criterion (3)

transforms into the failure envelope of the Jenkins criterion
(Jenkins 1920).

Figure 2 displays the isolines (isarithm of the value 1) of
the function F(m, 1/2) for different exponents m = 1, m = 2,
and m = 4.

The isolines (isarithm of the value 1) of the function F(m,
1) for different exponents m = 1, m = 2, and m = 4 are
portrayed in Fig. 3. The isoline of the criterion (1) corresponds
the isoline of the function (3) with the exponent m = 1.

For the limit case κ = 2, the failure criterion factorizes and
the region is unbounded:
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The corresponding failure envelopes are displayed in
Fig. 4.

The failure envelopes of the criterion (3) with the positive
values of κ looks similarly to failure envelopes of the Tsai-Wu
criterion. Thus, the criterion (1) or (3) could be used for the
approximation of the experimental data. Due to the homoge-
neity of the function, the criterions (1) and (3) are advanta-
geous for the optimization methods.

3 Convexity of failure envelopes

Notably, that the failure envelope (zero-valued contour of the
failure criterion (1) is not convex. Consider the absence of the
shear stress σ12 = 0. The failure envelope is the curve with four
different equations in each quadrant I, II, III, IV:
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The curves are the quarters of ellipses in each quadrant and
are all convex. The angles in the cross sections with the coor-
dinate axes are sharp or obtuse. If the angle between the

adjacent elliptical sections are sharp, the conical point occurs
and the non-smooth curve is convex in the vicinity of the
junction. Otherwise, if the angle is obtuse, such region in the
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A:  

D:  

C:  

B:  
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III  IV 

Fig. 1 Contour lines (isarithms of
the value 1) of the function: F(m,
0)

m=1

m=2

m=4

Fig. 2 Contour lines (isarithm of
the value 1) of the function: F(m,
1/2)
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m=1

m=2
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Fig. 4 Contour lines (isarithm of
the value 1) of the function: F(m,
2)

m=1

m=2

m=4

Fig. 3 Contour lines (isarithm of
the value 1) of the function: F(m,
1)
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vicinity of junction point turns to be concave. The tangent
vectors at both ends of each segment of the boundary curve
use the curve equations for each section of (5) to (8).

The tangent vectors read:

T i ¼ ∂ f i=∂σ11

∂ f i=∂σ22

� �
; ti ¼ T i

T ik k2
for i ¼ A;B;C;D ð9Þ

Using (9), the angles between tangent vectors are:

sinαi ¼ tþi � t−i−1 for i ¼ A;B;C;D: ð10Þ

The calculation of the angles between the tangent vectors
delivers the following values for the angles:
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Evidently, the signs of the angles αA and αC are opposite.
Similarly, the signs of the angles αB and αD are also opposite.
Consequently, the fracture envelope of the criterion (1) in two
points is concave, if not all parameters in (2) are equal. The
parameters are equal if and only if the material is isotropic in
failure sense. For the isotropic material, the criterion (3) pro-
vides a generalization of the von Mises criterion.

4 Convexity of failure envelopes
for composite materials and structural
metallic alloys

The common failure criterions for fiber-reinforced composites
possess the convex failure surfaces. Namely, almost all empir-
ical and mechanism-based failure criterions for composites
preserve the convexity of failure envelope (Cuntze 2006;
Reifsnider and Masters 1987; Talreja and Varna 2016).

However, the considerably weaker requirement is obliga-
tory in the field of composite mechanics. Explicitly, Wu
(1974) requires that the failure envelope is star-convex from
the origin stress space. Thus, the convexity of fracture enve-
lopes is not essential for the anisotropic composites.

The analogous requirements appear in the different physi-
cal context. It has been long observed that plastic deforma-
tions induce anisotropy in initially isotropic metals and alloys
(Meuwissen 1995). Since the work of Mises (1928), the con-
vexity of the yield surface is commonly presumed for the

anisotropic metals. Drucker (1964) showed that plastic solids
in general must obey the normality rule. Drucker’s method
requires that the elastic range is star-convex from any point
within the elastic range. In turn, this means that the yield
surface must be convex (Ganczarski and Lenczowski 1997).
The convexity of yield function in the stress space is associ-
ated with material stability. Crystallographic slip also guaran-
tees convexity of polycrystal yield surfaces. The requirement
of positive plastic dissipation does not necessarily exclude
non-convex yield functions (Glüge and Bucci 2017). Their
article has shown that the star convexity of the yield surface
is sufficient to guarantee positivity of the work of stresses
along the plastic strain increment.

Nevertheless, the convexity of failure envelope is favorable
from the optimization viewpoint. Consider, for example, the op-
timization of strength and loading capacity of anisotropic ele-
ments (Kobelev 2019, § 4.2). In this problem, one searches the
direction of the reinforcement (the fiber direction) that provides
theminimum of the strength criterion, presuming the given stress
tensor in the certain point. In the case of convex failure envelope,
there is a unique orientation of the principal reinforcement. If the
failure envelope is non-convex, there could be several orienta-
tions of the reinforcement, which deliver the minimum of
strength criterion. Moreover, the optimal direction of reinforce-
ment could undergo a finite jump from one to another local
extrema even for an infinitesimally small variation of stress in
the neighboring regions of the structural member.

5 Conclusions

The “modified Tsai-Hill failure criterion” (1) (Shimoda et al.
2020) and its extension (3) with two additional parameters are
the phenomenological failure criterions, which are well-
matched for the optimization of composite structures. The cri-
terions comprise as special cases several common failure crite-
rions for anisotropic materials. The functions could be also
interpreted as the yield surfaces for the flow theory of plasticity.

Notably, the failure envelopes of the criterions (1) and (3)
are not convex. The convexity of the failure envelope of the
anisotropic plastic materials is non-compulsory from the phys-
ical standpoint. However, the non-convexity of failure enve-
lopes could lead to finite jumps of lamination angles in opti-
mization problems. The convexity of the constraints is also
advantageous for the numerical optimization algorithms
(Bertsekas 2015).
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Replication of results The closed form formula for the failure criterion
(3) is presented in the paper. This formula allows the instantaneous rep-
lication of the results. The evaluation of the parameters of equation (3)
succeeds using the commonmethods of curve fitting for the experimental
data.
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