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Abstract
The design of aircraft engines involves computationally expensive engineering simulations. One way to solve this
problem is the use of response surface models to approximate the high-fidelity time-consuming simulations while reducing
computational time. For a robust design, sensitivity analysis based on these models allows for the efficient study of
uncertain variables’ effect on system performance. The aim of this study is to support sensitivity analysis for a robust
design in aerospace engineering. For this, an approach is presented in which random forests (RF) and multivariate adaptive
regression splines (MARS) are explored to handle linear and non-linear response types for response surface modelling.
Quantitative experiments are conducted to evaluate the predictive performance of these methods with Turbine Rear Structure
(a component of aircraft) case study datasets for response surface modelling. Furthermore, to test these models’ applicability
to perform sensitivity analysis, experiments are conducted using mathematical test problems (linear and non-linear functions)
and their results are presented. From the experimental investigations, it appears that RF fits better on non-linear functions
compared with MARS, whereas MARS fits well on linear functions.

Keywords Machine learning · Random forests · Response surface models · Surrogate models · Meta-models ·
Aerospace engineering · Robust design · Sensitivity analysis

1 Introduction

The performance of a product may vary to a great
extent depending on variations in design parameters, work
environment, etc. Given these uncertainties, designers are
highly interested in evaluating how to design a product
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while minimizing variations in its performance—this is
referred to as robust design. For instance, to estimate how
long time that product lasts under different environmental
conditions. One of the tools for robust design is sensitivity
analysis which is the study of the independent variables’
influence on a dependent variable in the design space (Ma
et al. 2015). This kind of analysis helps design engineers
to enhance their knowledge about design variables and their
interactions, and about the unknown underlying function
that maps these design variables to an output variable.
However, it is not feasible to study all possible variations
in design variables because this analysis would involve
enormous computational cost for running engineering
simulations. Furthermore, the time is limited for design
engineers to make decisions about design variables and
design concepts. One way to solve this problem is to
use response surface models—they are also known as
surrogate models and metamodels—for sensitivity analysis
(Ceylan et al. 2014; Chen et al. 2006; Ma et al. 2015;
Sathyanarayanamurthy and Chinnam 2009; Taflanidis et al.
2011). The sensitivity analysis–based response surface
models allow for efficient studies of how uncertainties in
input variables affect system performance.
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The construction of response surface models—to mimic
the complex behaviour of underlying simulation models—
requires a dataset of inputs and known outputs. These
known outputs are produced from simulations. Since
simulations are expensive to conduct, the datasets are small
in real-world context. From the literature studies, we have
learned that popular methods such as polynomial models,
Kriging, Radial basis functions and multivariate adaptive
regression were studied to construct surrogate models for
design problems, and their advantages and disadvantages
have been highlighted in Ceylan et al. (2014); Huang et al.
(2011); Sathyanarayanamurthy and Chinnam (2009); Shan
and Wang (2009); and Wang and Shan (2007). However,
as complexity of design problems increases, the challenges
such as curse-of-dimensionality and dealing with highly
non-linear design spaces remain the same. Furthermore, we
have learned that tree models, random forests, can handle
challenges which are high-dimensionality, small sample
sizes and non-linearity in surrogate modelling. Also, in our
previous published paper, we have compared random forests
with support vector machines (SVM), linear regression and
M5P methods (Dasari et al. 2015). In these comparisons,
we observed that RF is capturing non-linearities much better
compared with SVM, linear regression and M5P methods.

Although the RF method has been shown to be an accurate
and a successful tool in other application tasks, the applicabil-
ity of this method has been rarely investigated in aerospace
design engineering for surrogate modelling, and we cite
herein two of the studies found in Graening et al. (2008)
and Dasari et al. (2015). Therefore, this paper opted RF to
bridge this gap by investigating its performance to handle
linear and non-linear datasets for response surface mod-
elling. Furthermore, it has been indicated that extracting
some knowledge frommodels can guide the design and opti-
mization process (Graening et al. 2008). We believe that tree
models can provide decision rules that can help design engi-
neers for a better understanding of design parameters and
space for further analysis. Also, we believe that rules extrac-
tion is an advantage of using tree models over other methods
such as Kriging, support vector machines and artificial neu-
ral networks. However, the rules’ extraction is out of the
scope of this paper. Nevertheless, we demonstrated how to
extract decision rules from RF models for the studied design
tasks in our previous paper (Dasari et al. 2019).

In this study, we use response surface models to support
sensitivity analysis for robust design of Turbine Rear
Structure (TRS). In contrast to some previous studies
(Sathyanarayanamurthy and Chinnam 2009; Taflanidis et al.
2011), we perform sensitivity analysis not only to analyze
how sensitive the output variable is to variations of input
variables but also to analyze the sensitivity spans of the
output variable (more details are provided in Section 5.3).
This paper provides contribution in the following aspect.

RF, which is rarely studied in response surface modelling,
is selected in this paper for response surface modelling and
sensitivity analysis. We selected MARS due to its popularity
in response surface modelling as a benchmark method in
order to determine the performance of RF. Furthermore,
RF has been investigated on mathematical test functions
that have been used in comparative studies literature for
response surface modelling. From this investigations, we
shared insights about RF to handle the linear and non-
linear response types in order to support robust design in
comparison with MARS.

We present aim and scope in Section 2, background in
Section 3, related work in Section 4 and our approach to
perform sensitivity analysis for robust design in Section 5.
Section 6 states our experimental design. We present results
and analysis in Section 7, discussions in Section 8 and
conclusions in Section 9.

