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Abstract
The Hashin’s strength criteria are usually employed in first ply failure and damage-onset analysis of fibre-reinforced
composites. This work presents optimality conditions of local material orientations for these criteria, in terms of principal
stresses and material strength parameters. Each criterion (matrix tensile/compressive, fibre tensile/compressive modes) has
its conditions separately derived, analytically, based on a fixed stress field assumption. The conditions found show that
orientations which coincide and do not coincide with principal stress directions may minimise local failure indices. These
solutions are employed in a proposed algorithm, named HA-OCM (Hashin Optimality Criteria Method), which selectively
satisfies the matrix failure modes (either tensile or compressive), iteratively and finite element-wise in composites. It is
demonstrated that the HA-OCM is able to design single-layer plane structures with improved failure loads in comparison
with designs following only maximum (in absolute) principal stress orientations. Results show that the material orientations
have a trend to end up either aligned or at 90◦ with maximum in absolute principal stress directions. Global optima for
compliance are, however, not guaranteed. To give an idea of gains in terms of failure loads, some HA-OCM designs show
improvements of 71% and 140%, for example, in comparison with principal stress design.

Keywords Fibre composites orientation for strength · Hashin’s strength criteria · Optimality conditions ·
Optimisation algorithm

1 Introduction

Fibre-reinforced polymers are composite materials (Jones
1998; Barbero 2010) which enable structures with high
specific stiffness and strength. Their utilisation is well
established in several industrial fields, including aerospace,
automotive, naval and sport equipment. These composites
are usually employed in laminates designed in terms of
stacking sequences, which are defined by layer number
and thickness, materials and fibre orientations. These
parameters can be seen as design variables which may
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assume many distinct values. Their combinations lead
to an enormous number of design possibilities, hence
optimisation techniques which help in selecting the best
designs are useful tools, enabling a reduction in time, effort
and resources.

Optimisation methodologies can be used to tailor com-
posites to specific structural requirements, for example
stiffness (Foldager et al. 1998; Lund and Stegmann 2005;
Setoodeh et al. 2006; Ferreira et al. 2014; Ferreira and
Hernandes 2015; Muramatsu and Shimoda 2019), strength
(Schmit and Farshi 1973; Fukunaga and Vanderplaats 1991;
Groenwold and Haftka 2006; Lund 2017), buckling load
(Hu 1994; Lindgaard and Lund 2011; Kaveh et al. 2019),
natural frequency (Abdalla et al. 2007; Karakaya and
Soykasap 2011; Koide and Luersen 2013) and layer delam-
ination (Hohe and Becker 2002; Ferreira et al. 2011). An
optimisation process can be classified as constant stiffness
design, which according to Ghiasi et al. (2009) deals with
composite laminates with a uniform stacking sequence
throughout the entire structure, or variable stiffness design
(Ghiasi et al. 2010), where the stacking sequence varies
through the structural domain.
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Fibre orientations strongly influence the structural re-
sponse of polymer-fibre composites. As fibres are much
stiffer than the matrix, their reinforcement direction is
stiffer/stronger than other directions, leading to anisotropic
behaviour. Therefore, material orientations are often seen as
design variables in optimisation problems for fibre-rein-
forced composites (Ghiasi et al. 2009, 2010; Nicoloso 2018).
Examples of variable stiffness design in terms of fibre ori-
entation are composites with steered fibre paths, where such
orientations vary in the structure. Variable stiffness design
for orientations is here further classified as either point-
wise design or curve-based design, as described below.

In point-wise design, the composite material has fibre
orientations independently designed in certain areas (design
domains) of a structure, e.g. when these orientations are
optimised at every finite element of a numerical model.
Design parametrisations used in point-wise design are, for
instance parametrisation directly in material orientation
(albeit this is generally avoided in view of the many local
minima (Foldager et al. 1998)), in lamination parameters, as
employed in Setoodeh et al. (2006), the DMO (discrete
material optimisation) method (Lund and Stegmann 2005;
Lund 2009, 2017) and its further variations SFP (shape
functions with penalisation) (Brüyneel 2011) and BCP
(bi-value coded parametrisation) (Gao et al. 2012). Other
examples are element-wise principal strain/stress design
(Pedersen 1989; Malakhov and Polilov 2016), the discrete
orientation selection method based on a normal distribution
selection function plus a filter for fibre continuity in Kiyono
et al. (2017), and distributed-parameter orientation optimi-
sation based on the H 1 gradient method in Muramatsu and
Shimoda (2019).

In curve-based design, the composite material has fibre
orientations designed following parametrised curves, whose
optimised shapes dictate variable orientations throughout
a structure. Examples are fibre-path optimisation by using
level-set methods (Brampton et al. 2015; Lemaire et al.
2015), the B-spline parametrisation in Montemurro and
Catapano (2017), the fluid stream line parametrisation in
Yamanaka et al. (2016) and the parametrised curve family in
Zhu et al. (2017), which mimic principal stress trajectories.
In general, curve-based design delivers more production-
ready results, while point-wise design usually needs post-
processing to translate the results to fibre paths that
may be production-feasible. However, point-wise design
provides greater design freedom, whose results can be
inclusive employed in proposing adequate curve shapes for
parametrisation in curve-based design.

Common composite production technologies, such as
material hand layup and RTM (resin transfer moulding) (Dai
and Hahn 2003; Magagnato et al. 2018), have limitations in
terms of delivering structures of variable stiffness design,
since it is practically impossible to implement steered

fibre paths with them. However, technologies such as AFP
(automated fibre placement) (Lukaszewicz et al. 2012;
Woigk et al. 2018), ATL (automated tape laying) (Sloan J
2008) and more recently FFF (fused filament fabrication), a
type of additive manufacturing (often also referred to as 3D
printing) (Nicoloso 2018; Matsuzaki et al. 2016; Ferreira
et al. 2017; Dickson et al. 2017; Yang et al. 2017; Wang
et al. 2017; Zhuo et al. 2017; Dutra et al. 2019), have
increased production flexibility in terms of curvilinear fibre
reinforcements.

AFP and ATL have already reached the maturity to be
used in industry and build primary structural final com-
ponents, while FFF for composites is still under develop-
ment. Challenges to be overcome include the low material
stiffness/strength in comparison with traditional compos-
ites (typical values can be seen in Table 1 in Section 4),
allowable size of the parts produced, due to the still small
build envelopes of typical 3D printers, and production time,
which can be very high for intricate/complex components.
Moreover, draping phenomena (Boisse et al. 2007; Cherouat
et al. 2005) may also be of concern, as seen with vari-
able stiffness designs in general. However, FFF processes
have the potential to reproduce finer design details, more
complex fibre path shapes due to increased fibre curvature
freedom, and present a much finer fibre-path width reso-
lution (deposition width in the order of tenths of mm), in

Table 1 Mechanical properties of unidirectional fibre reinforced
composite materials

Carbon-epoxya Glass-epoxyb Carbon-nylonc

(CF) (GF) (3DCF)

Strength [MPa]

Xt 1500 1140 493.9

Xc 900 570 323.9

Yt 27 35 13.5

Yc 200 114 20.25

S12 80 72 35

S23
d 42.426 36.469 8.482

Stiffness [GPa]

E11 138 53.48 50

E22 11 17.7 2.322

G12 = G13 5.50 5.83 0.624

G23 3.928 6.321 0.581

Poisson ratios

ν12 0.280 0.278 0.333

ν23 0.400 0.400 −

aSoden et al. (1998) Carbon fibre T300 and epoxy matrix;
bSoden et al. (1998) E Glass Gevetex fibre and epoxy matrix;
cDutra et al. (2019) and Ferreira et al. (2018) 3D printed carbon fibre
and nylon matrix;
dEstimated as in Christensen (2014).
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comparison with both AFP and ATL. The capabilities of
all these technologies motivate the development of design
optimisation techniques for variable stiffness design.

