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Abstract
The aim of this paper is to improve the shape of specimens for biaxial experiments with respect to optimal stress states,
characterized by the stress triaxiality. Gradient-based optimization strategies are used to achieve this goal. Thus, it is crucial
to know how the stress state changes if the geometric shape of the specimen is varied. The design sensitivity analysis
(DSA) of the stress triaxiality is performed using a variational approach based on an enhanced kinematic concept that
offers a rigorous separation of structural and physical quantities. In the present case of elastoplastic material behavior, the
deformation history has to be taken into account for the structural analysis as well as for the determination of response
sensitivities. The presented method is flexible in terms of the choice of design variables. In a first step, the approach is used to
identify material parameters. Thus, material parameters are chosen as design variables. Subsequently, the design parameters
are chosen as geometric quantities so as to optimize the specimen shape with the aim to obtain a preferably homogeneous
stress triaxiality distribution in the relevant cross section of the specimen.

Keywords Specimen shape optimization · Plasticity · Variational sensitivity analysis · Parameter identification

1 Introduction

In biaxial tests the stress state can be characterized by the
stress triaxiality η defined by

η = σm

σeq
= I1(σ )

3
√

3 J2(devσ )
, (1)

with the mean stress σm = 1
3 I1(σ ) and the equivalent

von Mises stress σeq = √
3 J2(devσ ). The stress triaxiality

classifies the stress state to be tensile if η > 0, compressive
if η < 0, or pure shear if η = 0. New specimens for biaxial
tests have been developed in Gerke et al. (2017), which
widen the range of stress triaxiality compared to traditional
specimens. This is crucial to distinguish between different
micro-mechanical damage mechanisms that are responsible
for material failure. With the new specimens, it is possible
to capture various damage mechanisms with only one
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type of specimen by varying the loading conditions. These
specimens shall be used to identify material parameters
for complex damage models. Thus, it is important to be
able to separate different damage mechanisms. In Gerke
et al. (2019), special attention is drawn to the so-called
X0-specimen, which is also subject of investigation in this
paper. The optimization goal is to further improve the shape
of the chosen X0-specimen so as to achieve a preferably
homogeneous stress triaxiality distribution in the area the
specimen is predicted to fail. With this at hand, a parameter
identification for special damage models that are to capture
different damage mechanisms will be easier and more
accurate.

For design optimization, gradient-based methods are
utilized. The gradient information is determined by means
of a variational approach proposed in Barthold (2002);
Barthold (2008); Barthold et al. (2016); Barthold and
Stein (1996). It is based on an enhanced kinematic
concept that offers a rigorous separation of structural and
physical quantities and provides exact gradient information
efficiently with moderate effort. Additionally, it allows
simultaneous computation of stress states and sensitivities
within a finite element framework. Thus, the proposed
approach is distinct from other variational techniques but
can be linked to well-known methods such as the Material
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Derivative Approach, cf. e.g. Zolésio (1981) and the
Domain Parametrization Approach, cf. e.g. Phelan and
Haber (1989). A detailed comparison of the mentioned
approaches is beyond the scope of this paper.

In contrast to a purely elastic mechanical response,
here the deformation history deserves special attention
in structural as well as sensitivity analysis. Numerous
researchers investigated the theoretical and computation
details which are linked to pioneering contributions such
as Michaleris et al. (1994). In our research, we follow
the preparatory work published in Wiechmann (2000).
The shape optimization of specimens has already been
treated in literature, and a few contributions are highlighted.
The reduction of stress concentration in the transition
zone between a straight-sided zone and a wider end zone
has been discussed in, e.g. Klemensø et al. (2007). The
relation of the geometric shape of the specimens on the
parameter identification problem from a mathematical point
of view has been investigated in Bauer et al. (2016).
Shape optimization of biaxially loaded specimens is more
sophisticated as outlined in, e.g. Makris et al. (2010) and
Etling and Herzog (2018). This paper pursues our research
on design sensitivity analysis applied to elastoplasticity
outlined in Liedmann and Barthold (2018a) and represents
an extended version of contribution Liedmann and Barthold
(2019).

In Section 2, the main optimization problem is stated
in terms of the objective function, design variables, and
nonlinear constraints. After some preliminaries given in
Section 3 about the viewpoint of kinematics and the notation
used in this paper, the model equations for the chosen
J2 elastoplastic model are summarized in Section 4 and
the solution strategy is described. Section 4.1 focuses
on the mechanical response analysis. Based on this, the
variational sensitivity analysis is consequently performed,
and the concept to compute the mechanical response and
stress sensitivities are outlined in Section 4.2. Section 5

Fig. 1 Initial geometry of X0-specimen

is concerned with numerics. The method of F̄ is briefly
explained in Section 5.1. Furthermore, the concept of the
so-called design velocity matrix is described in Section 5.2,
followed by some remarks about the computational effort
in Section 5.3. In Section 6, the method is applied to
two optimization problems, a parameter identification in
Section 6.1 and the shape optimization of the chosen X0-
specimen in Section 6.2. Section 7 summarizes the paper
and draws a conclusion on the findings. Discretization using
F̄ finite elements and the corresponding explicit discrete
operators for structural as well as sensitivity analysis are
given in the Appendix.