2 Aim and scope

This paper aims to support sensitivity analysis for robust
design. For this, the paper focusses on sharing insights on
how different response surface methods can contribute to
model different types of characteristics of TRS data. For the
investigations, we have used two datasets which describe
two design studies of TRS where the response types exhibit
linear and non-linear behaviour. The design and analysis
that are needed for designing the TRS component are out of
the scope of the paper. Hence, we do not focus on discussing
details on how the calculations are done for design variables
and objectives, for instance, welding life or FBO load
cases. Instead, the purpose here is to investigate how should
different response types of TRS analysis results be handled
when building response surface models. For example, FBO
analysis often provides non-linear data results that are not
easily captured with low-degree polynomial order methods.
For the construction of response surface models, we opted
RF to explore its performance to handle linear and non-
linear response types. In order to determine the performance
of RF, we use the baseline method as MARS since it has
been investigated widely for response surface modelling.
Furthermore, mathematical test functions were studied for
generalization of the selected methods to handle linear and
non-linear response types and to perform sensitivity analysis
to determine the performance of RF when comparing with
MARS.

3 Background

In this section, we present response surface modelling
briefly.
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In response surface modelling, the aim is to determine a
continuous function f̂ (model) of a set of design variables
x = x1, x2, ..., xn from a limited amount of available data
D. The available data D represents the exact evaluations
of the function f , and in general cannot carry sufficient
information to uniquely identify f . Thus, response surface
modelling deals with two problems which are constructing a
model f̂ from the available data D and evaluating the error
ε of the model (Mack et al. 2007).

The prediction of the simulation based model output
using response surface modelling approach is formulated as
follows:

f (x) = f̂ (x) + ε(x) (1)

where f̂ (x) is the predicted output and ε(x) is the error
in the prediction. The construction of the response surface
model involves several steps (shown in Fig. 1) (Queipo et al.
2005):

(1) Design of experiments: A set of design variables
(x = (x1, x2, ..., xd)T ) and their values are selected.

(2) Numerical simulations: Let f be the black-box
function (simulations) and evaluate f on design points yi =
f (xi ) where xi ∈ R

d and yi ∈ R.
(3) Construction of response surface model: Consider

the data D = {(x1, y1), ..., (xn, yn)}; given the data, a
continuous function f̂ is determined to evaluate new design
point ŷ = f (x̂i).

(4) Model validation: Assessing the predictive perfor-
mance of f̂ from the available data D.

In the machine learning terminology, response surface
models can be referred to as supervised regression models or
prediction models (Min et al. 2017). In engineering design,

these prediction models can be used in different phases,
for instance, sensitivity analysis and design optimization. This
study focuses on response surface models for sensitivity analy-
sis.

Sensitivity analysis allows the study of the behaviour
of different design variables (inputs) influence on design
objectives (output). Also, it can be used to identify
least important design variables, variable prioritization and
parameter interactions (Queipo et al. 2005). Several tech-
niques, for instance, response surface models, Fourier
amplitude sensitivity test, variance-based sensitivity anal-
ysis and Sobol technique, have been used for sensitivity
analysis (Ma et al. 2015). In our study, we use response
surface models to perform sensitivity analysis.

4 Related work

Several techniques have been used to construct response sur-
face models for sensitivity analysis. Sathyanarayanamurthy
and Chinnam (2009) constructed response surface models
by support vector machine, radial basis function and Krig-
ing for sensitivity analysis to determine the influence of
input variables on the outcome variable using two test prob-
lems. The experimental results of this study indicate that
Kriging is a suitable method for response surface mod-
elling in the context of probabilistic engineering design—
probabilistic engineering design deals with uncertainties in
engineering analysis and design. Although Kriging has been
shown as an accurate method, it is difficult to obtain and
use because of its global optimization process that is used
to identify the maximum likelihood estimators (Wang and

Fig. 1 An approach to perform sensitivity analysis using response surface modelling
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Shan 2007). Furthermore, the investigations were limited to
two-dimensional problems.

In another study, Taflanidis et al. (2011) constructed
response surface model with moving least squares method
to perform sensitivity analysis to determine the influence
of input variables on the outcome variable for the robust
design of offshore energy conversion devices . Recently,
Ceylan et al. (2014) constructed response surface models by
multivariate linear regressions and artificial neural networks
(ANN) to perform sensitivity analysis for robust design of
concrete pavement design, and the authors concluded that
ANN is a robust and accurate method to capture the non-
linearities between variables. However, for our datasets,
ANN did not perform well in our initial investigations;
hence, we exclude the ANN method from this paper. We
believe the reason might be due to the size of our datasets.

In contrast to these studies (Ceylan et al. (2014);
Sathyanarayanamurthy and Chinnam (2009); Taflanidis
et al. (2011)), we perform sensitivity analysis not only to
analyze how sensitive the output variable is to variations
of input variables but also to analyze the sensitivity
spans of the output variable (more details are provided in
Section 5.3). For the response surface models construction,
we consider using RF and MARS as a baseline. Since
both RF and MARS can handle non-linearities and high-
dimensionality of data (Biau and Scornet 2016; Friedman
1991), we selected these methods to investigate their
applicability to sensitivity analysis. Furthermore, we believe
the hyperparameter tuning for these methods is easier than
for Kriging and ANN.