In this work, focus is given to variable stiffness, point-
wise design for fibre orientation, aiming to improve the
strength of single-layered composite structures evaluated
according to the Hashin failure criteria (Hashin 1980), by
means of optimality conditions (OC). It is proposed that the
optimised designs obtained may be employed to indicate
improved fibre paths that may not be gained from standard
composite design methods. However, as no manufacturing
constraints are taken into account, a further step in
considering the best method to realise the improved design
within the context of current manufacturing constraints
would be needed.

In the literature, the problem of finding local orientations
of orthotropic materials for stiffness maximisation has
known optimality conditions (Pedersen 1989; Seregin and
Troitskii 1981; Rovati and Taliercio 1991), which are
associated with minimum levels of global strain energy
and/or compliance. The results obtained using this approach
by Pedersen in Pedersen (1989) and further explored in
Pedersen (1990, 1991) show that aligning principal material
axes with the axes of principal strains maximises stiffness,
for a material with relatively low shear stiffness (weak in
shear according to the terminology in Pedersen (1989)).
This condition was developed to design local material
orientations in 2D structures. Moreover, at the optimum
according to these OC, the axes of principal strains and
principal stresses coincide in view of material orthotropy.
Therefore, co-alignment (Ghiasi et al. 2010) of principal
stress/strain directions with material principal directions can
be used for stiffness maximisation. However, if the material
is strong is shear (still as defined in Pedersen (1989)), other
solutions may be found, e.g. as in Ferreira et al. (2014).

Designing for optimum strength, in contrast, is based
on local measurements whose evaluation relies on criteria
which are not unique. For fibre-reinforced composites,
examples of strength metrics commonly employed are the
Tsai-Hill (1965), Tsai-Wu (1971), Hashin (1980) and Puck
and Schürmann (1998) criteria. An approach for strength
maximisation is to minimise such criteria at the most
critical points of the structure, as pointed out in Pedersen
(2004). If the strength criterion adopted is the local strain
energy density, then the minimisation of the maximum
strength measurement (i.e. at the most damaged point) in a
structural domain is obtained by designs of uniform strain
energy density over all its points, as shown in Pedersen
(1998) (in view of Taylor (1969) and Masur (1970)).
This is an optimality condition well known for stiffness
maximisation, e.g. as recognised in topology optimisation
problems (Bendsøe and Sigmund 2003). Therefore, for the
strain energy density strength criteria, the stiffest structure

is also the strongest. When other criteria are employed, this
condition is not guaranteed.

In practice, design for principal stresses (meaning fibre
direction alignment with principal stress directions) has
been successfully employed in improving the strength of
fibre composites, which may be associated to shear stress
reductions, e.g. as in Zhu et al. (2017), Hyer and Charette
(1987), Kriechbaum et al. (1992), Reuschel and Mattheck
(1999), Tosh and Kelly (2000), and Crosky et al. (2006).
Work on optimum design problems for material orientations
that formally take strengths into account can also be
found in the literature (Fukunaga and Vanderplaats 1991;
Groenwold and Haftka 2006; Hammer and Pedersen 1996;
Park et al. 2001; Kathiravan and Ganguli 2007; Topal and
Uzman 2008). The basic approach in these papers was
to select appropriate failure criteria, formulate a problem
which take these criteria into account and then solve it
using numerical optimisation methods. A few studies have
considered optimality conditions. For instance, the OC for
fibre orientation in terms of the Hill and Tsai-Wu criteria
were derived for 2D and 3D cases in Majak and Hannus
(2003). The results show that orientations other than those
of principal stresses can minimise the criteria, depending on
material properties and loadings. Similar conclusions were
found in Brandmaier (1970), where optimal orientations
for Hill’s criterion were analytically derived and studied
for a graphite-epoxy composite. Optimal orientation for
3D orthotropic materials was studied in Majak and Pohlak
(2010) by evaluating the OC of Hill’s strength criteria
with respect to Euler angles, using a formulation in terms
of strains, whose solutions were validated using genetic
programming. However, these studies failed to demonstrate
practical optimisation algorithms based on the derived OC.

The contribution of the present paper is to analytically
derive optimality conditions for minimisation of Hashin’s
failure criteria (matrix tensile/compressive and fibre ten-
sile/compressive) (Hashin 1980), for local material orien-
tations, in terms of principal stresses and strength material
parameters. Moreover, this work aims to devise a sim-
ple point-wise optimisation algorithm based on these OC,
which improves the strength of single-layered fibre com-
posite structures. The OC are derived under a fixed stress
field assumption, for the case of 2D plane stress, and prin-
cipal stress directions are used as reference. OC results
show that material orientations which coincide and do not
coincide with principal stress directions may locally min-
imise the studied strength criteria. The developed optimi-
sation scheme, named HA-OCM (Hashin Optimality Cri-
teria Method), is based on iteratively satisfying the OC of
matrix failure criteria (either tensile or compressive), finite
element-wise in composite structures. This aspect highlights
that Hashin’s criteria can be separately satisfied in order to
tailor a material orientation field in a structure according
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to specific necessities. Results of the HA-OCM method
show that failure loads of the optimal structures obtained
are raised in comparison with others designed by principal
stress design. Final results will be commented in terms of
OC for stiffness maximisation.

From the next section, this paper is organised as
follows: Section 2 shows basic equations of Hashin’s
failure criteria and employed stress transformation relations;
Section 3 presents the derived OC for Hashin’s failure
criteria with respect to material orientation and in terms
of material strength parameters and principal stresses;
Section 4 introduces the HA-OCM optimisation method;
Section 5 details HA-OCM results, which render structures
of improved strength; and Section 6 shows summary and
conclusion. Furthermore, Appendix A features a summary
of OC results from Section 3 and Appendix B shows a
summary of compliance benchmark OC from the literature
(Pedersen 1989, 1990).

2 Hashin’s failure criteria

Hashin’s failure criteria (Hashin 1980) are considered
in this paper as a basis for defining an OC for fibre
orientation. These failure criteria are developed based on
hypotheses built on observed failure modes of composites, a
concept also explored in the Hashin-Roten criteria (Hashin
and Rotem 1973; Parı́s 2001). Each criterion governs a
distinct failure mode: matrix tensile, matrix compressive,
fibre tensile and fibre compressive. They interact in terms
of stresses and strength properties, and are well established
in measuring fibre composite first ply failure and/or
damage onset (Zhu et al. 2017; Koh and Madsen 2018; de
Miguel et al. 2018; Li et al. 2019; Kim and Kim 2019;
Joosten 2019).

A deformable solid of orthotropic material under plane
stress is considered. For the case of composites with
polymeric matrix and unidirectional fibre reinforcement,
local material orientations can be defined as follows:
1, the fibre reinforcement direction (in which composite
equivalent properties are fibre dominated); 2, a direction
perpendicular to 1 (2 is referred to as the matrix direction
since equivalent properties are matrix dominated). Point-
wise stresses are defined as follows: σ11, the direct stress
component in 1; σ22 the direct stress component in 2; and
τ12, the shear stress component on plane 1-2. In this case,
the four equations of Hashin’s failure criteria (Hashin 1980)
under plane stress are shown in (1), (2), (3) and (4).