2 Optimization tasks

In this section, the two optimization problems subject in this
paper are introduced, namely the main shape optimization
and a preceding parameter fitting of the underlying
material model used for the simulations to experimental
data. Both problems are solved utilizing gradient based
optimization methods and analytical gradients are provided.
The computation of the gradients and the underlying
structural analysis problem is presented in Section 4.

2.1 Shape optimization

The main goal in this paper is the shape optimization of
the X0-specimen presented, e.g. in Gerke et al. (2019). The
initial geometry is illustrated in Fig. 1. In the notched area,
where the specimen is predicted to fail, the stress triaxiality
distribution shall be preferably homogeneous. Therefore,
the approach is to maximize the stress triaxiality intensity
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Fig. 2 Design variables in the notched area
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Variational sensitivity analysis...

in that area by varying the geometric design variables
defining the shape of the notches. The design vector
p = [ R1 R2 R3 d ] contains the design variables indicated
in Fig. 2.

Here, lcs and tcs denote the length and thickness of the
central cross-section, respectively. The objective function is
chosen to be

max
p

J (p) = || η(p) ||, (2)

where the vector η stores the stress triaxiality values at the
cross-section. The problem is constrained in terms of the
equality constraint of the form

ceq = tcs · lcs − Ācs = 0, (3)

which forces a constant cross-section area Ācs of the
specimen. An additional condition is that the penetration
depth d has always to be smaller than the radius of the notch
in thickness direction R3

cin = d − R3 < 0 (4)

to prevent sharp edges in the geometry and the finite element
mesh. The results of the shape optimization are presented in
Section 6.2.

2.2 Parameter fitting

As in future investigations, the results shall be validated in
real biaxial experiments; in a first step, the elastic and plastic
material parameters of the underlying constitutive model
are fitted to approximate the behavior of the real material
(AlCuMgSi) as good as possible. Therefore, the first inverse
problem to solve is a parameter identification, in which the
global load-displacement curve of a uniaxial tension test is
fitted to experimental data. The objective function is of least
squares type and takes the form

min
m

J (m) = || f R(m) − FR ||, (5)

where the vector FR represents the reaction forces measured
in the experiment and the vector f R(m) stores the
simulated reaction forces depending on the design variables
m = [E ν σ0 σ∞ H β].

Details on the meaning of the constitutive parameters
are presented in Section 4.1. Results of the curve fitting
procedure are presented in Section 6.1.

3 Preliminaries

3.1 Tensor notation and operators

Symbolic tensor notation is used in this paper. Vectors are
bold face italic, second-order tensors are upright bold face,

and sans serif and fourth-order tensors are blackboard bold
characters

v = vi ei , A = Aij ei ⊗ ej ,

T = Tijkl ei ⊗ ej ⊗ ek ⊗ el . (6)

Single contraction is either denoted as dot product for
vectors or omitted for higher order tensors, double
contraction is denoted as colon, e.g.

A v = A · v = Aijvj ei ,

T : A = TijklAkl ei ⊗ ej . (7)

Special transpositions of fourth-order tensors are denoted as
superscripts, e.g.

T

23
T = Tikjl ei ⊗ ej ⊗ ek ⊗ el , (8)

which represents the transposition of the second and third
bases of a fourth-order tensor.

In some equations, the special product
21∗ is used, which

denotes a single contraction of the second basis of a fourth-
order tensor with the first basis of a second-order tensor, i.e.,

T
21∗ A = TijlmAjk ei ⊗ ek ⊗ el ⊗ em. (9)

The special fourth-order tensors Isym and Idev denote
the symmetric and deviatoric projection tensors with the
coefficients

I s
ijkl = 1

2
(δik δjl + δil δjk),

I d
ijkl = I s

ijkl − 1

3
δij δkl . (10)

3.2 Enhanced kinematics

In the context of structural optimization, the material body
is not considered with a fixed reference configuration. Thus,
within a general continuum mechanical framework, it is
convenient to work with an enhanced kinematic concept,
see Fig. 3. Motivated by an improved viewpoint on the
material body using arguments from differential geometry,
cf., Noll (1974); Bertram (1989); Barthold (2002), the main
idea is the rigorous separation of physical and geometrical
quantities. By the introduction of a fixed parameter space
B with Cartesian basis Zi and local coordinates Θ , the
classical deformation mapping ϕ, defined as

ϕ : (X, t) �→ x(X, t) (11)

can be decomposed into two independent mappings, i.e.,
the design-dependent geometry mapping κ(Θ, s) and the
time-dependent motion mapping μ(Θ, t)

κ : (Θ, s) �→ X(Θ, s) and μ : (Θ, t) �→ x(Θ, t). (12)

With the corresponding tangent mappings

K = ∇Θκ = Gi ⊗ Zi and M = ∇Θμ = gi ⊗ Zi , (13)
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Fig. 3 Enhanced kinematics

not only the deformation mapping but also the deformation
gradient can be decomposed and written as

ϕ = μ ◦ κ−1 and F = M K−1 = gi ⊗ Gi . (14)

Consequently, for volume mappings, we obtain
∫

M

dv =
∫

K

J dV =
∫

B

J JK dVΘ =
∫

B

JM dVΘ, (15)

with the determinants J =det F, JK =det K, and JM =det M.
The main advantage of this enhanced viewpoint of
kinematics is that implicit dependencies do not arise until
the definition of global equilibrium. The parameter s is used
as a scalar design variable parameterizing the material body
in the reference configuration K = K(s) and the referential
points X = X(s).