5 An approach to perform sensitivity
analysis using response surfacemodelling

In this section, we demonstrate our approach as shown
in Fig. 1 to support sensitivity analysis for robust design
of TRS through response surface modelling. First, we
introduce our domain case study followed by mathematical
test functions. Second, we describe briefly how response
surface models are constructed for these functions with RF
and MARS. Last, we present sensitivity analysis based on
response surface models for our case study.

5.1 Problem definition and setup

5.1.1 A case study—studying thermal variations on TRS

We present our case study details where our goal is
to support sensitivity analysis for robust design of TRS
through response surface models (RSM).

TRS is located at the rear part of the aircraft engine that pro-
vides a support structure for low-pressure shaft and redirects

exhaust flow from low-pressure turbine to the exit nozzle
(Forslund et al. 2011). This is a challenging multidisciplinary
problem that involves complex manufacturing solutions
with high temperatures. Therefore, each aspect of this com-
ponent needs to be studied to fulfill the design requirements
and constraints.

We have 118 alternative design concepts that were used
to investigate the design space of the TRS of an aircraft
engine. Each design concept represents 27 design variables
which includes five design variables of vane, three design
variables of turbine hub, 15 different groups of thicknesses
and four thermal variations T1, T2, T3 and T4. Simulations
were conducted to understand functional behaviour and to
predict possible failure modes in design concepts. The task
in the TRS design is to understand how sensitive a design
objective (for instance, welding life, stiffness and weight of
the turbine vane) is to variations of four thermal variations
T1, T2, T3 and T4. These four thermal variations are from
the four zones which are nacelle, gas path, low-pressure tur-
bine disc cavity and inner hub and plug as shown in Fig. 2.
The right side of Fig. 2 shows the TRS with variations in
thermal zones. We want to investigate what is the lowest
and the highest predicted values of design objectives when
we vary the four thermal variations. For this purpose, we
use optimization using covariance matrix adaptation evo-
lution strategy method. The highest and the lowest values
of T1, T2, T3 and T4 will be used as the upper and the
lower boundary for optimization. The gap between the high-
est and the lowest predicted value of a design objective
is a number (span) that illustrates how sensitive a par-
ticular design concept is to variation of the temperatures
T1, T2, T3 and T4. For instance, let us denote the mini-
mum life of welding as Minlife and the maximum life of
welding as Maxlife, then the sensitivity span is the differ-
ence between Maxlife and Minlife under T1, T2, T3 and T4
for welding life. The span values of welding life help to
analyze the life of welding under different thermal varia-
tions for each design concept and analyze their impact on
strength, aero performance and cost. The term cost is related
to producibility assessment for business, for instance, the
process time and costs. In welding manufacturability of
TRS, the cost estimation is done by choosing price per weld
length to model the costs. It is measured based on selected
welding method, joint filler material, welding length, num-
ber of welds and average weld speed (Kveselys 2017).
The cost assessment is out of the scope of this paper and
the cost of TRS is studied separately in Heikkinen et al.
(2016); Bertoni et al. (2018); and Kveselys (2017). The
intention behind mentioning the cost is to merely give an
overall idea that each design concept could be analyzed
in different aspects, for instance, mechanical and aero-
dynamics performance to be balanced with producibility
aspects.
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Fig. 2 Thermal variations in four thermal zones (left side), and their studied influence on TRS (right side)

The task is to get the optimal minimum and max-
imum predictions of design objectives of the TRS
datasets to calculate sensitivity span (Fig. 3, explained in
Section 5.3) using sensitivity analysis based on RSMs for

decision-making to help design engineers in their assess-
ment criteria. For this, we conduct two experiments. In
experiment 1, we use our TRS case study datasets to con-
struct response surface models with RF and MARS (more

Fig. 3 Sensitivity analysis: varying four thermal variations for welding life, and analyzing its results with aero pressure loss for four thicknesses
of vane and nominal welding life with respect to lean of the vane
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details about the datasets are provided in Section 6.1). The
next step is to perform sensitivity analysis to study ther-
mal variations. However, we do not have the ground truth in
our case study to evaluate the results from RF and MARS
for sensitivity analysis to determine which estimation of
sensitivity span is the closest to the ground truth.

Hence, we demonstrated the sensitivity analysis to
determine the performance of the selected methods in
experiment 2 with mathematical test problems. For this,
we use 8 non-linear mathematical functions (termed herein,
NL1, NL2, NL3... NL8), which are used to study the
behaviour of different response surface modelling methods
(Hock and Schittkowski 1980; Jin et al. 2001; Zhao and Xue
2010; Song et al. 2018). Furthermore, we have both linear
and non-linear response types our domain case. Therefore,
we selected two linear mathematical functions (L9 and
L10) from Hock and Schittkowski (1980). In the following
subsection, we present these 10 mathematical problems.

5.1.2 Mathematical test functions

The eight non-linear mathematical functions and the two
linear mathematical functions (L9 and L10) are shown in
Table 1.

5.2 Response surfacemodelling using RF andMARS

We used RF and MARS to construct response surface
models (step 2 in Fig. 1). The details of these methods can
be found in Breiman (2001); Friedman (1991); and Liaw
and Wiener (2002).

Root mean squared error (RMSE) is used to measure
the predictive performance of RF and MARS. Previous
studies show that hyperparameter tuning for methods could
improve their performance (D’iaz-Uriarte and De Andres
2006; Duroux and Scornet 2018; Probst et al. 1804). Thus,
we conducted hyperparameter tuning for both RF and
MARS using the following procedure (shown also in Fig. 4).

