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Abstract
In many engineering applications, the dynamic frequency response of systems is of high importance. In this paper, we focus
on limiting the extreme values in frequency response functions, which occur at the eigenfrequencies of the system, better known
as resonant peaks. Within an optimization, merely sampling the frequency range and limiting the maximum values result in
high computational effort. Additionally, the sensitivities of this method are not complete, since only information about the
resonance peak amplitude is included. The design dependence with respect to the frequency of the extreme value is missed,
thus hampering the convergence. To overcome these difficulties, we propose a constraint which can efficiently and accurately
limit resonant peaks in a frequency response function. It has a close relation with eigenfrequency maximization; however, in
that case, the amplitudes of the frequency response are unconstrained. In order to keep the computational time low, efficient
implementation of this constraint is studied using reduced-order models based on modal truncation and modal truncation
augmentation. Furthermore, approximated sensitivities are investigated, resulting in a large computational gain, while still
yielding very accurate sensitivities and designs with almost equivalent performance compared with the non-approximated
case. Conditions are established for the accuracy and computational efficiency of the proposed methods, depending on the
number of peaks to be limited, numbers of inputs and outputs, and whether or not the system input and output are collocated.

Keywords Topology optimization · Steady-state vibration · Frequency response · Reduced-order model ·
Resonant amplitude constraint · Modal truncation

Responsible Editor: Ole Sigmund

Highlights:
– Peak amplitudes of an FRF can accurately be controlled using
the proposed constraint
– Implementations using a full model and several efficient
reduced-order models are presented
– Approximate sensitivities of a reduced-order model come at neg-
ligible computational cost
– Approximate sensitivities based on modal truncation augmenta-
tion remain very accurate
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1 Introduction

The dynamic behavior of structures is a key aspect of
the design process for many engineering applications.
A frequency response function (FRF) expresses the
amplification of the system under harmonic dynamic
excitation, which is a critical aspect of its functionality.
In some applications, the maximum response must be
limited, for example, in the case of sensitive equipment
which needs protection (Tsai and Lin 1994), for limiting
acoustic transmission (Fesina et al. 2017), or in systems
for high positioning accuracy (van der Veen et al. 2017).
Alternatively, a transmission ratio at a resonance frequency
might be limited from below, for instance in sensor
equipment which needs a minimum response (Xia et al.
2014).

Many engineering applications focus on maximizing
eigenfrequencies in order to extend the bandwidth or the
operating frequency range. Doing this manually is a time-
consuming and difficult iterative process. With structural
optimization methods, this iterative process can be per-
formed automatically. Specifically, topology optimization is
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a very powerful approach, since no initial concept needs to
be given, and a wide range of resulting shapes and layouts
is possible (Sigmund and Maute 2013). For the classical
problem of optimizing eigenfrequencies, many approaches
already have been proposed, see, e.g., Zargham et al. (2016)
for an overview. Several methods exist to maximize spe-
cific eigenfrequencies (Dı́az and Kikuchi 1992; Ma et al.
1995), to create a gap between two eigenfrequencies (Jensen
and Pedersen 2006), or to obtain eigenfrequencies close to
desired frequencies (Ma et al. 1994). However, resonance
occurs when a structure is harmonically excited at the eigen-
frequencies, causing extreme responses. This phenomenon
has received no attention in all the aforementioned methods.

Besides eigenfrequencies and eigenmodes, the dynamic
behavior of a system is also determined by the geometric
location and direction of both the input load and the output
at which displacement is observed. Some optimization
formulations focus on minimizing the vibrational amplitude
for steady-state periodic loading (i.e., dynamic compliance)
at a specific operating frequency (Ma et al. 1993; Jog
2002; Du and Olhoff 2007a). Alternative objective functions
have recently been studied more extensively to improve
convergence of these problems, especially for operating
frequencies above the first natural frequency, based on
the input power (Niu et al. 2018; Silva et al. 2020).
Instead of one specific working frequency, others focus on
minimizing the frequency response amplitude over a range
of frequencies (Ma et al. 1993; Yoon 2010; Shu et al.
2011; Liu et al. 2015). However, for some applications,
only the peak amplitudes of a frequency response within a
range of frequencies are of importance. The minimization
of maximum frequency response amplitude in the entire
frequency range (i.e., the H∞-norm) is shown for a sizing
optimization of a beam model (Venini and Pingaro 2017),
but not yet in a topology optimization setting.

The approach of Venini and Pingaro (2017) could be
used to limit the maximum value of the FRF, schematically
shown in Fig. 1. It relies on an iterative search to obtain
the frequency corresponding to the maximum amplification
(Bruinsma and Steinbuch 1990). However, this algorithm
requires many evaluations of the FRF and the solution of
additional eigenvalues, making it infeasible for practical
use in large-scale continuum problems. Especially in cases
with low damping, where very sharp resonance peaks are
present, extra search iterations are needed to obtain the
maximum value with sufficient accuracy, adding further
to the computational cost. Furthermore, the optimization
convergence with this method is slow, because sensitivity
information regarding the resonant peak is incomplete.
The sensitivities include information on the maximum
peak amplitude, but not on the frequency at which the
peak is located. Additionally, by only focusing on the

Fig. 1 Resonant peaks of the frequency response function are not
allowed to be above the indicated limit

maximum peak frequency, the multi-modal nature of the
peak amplitudes is not captured. This means that whenever
the amplitude of one or more peaks are close to the
maximum peak amplitude, a small design change could
cause one of the other peaks to become the maximum peak,
leading to a jump in peak frequency and a non-smooth
behavior in maximum peak value. Only using the maximum
peak value also limits practical uses such as individually
constraining peaks at distinct levels, or upper limits which
are a function of frequency (see Fig. 1). This motivates
the present study of constraining a finite number of peak
amplitudes, instead of considering the global maximum
peak. Other implementations of a resonant peak constraint,
which can overcome the above limitations, have not been
studied, to the best of our knowledge.

For each point in the frequency response function,
a different complex-valued linear system needs to be
solved, which involves tremendous computation time for
large-scale problems, even for only a few frequency
points. Additionally, a second linear system needs solving
in the case of non-self-adjoint problems, increasing the
computational effort even more. Computation time could
be saved by using a reduced-order model, requiring at
each frequency point only a small system to be solved.
Many different methods exist to create reduced-order
models tailored for a wide variety of applications, see,
e.g., Besselink et al. (2013). In the field of structural
dynamics, the most common is modal truncation (MT),
where eigenvectors are used to create the reduced-order
model. An alternative is modal truncation augmentation
(MTA), where a reduction basis consisting of eigenvectors is
augmented with correction vectors, to compensate the errors
introduced by the removal of higher frequency modes (for
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detailed information, see, e.g., Rayleigh (1945), Dickens
et al. (1997), Craig and Kurdila (2006), and Besselink et al.
(2013)). Both these methods are suitable for approximating
the low-frequency range with high accuracy.

When using a reduced-order model, calculating the fre-
quency response function becomes inexpensive, but to cal-
culate fully consistent sensitivities, the design dependence
of the base vectors has to be taken into account (Hooijkamp
and van Keulen 2018). These base vector sensitivities are
expensive and usually involve the solution of a full linear
system per base vector. A possible reduction in computa-
tional cost can be achieved by neglecting the sensitivities
of the reduction basis. Using such approximate sensitivi-
ties, Han (2012) investigates frequency response sensitivi-
ties for a Krylov-based reduced-order model and concludes
that the sensitivities are still usable although some degree
of accuracy is lost. Furthermore, Yoon (2010) reports the
approximate sensitivities hamper the optimization process
due to their inaccuracy in non-self-adjoint problems. The
direct reason for this lack of accuracy has not yet been clar-
ified. The reduction method is usually chosen such that the
response, in this case a resonance peak, is most accurate.
However, in an optimization, the sensitivities are driving,
thus in addition to an accurate response, the accuracy of the
sensitivities is equally important.