Note, due to the choice of the elastoplastic material
model, the plastic intermediate configuration P is defined
up to a rigid body rotation, cf., Simo and Hughes (2000).
Thus, the tangent mappings Fe and Fp stay undefined during
the computational procedure.

3.3 Variations and derivatives

The total variation of any quantity (•)(u; s; hn) is given by
the sum of the partial variations

δ(•)(u; s; hn) = δu(•)(u; ŝ; ĥn)

+δs(•)(û; s; ĥn)

+δhn(•)(û; ŝ; hn), (16)

where, e.g., the partial variation with respect to u with fixed
ŝ and ĥn is defined as

δu(•) = d

dε
(•)(u + ε δu; ŝ; ĥn)

∣∣
ε=0. (17)

This notation is used throughout the whole paper.

4 Response and sensitivity analysis

Following, the material model, solution strategies for
computing the structural response and response sensitiv-
ities are outlined. The chosen mechanical model based
on a multiplicative split of the deformation gradient
F = Fe Fp can be found in the relevant literature, e.g.
Elguedj and Hughes (2014); Simo (1988a, b) and captures
large deformations and strains.

4.1 Mechanical response

The nonlinear weak form of equilibrium R : V → R,
commonly called residual, in the reference configuration K
reads

R(u; v) =
∫

K

PK(u) : Gradv dV

−
∫

K

b0 · v dV −
∫

∂K

t0 · v dA = 0, (18)

where Gradv is the gradient of the test function v ∈ V and
u ∈ V is the displacement field. Here, V denotes the usual
Sobolev space of all admissible displacements. The chosen
strain energy function given by

W = U(J ) + W(C̃, C̃
−1
p )

= K

2

[
1

2
(J 2 − 1) − ln J

]
+ G

2

[
C̃ : C̃

−1
p − 3

]
(19)

is an extension to the compressible range of the Neo–
Hookean model with the advantage of poly-convexity and
is suitable for large deformations and strains, cf. Simo
(1988a). Here, K and G denote the elastic compression and
shear moduli, respectively. Stresses can be determined via a
return-mapping algorithm, cf. Elguedj and Hughes (2014);
Simo (1988b). Further, C̃

−1
p denotes the isochoric part of

the inverse plastic contribution of the left Cauchy–Green
deformation tensor, that is, the pull-back of the isochoric
elastic left Cauchy–Green deformation tensor b̃e = F̃e F̃

T
e

using the isochoric deformation gradient F̃

C̃
−1
p = F̃

−1
b̃e F̃

−T
. (20)

The von Mises–type yielding condition only depends
on the deviatoric part of the stresses, and thus is pressure
independent

f = || s || −
√

2

3
k(α) ≤ 0, (21)

with s = devτ denoting the deviatoric part of the Kirchhoff
stress tensor τ . Hardening during plastic flow is defined
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by the nonlinear function that depends on the isochoric
hardening variable α

k(α) = σ0 + σ∞ [1 − exp(−β α)] + H α, (22)

where the material parameters σ0 and σ∞ denote the initial
and limit yield stress, respectively. H is the linear hardening
modulus and β is a dimensionless parameter. Note that
although the deformation process is assumed to be quasi-
static, a pseudo-time has to be introduced in order to solve
the evolution of the internal hardening variables.

The set of history variables that has to be saved in each
load step and integration point is h = {C̃−1

p , α}. Evolution
of the internal history variables is described by the flow rule

˙̃C−1

p = −2

3
γ̇ tr be F−1 n F−T (23)

and the hardening law

α̇ =
√

2

3
γ̇ . (24)

Due to the nonlinear hardening function, within an implicit
time integration, the increment of the plastic multiplier Δγ

has to be solved within a local Newton–Raphson procedure,
see Algorithm 2. The solution has to be a Kuhn–Tucker
point defined by the conditions

Δγ = 0, f (τ , α) ≤ 0, Δγf = 0. (25)

With the increment of the plastic multiplier at hand, the
update of the deviatoric stress tensor can be determined as

s = str − 2 μ̄Δγ n, n = str

|| str || , (26)

with μ̄ = 1
3 G tr b̃

tr
e , str = G deṽb

tr
e and the flow

direction n. The superscript tr denotes the trial state in
the elastic predictor step of the return-mapping procedure,
see Algorithm 1. Due to the assumption of incompressible
plastic flow, the hydrostatic pressure can easily be computed
to

p = ptr = U ′(J ) = K

2 J

(
J 2 − 1

)
. (27)

The total Kirchhoff stress tensor reads

τ = J p I + s (28)

and the first Piola–Kirchhoff stress tensor is given by

PK = τ F−T. (29)

Consistent linearization of the stress tensor has been derived
in Simo (1988a, b), and the numerical solution strategy is
outlined. An excellent summary of the solution algorithm
can also be found in Elguedj and Hughes (2014) in the
context of isogeometric analysis. However, using the F̄

method and in view of sensitivity analysis, it is convenient

to use the algorithmic material tangent A = ∂PK

∂F , which can
be split into a volumetric and deviatoric part

A = ∂PK
vol

∂F
+ ∂PK

dev

∂F
= Avol + Adev. (30)