1. Set configuration values for the selected hyperparame-
ters (for instance, K is a parameter for RF). More details
are explained in Section 6.

2. Generate possible configurations by varying the hyper-
parameters’ values from step 1.

3. Construct models for the problem of interest using the
selected methods (RF and MARS).

4. Repeat step 3 for each possible hyperparameter
configuration value.

5. Evaluate the model performance for each hyperparam-
eter configuration value.

6. Select the model with the least RMSE.

We repeat the above procedure for every mathematical
function.
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Fig. 4 Hyperparameter tuning as presented in Section 5.2

5.3 Sensitivity analysis based on response surface
models

In this section, we present the task of sensitivity analysis for
one design objective, weld life, and the same procedure is
used for every design objective.

Consider the available data D as a set of design concepts
D = {c1, c2..., cn}. Each design concept (an instance in
machine learning terminology) represents a set of design
variables (x = (x1, x2, ..., xd)T ) and a design objective (y)
where x ∈ R

d and y ∈ R. Given these design variables

and design objective, a continuous function f̂ is determined
using RF and MARS to predict the outcome ŷ for new
design concepts where ŷ ∈ R. Later, this function f̂ is used
for sensitivity analysis.

In Fig. 3, the x-axis represents the lean of the vane which
is an independent variable and the y-axis represents the
weld life. The welding life is one of the outputs of TRS
design study and we focus on modelling the non-linearities
of this output in order to get accurate predictions during
sensitivity analysis. Hence, the purpose is to investigate
how the selected response surface methods handle these
non-linearities; thus, we do not include any details on how
welding life is calculated.

To perform sensitivity analysis, for each value of lean of
the vane (let us call it x1), we vary the value of uncertain
variables T1, T2, T3 and T4 (let us call them x2, x3, x4 and
x5), while keeping the remaining xn, n ∈ {6, ..., d} fixed, to
analyze the weld life (let us call it ŷ). The function f̂ is used
to predict the outcome ŷ for x. Instead of only predicting
the outcome ŷ, we predict ŷmin and ŷmax given variation
in x. These predictions are shown in Fig. 3 in which every
dot represents a prediction (simulated design) based on f̂

(surrogate model determined by RF and MARS). We call
the difference between ŷmin and ŷmax the sensitivity span
as shown in Fig. 3 (the vertical double arrow line). On the
right hand side of Fig. 3, the lean and thickness of vane are
shown. The axes are normalized due to the confidentiality
of data.

fWlife-span(T1, T2, T3, T4) = ŷmax − ŷmin (2)

Together with tuned welding results, aero pressure loss
for different thickness of the vane and nominal weld without
tuning thermal variations also added to Fig. 3. This type
of analysis help design engineers for life assessment of
the product and its impact on performance. For instance,
one observation from this analysis is that the span is
decreasing when the angle of lean is increasing. In this
case, the objective is to maximize the sensitivity span of
design concepts that satisfies the design constraints and
requirements. What we seek is not only selecting the design
concept that has the highest span but also balancing with
aero pressure loss for different thickness groups, and
other design requirements. The idea is to get a better
understanding of design parameters and their effects on
system performance, and to make informed decisions about
them. Furthermore, it could help (1) to identify interesting
regions in design space which can be further explored and
(2) to identify which design variables cause higher or lower
sensitivity span.

Optimization is performed in order to tune as many
variations of the uncertain variables as needed to search
for the minimum and maximum predictions for a selected
output. For this purpose, we use the covariance matrix

Predictive modelling to support sensitivity analysis for robust design in aerospace engineering 2183



adaptation evolution strategy (CMAES) as an optimization
method—which is a powerful evolutionary algorithm for
global optimization (Hansen and Ostermeier 2001). The
CMAES method is a non-linear optimization technique
and is based on evolutionary strategy to find the optimum
solution. In this method, the candidate solutions are samples
from multivariate normal distribution. Furthermore, the
convergence of this method is based on covariance matrix
which is used to update the rule for this algorithm
to determine the best way to proceed to the next
iterations. Here, the covariance matrix represents the
pairwise dependencies between the variables. We used
CMAES optimization technique to find the optimal
predictions. However, the focus is not on optimization
algorithms instead we used a non-linear optimization
technique to find the optimal predictions when performing
sensitivity analysis using response surface models. Initially,
we have used another method called the multi-level single
linkage (MLSL) which is a stochastic optimization method
and compared it with CMAES. Then, we observed that
both methods can be used for our purpose and we
choose CMAES as it is computationally faster than MLSL.
Furthermore, the CMAES method has been used for model
based optimization using RF response surface models in
Preuss et al. (2012). Hence, we believe this method can be
used for our purpose to find the optimal predictions.

6 Experimental design

The aim of the experiments is to determine which method
(RF or MARS) performs better to support sensitivity anal-
ysis in engineering design. For this, we conducted two
experiments. In experiment 1, we evaluate the performance
of RF and MARS for response modelling using our case
study datasets. In experiment 2, we evaluate the results
from sensitivity analysis to determine which estimation of
sensitivity span is the closest to the ground truth using
10 mathematical functions (explained in Section 5.1.2).
This section describes our experimental design which
includes datasets description, parameter and configu-
ration selection, evaluation procedure and performance
measures.