We propose a constraint which can effectively limit
extreme values in an FRF (Fig. 1), where our focus is on
weakly damped structures. Using the eigenfrequencies of
a mechanical system, which are related to the peak val-
ues of the FRF, a lower or upper limit can be set on the
resonant peaks. Each eigenfrequency of interest is individu-
ally constrained to take care of the non-smoothness problem
of the maximum amplitude described earlier, i.e., jumps
in frequency corresponding to the maximum resonant peak
are not possible. Additionally, having a constraint per reso-
nant peak enables individual peaks to be limited by distinct
limits, and the use of frequency-dependent limit functions
becomes possible, thus providing a more flexible constraint
than the approach of Venini and Pingaro (2017), who only
use the maximum resonant peak value. Furthermore, by
including the eigenvalue sensitivity information, our sen-
sitivities become consistent with the resonance frequency
and thus more accurate. To limit the time spent in calcu-
lating the resonance peak amplitudes and their sensitivities,
we propose to use reduced-order models with approximated
sensitivities. Using the reduction strategies MT and MTA,
the accuracy and optimization convergence of the approx-
imated sensitivities is investigated for both self-adjoint
and non-self-adjoint problems. The implementation uses
density-based topology optimization, but can be applied to
other topology optimization approaches as well (Sigmund
and Maute 2013). For clarity, we will limit ourselves to the

single-input single-output (SISO) case, but the method is
also extendable to multiple-input multiple-output (MIMO)
cases.

The paper is organized as follows. In Section 2, the
considered finite element model is introduced, followed by
the definition of the optimization problem. The proposed
constraint is explained in detail, by either solving full
systems or by using model reduction techniques (MT
and MTA). Additionally, for the reduction methods, both
the consistent and approximate sensitivity calculation is
described. Section 3 studies the different implementations
using both self-adjoint and non-self-adjoint test cases. The
performance of the approximated sensitivities are inspected
and also their effect on the optimization is shown. Next to
that, results of some variations in limit functions are given,
to show potential in practical use.

2Methods

2.1 Dynamic responsemodeling

Working towards a model suited for topology optimization,
we first establish the considerations used regarding design
parametrization and secondly, the numerical modeling
of the dynamic response. Since density-based topology
optimization is used, each element’s elasticity and density
is scaled continuously according to the design variables s
between smin (void) and 1 (solid) (Bendsøe and Sigmund
2003). First, the design variables are filtered using a
spatial density filter, resulting in filtered design variables
ρ (Bruns and Tortorelli 2001). To force the optimizer to a
clear solid/void design, intermediate density variables are
penalized using scaling factors for the element matrices of
stiffness κ and mass μ, respectively, as

κi = (1 − w)ρ
p
i + wρi and μi = ρi . (1)

This penalization was investigated by Zhu et al. (2009)
in order to prevent low-frequency eigenmodes of void
areas, which often hamper topology optimizations using
eigenfrequencies. For the scaling of stiffness, it uses a
combination of a linear term (weighed by w) and a part with
exponent p.

For the discretization, we use bi-linear quadrilateral finite
elements, a 2 × 2 Gaussian quadrature, and assume a
plane strain condition. The stiffness and mass matrices are
assembled, respectively, by

K =
nel∑

i

κiK
(i)
el and M =

nel∑

i

μiM
(i)
el , (2)

with the element matrices denoted Kel and Mel.
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We introduce damping in the form of structural damping
(i.e., hysteresis), often used in airplane vibrations and
flutter analysis, which is proportional to displacement.
Effectively, a damping factor of η is used to create a
complex stiffness (Craig and Kurdila 2006). This kind
of damping does not change the frequencies at which
the peak amplitudes occur, which means the undamped
eigenfrequencies can directly be used. A viscous damping
such as Rayleigh or modal damping could also be
used without adding computational effort, as the damped
eigenfrequencies correspond to the peak amplitudes in that
case, which can be calculated as a simple correction on the
undamped eigenfrequencies.

Using a steady-state SISO system with harmonic inputs
and outputs for the sake of simplicity, the discretized N-
dimensional frequency-domain system of equations is
(
K(1 + iη) − ω2M

)
u(ω) = bq(ω),

y(ω) = cT u(ω), (3)

where u denotes the state vector capturing the displacements
and deformations of the entire structure. The input vector b
describes the spatial distribution and direction of the unit
input force, and the output vector c describes that of
the observed unit displacement. The unit input vector is
scaled with the input force q and the resulting output
displacement is denoted y, both dependent on frequency ω.
For a derivation, it is referred to any dynamics text book,
such as Craig and Kurdila (2006).

We can write this into a complex frequency-dependent
transfer function G(ω), denoting the transmission between
input force and output displacement,

G(ω) = y(ω)

q(ω)
= cT (K(1 + iη) − ω2M)−1b

= cT Z(ω)−1b, (4)

with Z(ω) the complex symmetric N × N frequency
dependent dynamic stiffness matrix. The magnitude1 of
this function |G(ω)| is used to obtain the amplification of
harmonic amplitudes from input to output, possibly scaled
to decibel , denoted as |G(ω)|dB.

The undamped eigenfrequencies Ωi and eigenvectors φi

of the system can be calculated by solving the generalized
eigenvalue problem

Kφi = Ω2
i Mφi for i = 1, . . . , n (5)

for which the eigenfrequencies are ordered as 0 ≤
Ω1 ≤ Ω2 ≤ . . . ≤ Ωn for the n eigenfrequencies of

1The notation |•| means to take the complex norm or magnitude of the
value •

interest. The eigenvectors Φ = [
φ1, φ2, . . . , φn

]
are mass-

orthonormalized according to ΦT MΦ = I. Since structural
damping is used, the peak frequencies are equal to the
undamped eigenfrequencies ωi = Ωi , at which the FRF
amplitude |G(ω = ωi)| reaches its extreme values.

2.2 Optimization problem formulation

A general optimization problem involving resonance peak
constraints can be formulated as

min
s

f (s) (6)

s.t.
∣∣G(ωj (s), s)

∣∣
dB ≤ gupp(ωj ) ∀ ωj ∈ Supp (7)

|G(ωk(s), s)|dB ≥ glow(ωk) ∀ ωk ∈ Slow (8)

smin ≤ s ≤ 1 (9)

The proposed constraints can be used as either an upper
limit (7) or as a lower limit (8) for the response at any
peak frequency, provided these frequencies are known from
eigenvalue calculation. Any peak frequency (ωi ∀ i ≤ n) can
be placed in subsets Supp or Slow, or both. Additionally,
the formulation is not limited to one single upper and lower
limit function (gupp and glow), e.g., the first resonance peak
could be limited differently than the second. For robustness
against mode switching, a mode tracking strategy (Kim
and Kim 2000) is advisable to ensure continuity of the
constraints.

Any reasonable choice of objective function f is
possible, but in this paper, we will limit ourselves to an
objective function in the form of a mean eigenvalue (Ma
et al. 1995). To maximize n eigenfrequencies, the harmonic
mean of those frequencies is taken as objective

f (s) = −
(

n∑

i=1

1

Ωi(s)2

)−1

. (10)

This objective function is relatively insensitive to mode
switching, which otherwise could introduce discontinuities
if not taken into account correctly (see, e.g., Kim and Kim
(2000); Du and Olhoff (2007b)). In order not to obscure
the scope of the paper, we choose to avoid using these
techniques. Additionally, this objective helps preventing
trivial solutions: in case n peaks corresponding to the n

lowest frequencies are limited from above, a possible trivial
solution would be to create n artificial rigid body modes (by
means of disconnected parts or mechanisms), which have no
effect on the point of interest and a very low transmission
ratio, but do replace the lowest eigenfrequencies.