The explicit forms of the volumetric and deviatoric parts
read

Avol = K J 2 F−T ⊗ F−T − J p
(
F−T ⊗ F−T)24

T
(31)

and

Adev = Sdev

21∗ F−T − s
(
F−T ⊗ F−T)24

T
, (32)

respectively. The fourth order tensor Sdev is given by

Sdev = ∂s

∂F

= G

[
β0 Idev − 2

3
Δγ β1 n ⊗ I + β2 n ⊗ n

]
: B

= H : B, (33)

with the factors

β0 = 1 − 2 Δγ
μ

|| str || , β1 = 1 + 2
μ

f ′ , β2 = β1 − β0 (34)

and the identities

B := ∂b̃
tr
e

∂F
=

[
F

21∗ (
C̃

−1
p,n F̃

T
)

+ F̃ C̃
−1
p,n F

12
T

]
, (35)

F := ∂F̃

∂F
= J− 1

3

[
(I ⊗ I)

23
T − 1

3
F ⊗ F−T

]
. (36)

The whole computational procedure is summarized in
Algorithm 1 in pseudo code format.

4.2 Response sensitivity

Once a global equilibrium point has been computed, that
is, a solution of (18), response sensitivities are obtained
variationally at continuous level. As (18) has to hold for
any design change δs, its total variation has to vanish,
cf. Barthold (2002); Liedmann and Barthold (2018a);
Wiechmann (2000), and we can write

δR = δuR + δsR + δhnR = 0

= k(v, δu) + p(v, δs) + h(v, δhn), (37)
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where the two bilinear forms k : V × V → R and
p : V × S → R represent the partial variations of the weak
equilibrium condition w.r.t. displacements and design,
respectively. The third bilinear form h : V × G → R

corresponds to the deformation history that has to be
captured and considered for all total variations, cf.
Liedmann and Barthold (2018a, b) and Wiechmann (2000).
The spaces S and G denote Sobolev spaces with all
admissible design and history functions, respectively. We
refer to, e.g. Haug et al. (1986); Sokołowski and Zolésio
(1992); Kim and Choi (2004); Choi and Kim (2004) for
details on the function spaces and the mentioned notation
using linear and bilinear operators.

4.3 Matrix form of sensitivity relations

From the matrix form of (37)

δR =
[
∂R
∂u

]
δu +

[
∂R
∂s

]
δs +

[
∂R
∂hn

]
δhn = 0

= K δu + P δs + H δhn, (38)

where R ∈ R
ndof, the sensitivity matrix S ∈ R

ndof×ndv

can be derived, that is, the total derivative of the structural
response u w.r.t. design changes s

δu = −K−1 [P δs + H δhn]

= −K−1 [P + HZn] δs = S δs. (39)

Here, the matrix Zn ∈ R
nhv×ndv is the total design derivative

of the history variables

δhn = Zn δ s, (40)

see Section 4.4 for details.
K ∈ R

ndof×ndof denotes the tangent stiffness matrix,
P ∈ R

ndof×ndv denotes the so-called pseudo load matrix and
H ∈ R

nhv×nhv is the history sensitivity matrix. Here, ndof is
the number of total degrees of freedom, ndv is the number of
design variables, and nhv is the number of history variables.
Note that assuming h0 = 0 and δh0 = 0 at time t = t0, from
(39) we obtain

S0 = −K−1 P, Z0 = 0 (41)

for the first pseudo-time increment. The sensitivity part
corresponding to the deformation history has to be evaluated
at the end of each time step that causes plastic yielding
and saved for the subsequent step. Note that all values are
evaluated in the current pseudo-time step t = tn+1 except
those that have been saved in the prior step with subscript n.
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4.3.1 Pseudo loadmatrix

Referring to (38), the pseudo load matrix is the partial
derivative of the residual R w.r.t. design s. A pull-back to
parameter space yields

δsR =
∫

∂B

δsPK : Gradv JK dVΘ

+
∫

∂B

PK : δsGradv JK dVΘ

+
∫

∂B

PK : Gradv δsJK dVΘ, (42)

where JK = det K. At this point, we have to consider
the choice of design variables as this will affect functional
dependencies.

Geometric design For geometric design, the design vector
is chosen as the vector of geometry points s := X. With the
partial variations of the gradient of the test function

δXGradv = −Gradv GradδX, (43)

the determinant of the geometry gradient

δXJK = JK DivδX, (44)

the first Piola–Kirchhoff stress tensor

δXPK = ∂PK

∂F
: δXF = A : δXF (45)

and the deformation gradient

δXF = −Gradu GradδX, (46)

cf. Barthold (2002), Materna (2009), and Kijanski (2018),
we can write

δXR = −
∫

∂K

[(Gradu GradδX) : A] : Gradv dV

−
∫

∂K

PK : Gradv GradδX dV

+
∫

∂K

PK : Gradv DivδX dV, (47)

where we have used the identity dV = JK dVΘ .