6.1 Dataset descriptions

Datasets for experiment 1
In experiment 1, two datasets were collected from a

major aerospace sub-system manufacturer to investigate
how RF and MARS can contribute to model characteristics
of TRS data, specifically, the linear and non-linear response
types. These datasets are two design studies of TRS where

Fig. 5 TRS case

the design space was investigated by design engineers. In
the following, we explain these datasets in detail.

D1 is a dataset with 118 alternative design concepts that
were used to investigate the design space of the TRS. Each
design concept contains 27 design variables which includes:

– Temperatures: There are 4 temperature zones accounted
for in the component. The temperatures in these zones
are then varied to enable a sensitivity analysis. These
four temperature zones are shown in Fig. 2.

– Thickness parameters: The TRS is divided into
15 groups/zones where the thickness is adjusted
simultaneously. It is important to choose these zones
carefully to avoid the “weakest point of a chain”
situation. Figure 5 shows the TRS case.

– Vane-related parameters: The following are the param-
eter related to the vane which are also shown in Fig. 6.

1. Axial distance of the coord at the vane hub
intersection

Fig. 6 Parameters related to the vane
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Fig. 7 Parameters related to the hub in dataset D1

2. Axial distance of the coord at the vane shroud
intersection

3. Leading Edge Camber angle
4. Max thickness of the vane at the vane hub

intersection
5. Lean (the leaning of the vane).

– Hub-related parameters: Figure 7 illustrates the hub
parameters which are the hub cone angle, the hub knee
radial position and the hub cone angle.

D2 is another study result of TRS with 49 alternative
design concepts where we have 14 thickness groups of
TRS, 4 temperatures, struts where the number of vanes were
varied as shown in an example in Fig. 8 and the lean of the
vane is shown in Fig. 6 (right hand side).

Furthermore, hub rear stiffness is added together with
the hub cone angle and the hub knee radial position as
shown in Fig. 9. In both Figs. 7 and 9, the x-axis is the
engine axis FLA (Forward Looking Aft), and the knee radial
distance—which is the distance from the knee point to
the engine axis—lies on the YZ plane (equally around the
circumferential geometry).

We have 12 output variables for dataset D1 and 7 output
variables for dataset D2. The design objectives (outputs)
of D1 and D2 are related to aero performance (swirl: a
measurement for how much the air rotates when it exits
the engine and pressure loss: a measurement for aero
performance), mechanical functions (buckling: fan blade
out load case and over turning moment) and welding life of
turbine vane design. We have two independent models using
RF and MARS for each output variable. Thus, we have a
total of 19 single output datasets for experiments. We named
them as D1-1, D1-2 ... D2-19. The details (type, dataset,
description, response type) of these datasets are shown in
Table 2. Our domain expert provided the response type for
these datasets.

Datasets for experiment 2
Different sample sizes are reported for the selected test

problems in Jin et al. (2001) and Zhao and Xue (2010).
However, we choose 410 sample set to train models since
that is the highest dataset size we have in our application.
To evaluate the performance of these models, we selected
1000 samples as similar to the study of Jin et al. (2001). We
used these constructed response surface models to perform
sensitivity analysis using 100 samples.

6.2 Hyperparameter configurations

For RF, we selected F (the number of random features)
and K (the number of trees) hyperparameters to tune. The
motivation is a previous study states that increasing the
size of the tree (K) can decrease the forest error rate, and
decreasing the number of random features (F) can reduce
the strength of a tree (increases the error rate) (Oshiro
et al. 2012; Dasari et al. 2019). Also, a threshold range is
provided for K which is 1 to 128 to increase accuracy for
classification tasks (Oshiro et al. 2012). We also selected
similar range of K configuration values between 10 and 130
with a step size of 10. We select F configuration values
from the minimum to the maximum number of features
from datasets with a step size of 1. According to the R
documentation for RF that we use, F is mtry and K is ntree.
For MARS, we selected degree d for parameter interactions.
The default value for this parameter is 1. The suitable value
for d is in the range 2 ≤ d ≤ 4 (Friedman 1991). Thus, we
selected the d values from 1 to 4 with a step size of 1.

6.3 Evaluation procedure

We used cross-validation to maximize training set size and
to avoid testing on training data (Kohavi et al. 1995). The
procedure of cross-validation is as follows: a dataset is
divided into k sub-samples. A single sub-sample is chosen
as testing data and the remaining k − 1 sub-samples are
used as training data. The procedure is repeated k times, in
which each of the k sub-samples is used exactly once as
testing data. Finally, all the results are averaged and a single
estimation is provided. In our experiments, we choose k =
10 for all the datasets. We used R software packages1,2,3 to
conduct the experiments.

6.4 Performancemeasures

Predictive accuracy: we used RMSE to measure the
predictive performance of RF and MARS.

1Optimization: https://cran.r-project.org/web/packages/cmaes
2MARS: https://cran.r-project.org/web/packages/earth/earth.pdf
3RF: https://cran.r-project.org/web/packages/randomForest
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Fig. 8 Strut parameter

Sensitivity analysis: we used RMSE to measure the
performance of RF and MARS for sensitivity analysis.
The RMSE is calculated using the estimated sensitivity
span—which is calculated from the optimal minimum and
maximum predictions from the optimization using RF
and MARS—and the ground-truth sensitivity span. The
ground-truth sensitivity is also a span from the optimal
minimum and maximum values from the optimization using
mathematical test functions (shown in Section 5.1.2).