When σ22 > 0, failure occurs according to the matrix
tensile (MT) mode if:

FYt =
(

σ22

Yt

)2

+
(

τ12

S12

)2

= 1. (1)

When σ22 < 0, failure occurs according to the matrix
compressive (MC) mode if:

FYc =
(

σ22

2S23

)2

+
[(

Yc

2S23

)2

− 1

]
σ22

Yc

+
(

τ12

S12

)2

= 1.

(2)

When σ11 > 0, failure occurs according to the fibre
tensile (FT) mode if:

FXt =
(

σ11

Xt

)2

+
(

τ12

S12

)2

= 1. (3)

Finally, when σ11 < 0, failure occurs according to the
fibre compressive (FC) mode if:

FXc = σ11

−Xc

= 1. (4)

In (1) to (4), strength material properties are assumed
as follows: Xt and Xc are respectively the tensile and
compressive strengths in direction 1 (fibre); Yt and Yc

are respectively the tensile and compressive strengths in
direction 2 (matrix); S12 is the in-plane shear strength and
S23 is an out-of-plane shear strength.

2.1 Local 1-2 stresses in terms of principal stresses

The well-known relations for plane stress rotational
transformations (Kelly 2015) can be written as:

σ11 = 1

2

[
(σ1p + σ2p) + (σ1p − σ2p) cos 2β

]
, (5)

σ22 = 1

2

[
(σ1p + σ2p) − (σ1p − σ2p) cos 2β

]
, (6)

τ12 = −1

2
(σ1p − σ2p) sin 2β. (7)

In (5), (6) and (7), the local stresses σ11, σ22 and τ12 are
written in terms of principal stresses σ1p and σ2p, assumed
|σ1p| > |σ2p|, and β, which is an orientation measured
from the principal stress σ1p direction to the local material
direction 1. The objective of the formulation in the next
section is to find the optimal value of β by minimizing each
of the Hashin’s failure criteria.

3 Optimality of Hashin’s criteria

In this section, the optimality conditions (OC) of Hashin’s
failure criteria are derived in terms of point-wise local mate-
rial orientations, having as reference the principal stress
directions. β from (5) to (7) governs material orientation
in a small design region of a structure, with many such
regions over the structure, as in variable stiffness design. A
fixed stress field hypothesis is followed, which means it is
assumed that the stress field in the whole deformable solid
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is not sensitive to changes in point-wise local material ori-
entations. This is a simplified assumption, since it is known
that the stress field is prone to change in this case (Pedersen
1989, 1990). However, this assumption guarantees the ana-
lytical solution of the presented OC, whose results are used
in the iterative optimisation method presented in Section 4.
It is considered that this method will converge to a design
point where the fixed stress field assumption has little effect
on the optimised material orientations, as seen in Peder-
sen (1990). Further comments on this aspect of criterion
sensitivities are made in Section 3.5.

3.1 Matrix tensile failure criterion

3.1.1 Derivation of optimality conditions

Rewriting (1) in terms of principal stresses |σ1p| > |σ2p|
and orientation β, in view of (6) and (7), renders:

FYt (β) = 1

4Y 2
t

[σ1p + σ2p − cos 2β(σ1p − σ2p)]2

+ 1

4S2
12

sin2 2β(σ1p − σ2p)2. (8)

This failure mode is evaluated when σ22 > 0. To
minimise this criterion, the following problem in standard
form is stated:

minimise
β

FY t (β)

subject to: ga = −σ22(β) ≤ 0. (9)

In the problem of (9), FYt is the objective function to
be minimised in β and ga ≤ 0 is a standard inequality
constraint. Considering the Lagrange multiplier λa , the
Lagrangian function LYt for the problem in (9) is written as:

LYt (β, λa) = FYt (β) − λaσ22(β). (10)

The first-order necessary conditions for LYt (β, λa) at
stationary points (where β = β∗) are:

∂LYt

∂β

∣∣∣∣
β∗

= ∂FY t

∂β
− λa

∂σ22

∂β
= 0, (11)

∂LYt

∂λa

∣∣∣∣
β∗

= −σ22

{
< 0 if λa = 0

= λaga = 0 if λa > 0
. (12)

The matrix tensile failure criterion FYt is commonly
evaluated when σ22 > 0. The condition of interest from
(12) is therefore λa = 0. Nevertheless, when σ22 = 0 the
criterion can still be evaluated and it is governed by shear
τ12, as can be seen from (1). It can be shown that Lagrange
multipliers λa > 0 may exist in this case. However, this
condition will not be further explored here, since the goal
is to work on numerical finite element models where it is
assumed that σ22 = 0 does not happen in practice.

When λa = 0, the first-order necessary condition in (11),
with the aid of (8) and under fixed stress field assumption,
is written as:

∂LYt

∂β

∣∣∣∣
β∗

=
(

1

S2
12

− 1

Y 2
t

)
cos 2β sin 2β(σ1p − σ2p)2

+ 1

Y 2
t

sin 2β(σ 2
1p − σ 2

2p) = 0. (13)

Following (13), the second-order sufficient condition for
β to be a minimum β∗, when λa = 0, is given by:

∂2LYt

∂β2

∣∣∣∣
β∗

=
(

2

S2
12

− 2

Y 2
t

)
cos 4β(σ1p − σ2p)2

+ 2

Y 2
t

cos 2β(σ 2
1p − σ 2

2p) > 0. (14)

3.1.2 Optimal solutions

Equations 15 and 16 show roots for the stationary condition
of (13):

β∗
Y t1 = 0, β∗

Y t2 = π

2
, (15)

β∗
Y t3 = 1

2
arccos(QYt ), β∗

Y t4 = −β∗
Y t3, (16)

where QYt = S2
12(σ1p + σ2p)

(S2
12 − Y 2

t )(σ1p − σ2p)
. (17)

Equation 13 has other solutions, however, they are
obtained by adding multiples of π to (15) and (16),
and this does not bring any new results regarding
material orientation. The solutions to (16) are valid design
orientations when (S2

12 − Y 2
t )(σ1p − σ2p) �= 0 and:

−1 < QYt < 1. (18)

The conditions in (18) above guarantee β∗
Y t3 and β∗

Y t4 in (16)
to be real, non-complex. When QYt < 1, in view of (17):

σ1p − σ2p

σ2p

+ 2S2
12

Y 2
t

< 0. (19)

Similarly, QYt > −1 renders:

σ1p − σ2p

σ1p

− 2S2
12

Y 2
t

> 0. (20)

An interesting fact is that multiplying inequalities in (19)
and (20), and assuming S12 > Yt , renders the sufficient
condition for β∗

Y t3 and β∗
Y t4 to be minimum points, in terms

of (14). Moreover, based on (14), it can be shown that (19)
and (20) are, respectively, the sufficient conditions to assure
β∗

Y t1 = 0 and β∗
Y t2 = π/2 as maximum points (please see

Appendix A for a summary of these solutions).
Therefore, if conditions of (18) are respected, β∗

Y t3 and
β∗

Y t4 are the real orientations which minimise Hashin’s
matrix tensile criterion. When (18) has a condition not
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respected, the inequalities in (19) and (20) change, and
either β∗

Y t1 = 0 or β∗
Y t2 = π/2 has sufficient conditions

to satisfy a minimum point. Thus, a minimum solution is
always possible. Finally, it is clear that the solutions β∗

Y t and
their optimality depend on principal stresses and material
strength parameters.