In order to prevent ill-conditioning of the system
matrices, the lower bound on the design variables is set
to smin. Secondly, a volume constraint is imposed to prevent
trivial all-solid solutions. In total, this leads to the following
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optimization problem which is considered throughout this
paper:

min
s

−
(

n∑

i=1

1

Ωi(s)2

)−1

(11)

s.t. V (s) ≤ Vlim (12)∣∣G(ωj (s), s)
∣∣
dB ≤ gupp(ωj ) ∀ ωj ∈ Supp (13)

|G(ωk(s), s)|dB ≥ glow(ωk) ∀ ωk ∈ Slow (14)

smin ≤ s ≤ 1 (15)

For further use, we abbreviate the frequency response
value at G(ωi) as Gi . In subsequent sections, three different
methods are proposed to calculate the peak values |Gi |. All
methods require the eigenpairs (Ωi, φi ) to be calculated
beforehand.

2.3 Full method

The most straightforward method to calculate the FRF
amplitudes at each required peak frequency, by solving the
full linear system:

Gi = cT ui = cT Z(ωi)
−1b ∀ ωi ∈ Supp ∪ Slow. (16)

The sensitivities of this function with respect to the filtered
design variables are

dGi

dρj

= −cT Z(ωi)
−1 dZ(ωi)

dρj

Z(ωi)
−1b

= −ξT
i

(
dK
dρj

(1 + iη) − ω2
i

dM
dρj

− 2ωiM
dωi

dρj

)
ui

= −ξT
i K

(j)

el ui

dκj

dρj

(1 + iη) + ω2
i ξ

T
i M

(j)

el ui

dμj

dρj

+2ωiξ
T
i Mui

dωi

dρj

, (17)

where ui is the state vector containing the solution of the
harmonic response, and ξ i the adjoint vector at each peak
frequency ωi . The last term in (17) adds the sensitivity
information with respect to the peak frequency (and thus the
eigenfrequency), which cannot be included in any method
which iteratively finds the peak value in an FRF (such
as Venini and Pingaro (2017)). Both the state and adjoint
require a full complex-valued system to be solved,

Z(ωi)ui = b and Z(ωi)ξ i = c, (18)

where the state is only dependent on the input vector b,
and the adjoint depends on the output vector c. Hence,
the importance of the output location on the sensitivities is
explained by the adjoint system having the output vector as
a right-hand side. Note that these equations could be solved
using one matrix factorization. In case an iterative solver
is used, the systems would have to be solved separately if
b �∝ c.

To complete the sensitivity calculation, the derivatives of
the interpolation functions (1) are

dκj

dρj

= p(1 − w)ρ
p−1
j + w and

dμj

dρj

= 1. (19)

The peak frequency sensitivities are equal to the undamped
eigenfrequency sensitivities in case of structural damping,
and are calculated by

dωi

dρj

= dΩi

dρj

= 1

Ωi

φT
i K

(j)

el φi

dκj

dρj

− Ωiφ
T
i M

(j)

el φi

dμj

ρj

,

(20)

which does not require the solution of any extra linear
systems (a derivation is found in, e.g., Haftka and Gürdal
(1992)).

The peak responses of a damped dynamic system are
complex values and so are their sensitivities. To obtain the
magnitude of the frequency response, the complex norm is
taken as2

|Gi | =
√

GiG
∗
i =

√
Re (Gi)

2 + Im (Gi)
2. (21)

The sensitivity of the complex norm is calculated as

d |Gi |
dρ

= 1

|Gi |
(

Re

(
dGi

dρ

)
Re (Gi) + Im

(
dGi

dρ

)
Im (Gi)

)
, (22)

resulting in a real-valued sensitivity. In case a transforma-
tion to decibel is used, the response and its sensitivity can
be calculated as

|Gi |dB = 20 log10(|Gi |) and
d |Gi |dB

d |Gi | = 20

|Gi | log(10)
.

(23)

Finally, the sensitivities are treated with the density filter as
described in the work of Bruns and Tortorelli (2001).

These last five differentiation operations in (19)–(23)
(material interpolation, eigenfrequency, complex norm
derivatives, decibel transformation, and filter) are identical
in the following methods using reduced-order models.

2.4 Modal truncation

In order to reduce the time spent in calculating all
the required frequency response values, model reduction
techniques can be used. Although it is very expensive to
compute the eigenvectors, still the solution of the dynamic
systems of equations will contribute significantly to the
total computation time. The main reasons for this are
twofold. First of all, the eigensolver only requires solution

2The notation •∗ means the complex conjugate of •
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of real-valued matrices, while the resonance peaks involve
a complex-valued matrix to be solved, which can be
compared with a real-valued matrix of size 2N × 2N .
Secondly, each peak requires an unique system of equations
to be solved, while an eigensolver uses only one system
of equations to iteratively converge towards the eigenpairs.
When using a direct solver, this means that a factorization
is required for each resonance peak in the optimization
problem, while only one factorization is enough for the
eigensolver. In case of an iterative solver, the same could be
said about the preconditioner.

By using the eigenvectors which are already computed
for the objective, modal truncation can be applied to obtain
smaller (n << N) reduced system matrices K̃ and M̃ ∈
R

n×n, and input-output vectors b̃ and c̃ ∈ R
n (see, e.g.,

Craig and Kurdila (2006)). Thus, the higher modes of the
system are truncated, as is assumed that these do not greatly
affect the lower frequency spectrum. The reduced system is
obtained by a Galerkin projection of the full system matrices
on all the known eigenvectors Φ, as

K̃ = ΦT KΦ = diag
(
Ω2

1 , Ω2
2 , . . . , Ω2

n

)
, b̃ = ΦT b,

M̃ = ΦT MΦ = I, c̃ = ΦT c.

(24)

Since the matrices are projected on the eigenvectors, the
resulting system matrices are diagonal.

The diagonal terms of the reduced stiffness matrix
become Z̃kk(ω) = Ω2

k (1 + iη) − ω2, which makes the
response calculation very efficient using modal superposi-
tion. Again the frequency ω is chosen as peak frequency ωi ,
resulting in the reduced response as3

Gi ≈ G̃MT
i = c̃T Z̃(ωi)

−1b̃

=
n∑

k=1

cT φkφ
T
k b

Ω2
k (1 + iη) − ω2

i

∀ ωi ∈ Supp ∪ Slow.

(25)

In order to calculate the sensitivities of this function, two
approaches are proposed. The first one is the consistent
calculation of sensitivities, and the second method is an
approximation of the sensitivities by ignoring the design
dependence of the reduction basis.

2.4.1 Consistent sensitivities

The sensitivities for the consistent method become more
involved than the full model sensitivities, since a reduction

3The use of a reduced model is indicated by •̃. The superscript
indicates the type of model order reduction technique used: •MT

for MT and •MTAfor MTA)

step has been added. The sensitivities now have to be
calculated using

dG̃MT
i

dsj
=

n∑

k=1

1

Ω2
k (1 + iη) − ω2

i

dφT
k

dsj

(
c(φT

k b) + b(φT
k c)

)

− 2cT φkφ
T
k b(

Ω2
k (1 + iη) − ω2

i

)2

(
Ωk(1 + iη)

dΩk

dsj
− ωi

dωi

dsj

)
,

(26)

in which the adjoint eigenvector sensitivity of
dφT

k

dsj
needs

to be calculated. The term involving the eigenvector
derivatives is the sensitivity with respect to the reducing
basis. By solving the adjoint saddlepoint problem

[
K − Ω2

kM Mφk

φT
k M 0

] [
νk

αk

]
=

[ −c(φT
k b) − b(φT

k c)
0

]
,

(27)

the adjoints νk and αk can be calculated. For a detailed
explanation, the reader is referred to Lee (2007).