Constitutive parameters For the sensitivity regarding mate-
rial parameters, the design vector is chosen as the vector
containing the material parameters s := m. As only the
stress tensor depends on material parameters, we find

δmGradv = 0, δmJK = 0, (48)

but

δmPK = ∂PK

∂m
δm = M δm, (49)

where M is the third-order tensor connecting the first Piola–
Kirchhoff stress tensor with the material parameters. Thus,
we can write

δmR =
∫

K

GradvTM δm dV . (50)

For reasons of brevity, without detailed derivation, for the
vector of material parameters m = [E ν σ0 σ∞ H β], the
explicit form of the tensor M reads

M = 1

2

(
J 2 − 1

)
F−T ⊗ ∂K

∂m

+HmF−T ⊗ ∂G

∂m

−2

√
2

3

μ̄

f ′ n F−T ⊗ ∂k

∂m
, (51)

Here, the second-order tensor Hm reads

Hm = (
β0Isym + β2n ⊗ n

) : deṽb
tr
e − 2Δγ

μ̄

G
β1n. (52)

The partial derivatives of the bulk modulus K , the shear
modulus G, and the nonlinear hardening function k are
given by

∂K

∂m
= [a1 a2 0 0 0 0], (53)

with a1 = 1
3−6 ν

, a2 = 2 E

3 (1−2 ν)2 ,

∂G

∂m
= [b1 b2 0 0 0 0], (54)

with b1 = 1
2 (1+ν)

, b2 = − E

2 (1+ν)2 and

∂k

∂m
= [0 0 1 c1 α c2], (55)

with c1 = 1 − exp(−β α), c2 = σ∞ α exp(−β α),
respectively.

4.3.2 History sensitivity matrix

The history sensitivity matrix is the partial derivative of the
residual R w.r.t. the internal history variables of the prior
pseudo-time step hn and reads

δhnR =
∫

∂B

δhnPK : Gradv JK dVΘ, (56)

as only the stress tensor PK depends on the history variables.
The partial variation of the first Piola–Kirchhoff stress
tensor w.r.t. the history variables reads

δhnPK = ∂PK

∂hn

Zn δs. (57)
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The partial derivatives of the stress tensor w.r.t. the history
variables hn = {C̃−1

p,n, αn} are given by

∂PK

∂C̃
−1
p,n

= (H : BC)
21∗ F−T, (58)

with

BC = F̃ Is

21∗ F̃
T

(59)

and the tensor H from (32) for the internal variable C̃
−1
p and

∂PK

∂αn

= −2

√
2

3

μ̄

f ′ k′ n F−T (60)

for the internal variable α, with the first derivatives of (22)
and (21)

k′ = σ∞ d exp(−β α) + H (61)

and

f ′ = −2 μ̄

[
1 + k′

3 μ̄

]
. (62)

4.4 Update of history variations

As (39) indicates, it is essential to update the total variations
of the internal history variables at the end of each pseudo-
time step that has caused plastic deformation. The values
of the total derivatives are saved into the matrix Z, denoted
as total design derivative of the history variables, cf. (40).
The general update formula of the variations of the internal
history variables reads

δh = ∂h

∂u
δu + ∂h

∂s
δs + ∂h

∂hn

δhn. (63)

Again, as for the pseudo load matrices, we have to
distinguish between the choice of design variables.

Geometric design For geometric design, (63) takes the form

δh = ∂h

∂F
: (δuF + δXF) + ∂h

∂hn

Zn δX = Z δX, (64)

with δuF = Gradδu. The yet unknown partial variations ∂h
∂F

and ∂h
∂hn

can be resolved to

∂C̃
−1
p

∂F
= −

[(̃
F

−1 ⊗ F̃
−T

)23
T : F

]
21∗ (̃

be F̃
−T

)

+F̃
−1

[(
1

G
H + 1

3
I ⊗ I

)
: B

]
21∗ F̃

−T

−F̃
−1

b̃e

⎡
⎣(̃

F
−T ⊗ F̃

−T
)24
T : F

⎤
⎦ (65)

for the internal variable C̃
−1
p w.r.t. the deformation tensor F

and

∂α

∂F
=

√
2

3

G

f ′

(
2

3
Δγ I − n

)
: B, (66)

for the internal variable α.

Constitutive parameters For material parameters as design
variables, (63) takes the form

δh = ∂h

∂F
: δuF +

(
∂h

∂m
+ ∂h

∂hn

Zn

)
δm

= Z δm. (67)

The partial derivatives of the internal history variables w.r.t.
the material parameters ∂h

∂m
can be identified to

∂C̃
−1
p

∂m
= 1

G
B

−1
C :

[(
Hm − s

G

)
⊗ ∂G

∂m
− 2

√
2

3

μ̄

f ′ n ⊗ ∂k

∂m

]

(68)

for the internal variable C̃
−1
p , where the second-order tensor

Hm has been used, cf. (52). For the internal variable α, we find

∂α

∂m
=

√
2

3

1

f ′

(
2

G
Δγ μ̄ − n : deṽb

tr
e

)
∂G

∂m

+ 2

3 f ′
∂k

∂m
. (69)

The partial derivatives of the shear modulus and the
nonlinear hardening function are already known, see (53)–
(55).