6.5 Experiment setup

We used the following procedure to perform sensitivity anal-
ysis in experiment 2. For experiment 1, the first and second
steps are used to construct response models using our domain
datasets. The below experiment setup is also shown in Fig. 10.

1. Construct response surface models with RF and MARS
using hyperparameters tuning for each function (shown
in Section 5.1.2).

2. Evaluate the predictive performance of response surface
model (RF and MARS) using RMSE.

Fig. 9 Parameters related to the hub in dataset D2

3. Use the constructed response surface model as an input
function for the optimization

4. Use the highest and the lowest values of the uncertain
variables that exist in the data set as the upper and the
lower boundaries for the optimization study (explained
in Section 5.3). We set the maximum number of
function evaluations as 1000 in the optimization.

5. Run the optimization for a concept (an instance) by
varying the selected uncertain variables and fixing the
rest of variables in the dataset.

6. Get minimum and maximum prediction for an output,
and calculate the difference as a sensitivity span.

7. Repeat steps 3 to 6 for every concept in the dataset.

7 Results and analysis

7.1 Experiment 1

In this section, we present the case study results of RSM
obtained from the experiment using RF and MARS. Table 2
shows the normalized RMSE of the two methods. We
ranked the performance of each method by 1 or 2 depending
on the RMSE results (rank 1 for low RMSE and 2 for
high). The last two rows of Table 2 show the average rank
of each method for linear and non-linear response types.
The results show that RF yields the lowest error for 12
datasets, and MARS yields the lowest error for 7 datasets.
The average rank of the linear response datasets shows that
MARS (1.4) performs better than RF (1.6). The average
rank of non-linear response datasets shows that RF (1.28)
performs better than MARS (1.71).

7.2 Experiment 2

Since sensitivity analysis is performed using response
surface models, we first evaluated the performance of
response surface models. Later, we evaluated the results
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Fig. 10 Experiment setup as presented in Section 6.5

from sensitivity analysis to determine which estimation
(either RF orMARS) of sensitivity span—which is calculated
from optimal predictions of RF andMARS response surface
models—gets closest to the ground truth.

Predictive accuracy of response surface models Table 3
shows the normalized RMSE. As shown in Table 3, for the
non-linear functions, RF has a higher predictive accuracy
compared with MARS on average. For linear problems (L9
and L10), MARS has higher predictive accuracy compared
with RF.

Sensitivity analysis Table 4 shows the results from sensitiv-
ity analysis (normalized RMSE). The RMSE is calculated
from the sensitivity span by RF and MARS, and the ground-
truth sensitivity span. We started analyzing results with a
hypothesis that the response surface model with a higher
predictive accuracy (from Table 3) will lead to a lower
RMSE which is calculated from sensitivity span results.
As it is shown in Table 4, RF has lower RMSE for non-
linear problems NL3, NL4, NL6, NL7 and NL8, whereas
MARS has lower RMSE for NL1, NL2 and NL5. Regard-
ing the linear problems L9 and L10, the results show that
MARS yields a lower RMSE, and it also has a higher pre-
diction accuracy (Table 3). Thus, the result from sensitivity
analysis supports our hypothesis that the model with higher
prediction accuracy (Table 3) will lead to lower RMSE of
sensitivity span (Table 4) except the case of NL5.We believe
that it is due to low order of non-linearity in NL5.

7.3 Analysis

Figure 11 shows plots for RF and MARS and analytical
models for NL 3, NL4, NL7 and NL8, and we can observe
that RF has captured the actual function better than MARS.
We observed that all these four test problems have periodic
functions (cosine or sine) as shown in Section 5.1.2. One of
these four problems, NL3, was studied in a study by Jin et al.
(2001), and the authors showed grid plots for radial basis
function, Kriging, MARS, polynomial regression (PR) and
analytical function. If we compare our plots with their study
plots, we can observe that RF has captured the function
behaviour similar to Kriging and radial basis function
methods, and better than PR and MARS. Also from Fig. 11,
we observed that the optimal minimum and maximum that
RF has produced is the closest to the analytical functions.
Consequently, RF also yielded the span closest to the span
of analytical functions.

On the other hand, MARS captures the 2D function
behaviour for NL7 and NL8 as rigid segments, however,
not as smooth as RF. The reason is that MARS has hinge
functions with knots to fit non-linear models. These hinge
functions are formed from piece-wise linear functions. This
might be the reason that the curve looks linear from one
hinge function to another and together they form a non-
linear function. For linear problems L9 and L10, MARS
has shown the best performance. This is expected since
MARS is an extension of linear models and in the way it fits
the data. We also observed from MARS model (equation)
that MARS has similar behaviour as the actual function
(L9 and L10). Furthermore, MARS also yields the best
performance for NL1, and we observed the equation from
MARS model that it captured the behaviour of NL1 well.
NL1 is a polynomial function with degree 6; hence, we
selected another problem, NL2, with a quadratic polynomial
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Table 2 RSM performance comparison on 19 datasets: Normalized RMSE (rank)

Type Dataset Description ResponseType RF MARS

Aero performance D1-1 Swirl Linear 0.9367 (1) 1.1571 (2)

D1-2 Linear 1.1387 (2) 0.6814 (1)

D1-3 Pressure loss Linear 0.9540 (1) 1.1086 (2)

D1-4 Non-linear 0.9317 (2) 0.5814 (1)

Mechanical D1-5 Buckling - fan blade out load case Non-linear 0.8867 (1) 1.0163 (2)