After solving for adjoints, the eigenvector sensitivities
can be obtained as

dφT
k

dsi

(
c(φT

k b) + b(φT
k c)

)

= αk

2
φT

k

dM
dsi

φk + νk

(
dK
dsi

− Ω2
k

dM
dsi

)
φk . (28)

Note that for the calculation, a factorization of the matrix
introduced in (27) is needed for each eigenvector in
the base, or one iterative solution per eigenvector, for
each peak to be observed. Instead of solving complex
systems, now real-valued matrices can be used, which saves
considerable computation time. Additionally, the number of
linear systems to be solved is reduced by a factor of two in
case the problem is not self-adjoint and an iterative solver is
used.

2.4.2 Approximate sensitivities

From the exact sensitivities in (26), it can be seen that the
first term is divided by the modal stiffness (Z̃kk(ωi) =
Ω2

k (1 + iη) − ω2
i ), and the second term is divided by the

modal stiffness squared. The sensitivities are largest when
the dynamic stiffness is very small (ωi ≈ Ωk), causing
the second term in (26) to become dominant, since it is
squared. Therefore, in order to reduce computational effort,
we propose to approximate the sensitivities by ignoring
the first term containing eigenvector sensitivity terms with
respect to input b and output c. Effectively, this means that
the design dependency of the reduction basis in (24) is not
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considered and taken as constant, when taking the design
sensitivities of (25). This results in

dG̃MT
i

dsj
≈ −

n∑

k=1

2cT φkφ
T
k b(

Ω2
k (1 + iη) − ω2

i

)2

(
Ωk(1 + iη)

Ωk

sj
− ωi

ωi

sj

)

= −c̃T Z̃(ωi)
−1ΦT dZ(ωi)

dsj
ΦZ̃(ωi)

−1b̃

= −ξ̃
T

i ΦT dZ(ωi)

dsj
Φũi , (29)

where the reduced state and adjoint are now calculated using
the reduced model by solving

Z̃(ωi)ũi = b̃ and Z̃(ωi)
T ξ̃ i = c̃. (30)

This method does not require any solution to the full
linear system at all, but it may hamper convergence,
because it is an approximation and information regarding
the input and output is only contained via the eigenvector
projection. This means that the sensitivities do not contain
information anymore about the parts of b and c orthogonal
to the eigenvectors in the basis, which was previously
included in (28). In case the basis does not change with
respect to the design (i.e., the eigenvectors do not change),
these sensitivities are exact. Additionally, the above
approximation makes implementation very easy, since the
sensitivity of the approximated MT-based method (29)
strongly resembles the sensitivity of the full method (17),
with the following substitutions:

ξ i ≈ Φξ̃ i and ui ≈ Φũi , (31)

which are simply the projections of the approximated
problem. For comparison, Table 1 shows an overview of the
number of full system solutions required for the different
methods.

2.5 Modal truncation augmentation

MTA is an established concept of model reduction in
the field of structural dynamics (Dickens et al. 1997).
By augmenting the reduction basis with extra correction

vectors, the reduced model becomes more accurate. The
correction vectors add localized information, which was
lost by removing the high-frequency content in MT. By
extending the basis with specific local information, not
only the response becomes more accurate but also the
accuracy of sensitivities might be enhanced. Instead of only
augmenting the solution to the input force b, we choose
also to add a correction with respect to output vector c.
Since the adjoint vector ξ is determined by solving the
system using the output vector (18), this should improve
the approximated sensitivities. The reduction basis Φ is
extended with undamped linear solutions v1 and v2 of the
input and output vectors, at a shift frequency σ < Ω1,

v1 =
(
K − σ 2M

)−1
b, v2 =

(
K − σ 2M

)−1
c, (32)

to obtain the augmented reducing basis

V = span {Φ, v1, v2} s.t. VT MV = I. (33)

Note that for a collocated system (b ∝ c), only one
vector needs to be added as both vectors would be linearly
dependent. In the case of MIMO systems, it is trivial to add
more vectors for all distinct inputs and outputs (Dickens
et al. 1997).

The augmentation vectors are orthonormalized with
respect to the other vectors, by solving a small eigenvalue
problem to diagonalize the matrix

Ψ T MΨ = QΛQT with QT Q = I, (34)

where Ψ = [
Φ v1 v2

]
, Q is an orthogonal matrix

containing the eigenvectors, and Λ a diagonal matrix with
the eigenvalues of the un-orthogonalized projected mass
matrix. Using these, we can obtain a linear combination to
get the orthonormal system

Λ− 1
2 QT Ψ T MΨQΛ− 1

2 = VT MV = I. (35)

The reducing basis thus becomes

V = ΨQΛ− 1
2 or Vj =

∑

k

Ψ k

Qkj√
Λjj

(36)

Table 1 Comparison on the number of real and complex linear solutions required on the full system, depending on the number of peaks to be
constrained np and the combined number of unique in- and outputs nio

Consistent Approximated

Method Real Complex Real Complex Use

Full 0 nio · np N/A A very small number of peaks

MT n · np 0 0 0 Many in- and outputs, many peaks

MTA nio + (n + nio)np 0 nio 0 Few in- and outputs, many peaks

In case direct solvers are used, the number of matrix factorizations is equal to nio = 1 and np = 1, except for consistent MTA, which requires
1 + n factorizations. All methods require the solution of n eigenvalues and eigenvectors of the full system
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and the reduced model can be obtained as

K̃ = VT KV, M̃ = VT MV = I,

b̃ = VT b, c̃ = VT c. (37)

Note that the reduced stiffness matrix K̃ now is not diagonal
anymore. Therefore, we write the dynamic stiffness matrix
as Z̃(ω) = K̃(1 + iη) − ω2M̃. The peak values can be
calculated using

Gi ≈ G̃MTA
i = c̃T Z̃(ωi)

−1b̃ ∀ ωi ∈ Supp ∪ Slow. (38)

It is possible to calculate consistent sensitivities of this
reduced model; however, it involves a lengthy derivation
which is omitted here for the sake of compactness, and
placed in the Appendix. In contrast, the approximated
sensitivities, where we neglect the design dependence of all
base vectors, are just as straightforward to derive as with the
MT method. They can be calculated using

dG̃MTA
i

dsj
≈ −c̃T Z̃(ωi)

−1VT dZ(ωi)

dsj
VZ̃(ωi)

−1b̃

= −ξ̃
T

i V
T dZ(ωi)

dsj
Vũi , (39)

which is merely a change of basis as compared with the
approximated sensitivities of the MT method (29). The
reduced linear system now involve a matrix of size (n+2)×
(n + 2):

Z̃(ωi)ũi = b̃ and Z̃(ωi)
T ξ̃ i = c̃. (40)

This last method is not as inexpensive as the approxi-
mated sensitivity MT method, due to the additional solu-
tions required to augment the basis, but also not as expensive
as the full method or the consistent sensitivity MT method
(an overview is given in Table 1). It only requires one
extra matrix factorization, or one iterative linear solution
per unique input and output. Since we only consider the
SISO case, only one solution (collocated system) or two
solutions (non-collocated system) are required. But in the
case of MIMO, each unique in- and output vector of inter-
est would have to be augmented, each requiring a linear
solution (Dickens et al. 1997).