3.2 Matrix compressive failure criterion

3.2.1 Derivation of optimality conditions

Rewriting (2) in terms of principal stresses |σ1p| > |σ2p|
and orientation β, using (6) and (7), renders:

FYc(β) = 1

16S2
23

[σ1p + σ2p − cos 2β(σ1p − σ2p)]2

+ 1

4S2
12

sin2 2β(σ1p − σ2p)2

+CYc

2Yc

[σ1p + σ2p − cos 2β(σ1p − σ2p)]. (21)

In (21), CYc is a material constant given by:

CYc =
(

Yc

2S23

)2

− 1. (22)

The failure mode in (21) is evaluated when σ22 < 0.
In order to minimise this criterion, the following standard
optimisation problem is stated:

minimise
β

FYc(β)

subject to: gb = σ22(β) ≤ 0. (23)

In this problem, FYc is the objective function to be
minimised in β and gb ≤ 0 is a standard inequality
constraint. Defining the Lagrange multiplier λb, the
Lagrangian function LYc for the problem in (23) is:

LYc(β, λb) = FYc(β) + λbσ22(β). (24)

The first-order necessary conditions for LYc(β, λb) at
stationary points (where β = β∗) are:

∂LYc

∂β

∣∣∣∣
β∗

= ∂FYc

∂β
+ λb

∂σ22

∂β
= 0, (25)

∂LYc

∂λb

∣∣∣∣
β∗

= σ22

{
< 0 if λb = 0

= λbgb = 0 if λb > 0
. (26)

The matrix compressive criterion FYc is evaluated when
σ22 < 0. Following the same assumption as for the matrix
tensile criterion, the condition σ22 = 0 is not taken into
account here. Therefore, the condition of interest from (26)
is λb = 0. In view of this result, the first-order necessary

condition in (25), also in view of (21) and under fixed stress
field assumption, is determined as:

∂LYc

∂β

∣∣∣∣
β∗

=
(

1

S2
12

− 1

4S2
23

)
cos 2β sin 2β(σ1p − σ2p)2

+ 1

4S2
23

sin 2β(σ 2
1p − σ 2

2p)

+CYc

Yc

sin 2β(σ1p − σ2p) = 0. (27)

Moreover, when λb = 0, the respective second-order
sufficient condition for β to be a minimum (β∗), following
(27), is:

∂2LYc

∂β2

∣∣∣∣
β∗

=
(

2

S2
12

− 1

2S2
23

)
cos 4β(σ1p − σ2p)2

+ 1

2S2
23

cos 2β(σ 2
1p − σ 2

2p)

+2CYc

Yc

cos 2β(σ1p − σ2p) > 0. (28)

3.2.2 Optimal solutions

The following equations show roots for the stationary
condition in (27):

β∗
Yc1 = 0, β∗

Yc2 = π

2
, (29)

β∗
Yc3 = 1

2
arccos(QYc), β∗

Yc4 = −β∗
Yc3, (30)

where QYc = S2
12[4CYcS

2
23 + Yc(σ1p + σ2p)]

Yc(S
2
12 − 4S2

23)(σ1p − σ2p)
. (31)

Equation 27 has other solutions, obtained by adding
multiples of π to (29) and (30). However, this does not
bring any new results in terms of material orientation. The
solutions of (30) are valid design orientations when Yc(S

2
12−

4S2
23)(σ1p − σ2p) �= 0 and:

−1 < QYc < 1. (32)

The conditions in (32) must hold when β∗
Yc3 and β∗

Yc4 in
(30) are real numbers. When QYc < 1 in view of (31), it
implies:

(σ1p − σ2p)

σ2p

+ S2
12CYc

Ycσ2p

+ S2
12

2S2
23

< 0. (33)

The condition QYc > −1 implies:

− (σ1p − σ2p)

σ1p

+ S2
12CYc

Ycσ1p

+ S2
12

2S2
23

> 0. (34)

Interestingly, multiplying (33) by (34) renders an
inequality which is the sufficient second-order condition for
both β∗

Yc3 and β∗
Yc4 to be minimum points, in view of (28).

Moreover, also based on (28), it can be shown that (33) and
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(34) are, respectively, the sufficient conditions that ensure
β∗

Yc1 = 0 and β∗
Yc2 = π/2 as maximum points (Appendix

A provides a summary of these solutions).
Therefore, if conditions of (32) are obeyed, β∗

Yc3 and
β∗

Yc4 are the real orientations that minimise Hashin’s matrix
compressive criterion. When (32) has a condition not
respected, the inequalities in (33) and (34) change, and
either β∗

Yc1 = 0 or β∗
Yc2 = π/2 has the sufficient condition

to be a minimum point respected. Thus, a minimum solution
is always possible.

It can be seen that solutions for β∗
Yc and their optimality

depend on the principal stresses and material strength
parameters. Moreover, in view of the load-response linearity
from linear elasticity, optimal solutions also depend on the
magnitude of external loads for this particular criterion. This
is noticed once load magnitude effects are not cancelled in
optimality results in (27)–(34).

3.3 Fibre tensile failure criterion

3.3.1 Derivation of optimality conditions

It is possible to rewrite (3) in terms of principal stresses
|σ1p| > |σ2p| and orientation β, with the aid of (5) and (7),
as:

FXt (β) = 1

4X2
t

[
σ1p + σ2p + cos 2β(σ1p − σ2p)

]2

+ 1

4S2
12

[
sin 2β(σ1p − σ2p)

]2 . (35)

Since this failure mode is evaluated when σ11 > 0, the
following optimisation problem is stated in standard form:

minimise
β

FXt (β)

subject to: gc = −σ11(β) ≤ 0. (36)

In this problem, FXt is the objective function to be
minimised in β and gc ≤ 0 is a standard inequality
constraint. Considering the Lagrange multiplier λc, the
Lagrangian function LXt for the problem in (36) is written
as:

LXt(β, λc) = FXt (β) − λcσ11(β). (37)

First-order necessary conditions for LXt(β, λc) at sta-
tionary points (where β = β∗) are:

∂LXt

∂β

∣∣∣∣
β∗

= ∂FXt

∂β
− λc

∂σ11

∂β
= 0, (38)

∂LXt

∂λc

∣∣∣∣
β∗

= −σ11

{
< 0 if λc = 0

= λcgc = 0 if λc > 0
. (39)

The fibre tensile failure criterion FXt is only evaluated
when σ11 > 0. Moreover, in view of the present interest in
finite element numerical analyses, it is assumed that σ11 =

0 does not happen in practice. Therefore, the solution of
interest from the conditions in (39) is λc = 0. In view of this
result and (35), the first-order necessary condition in (38),
under fixed stress field assumption, is written as:

∂LXt

∂β

∣∣∣∣
β∗

=
(

1

S2
12

− 1

X2
t

)
cos 2β sin 2β(σ1p − σ2p)2

− 1

X2
t

sin 2β(σ 2
1p − σ 2

2p) = 0. (40)

Following (40), when λc = 0, the corresponding second-
order sufficient condition for β to be a minimum (β∗) of
FXt is given by:

∂2LXt

∂β2

∣∣∣∣
β∗

=
(

2

S2
12

− 2

X2
t

)
cos 4β(σ1p − σ2p)2

− 2

X2
t

cos 2β(σ 2
1p − σ 2

2p) > 0. (41)

3.3.2 Optimal solutions

It is easily seen that β∗
Xt1 = 0 is a solution of (40). This

equation has other roots, as shown in Appendix A. For
β∗

Xt1 = 0, the sufficient minimisation condition of (41)
becomes:

∂2LXt

∂β2

∣∣∣∣
β∗

Xt1

= σ1p − σ2p

σ1p

− 2S2
12

X2
t

> 0. (42)

It is noticeable that the optimality of the solution β∗
Xt1 =

0 depends on the principal stresses and material strength
parameters. However, if Xt >> S12 (for fibre composites,
Xt > S12 is usual), the fraction involving S12 and Xt in
(42) tends to be a small number. In that particular case, and
defining 0+ as a small positive number, (42) renders:

∂2LXt

∂β2

∣∣∣∣
β∗

Xt1

= σ1p − σ2p

σ1p

> 0+. (43)

The condition in (43) will be met if σ2p does not
approach σ1p. In this case, since |σ1p| > |σ2p|, β∗

Xt1 = 0 is
a minimum point.

3.4 Fibre compressive failure criterion

3.4.1 Derivation of optimality conditions

Equation 4 can be rewritten in terms of principal stresses
|σ1p| > |σ2p| and orientation β using (5):

FXc(β) = 1

−2Xc

[(σ1p + σ2p) + (σ1p − σ2p) cos 2β]. (44)
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The criterion in (44) is evaluated if σ11 < 0. Thus, the
following optimisation problem is stated, in standard form:

minimise
β

FXc(β)

subject to: gd = σ11(β) ≤ 0. (45)

In the problem above, FXc is the objective function under
minimisation in β and gd ≤ 0 is an inequality constraint in
standard form. Considering the Lagrange multiplier λd , the
Lagrangian function LXc for the problem in (45) is written
as:

LXc(β, λd) = FXc(β) + λdσ11(β). (46)

The first-order necessary conditions for LXc(β, λd) at
stationary points (where β = β∗) are:

∂LXc

∂β

∣∣∣∣
β∗

= ∂FXc

∂β
+ λd

∂σ11

∂β
= 0, (47)

∂LXc

∂λd

∣∣∣∣
β∗

= σ11

{
< 0 if λd = 0

= λdgd = 0 if λd > 0
. (48)

The fibre compressive failure criterion FXc is evaluated
when σ11 < 0. Following the same assumption as for the
fibre tensile criterion, the condition σ11 = 0 is not taken
into account here. Therefore, the condition of interest from
(48) is λd = 0. In view of this result and (44), noticing that
Xc is a constant and under fixed stress field assumption, the
first-order necessary condition in (47) is written as:

∂LXc

∂β

∣∣∣∣
β∗

= sin 2β(σ1p − σ2p) = 0. (49)

For (49), the corresponding second-order sufficient
condition, to qualify a stationary point β as minimum (β∗),
is:

∂2LXc

∂β2

∣∣∣∣
β∗

= 2 cos 2β(σ1p − σ2p) > 0. (50)

3.4.2 Optimal solutions

The optimality conditions for this criterion, (49) and (50),
depend on the principal stresses and not on any material
properties. A solution is β∗

Xc1 = 0 which, with principal
stresses |σ1p| > |σ2p|, is a maximum point if σ1p < 0. A
summary of solutions is shown in Appendix A.

3.5 A note on sensitivities of the failure criteria

The sensitivities in the OC of Hashin’s failure criteria in
Sections 3.1, 3.2, 3.3 and 3.4 were evaluated based on a
fixed stress field assumption. This implies that a change in
the local material orientation of a design region does not
significantly affect the stress field of the full structure, i.e.
mutual sensitivities of β are not considered.

In fact, the Lagrangian functions dealt with in (10), (24),
(37) and (46) depend on all local material orientations β that
the structure may have, and can be written in the following
general form:

L
(
σ1p(b), σ2p(b), f1(β), f2(β), λ

)
. (51)

In (51), σ1p and σ2p are functions of the vector
bT = {β1, ..., β, ..., βN }, which collects all local material
orientations β of all possible design regions (assumed small)
in a structure. The Lagrangian function general form in (51)
also depends on the respective Lagrange multiplier λ, as
well on functions f1(β) = sin 2β and f2(β) = cos 2β,
which vary only with the single β in question in Section 3.1
to 3.4. Considering the generalised chain rule of partial
derivatives, the first derivative in β of (51) renders (with λ

assumed as a constant):

∂L

∂β
= ∂L

∂σ1p

∂σ1p

∂β
+ ∂L

∂σ2p

∂σ2p

∂β
+ ∂L

∂f1

df1

dβ
+ ∂L

∂f2

df2

dβ
. (52)

Under fixed stress field assumption, it is considered that
∂σ1p

∂β
= ∂σ2p

∂β
= 0 in (52). Furthermore, it is implicit that

the derivatives of Lagrangian functions with respect to all
other variables in b, except β, are not important in the OC
derived. In other words, it is neglected the mutual influence
of b on the stress field and derived OC. This is a simplifying
assumption that permits the OC to be solved analytically as
presented, since in this case only the terms involving f1 and
f2 are taken into account in the derivatives of respective L

in Sections 3.1 to 3.4 (e.g. (13) and (14)). However, it is
here expected that the method will iteratively converge to a
design point in which the fixed stress field assumption has
little effect on the final obtained result.

4 Optimisation strategy

Based on the OC derived in Section 3, the HA-OCM was
developed to tackle the problem of finding, in structures rep-
resented by finite element (FE) meshes, element-wise mate-
rial orientations for strength improvement. In summary, it
is a simple strategy based on calculating element-wise ori-
entations β∗ that minimise the Hashin criteria associated
with matrix failure (either tensile or compressive), and then
iteratively changing local material orientations in order to
achieve optimal design solutions. The orientation choice can
be focused on satisfying the matrix criteria because the
strengths in the matrix direction (either tensile Yt or com-
pressive Yc, in direction 2) are much lower than the strengths
in the fibre direction for unidirectional fibre-reinforced
composites. The material properties given in Table 1 exem-
plify this aspect. Therefore, the optimal finite element-wise
orientations are designed to locally minimise the matrix
failure criteria.
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Algorithm 1 shows a pseudo-code for the HA-OCM,
implemented using the commercial FE software ABAQUS
and Python coding. Basically, it determines orientation
solutions among 0, π/2 and β∗

Y t3 or β∗
Yc3 which minimises

the active matrix failure criterion. Solutions β∗
Y t4/β∗

Yc4 are
not considered, in order to eliminate the need for choice
between them and β∗

Y t3/β∗
Yc3. This was based on early-stage

tests that showed they were not strictly necessary in order
to improve failure loads, and removing them increases the
efficiency of the algorithm.