D1-6 Non-linear 0.9972 (2) 0.9539 (1)
D2-7 Non-linear 0.9065 (1) 0.9207 (2)
D2-8 Non-linear 0.9222 (1) 1.0241 (2)

D1-9 Over turning moment Non-linear 1.1425 (2) 0.5971 (1)
D2-10 Linear 1.0535 (2) 0.8012 (1)
D2-11 Linear 1.0516 (2) 0.7116 (1)

Life D1-12 Welding life Non-linear 1.0809 (2) 0.8942 (1)
D1-13 Non-linear 0.9849 (1) 1.0933 (2)
D1-14 Non-linear 0.9366 (1) 1.1025 (2)
D1-15 Non-linear 1.0165 (1) 1.0315 (2)
D1-16 Non-linear 0.9758 (1) 1.0671 (2)
D2-17 Non-linear 0.7125 (1) 0.8935 (2)
D2-18 Non-linear 0.9441 (1) 1.0835 (2)
D2-19 Non-linear 0.9746 (1) 0.9923 (2)

lAvg.rank (L) 1.6 1.4

lAvg.rank (NL) 1.28 1.71

Italic entries highlight the method with the lowest RMSE average

degree to analyze if MARS retains its performance. The
results of NL2 show MARS performed best for NL2. It
seems that MARS is better at fitting polynomial functions;
however, we only studied two polynomial functions.

Table 3 RSM performance comparison for 10 test problems

P.no RF MARS

NL1 1.8022 (2) 0.1978 (1)

NL2 1.5674 (2) 0.4326 (1)

NL3 0.1643 (1) 1.8357 (2)

NL4 0.1849 (1) 1.8151 (2)

NL5 0.8622 (1) 1.1378 (2)

NL6 0.4477 (1) 1.5523 (2)

NL7 0.1830 (1) 1.8170 (2)

NL8 0.1260 (1) 1.8740 (2)

L9 1.4754 (2) 0.5246 (1)

L10 2.0000 (2) 4.03E-14 (1)

Avg.rank(NL) 1.28 1.75

Avg.rank(L) 2 1

Italic entries highlight the method with the lowest RMSE average

Sensitivity analysis For this, we have plotted the optimal
min predictions for a linear and a non-linear response types
which are the swirl and the welding life, respectively. These
predictions were obtained when performing sensitivity

Table 4 Sensitivity analysis—RMSE calculated from the sensitivity
span by RF and MARS, and the ground-truth sensitivity span derived
from mathematical test functions

P.no RF MARS

NL1 1.8542 (2) 0.1458 (1)

NL2 1.4758 (2) 0.5242 (1)

NL3 0.1255 (1) 1.8745 (2)

NL4 0.4893 (1) 1.5107 (2)

NL5 1.9803 (2) 0.0197 (1)

NL6 0.3052 (1) 1.6948 (2)

NL7 0.1143 (1) 1.8857 (2)

NL8 0.1759 (1) 1.8241 (2)

L9 2.0000 (2) 8.10E-11 (1)

L10 2.0000 (2) 3.20E-10 (1)

Avg.rank(NL) 1.37 1.62

Avg.rank(L) 2 1

Italic entries highlight the method with the lowest RMSE average
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Fig. 11 Predictions are plotted in 3D and 2D for NL3, NL4, NL7 and NL8 in rows, respectively. First column: RF, middle column: analytical
function (ground truth) and last column: MARS
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analysis based on response surface models. The purpose of
these plots is to analyze the optimal predictions of RF in
comparison with MARS. Figure 12 shows plots for welding
life (D1-14) and swirl (D1-2) as shown in Table 2. The RF
optimal prediction was denoted as 1 in the x-axis andMARS
was denoted as 2 in the x-axis in both plots in Fig. 12. The
y-axis shows the normalized predictions for the welding life
and the swirl. By examining Fig. 12 (left hand side), we can
see that RF provides better optimal prediction for welding
life (non-linear output) compared with MARS. Also for this
output, RF response model has lower error as shown in
Table 2, whereas MARS has lower error for swirl (linear
type output); consequently, MARS provides better optimal
prediction for the swirl output as shown in Fig. 12 (right
hand side).

Statistical analysis We also performed statistical analysis to
see the performance differences between RF and MARS for
response surface modelling using RMSE results of Tables 2
and 3. For this purpose, we used the Mann-Whitney-
Wilcoxon signed-rank test (Sheskin 2003). The Wilcoxon
signed-rank test is a non-parametric statistical test that
can be used to measure performance differences between
two independent groups (Sheskin 2003). The statistical
hypothesis which we set is:

Ho: RF and MARS methods perform equally well with
respect to predictive performance.

Ha: There is a significant difference between the
performance of the methods.

The statistical test produces a p value of 0.7819. The
p value is greater than the 0.05 significance level. We
therefore cannot reject the null hypothesis; hence, both RF
and MARS perform equally well with respect to predictive
performance.

Fig. 12 SA: optimal predictions from RF (indicates 1 in x-axis) and
MARS (indicates 2 in x-axis)

8 Discussions

In this section, we present our discussions around the results
of RF and MARS. One must consider that our observations
about these methods are based on the 10 test functions and
our case study datasets that we studied. Since we studied
linear and non-linear response types, the evaluation results
of this study could help to choose either RF or MARS for
those type of problems.