Table 2 Physical properties and variables used in the optimization
problems

Parameter Description Value

L Length scale 1 m

t Thickness 0.1 m

E Young’s modulus 1 MPa

ν Poisson’s ratio 0.3

ρ Density 1 kgm−3

η Hysteretic damping 10−3

smin Minimum design value 10−3

n Number of eigenvalues calculated 3

r Filter radius 2 elements

w Interpolation ratio 0.1

p Interpolation power 3

Vlim Volume fraction 0.5

σ Frequency shift for MTA 50 rad s−1

Cantilever mesh 240 × 80

Stage case mesh 240 × 40

3 Results

Two test cases are used to study the optimization process
and the influence of various model reductions. First of all
is a cantilever problem (Fig. 2a), with a solid non-design
region in the middle of the domain, and a collocated input
and output. Secondly, a free-floating stage (Fig. 2b) is used,
with non-collocated input and output, where the input is
distributed along two square non-design domains which
represent actuators. The output location is in the center of
the top surface. Since the structure is free floating, it exhibits
three rigid body modes. For the MTA approach, this means
that the augmentation vectors cannot be static (σ = 0).
Instead a quasi-static solution is obtained at σ = 50 rads−1,
which is well below the first eigenfrequency and will be
used for both test cases. The objective involves n = 3
structural eigenvalues, which are also limited in amplitude
(np = 3). For simplicity, no mode tracking is applied in all
examples. Further parameters used for the optimization are
listed in Table 2.

Fig. 2 The cantilever problem (a) with collocated input and output at the tip, and the stage problem (b) with non-collocated input at the sides and
output at the top middle
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(a) Reference

(b) Full

(c) Consistent MT

(d) Consistent MTA

Fig. 3 Resulting cantilever designs of the mean eigenvalue maximiza-
tion without peak constraint (a) and with peak constraint, solved by the
full method (b). The results of using reduced models with consistent
sensitivities are shown for MT (c) and for MTA (d)

The optimization problem is solved using the method of
moving asymptotes (Svanberg 1987), of which the number
of iterations is limited to a maximum of 200. All the
results presented converged to a stationary solution, unless
otherwise mentioned. Furthermore, the objective function
is scaled to be − 100 in the first iteration and the volume
constraint is scaled by a factor 10.

First, optimization results of the different peak constraint
implementations with the consistent approach are given in

Section 3.1. After that, in Section 3.2 a comparison is made
between consistent and approximate sensitivities. Finally,
optimizations using approximate sensitivity information are
shown in Section 3.3.

3.1 Consistent optimization

To show the operation of the proposed peak constraint,
the test cases are optimized using the full method and the
two reduced-order models using consistent sensitivities. For
reference, the results of an unconstrained optimization (i.e.,
only constrained in volume) are also shown.

3.1.1 Cantilever

The cantilever problem is constrained with an upper limit
of gupp = − 1 dB for the first three peak amplitudes.
This value is arbitrarily chosen here: it is physically
achievable, and this limit will cause the constraint to be
active. In practice, the designer would provide a limit
based on operational targets. Using the method involving
full system solutions for optimization (Section 2.3), we
obtain the design shown in Fig. 3b. The reference design
of an optimization without any peak constraints is shown in
Fig. 3a.

An overview of the performance values is given in
Table 3 and FRFs of the designs are shown in Fig. 4.
From this, it can be seen that the peaks are indeed limited
with gupp = − 1 dB. The lower peak values come at a
cost, because the first two eigenfrequencies are significantly
lower than in the design without peak constraints. This
is reflected in the higher objective function, in which the
lowest eigenfrequencies contribute most. When looking at
the mode shapes in Fig. 5, it is evident that they are different
from the reference case. At the left side of the constrained
design, a mechanism can be recognized, which rotates the

Table 3 Comparison of final performance values for the cantilever case, using gupp = − 1 dB

Reference Full MT MTA

Objective rad2/s2 − 822.2 − 428.2 − 428.5 − 427.8

Volume - 0.500 0.500 0.500 0.500

Ω1 rad s−1 186.8 140.6 140.7 140.4

Ω2 rad s−1 454.5 247.6 247.3 246.8

Ω3 rad s−1 601.5 605.1 603.5 612.0

|G1|dB dB 5.970 − 1.000 − 1.001 − 1.001

|G2|dB dB 1.343 − 1.001 − 1.002 − 1.002

|G3|dB dB − 5.580 − 17.62 − 15.37 − 20.20

No. factorizations per iteration - 3 complex 3 real 4 real

Time / iter. s 14.2 22.2 16.8 18.9

The number of inputs and outputs nio = 1 and np = 3. Evaluated on the full model
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Fig. 4 FRFs of the different cantilever designs

right part of the structure such that the tip displacements are
reduced.

As for the results involving reduced-order models
(Sections 2.4–2.5), the final designs of the MT and MTA
method are respectively shown in Fig. 3c and d. These
designs are hard to distinguish from the design obtained
using the full method (Fig. 3b), and their performance is
equivalent (Table 3). Looking at the convergence history
of the cantilever optimization, as shown in Fig. 8a, it
can clearly be seen that the three methods have similar
convergence. In our Python implementation, using matrix
factorizations whenever possible, solving the required
eigenvectors takes about 13 s, one real-valued factorization
0.85 s, and a complex factorization 2.5 s. This means that
factorizing three complex matrices, required for the full
method, represent a significant portion (about a third) of
the computational time. Using the reduced-order models,
only 3 real factorizations for MT or 4 for MTA have to
be made, hence the time saved per iteration (Table 3). In
case of iterative solvers, this computational gain is more
debatable, as the adjoints cannot be calculated with simple
back-substitutions anymore and separate iterative solutions
are needed.

(a) Reference, mode 1 (b) Full, mode 1

(c) Reference, mode 2 (d) Full, mode 2

Fig. 5 The first two eigenmodes of the optimized structure for
optimization without peak constraint (a, c). First two eigenmodes
of the constrained optimization using the full method with gupp =
− 1 dB (b, d)

Although beyond the scope of this work, it should
be noted that model order reduction with consistent
sensitivities could become more viable using aggregation
strategies. Aggregation already has been implemented
successfully for instance in stress constraints (Yang and
Chen 1996) to reduce computational time for the sensitivity
calculation, and in eigenvalue optimization (Torii and de
Faria 2017) to overcome differentiability issues. In our
case, for the full solution strategy, each peak constraint is
dependent on a different Z(ωj ), which requires an adjoint
to be solved for each of the peaks. When a reduced-
order model is used, the adjoints would not be expensive,
as they are evaluated on the reduced model Z̃(ωj ).
The expensive adjoint solutions (in this case the model
reduction basis sensitivities) are involving identical system
matrices for each peak constraint, allowing the expensive
sensitivities only to be calculated once when aggregating.
This effectively results in only n linear solutions on the
full system for MT and 2nio + n linear solutions for MTA,
independent of the number of peaks considered, compared
with the full method, still requiring the solution of 2np

full complex linear systems if the constraints would be
aggregated. In Table 1, the resulting number of solutions
on the full system for an aggregated constraint could be
seen as np = 1 for MT and MTA, but not for the full
method.

3.1.2 Stage

The second example involves the optimization of a free-
floating stage (Fig. 2b). In comparison with the cantilever
case, this example has a non-collocated input and output
vector. Additionally, there are rigid body modes present
in this example, which means that the peaks of the 4th,
5th, and 6th eigenmode (the first three flexible modes) are
constrained. We choose the constraint limit as gupp =-
25dB.

The resulting design of the optimization without peak
constraint (Fig. 6a) and the constrained designs (Fig. 6b–
d) again shows a trade-off between peak limitation and
eigenfrequency values (Table 4). The peak limits are
attained at cost of lower eigenfrequencies.

Between the designs resulting from the full method
(Fig. 6b) and the consistent MTA (Fig. 6d), the difference
in design is hardly recognizable. The design resulting
from consistent MT (Fig. 6c) is different although its
performance is equivalent to the other designs (Table 4 and
Fig. 7), indicating a different local optimum. Also here,
when looking at the convergence history in Fig. 8b, the use
of reduced-order models with consistent sensitivities does
not hamper optimization convergence and the convergence
is very similar.