Figure 1 shows definitions of the axis systems and angu-
lar rotations in the HA-OCM. The rotation α is defined from
the global X axis of the structure to the current local mate-
rial 1 axis. After calculating stresses in the 1-2 system, the
rotation θ from direction 1 to principal stress σ1p direction is
found using the standard (Kelly 2015) plane stress formula:

tan 2θ = 2τ12

σ11 − σ22
. (53)

Finally, the optimal orientation β∗ is defined as the
angle between the principal axis 1p and the optimal local

Fig. 1 Definition of angles between axis systems: α from global X-Y
to local material 1-2, then θ from 1-2 to principal 1p-2p, and β∗ from
1p-2p to optimal 1∗-2∗

material axis 1∗, as determined by satisfying the optimality
conditions for the Hashin matrix failure criteria. In terms
of stress, the local material stresses (σ11, σ22, τ12) are used
to calculate the principal stresses (σ1p, σ2p), followed by
the optimal local material orientation β∗, from which the
stresses in optimal material directions (σ ∗

11, σ
∗
22, τ

∗
12) are

determined.
The underpinning hypothesis for the proposed method

is that increased failure loads for the structure as a
whole can be achieved by sequentially imposing, element-
wise, the local material orientation β∗ that minimises the
matrix failure criteria. It is expected that designs will
reach convergence, justifying the use of the fixed stress
field assumption followed in the derivation of the OC in
Section 3.

5 Results

The proposed optimisation method HA-OCM was applied
to three examples of single-layered plane structures: a
cantilever plate, a plate with a central hole and a bracket-
shaped plate under either compressive or tensile loading.
The first example was chosen for an initial assessment of
the optimisation strategy. The two subsequent examples
were used to evaluate the potential of applicability of the
present methodology to gradually more complex domains.
However, it has to be mentioned that the designs of
notched composites (Tan 1994; Trinh 1997) and multi-load
structures involve concepts beyond the focus of the present
article.

For comparisons with HA-OCM results, a principal stress
design strategy was also applied to the same examples,
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based on iteratively aligning, element-wise, the stiffest
local material directions (here the 1-directions) with the
directions of the maximum principal stresses in absolute
(here defined as σ1p, once |σ1p| > |σ2p| is assumed).

The designs obtained are compared in terms of failure
loads, as evaluated according to the Hashin criteria, and
compliance. The materials considered in the tests are
shown in Table 1 and referred to as follows: 3DCF (3D
printed carbon fibre and nylon composite), CF (carbon
fibre and epoxy composite) and GF (glass fibre and epoxy
composite). For all cases tested, both optimisation strategies
were run for a total of 100 iterations (which is the HA-OCM
stopping criterion). In all cases shown, the initial designs
had all elements’ material 1-directions aligned at 0◦ to the
X-axis in Figs. 2, 7 and 10.

5.1 Problem 1: Cantilever plate structure

The square plane structure shown in Fig. 2, with a thickness
of 0.51 mm, is clamped on the leftmost side and has a
constant distributed load applied on the rightmost side, as
indicated. It was discretised in ABAQUS using 98 S3R
general shell elements, and was optimised for the 3DCF,
CF and GF materials. Figure 3 shows the final designs in
terms of material orientations (plotted alongside maximum
principal stresses in absolute σ1p), Fig. 4 shows results
obtained throughout iterations and convergence for failure
load and compliance for each design and Table 2 shows a
summary of the final results. The designs (a) to (c) were
obtained using the HA-OCM and (d) to (f ) by principal
stress design.

The loads used in the optimisation were F = 20 N/mm2

for 3DCF cases (a) and (d), F = 30 N/mm2 for CF cases
(b) and (e), and F = 10 N/mm2 for GF cases (c) and (f ).
These magnitudes were chosen after initial tests, and were
proven to deliver final designs without failure according to

Fig. 2 Problem 1 - structure, load and boundary conditions

Fig. 3 Problem 1: final designs obtained by the here proposed HA-
OCM, (a) to (c), and principal stress design, (d) to (f ). Orange
arrows are maximum principal stresses in absolute σ1p . Black lines are
local material 1-directions (fibre). In (g), the red circle highlights the
occurrence of material oriented at 0◦ and 90◦ with the principal stress
direction at the optimised design, a possible result in HA-OCM

any of the Hashin’s criteria, for the HA-OCM. Principal
stress design is independent of load magnitude.

From the results presented in Table 2, it is noticeable that
the HA-OCM was able to obtain designs with higher failure
loads than the principal stress design. For cases (a) and
(b), the obtained failure loads were increased by 71% and
77%, respectively, in comparison with the principal stress
designs (d) and (e). For the (c) case, however, the gain
was only 2.7% in comparison with the respective case (f ).
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Fig. 4 Problem 1: failure loads and compliance throughout iterations, for cases (a) to (f )

It is also notable that the two design strategies provided
different designs in terms of the element fibre orientations,
as seen in Fig. 3. This is discussed in detail in the next
section.

5.1.1 Compliance optimality analysis

From Fig. 3, it is seen that the HA-OCM results (a) to
(c) mainly have the material 1-directions (stiffest) either

Table 2 Problem 1: failure
loads and compliance for
designs (a) to (f ) in Fig. 3, at
final 100th iteration

Proposed Failure load Failure Compliance Principal Failure load Failure Compliance

HA-OCM F ∗ (N/mm2) mode c∗ (2Nmm) stress Des. F ∗ (N/mm2) mode c∗ (2Nmm)

(a) 20.933 FT 449.767 (d) 12.177 MC 464.024

(b) 32.630 MC 658.430 (e) 18.420 MC 375.324

(c) 11.334 MT 105.017 (f) 11.036 MT 89.020
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Table 3 Problem 1: post-
analysis of obtained results (a)

to (f ), using Pedersen’s OC for
compliance in terms of material
orientation (Pedersen 1989,
1990) (here in Appendix A),
evaluated at each of the 98 FE
of the cantilever plate mesh

Proposed For compliance, number of FE at: Principal For compliance, number of FE at:

HA-OCM Global min. Local min. Not min. stress Des. Global min. Local min. Not min.

(a) 58 35 5 (d) 34 64 −
(b) 21 74 3 (e) 33 65 −
(c) 31 60 7 (f) 55 43 −

aligned with the directions of maximum absolute principal
stress or at 90◦ to them (the latter is a perfectly possible opti-
mal result for strength according to the OC here presented;
see e.g. Appendix A). Whereas, as expected, the princi-
pal stress designs have all material 1-directions aligned

with directions of maximum absolute principal stress.
These material orientations represent point-wise conditions
for extreme compliance, based on the OC presented by
Pedersen in Pedersen (1989, 1990): here summarised in
Appendix B.

Fig. 5 Problem 1: element-wise indices of Hashin’s failure criteria for HA-OCM result in Fig. 3a. Load F = 20 N/mm2
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Evaluating the compliances of the final designs (low
compliance meaning high stiffness), it can be seen in Fig. 4
that both design strategies were able to reduce compliances
from the initial designs. However, the HA-OCM delivered
higher final compliances compared with the principal stress
design in cases (b) and (c), with compliance greater by
75% and 18%, respectively. In order to explain these
data, Pedersen’s OC for minimum compliance in Pedersen
(1989, 1990) were evaluated for all results here obtained,
by post-processing optimised designs in terms of material
orientation for all cases (a) to (f ). Results from these OC
are summarised in Table 3.

From Table 3, it is seen that designs (b) and (c) had
more element-wise material orientations set to angles that

represent compliance local minimum points, instead of
global minimum points, in comparison with their respective
pairs (e) and (f ) found by principal stress design. Another
interesting fact is that in results (d) to (f ), obtained by
principal stress design, not all local material orientations
were set to angles that render global minimum compliance.
Therefore, neither the HA-OCM nor principal stress design
guaranteed global minimum compliance in view of the OC
in Pedersen (1989, 1990).