Experiment 1 focussed on response modelling using RF
and MARS with TRS datasets. The results indicate that RF
performed well on non-linear response type of problems and
MARS performed well on linear response type on average.
Experiment 2 focussed also on response modelling using RF
and MARS but with 10 test mathematical functions (both
linear and non-linear). From the results of experiment 2,
we have similar observations as in experiment 1, that is
RF performs well on non-linear problems and MARS has a
better performance on linear problems. Hence, experiment
2 supports rxperiment 1’s results of response modelling.
Therefore, these observations about RF and MARS can
be generalized to some extent. Furthermore, experiment
2 focussed on sensitivity analysis and it shows that RF
performs well on non-linear problems and MARS performs
well on linear problems.

Regarding MARS: Since we know the response types (four
mathematical functions) beforehand and since we know that
MARS is an extension of linear models, we expected that
MARS performs well for the linear responses. Aswe expected,
the results indicate that MARS has a higher prediction accu-
racy for the linear responses on average. Although MARS
also models the non-linearities between variables, the result
indicates that it could not outperformed RF. However, it does
perform well for NL2 and it has low non-linearity where the
polynomial degree is 2 and also 6 for NL1.

Regarding RF: As stated in the literature that RF is
capable of handling non-linearities, it does show better
performance compared with MARS. Especially in fitting
smooth functions as shown in Fig. 11, RF shows the best fit.
Furthermore, we compared our plots for NL3 to the study
by Jin et al.; it seems RF fits the function similar to Kriging
and radial basis function. Thus, RF can be suggested as an
alternative method to construct response surface models in
engineering design.

Hyperparameter tuning: As previous studies show that
hyperparameter tuning could improve predictive accuracy,
we performed such experiments. We observed that the
performance of RF and MARS is improved by tuning
their hyperparameters. Furthermore, we observed that the
optimal hyperparameter configurations are different for
each problem that we studied. Hence, we can recommend
our hyperparameter configuration settings to tune for both
RF and MARS (shown in Section 6.2). For a large dataset or
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a large number of trees, RF can take quite a bit of memory
(more execution time) (Liaw and Wiener 2002).

Other advantages of both methods: Both methods can
give variable importance which explains the predictor
variable influence on a dependent variable. This variable
importance could be used for screening. Screening identifies
relevant input variables and removes less important
variables in the problems of interest. It reduces the
dimensionality of the problems which contributes to saving
computational cost (Shan and Wang 2010). Furthermore,
RF not only provides variable importance but also provides
human understandable decision rules using the InTrees
framework (Deng 2014). The InTrees framework extracts
information from the trees in the form of rules, and prunes
redundant rules and leaves the non-redundant rules in
the forest. Those rules may provide some information to
engineers regarding the prediction procedure or relationship
between input and output variables. Both the screening and
the rule extraction are out of scope of this study.

9 Conclusions and future work

We explored the use of response surface models to support
sensitivity analysis for robust design of Turbine Rear
Structure (TRS). For this, we investigated the applicability
of random forests (RF) and multivariate adaptive regression
splines (MARS) for TRS case study and for 10 test
mathematical functions (both linear and non-linear). We
presented our approach to support sensitivity analysis, and
we conducted experiments to determine which method
estimation (either RF or MARS) of sensitivity span is the
closest to the ground truth. We used root mean squared error
(RMSE) to evaluate the performance of RF and MARS.
From the experimental analysis, we observed that RF is
better at capturing the non-linearities of mathematical test
functions compared with MARS, whereas MARS performs
better on linear functions. Furthermore, parameter tuning
is recommended for both RF and MARS to improve the
predictive accuracy. In future work, we will focus on
screening to identify irrelevant design variables in order to
reduce the dimensionality of the design space. Furthermore,
we plan to compare RF with another widely studied method,
Kriging, for response surface modelling.

10 Replication of results

This paper conducted two experiments, whose details are
presented in this section to facilitate the replication of our
results. The system specification that we used is a 64-bit
Windows 7 Operating System with 2.7 GHz Intel Core
i7-4600U CPU and 8 GB RAM.

Software: the R software (version 3.5.3) has been used
for the experiments in this paper. The R software and all
used R packages are freely available online.

Datasets: In experiment 1, the use-case datasets have
been collected from our industry partner. The design param-
eters and design objectives of the use-case datasets were
presented in Section 5.1.1. However, due to the confidential-
ity of the industry, the datasets are not included. This is one
of the reasons why we used the mathematical test functions
in experiment 2 to allow researchers to replicate and com-
pare the results. These mathematical test functions and the
input bounds of parameters were presented in Table 1. For
the sample generation, Latin Hypercube Sampling R pack-
age4 with the type of design “maximin” was used for both
the training and the testing datasets, comprising 410 and
1000 samples, respectively. We set the random seed for the
training datasets to 18 and for the testing data to 17. For the
sensitivity analysis in experiment 2, 100 more samples were
generated using random seed 2021.

Surrogate model generation: for both methods RF and
MARS, the R packages have been provided in Section 6.3.
Also, the experimental setup for the surrogate model
generation was presented in 7 steps in Section 5.2 and the
hyperparameter settings for these methods were presented
in Section 6.2. For the sensitivity analysis, the used
optimization R package was provided in Section 6.3. For
the normalization of the results in experiment 2, we used
the clusterSim R package (type n9).5 For plotting results
in Fig. 11, we used plot3D package.6 For the statistical
significance test, we used the wilcox.test.7 For all used R
packages, only specified hyperparameters in this paper were
tuned and the rest of settings were set to default values.
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