2566 A. Delissen et al. 



(a) Reference

(b) Full

(c) Consistent MT

(d) Consistent MTA

Fig. 6 Resulting stage designs of the mean eigenvalue maximization
for a without peak constraint and b with peak constraint, solved by
the full method. Results of using reduced models with consistent
sensitivities are shown for MT (c) and MTA (d)

3.2 Comparison of consistent and approximate
sensitivities

As already observed in previous section, the use of
consistent sensitivities in optimization with reduced models
yields comparable results to using a full model. However,
using reduced-order models with consistent sensitivities in
the previous examples results only marginally increased
computational efficiency compared with the full method.
Therefore, we investigate the effect of approximating the
sensitivities of the reduced-order models, by ignoring the
design dependency of the model reduction basis.

The effect of neglecting the reduction basis sensitivities,
therefore not requiring any expensive solution of the adjoint
problem, is visually demonstrated in Fig. 9. This figure
shows the sensitivities of the first two peak constraints of
the stage case in the first design iteration, thus consisting of
a uniform density field. It is clear that the localized details

Fig. 7 FRFs of the different stage designs

around the output location (Fig. 9a, d) are not present in the
approximate sensitivities (Fig. 9b, e). Identical observations
could be made for the third peak constraint, not shown
here. The local features are present again in the approximate
sensitivities of the MTA method (Fig. 9c, f), where the
additional vectors provide this information.

To quantify the error between approximate and consistent
sensitivity fields, we introduce a sensitivity error norm as

εi =

∑
j

∣∣∣∣∣
d
∣∣∣G̃i

∣∣∣
dB

dsj
− d

∣∣∣G̃i

∣∣∣
dB

dsj approx

∣∣∣∣∣

∑
j

∣∣∣∣∣
d
∣∣∣G̃i

∣∣∣
dB

dsj

∣∣∣∣∣

. (41)

Again, the sensitivities are evaluated in the first design
iteration for both the test cases. In Table 5, the error values
are reported for both the cantilever and the stage case. Two
observations can be made from these values. First of all,
the sensitivity error is much lower for the MTA sensitivities
than for the MT. Second, the sensitivity errors for the
peak constraints go up for higher eigenfrequencies when
using MTA. This might be related to the choice of shift
frequency σ (chosen below the first eigenvalue) to evaluate
the augmented response.

Table 4 Comparison of values
for the stage case, using
gupp = − 25 dB

Reference Full MT MTA

Objective rad2/s2 − 412.6 − 365.0 − 364.3 − 364.9

Volume - 0.500 0.500 0.500 0.500

Ω1 rad s−1 197.3 187.2 187.2 187.2

Ω2 rad s−1 373.8 361.3 356.9 360.5

Ω3 rad s−1 464.6 402.4 405.5 402.6

|G1|dB dB − 16.36 − 25.00 − 25.00 − 25.00

|G2|dB dB − 83.82 − 83.23 − 84.29 − 83.39

|G3|dB dB − 82.28 − 35.39 − 34.82 − 35.40

No. factorizations per iteration – 3 complex 3 real 4 real

Evaluated on the full model
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Fig. 8 Iteration history of the objective for the cantilever case (a) and
the stage case (b). The cantilever optimizations become feasible at iter-
ation 25, except for approximate MT, which does not reach a feasible

design within 200 iterations. For the stage, feasibility is reached at
iteration 15 for all methods, except for approximate MT which only
becomes feasible at iteration 82

3.3 Optimization with approximate sensitivities

The effect on the optimization process when approximating
the reduced-order model sensitivities is demonstrated in this
section. Designs and performance are compared between
the consistent and approximate approaches.

Fig. 9 The exact sensitivities (a), and the approximate sensitivities
using MT (b), of the first peak. Consistent and approximate
sensitivities of the second peak, respectively (d) and (e). The
approximate sensitivities of the first two peaks using MTA are shown
in c and f

3.3.1 Cantilever

Starting again with the cantilever case, the results of
optimization with approximate sensitivities are shown in
Fig. 10b and c for MT and MTA, respectively. Especially
the design optimized with approximate MTA is very similar
to the consistent design (Fig. 10a). This can also be seen
from the performance values in Table 6. The objective
and eigenfrequencies of the consistent design and the
approximated MTA design are very similar. However, the
optimization with approximated MT did not even converge,
as a feasible design was not reached (volume constraint
violation). This can also be seen in the iteration history
(Fig. 8a), which shows that the approximate MTA follows
a similar path compared with the consistent methods,
while the approximate MT completely different path as the
optimization progresses.

The introduced sensitivity approximations achieve fur-
ther computational gain. The timings in Table 6 show that
the approximate MT method requires virtually no extra time
to calculate the peaks and their sensitivities, compared with
the reference case without peak constraints (Table 3). The
approximate MTA method saves about a quarter of total
computation time, which means that the time required to
calculate the peak values and their sensitivities is short-
ened almost an order of magnitude (8 s for the full method

Table 5 Comparison of sensitivity error values for the cases in the first
iteration

Cantilever Stage

MT MTA MT MTA

ε1 0.0619 0.000129 0.150 0.00147

ε2 0.532 0.0789 0.330 0.0725

ε3 0.506 0.215 0.290 0.244

Error norm of the approximate sensitivities with respect to the
consistent sensitivities

2568 A. Delissen et al. 



(a) Consistent

(b) Approximate MT

(c) Approximate MTA

Fig. 10 Results of the cantilever mean eigenvalue maximization with
peak constraint (a), solved by the full method. The results of using
reduced models with approximated sensitivities are shown for MT (b)
and for MTA (c)

versus 1.2 s for approximate MTA). When using iterative
solvers, the computational gain might even be larger, since
no iterative solutions are required for the sensitivities.

3.3.2 Stage

The optimization results of the stage case are shown
in Fig. 11b and c for the MT and MTA methods
using approximate sensitivities. For comparison, the design
obtained from the consistent optimization (Fig. 11a) is also
shown. Again, the design resulting from approximate MT
is clearly distinct from the other designs. In contrast to

(a) Consistent

(b) Approximate MT

(c) Approximate MTA

Fig. 11 Results of the stage of mean eigenvalue maximization with
peak constraint (a), solved by the full method. The methods using
approximated sensitivities produce results MT (b) and MTA (c)

the cantilever, the resulting MT stage design is feasible
(Table 7), although it took 82 iterations instead of 15,
which the other methods required. Again, the convergence
of the approximate MTA is very similar to the other
methods (Fig. 8b), while the approximate MT method
causes a completely different convergence path and a worse
optimum.

3.4 Case variations

In this section, variations of the limit function are explored
to gain more insight into the behavior and possibilities of
the proposed constraint. Both the full and approximate MTA
methods are used for the optimizations.

To illustrate the individual control of peaks in the FRF,
the first variation is to choose a lower limit instead of an
upper limit on the cantilever case. For the first peak, we now
use |G1|dB ≥ 10 dB. The other two peak constraints are

Table 6 Comparison between
consistent and approximated
sensitivities of final
performance values for the
cantilever case

Consistent Approximated

Full, MT, MTA MT MTA

Objective rad2/s2 − 428.2 − 364.4 − 429.3

Volume - 0.500 0.517 0.500

Ω1 rad s−1 140.6 122.9 140.8

Ω2 rad s−1 247.6 277.2 247.7

Ω3 rad s−1 605.1 597.3 604.9

|G1|dB dB − 1.000 − 0.999 − 1.000

|G2|dB dB − 1.001 − 1.002 − 1.002

|G3|dB dB − 17.62 − 42.51 − 13.06

No. real factorizations 0, 3, 4 0 1

No. complex factorizations 3, 0, 0 0 0

Time / iter. s 17–22 14.5 15.4
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Table 7 Comparison between
consistent and approximated
sensitivities of final
performance values for the
stage case

Consistent Approximated

Full, MT, MTA MT MTA

Objective rad2/s2 − 365.0 − 224.2 − 366.5

Volume – 0.500 0.500 0.500

Ω1 rad s−1 187.2 202.6 187.2

Ω2 rad s−1 361.3 205.1 363.9

Ω3 rad s−1 402.4 219.0 404.4

|G1|dB dB − 25.00 − 25.00 − 25.00

|G2|dB dB − 83.23 − 25.00 − 83.13

|G3|dB dB − 35.39 − 29.36 − 35.47

No. real factorizations 0, 3, 4 0 1

No. complex factorizations 3, 0, 0 0 0

kept on their original upper limit of gupp = - 1 dB. The
resulting designs and FRF are shown in Fig. 12, from which
can be seen that the requirements are fulfilled. Although the
design optimized with approximate MTA is asymmetric, it
performs a little better (higher eigenvalues) than the design
optimized with the full method. The bulk of the material is
distributed in the same manner for both designs, with the
main difference the slender structure being removed at the
top part for the approximate MTA design.