In both cases, the partial derivatives of the internal
variables w.r.t. their counterparts from the previous pseudo-
time step are needed and read

∂C̃
−1
p

∂C̃
−1
p,n

= B
−1
C :

[
1

G
H + 1

3
I ⊗ I

]
: BC (70)

and

∂C̃
−1
p

∂αn

= −2

√
2

3

k′

f ′ B
−1
C : n (71)

for the internal variable C̃
−1
p . The fourth-order tensor B−1

C is
given by

B
−1
C = F̃

−1
Is

21∗ F̃
−T

. (72)

For the internal variable α we find

∂α

∂C̃
−1
p,n

=
√

2

3

G

f ′

[
2

3

γ I − n

]
: BC, (73)

with the fourth-order tensor BC from (59), and

∂α

∂αn

= 1 + 2

3

k′

f ′ , (74)

with the derivatives given in (61) and (62).
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4.5 Stress sensitivity

The gradient of the stress triaxiality as defined in (1) can be
computed following the same concepts, which leads to

δη = ∂η

∂σm
δσm + ∂η

∂σeq
δσeq, (75)

where the total variations of the mean and von Mises
equivalent stress read

δσm = ∂σm

∂σ
: δσ , δσeq = ∂σeq

∂σ
: δσ . (76)

Thus, it is essential to calculate the total variation of the
Cauchy stress tensor given by

δσ = δuσ + δsσ + δhnσ . (77)

This variation follows the same principles as the variation of
the first Piola–Kirchhoff stress tensor, cf. Section 4.2, and is
straight forward

δσ = ∂σ

∂F
: δuF + ∂σ

∂s
δs + ∂σ

∂hn

δhn

= ∂σ

∂F
: ∂F

∂u
δu + ∂σ

∂s
δs + ∂σ

∂hn

Zn δs

=
[
∂σ

∂F
: ∂F

∂u
S + ∂σ

∂s
+ ∂σ

∂hn

Zn

]
δs. (78)

5 Numerical treatment

5.1 F̄ finite elements

Due to the assumption of incompressible plastic flow,
volumetric locking occurs in the solution using pure
displacement finite elements. Therefore, as proposed in de
Souza Neto et al. (2009) and Elguedj and Hughes (2014),
an F̄ formulation is used. This formulation has advantages
on implementation side as any constitutive law can be used.
The F̄ deformation gradient reads

F̄ =
(

J0

J

) 1
3

F = κF, (79)

where J0 = det F0 is the determinant of the deformation
gradient evaluated at the element centroid. It is important
to mention that all equations in Section 4 are evaluated at

F = F̄. Therefore, for exact linearization, the derivatives of
F̄ w.r.t. F and F0 are needed. The total variation of F̄ reads

δF̄ = ∂F̄

∂F
: δF + ∂F̄

∂F0
: δF0

= κ

3

[
3 (I ⊗ I)

23
T − F ⊗ F−T

]
: δF

+κ

3

[
F ⊗ F−T

0

]
: δF0

= D : δF + D0 : δF0. (80)

5.2 Geometry modeling and derivatives

In the case of shape optimization within a finite element
framework, the sensitivity relations of the quantities
of interest have to be computed regarding the nodal
coordinates of the mesh. To ensure smooth boundaries
and to reduce the number of design variables, it is often
convenient to choose mesh controlling geometry parameters
as design variables.
The so-called design velocity matrix, defined as

Q := ∂X
∂p

∈ R
dof×ndv, (81)

connects the mesh coordinates X and chosen geometry
controlling parameters p and can be computed analytically
as far as the geometrical dependency in known, see e.g.
Gerzen (2014) and Kijanski (2018). However, for the case
that third-party programs are used for mesh generation, the
design velocity matrix can be computed numerically using
a finite difference scheme, e.g.

Q = X(p + ε) − X(p)

ε
, (82)

using forward finite differences. Here, ε denotes a small
perturbation number or step size.

Note, this approach can be numerically expensive but
has the advantage of simplicity, especially for complex
geometries. Using numerical differentiation of the design
velocity matrix, the whole method of sensitivity analysis
can not be called pure analytical. However, the numerical
cost is still tiny compared to pure numerical approaches.
Nevertheless, the authors recommend analytical derivation
of the design velocity matrix whenever possible.

In Section 6.2, the geometry of the X0-specimen and
the mesh have been built up using gmsh4.4.0. Thus,
the design velocity matrix has been computed numerically.
Matlab Code Ex. (1) summarizes the numerical treatment
using MatlabR2018a running in a bash shell on Linux.
Here, the file X0.geo stores the geometry of the X0-
specimen that is parameterized by three radii (R1,R2,R3)
and a penetration depth of the notch in thickness direction
(d). The variable e represents the step size ε of (82). It
is chosen here to e = sqrt(eps), which is the default
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forward finite difference step size in the Matlab solver
fmincon. This reduces the number of error sources when
analytical gradients are checked using fmincon.

Note that in Matlab eps = 5−52 represents the distance
of 1.0 to the next larger double-precision number.