5.1.2 Details on failure modes

Figures 5 and 6 show plots of element-wise indices
of Hashin’s criteria for designs (a) and (d) in Fig. 3,

Fig. 6 Problem 1: element-wise indices of Hashin’s failure criteria for the principal stress design result in Fig. 3d. Load F = 20 N/mm2. White
elements are failed
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Fig. 7 Problem 2: structure, load and boundary conditions

respectively, evaluated for the optimisation load of F =
20 N/mm2. In both designs, the carbon-nylon 3DCF
material in Table 1 was used. From these plots, it can be
seen that in general terms the matrix criteria were improved
when HA-OCM was employed in case (a), in comparison
with case (b) obtained with principal stress design, since
structure (b) failed according to the matrix compressive
criterion for the load evaluated. Furthermore, the HA-OCM
did not cause problems regarding failure of the fibre modes.
This behaviour was also observed for the cases with the CF
and GF materials, where the matrix criteria had their indices
minimised, in general terms.

Fig. 8 Problem 2: final design
(a), obtained with HA-OCM,
and (b), with principal stress
design. Orange arrows are
maximum principal stresses in
absolute σ1p . Black lines are
local material 1-directions
(fibre). In (a), the red circle
highlights the occurrence of
material oriented at 0◦ and 90◦
with the principal stress
direction at the optimised
design, a possible result in
HA-OCM.

5.2 Problem 2: Plate with a hole

A rectangular plate with an inner circular hole was modelled
using a one-quarter symmetrical model, as depicted in
Fig. 7. It was subjected simultaneously to two uniformly
distributed loads: tensile on the outer horizontal edge and
compressive on the outer vertical edge. The structure was
discretised in ABAQUS using 332 S3R general shell FE,
of thickness 0.51 mm, and optimised for the GF material
in Table 1. The load employed was F = 17 N/mm2,
which guaranteed final results without failure according to
Hashin’s criteria.

Figure 8 shows material orientation results (a), obtained
using HA-OCM, and (b), obtained by principal stress
design. These designs are plotted alongside maximum
principal stresses in absolute (here σ1p). Figure 9 shows
results throughout iterations and convergence for failure
load and compliance, and Table 4 shows a summary of the
final results. It is seen that final designs differ and, in view
of results shown in Table 4, design (a) has a failure load
100% higher than (b). These results show that the HA-OCM
was again able to obtain a design with improved failure load
compared with principal stress design.

For design (a), all optimal material orientations ended
up either aligned or at 90◦ with the maximum absolute
principal stress directions, as highlighted in Fig. 8. As com-
mented earlier in Section 5.1, both orientations are possible
optimal results, that may minimise the Hashin matrix cri-
teria according to the OC derived in this paper. Design
(b) has all optimal material orientations aligned with the
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Fig. 9 Problem 2: failure loads and compliance throughout iterations, for cases (a) and (b)

maximum absolute principal stress directions, as expected
for principal stress design. Both final designs resulted in
almost the same compliance, as can be seen from the
optimisation behaviour throughout iterations in Fig. 9 and
Table 4.

5.3 Problem 3: Bracket under tensile
and compressive loadings

Figure 10 shows the model of a bracket, considering its
horizontal symmetry. It has a hole on the leftmost side
and it is clamped on the rightmost edge. Two different
loadings were considered, namely tensile and compressive,
as shown in upper and lower cases of Fig. 10, respectively.
Both tensile and compressive loads were applied to the hole
edge with a sinusoidal distribution. They were separately
employed in optimisation tests, with a maximum magnitude
of F = 20 N/mm2, which guaranteed final results
not failed according to the Hashin’s criteria. All cases
were represented in ABAQUS by meshes of 1790 S3R
general shell elements of thickness 0.51 mm. The material
properties of the 3D printed carbon-nylon 3DCF in Table 1
were considered.

Figure 12 shows results in terms of material orientations
for cases (a) and (c), subjected to tensile loading, and
Fig. 13 for cases (b) and (d), subjected to compressive
loading. All designs are plotted alongside maximum
principal stresses in absolute (here σ1p). In both compared
pairs, the cases were run with the HA-OCM and principal
stress design method. Results in terms of failure loads and

compliances are summarised in Table 5 and convergence
throughout iterations is shown in Fig. 11.

From Table 5 and Fig. 11, it is possible to see that the
HA-OCM rendered results with improved failure loads in
comparison with principal stress design, after convergence.
Comparing designs (a) and (c), which are the tensile load
cases, the gains were about 310%. Comparing designs (b)

and (d), which are compressive load cases, the gains were
about 140% (Figs. 12 and 13).

The material orientations of designs obtained by the
HA-OCM had the trend to converge to either aligned or
at 90◦ with the local maximum absolute principal stress
direction. Final compliances were similar for cases (a) and
(c), whereas case (b) was 30% higher than case (d). The
higher value for case (b) is probably associated to the fact
that the proposed optimisation strategy does not guarantee
global optima for compliance, as previously discussed in
Section 5.1.1.

5.4 A note on the influence of initial designs

As stated at the beginning of the current Section 5, all
optimal results in Sections 5.1, 5.2 and 5.3 had initial
designs in which all elements’ material 1-directions were
aligned at 0◦ to the X-axis in Figs.2, 7 and 10, in terms of
material orientations.

In order to assess the influence of initial material
orientations on HA-OCM, two additional initial designs
were tested: every element, material 1-directions at 90◦
and −45◦ to the X-axis in Figs. 2, 7 and 10. The

Table 4 Problem 2: failure
loads and compliance for
designs (a) and (b) in Fig. 8, at
the final 100th iteration

Proposed Failure load Failure Compliance Principal Failure load Failure Compliance

HA-OCM F ∗ (N/mm2) mode c∗ (2Nmm) stress Des. F ∗ (N/mm2) mode c∗ (2Nmm)

(a) 44.718 MT 49.152 (b) 22.060 MT 47.673
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Fig. 10 Problem 3: structure,
boundary conditions and tensile
and compressive loadings

Table 5 Problem 3: failure
loads and compliance for
designs (a) and (c) in Fig. 12,
(b) and (d) in Fig. 13, at the
final 100th iteration

Proposed Failure load Failure Compliance Principal Failure load Failure Compliance

HA-OCM F ∗ (N/mm2) mode c∗ (2Nmm) stress Des. F ∗ (N/mm2) mode c∗ (2Nmm)

(a) Tens. 49.592 MC 20.519 (c) Tens. 15.882 MC 22.102

(b) Compr. 40.219 MC 11.228 (d) Compr. 28.212 MT 8.553

Fig. 11 Problem 3: failure loads and compliance throughout iterations, for cases (a) to (d)
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Fig. 12 Problem 3: tensile case—final design (a) obtained by HA-
OCM and (c) with principal stress design. Orange arrows are
maximum principal stresses in absolute σ1p . Black lines are local
material 1-directions (fibre)

tests based on these new initial designs indicated that
the HA-OCM may be influenced by the initial design
configuration, since final results obtained differed from the
results in Sections 5.1 to 5.3. In some cases, structures
with better failure loads than those presented could be
obtained. However, in every additional test performed,
the HA-OCM was able to successfully raise the failure
loads of the designed structures, using the same 100
iterations as before. This aspect may indicate convergence
to different local minima, depending on the starting design
for orientations. Therefore, it is advisable to run the HA-
OCM from more than one starting point for each particular
case.