Also non-constant limit functions can be used, which is
demonstrated using the lower limit

glow = −10 log(ω) + 20. (42)

With a logarithmic frequency axis, it represents a sloped
straight line in an FRF. Any other user-defined peak
envelope function can also be used for the constraint. Note
that the sensitivity of this function also needs to be taken

Fig. 12 Results of choosing a lower limit for the first peak |G1|dB ≥
10 dB. The design from the full method (a) and the approximate MTA
method (b) and their FRF (c)

into account as this is a function of frequency. The resulting
designs are feasible and all three constraints are active, as is
shown in Fig. 13. Both optimized designs are very similar
to each other, with nearly identical dynamic behavior.

Next to a frequency-dependent constraint limit, another
possibility is an adaptive limit. Instead of maximizing the
eigenfrequencies, the maximum peak can be minimized.
Practical implementation of this min-max problem can
be done using a bound formulation, which results in the
following optimization problem:

min
s,β

β

s.t. V (s) ≤ Vlim∣∣G(ωj (s), s)
∣∣
dB ≤ β ∀ ωj ∈ Supp

smin ≤ s ≤ 1

−80 ≤ β ≤ 20 (43)

Fig. 13 Result of choosing the frequency-dependent lower limit for all
peaks as (42). The design from the full method (a) and the approximate
MTA method (b) and their FRF (c)
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Fig. 14 Results of a maximum
peak minimization as in (43) (a,
b) and their corresponding FRF
(c), where the first three
eigenmodes of the full design
are shown as insets

The results of this optimization problem are shown
in Fig. 14. The obtained designs feature appendages near the
tip, that are weakly connected to the main structure. These
appendages add low-frequency modes to the structure, that
do not result in a large amplitude at the output point.
This is advantageous in this example because the response
of only the three lowest peaks is limited. It is clear that
the optimizer exploits not having a penalization on low
eigenfrequencies, by adding these artificial low-frequency
modes in the process. This demonstrates the need for
additional requirements on the optimization problem in
order to obtain a meaningful design.

In practice, operational conditions might impose other
requirements on the FRF. For example, in equipment
operating at a constant frequency, a low response amplitude
at exactly that frequency is desired. This can be achieved
by extending the optimization problem in (43) with the
constraint

∣∣G(ωop, s)
∣∣
dB ≤- 80, where ωop is the operational

frequency, chosen as 300 rad s−1, initially just in between
the second and third natural frequency. Note that extra
bounds on the FRF can be set without adding any
computational expense when using approximate MTA.

The results of the optimization with this extra constraint
can be seen in Fig. 15. The full design satisfies the operating
frequency constraint with a value of − 80.01 dB at ωop,
whereas the design optimized with approximate MTA is just
infeasible with a value of − 79.87 dB evaluated on the full

model, while it is feasible on the reduced model. This might
be explained by the loss of accuracy when using reduced-
order models. Especially when the response is close to zero,
a small absolute error might introduce a large error in the
decibel scale. For the full design, the optimum design is
found with β = − 2.00 dB, while for the approximate MTA
design β = − 2.40 dB.

Fig. 15 Results a maximum peak minimization subject to an
additional maximum amplitude constraint at 300 rad s−1 (a, b) and
their corresponding FRF (c)
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4 Conclusions

In this work, we proposed a constraint to limit peak
frequency response amplitudes. It is able to effectively
and efficiently limit peak values of an FRF. By using the
eigenvalues and eigenvectors of interest, versatile upper and
lower limits can freely be selected per resonance peak.

Various ways to reduce the computational effort have
been explored using three different implementations of
this constraint, one based on solving the full system,
and two involving reduced-order models (modal truncation
(MT) and modal truncation augmentation (MTA)). It has
been shown that by using consistent sensitivities, thus by
including sensitivities of the reduction base vectors, the
optimization converges to nearly identical designs with
equal performance. In this case, no complex linear systems
need solving anymore, but a larger number of real-valued
linear solutions are required.

The sensitivities of the reduced models can be approxi-
mated by ignoring the design dependence with respect to the
model reduction basis. Only having eigenmodes in the basis
(MT) leads to inferior convergence during optimization and
infeasible design. It is shown that the approximation in case
of MT fails to reveal local details in the sensitivity field,
since higher frequency eigenmodes are truncated. By aug-
menting the basis with correction vectors (MTA), important
local details, which were previously truncated, are resolved
in the sensitivities and results similar to the consistent opti-
mization are obtained. Sensitivity approximation has two
advantages, the first being implementation ease. The sen-
sitivities directly use the projected reduced solution for
evaluation, thus easy to implement in code which already
uses sensitivities based on the full model. Secondly, fewer
real-valued linear solutions are required as the number is
not dependent on the number of peaks anymore, but depen-
dent on the number of augmented vectors. In the examples
shown, the time required to calculate the peaks and the
associated sensitivities can be reduced by almost an order
magnitude when using the proposed techniques, with a pos-
sibility of even further time reduction when iterative solvers
are used.

Looking forward, an interesting research direction is
the aggregation of peaks. Combining reduced models with
aggregation of the resonant peaks, the number of full
solutions can be reduced, which is not possible using the
full method. Theoretically, the number of linear solutions
could be independent of the number of peaks, while still
using consistent sensitivities. This is especially interesting
in cases where many peaks are constrained, or when
many inputs and outputs are present (MIMO), making both
directly evaluating the full system and the MTA method
computationally expensive. In this case, MT consistent

optimization might be very suitable. It needs to be noted
that, depending on application demands, the damping model
requires improvement for more accurate results. In order
to improve accuracy, it is recommended to consider modal
damping or even Voigt/Maxwell-type models, depending
on the constituent material. Related to this, an interesting
research direction is a multi-material design in a peak
limitation context, where multiple materials with different
damping properties can be placed (see, e.g., van der Kolk
et al. (2017)). In this manner, the amplitude of a peak can be
changed both by changing the eigenmodes (as in the current
work) and by effective placement of material with different
damping properties.

5 Replication of results

We are confident that the paper contains sufficient detail
on methodology and implementation, such as in Table 2,
that the results can be re-created. In case of questions or
difficulties, readers are welcome to contact the authors.
Additionally, raw data of the resulting designs and their
FRFs can be found in the supplementary material.
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Appendix : Modal truncation augmentation
consistent sensitivities

A.1 Reduced basis

We can calculate the adjoint sensitivities by working
backwards from each response, which is Gi = ũi · c̃. This
gives

dGi

dũi

= c̃ and
dGi

dc̃
= ũi . (A.1)

2572 A. Delissen et al. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


The reduced state is subject to equation h = Z̃i ũi − b̃ = 0;
therefore, we can write

dGi

dZ̃i

= −dGi

dũi

(
∂h
∂ũi

)−1
∂h

∂Z̃i

and
dGi

db̃
= −dGi

dũi

(
∂h
∂ũi

)−1
∂h

∂̃b
.