5.3 Computational effort

For each integration point in each element, the vector of
history variables h ∈ R

1×nhv has to be saved for the
subsequent pseudo-time step for structural analysis. Addi-
tionally, for sensitivity analysis, the partial variations of the
history variables Z ∈ R

nhv×ndv w.r.t. design s ∈ R
ndv×1

have to be saved. The structure of the global history field

Listing 1 Matlab Code Ex. 1: numerical design velocity matrix

Listing 2 Matlab Code Ex. 2: global history field

is realized in Matlab using a heterogeneous cell array of
the form

H :=

⎧⎪⎨
⎪⎩

h1
1 . . . hngp

1 Z1
1 . . . Z

ngp
1

...
...

...
...

h1
nel . . . hngp

nel Z1
nel . . . Z

ngp
nel

,

⎫⎪⎬
⎪⎭ (83)

which can directly be used for parallel element evaluation.
Matlab Code Ex. (2) shows how the history field is
constructed. In total, in each pseudo-time step, we need
to save nh = nel × ngp × nhv × (1 + ndv) scalar values.
If the number of design variables ndv increases, the total
amount of values that have to be stored nh explodes. Thus,
the authors recommend parametrization of the mesh and
utilizing the design velocity matrix on element level as
explained in Appendix (A).

Listing 3 Matlab Code Ex. 3: call to lsqnonlin
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Fig. 4 Tensile test

6 Optimization results

6.1 Parameter identification

In a first step, the method mentioned above is used to fit
the material parameters of the constitutive model to the
material behavior by means of a standard tensile test, cf.
Fig. 4. The discrete model is pictured in Fig. 5. In this case,
the design variables are chosen as the material parameters
s := m = [E ν σ0 σ∞ H β]. The initial values of the
material parameters are taken from Gerke et al. (2017) and
summarized below:

E = 69 GPa, ν = 0.3, σ0 = 320 MPa,

σ∞ = 100 MPa, H = 650 MPa, β = 30.

The geometry is discretized with 1539 hexahedral F̄

elements. In total, the mechanical problem counts 4872
degrees of freedom. Due to symmetry, only one eighth of
the geometry is modeled. Thus, the measured reaction force
is divided by 4 for the comparison. Symmetric boundary
conditions are applied and a maximum displacement of
10 mm is prescribed within 200 linear steps, that is, the point
where the maximum reaction force has been measured.
The time discretization implies that the number of data
points that are compared with the simulation is ndp = 200.
The optimization problem is to minimize the error between
the load-displacement curves of the experiment and the
simulation, where FR denotes the measured reaction forces
and f R(m) the simulated reaction forces depending on the

Fig. 5 FE model

Fig. 6 Objective history

set of material parameters. We can define the optimization
problem as

min
m

J (m) = ||f R(m) − FR||
s.t. mi

l ≤ mi ≤ mi
u. (84)

The solution of the problem is obtained utilizing the Matlab
solver lsqnonlin with the options shown in Matlab Code
Ex. (3). Here, also the chosen values of upper and lower
bounds of the design variables are declared. Note that the
function @Obj is a separate Matlab routine that computes
the value of the objective function J in (84). In Fig. 6 the
history of the objective function during the curve fitting
process in plotted. 22 iterations are needed to finally reach
the stopping criterion, that is, the relative change of the
objective compared to the prior iteration is less than tol =
1e − 6. Load-displacement curves are shown for different
iterations in Fig. 7. The parameters are identified to

E = 61.92 GPa, ν = 0.31, σ0 = 313.3 MPa,

σ∞ = 119.2 MPa, H = 548.7 MPa, β = 10.72.

With this at hand, the next optimization task, that is the
shape optimization of a chosen specimen, can be conducted.

Fig. 7 Load-Displacement curves (AlCuMgSi)
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Fig. 8 FE model

6.2 Specimen shape optimization

The chosen, so-called X0-specimen, is shown in Fig. 1.
Due to symmetry, only one eighth of the geometry has
to be discretized as pictured in Fig. 8. 5928 hexahedral
F̄ elements are used and the mechanical problem counts
23,535 degrees of freedom. Within 200 linear steps, the
maximum displacement of 0.75 mm is applied to all sides
of the specimen.

Listing 4 Matlab Code Ex. 4: call to fmincon

Fig. 9 Objective history

Note, this displacement is much more than in the experi-
ment. For more realistic results, the maximum displacement
has to be adapted. The results in this paper can bee seen as
a proof of concept.

As the shape of the specimen is to be optimized,
geometric parameters are chosen as design variables s :=
p = [R1 R2 R3 d], namely

R1 : inner radius, R3 : radius in thickness direction,

R2 : outer radius, d : penetration depth.

Aim of the shape optimization is to achieve a preferably
homogeneous distribution of stress triaxiality in the cross-
section. For this, the length of the vector of stress triaxiality
in the cross-section is maximized. Additionally, during the
optimization the cross-section has to stay constant, which is
defined by the equality constraint

ceq = tcs · lcs − 12 mm2 = 0, (85)

cf. Fig. 2. To prevent the appearance of sharp corners at the
edges of the notch in thickness direction, the penetration depth

(a) Initial geometry

(b) Optimized geometry

Fig. 10 Triaxiality distribution at specimen cross section
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Table 1 Initial and optimized design parameters

Param. Init. val. (mm) Opt. val. (mm)

R1 3.003 1.889

R2 3.003 1.570

R3 1.500 1.272

d 1.000 1.271

should not be larger than the radius in thickness direction.
This is captured by the inequality constraint

cin = d − R3 ≤ 0. (86)

Consequently, the optimization problem is defined as

max
X

J (p) = ||η(p)||
s.t. ceq = 0,

cin ≤ 0,

pi
l ≤ pi ≤ pi

u. (87)

The problem is solved with the Matlab solver fmincon.
The options used as well as the bounds of the design
variables are shown in Matlab Code Ex. (4). Here, the
functions @Obj and @Geomconstr are separate Matlab
functions that compute the values of the objective function
J and the geometry constraints in (85)–(87), respectively.

After 28 iterations, the solver found a solution. In Fig. 9, the
stress triaxiality at the cross-section of the specimen is illus-
trated. Due to the equality constraint, the maximum stress
triaxiality does not change significantly, but the distribution
over the cross-section is much more homogeneous in the
optimized case than it was for the initial shape. The values
of the objective function during the optimization process
are displayed in Fig. 10. Initial and optimized values of the
design parameters are summarized in Table 1. The values of
the constraints at converged state are

ceq = 3.2925e − 10 and cin = − 8.9378e − 4.

7 Summary and conclusions

In this work, an efficient method for the computation of design
sensitivities for structures with elastoplastic material behav-
ior has been presented. The method is based on a variational
approach that allows simultaneous computation of structural
response and response sensitivities. The obtained gradient
information can be used to feed gradient-based optimization
algorithms. The method has been applied to two different
optimization problems. First, a parameter identification has
been performed to fit the model parameters to the real mate-
rial (AlCuMgSi). The curve fitting procedure resulted in an
excellent agreement with the experimentally measured load-
displacement curve. In a second example, the shape of the

chosen X0-specimen has been optimized with the aim to
achieve a preferably homogeneous stress triaxiality distri-
bution. The stress triaxiality characterizes the stress state of
the parts of the structure and can be used to classify different
damage mechanisms. In the presented example, the length
of the vector of stress triaxiality in the relevant part of the
specimen has been maximized. The optimization resulted in
a slightly different shape, which shows a much more homo-
geneous stress triaxiality distribution in the relevant part of
the specimen. Future investigations will address the valida-
tion of the results in terms of manufacturing the optimized
shapes and test them. Further, different specimen types and
also different loading scenarios will be analyzed.
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Appendix

A.1 Discrete gradient and divergence operators

For an 8-node hexahedral finite element, the discrete
gradient operator at each FE node i reads

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,1 0 0
0 Ni,1 0
0 0 Ni,1

Ni,2 0 0
0 Ni,2 0
0 0 Ni,2

Ni,3 0 0
0 Ni,3 0
0 0 Ni,3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
9×3 (88)
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with the interpolation functions Ni . Discrete matrix forms of
non-symmetric fourth-order tensors follow the convention

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1111 . . . A1131 A1112 . . . A1133
...

. . .
...

A3111 A3133

A1211 A1233
...

. . .
...

A3311 . . . A3331 A3312 . . . A3333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
9×9, (89)

as well as discrete vector forms of non-symmetric second-
order tensors

P = [P11 P21 P31 P12 . . . P33]T ∈ R
9×1. (90)

In the case of the shape sensitivity analysis, the partial
variation of the deformation gradient w.r.t. geometry points
is needed, cf. (46). Its discrete version takes the form

GX
i = Gi Graduh, (91)

with

Graduh =
n∑
i

ui LT
i ,ui =

⎡
⎣ ui

1
ui

2
ui

3

⎤
⎦Li =

⎡
⎣ Ni,1

Ni,2

Ni,3

⎤
⎦ .

The discrete divergence operator reads

Divuh =
n∑
i

LT
i ui .

With the matrix forms D and D0 of D and D0 from (80)
using the convention stated in (89), we can define the two
gradient operators for the F̄ element

Ḡi = DGi + D0 G0,i ,

ḠX
i = DGX

i + D0 GX
0,i . (92)

A.2 Discrete equations

Using the discrete quantities and conventions stated in
Appendix A.1, this section summarizes the discrete element
vectors and matrices.

Element residual vector

Re
i =

∫

K

GT
i P

K dV (93)

Element stiffness matrix

Ke
ij =

∫

K

GT
i AḠj dV (94)

Element geometric pseudo loadmatrix

Pe
X,ij = −

∫

K

GT
i AḠX

j dV

−
∫

K

PK
(
Lj LT

i − Li LT
j

)
dV (95)

Note, by the choice of mesh controlling geometric
parameters p as design variables, cf. Section 5.2, the design
velocity matrix can be used on element level. This results in

Pe
p,ik = Pe

X,ij Q
e
jk, (96)

which drastically decreases the sizes of the pseudo load,
global sensitivity, and history sensitivity matrix, and thus
saves a huge amount of memory. Additionally, in (64), we
have to consider

δF = δuF + δpF =
[
∂F

∂u
Se + ∂F

∂X
Qe

]
δp. (97)

Element material pseudo loadmatrix

Pe
m,ij =

∫

K

GT
i M dV (98)

Element history sensitivity matrix

He
ij =

∫

K

GT
i

∂PK

∂hn

Ze
n,j dV (99)
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