(A.2)

From these equations, we can solve the adjoint vector as

ξ̃ i = dGi

dũi

(
∂h
∂ũi

)−1

= c̃Z̃−1
i , (A.3)

resulting in the sensitivities

dGi

dZ̃i

= −ξ̃ i ⊗ ũi and
dGi

db̃
= ξ̃ i , (A.4)

in which the operator ⊗ stands for an outer product A =
u ⊗ v or in index notation Aij = uivj .

We know that the reduced dynamic stiffness matrix is
written as Z̃i = K̃(1 + iη) − λiM̃. Note that the previous
calculated derivatives of Gi

Z̃i
are complex valued, but the

derivatives with respect to K̃, M̃, and λi should be real
valued (van der Veen et al. 2015). Thus, we write

dGi

dK̃
= Re

(
dGi

dZ̃∗
i

dZ̃i

dK̃

)
= Re

(
dGi

dZ̃i

)
+ η Im

(
dGi

dZ̃i

)

= −
(

Re
(
ξ̃ i

)
+ η Im

(
ξ̃ i

))
⊗ Re (ũi )

+
(

Im
(
ξ̃ i

)
− η Re

(
ξ̃ i

))
⊗ Im (ũi ). (A.5)

The derivatives to M̃ and λi are obtained as

dGi

dM̃
= Re

(
dGi

dZ̃∗
i

dZ̃i

dM̃

)
= −λi Re

(
dGi

dZ̃i

)

= λi Re
(
ξ̃ i

)
⊗ Re

(
ũi

) − λi Im
(
ξ̃ i

)
⊗ Im

(
ũi

)
,

dGi

dλi

= Re

(
dGi

dZ̃∗
i

dZ̃i

dλi

)
= − Re

(
dGi

dZ̃i

)
: M̃ = − Re ξ̃

T

i M̃ũi ,(A.6)

where the operation “:” stands for a double contraction
v = A : B = ∑

i

∑
j AijBij , and using identity v = A :

u ⊗ v = uT Av.
Now that all the derivatives are known of Gi with respect

to the reduced model K̃, M̃, b̃, and c̃, the reduced model
is constructed using K̃ = VT KV, M̃ = VT MV = I,
b̃ = VT b, and c̃ = VT c. This means that

dGi

dV
= dGi

dK̃

dK̃
dV

+ dGi

dM̃

dM̃
dV

+ dGi

db̃

db̃
dV

+ dGi

dc̃
dc̃
dV

. (A.7)

The terms in (A.7) are calculated using the chain rule as

dGi

dK̃

dK̃
dV

= 2
dGi

dK̃
· VT K,

dGi

dM̃

dM̃
dV

= 2
dGi

dM̃
· VT M,

dGi

db̃

db̃
dV

= ξ̃ i ⊗ b,
dGi

dc̃
dc̃
dV

= ũi ⊗ c. (A.8)

A.2 Orthogonalization

Without explicitly substituting dGi

dV , the sensitivity with
of the orthogonalization is calculated next. Observing
that the basis is orthogonalized by solving a small

eigenproblem as V = ΨQΛ− 1
2 , or with index notation

Vj = ∑
k Ψ k

Qkj√
Λjj

, the sensitivities with respect to the

orthogonalizing eigenpairs (Qkj , Λjj ) are determined as

dGi

dQkj

= dGi

dVj

∑

k

Ψ k

1
√

Λjj

and
dGi

dΛjj

= dGi

dVj

Vj

Λjj

.

(A.9)

We know that Ψ T MΨ = QΛQT , which is an eigen-
problem. We know that the eigenvectors and eigenvalue
sensitivities can be calculated by first solving the adjoint
problem (from, e.g., Lee (2007)):

[
Ψ T MΨ − Λjj I Qj

QT
j 0

] [
ν̃j

α̃j

]
=

[ − dGi

dQj

− dGi

dΛjj

]
. (A.10)

Or for a multiplicit set of eigenvalues, also described by
Lee (2007),
[

Ψ T MΨ − ΛI Q
QT 0

] [
Ṽ
Ã

]
=

[
− dGi

dQ

− dGi

dΛ

]
. (A.11)

After solving this (small) adjoint problem, the contribution
of the eigenpairs (Λj ,Qj ) to the sensitivities can be
calculated as

dGi

dΨ T MΨ
=

∑

j

ν̃j ⊗ Qj . (A.12)

Now finally, we can calculate dGi

dΨ
, which has contributions

from V = ΨQΛ−1/2 and from Ψ T MΨ as

dGi

dΨ
=

[
dGi

dΦ
dGi

dv1

dGi

dv2

]
= 2

dGi

dΨ T MΨ
MΨ + dGi

dV
QΛ−1/2.

(A.13)

A.3 Response sensitivity

The final step is to calculate dGi

dK and dGi

dM , which has
contributions from the full eigensolve Kφj − λjMφj = 0,
the augumented vectors (K − σ 2M)v1 = b and (K −
σ 2M)v2 = c, the reduced model K̃ = VT KV and M̃ =
VT MV. Additionally, the M matrix is also used in Ψ T MΨ .
Their sensitivities can be calculated using

dGi

dK
= dGi

dΦ

dΦ

dK
+

∑

j

dGi

dλj

dλj

dK
+ dGi

dv1

dv1

dK
+ dGi

dv2

dv2

dK
+ dGi

dK̃

dK̃
dK

(A.14)
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and

dGi

dM
= dGi

dΦ

dΦ

dM
+

∑

j

dGi

dλj

dλj

dM
+ dGi

dv1

dv1

dM
+ dGi

dv2

dv2

dM

+dGi

dK̃

dM̃
dM

+ dGi

dΨ T MΨ

dΨ T MΨ

dM
. (A.15)

Just like the small eigenproblem, the eigenvectors and
eigenvalue sensitivities can be calculated by first solving the
adjoint (from, e.g., Lee (2007))

[
K − λjM Mφj

φT
j M 0

] [
νj

αj

]
=

[ − dGi

dφj

− dGi

dλj

]
. (A.16)

Or for a multiplicit set of eigenvalues subjected to KΦ =
λMΦ and ΦT MΦ = I, where Φ = [

φ1, φ2, . . . , φm

]
, also

described by Lee (2007),

[
K − λM MΦ

ΦT M 0

] [
V
A

]
=

[
− dGi

dΦ

− dGi

dΛ

]
. (A.17)

The contributions of the eigenpairs (λj , φj ) to the
sensitivities are

∂Gi

∂K
= dGi

dΦ

dΦ

dK
=

∑

j

νj ⊗ φj (A.18)

and

∂Gi

∂M
= dGi

dΦ

dΦ

dM
=

∑

j

−λjνj ⊗ φj − αjMφj ⊗ φj

=
∑

j

−(λjνj + αjMφj ) ⊗ φj . (A.19)

The contributions of the augmented vectors can be
calculated by solving the adjoints

(K − σ 2M)ξ1 = −dGi

dv1
and (K − σ 2M)ξ2 = −dGi

dv2
, (A.20)

in order to get

∂Gi

∂K
= dGi

dvj

dvj

dK
= ξ j ⊗ vj (A.21)

and

∂Gi

∂M
= dGi

dvj

dvj

dM
= −σ 2ξ j ⊗ vj . (A.22)

The contributions of the reduced-order model are simply

∂Gi

∂K
= dGi

dK̃

dK̃
dK

= dGi

dK̃
VT V (A.23)

and

∂Gi

∂M
= dGi

dM̃

dM̃
dM

= dGi

dM̃
VT V. (A.24)

The final contribution to the mass matrix coming from
the orthogonalization step is

∂Gi

∂M
= dGi

dΨ T MΨ

dΨ T MΨ

dM
= dGi

dΨ T MΨ
Ψ T Ψ . (A.25)
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