Fig. 13 Problem 3: compressive case—final design (b) obtained by
HA-OCM and (d) with principal stress design. Orange arrows are
maximum principal stresses in absolute σ1p . Black lines are local
material 1-directions (fibre)

6 Summary and conclusions

In this work, the optimality conditions of the Hashin’s
strength criteria were analytically obtained in terms of prin-
cipal stresses and material strength parameters. The deriva-
tions were made separately for each one of the four Hashin’s
criteria (matrix tensile/compressive, fibre tensile/com-
pressive), following a fixed stress field assumption. From
the conditions derived, it was seen that orientations aligned
and not aligned with principal stresses may minimise partic-
ular failure mode indices. Minimisation when σ22 �= 0 and
σ11 �= 0 was considered, however the study of cases where
Lagrange multipliers λa to λd are not zero may render extra
results.
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The optimisation strategy HA-OCM was proposed, based
on satisfying the OC for the Hashin’s matrix criteria for
all elements in a FE mesh representing a structure. It was
shown, through a number of test cases over single-layered
structures, that the HA-OCM designs had improved failure
loads compared with designs generated using the principal
stress design method (i.e. fibre orientation following the
local maximum in absolute principal stress). Gains in failure
loads from 2.7 to 310% were obtained and, among the
test cases here presented, the average gain was 116%. It
was shown that 100 iterations were sufficient to attain
convergence in the HA-OCM for all test cases. In most
cases, convergence was reached in few iterations with
instability quickly damping, indicating both the efficiency
and robustness of the proposed method, in spite of the fixed
stress field hypothesis assumed on the derived OC.

Fibre directions in optimal results had a trend to be either
aligned or at 90◦ to the local maximum absolute principal
stress direction, despite the other possible solutions that
minimise the matrix criteria. Albeit this is a condition
that possibly minimises compliance (maximises stiffness)
of weak in shear (Pedersen 1989) materials, it was shown
that both the HA-OCM and principal stress design do not
guarantee global minima for compliance, according to the
OC in Pedersen (1989, 1990).

From the manufacturing point of view, the interpretation
of the obtained optimal designs into fibre paths of feasible
production is an open challenge. Albeit in several cases
design regions present trends on shapes for fibre paths in
the presented results, fibre discontinuities and impractical
fibre orientation regions may be also seen, as a result of
the absence of manufacturing constraints. Further research
steps may improve these issues.

Despite the HA-OCM only explicitly satisfying Hashin’s
matrix criteria, the resulting designs were also satisfied in
terms of the fibre strength modes. This point is, however,
strongly dependent on loading conditions, and this may be
an issue in cases where fibre modes are the most critical.
Nevertheless, their OC may also be individually satisfied for
such cases in a similar optimisation procedure to that shown
here for the matrix modes.

Although the HA-OCM here proposed is simple to apply
(arguably due to the fixed stress assumption followed,
which guarantees simple analytical solutions for the derived
OC), it is shown to be effective in producing designs with
failure load improvement by locally minimising the Hashin
failure modes indices.
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Appendix A: Summary of solutions
for Hashin’s criteria optimality

Table 6 shows a summary of all solutions derived for
the optimality of Hashin’s failure criteria. All solutions
presented respect first-order necessary conditions, and then
are classified according to their respective second-order
sufficiency conditions. Principal stresses |σ1p| > |σ2p| are
assumed.

The second-order sufficiency condition shown in Table 6
for the matrix tensile criterion solutions β∗

Y t3 and β∗
Y t4

assumes S12 > Yt in its derivation. The second-order
sufficiency condition in Table 6 for the fibre tensile criterion
solutions β∗

Xt3 and β∗
Xt4 assumes Xt > S12 in its derivation.

Otherwise, all results are general.

A.1 Other solutions to the fibre criteria

The fibre tensile failure criterion has stationary solutions
other than the β∗

Xt1 = 0 shown in Section 3.3. Taking roots
of (40), the relevant in terms of material orientations are:

β∗
Xt2 = π

2
, (54)
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Table 6 Summary of all
derived solutions for Hashin’s
failure criteria optimality

Solution 2nd-order sufficient Comments

β∗ conditions for min.

Matrix tensile (MT) failure criterion, σ22 > 0 (λa = 0).

β∗
Y t1 = 0

σ1p−σ2p

σ2p
+ 2S2

12
Y 2

t

> 0 If min.,

complex β∗
Y t3, β

∗
Y t4

β∗
Y t2 = π/2 − σ1p−σ2p

σ1p
+ 2S2

12
Y 2

t

> 0 If min.,

complex β∗
Y t3, β

∗
Y t4

β∗
Y t3, β∗

Y t4 (16) [Y 2
t − 2S2

12] (σ1p−σ2p)2

σ1pσ2p
− 4S4

12
Y 2

t

> 0 If not complex, min.

(if S12 > Yt ) and β∗
Y t1, β∗

Y t2 max.

Matrix compressive (MC) failure criterion, σ22 < 0 (λb = 0).

β∗
Yc1 = 0

(σ1p−σ2p)

σ2p
+ S2

12CYc

Ycσ2p
+ S2

12
2S2

23
> 0 If min.,

CYc (22) complex β∗
Yc3, β

∗
Yc4

β∗
Yc2 = π/2

(σ1p−σ2p)

σ1p
− S2

12CYc

Ycσ1p
− S2

12
2S2

23
> 0 If min.,

complex β∗
Yc3, β

∗
Yc4

β∗
Yc3, β∗

Yc4 (30)

[
1 − S2

12
2S2

23

]
(σ1p−σ2p)2

σ1pσ2p
+ If not complex, min.

−
[

S4
12

2YcS
2
23

]
(σ1p+σ2p)

σ1pσ2p
− S4

12C2
Yc

Y 2
c σ1pσ2p

− S4
12

4S4
23

> 0 and β∗
Yc1, β∗

Yc2 max.

Fibre tensile (FT) failure criterion, σ11 > 0 (λc = 0).

β∗
Xt1 = 0

σ1p−σ2p

σ1p
− 2S2

12
X2

t

> 0 If Xt >> S12 and σ2p

does not approach σ1p , min.

β∗
Xt2 = π/2

σ1p−σ2p

σ2p
+ 2S2

12
X2

t

> 0

β∗
Xt3, β∗

Xt4 (55) −[X2
t − 2S2

12] (σ1p−σ2p)2

σ1pσ2p
+ 4S4

12
X2

t

> 0 If not complex, max.

(if Xt > S12) and β∗
Xt1, β∗

Xt2 min.

Fibre compressive (FC) failure criterion, σ11 < 0 (λd = 0).

β∗
Xc1 = 0 σ1p − σ2p > 0 If σ1p < 0, max.

|σ1p| > |σ2p|
β∗

Xc2 = π/2 σ2p − σ1p > 0 If σ1p < 0, min.

|σ1p| > |σ2p|

β∗
Xt3 = π

2
+ 1

2
arccos(QXt ), β∗

Xt4 = π

2
− 1

2
arccos(QXt ),

(55)

where QXt = S2
12(σ1p + σ2p)

(S2
12 − X2

t )(σ1p − σ2p)
. (56)

The solutions in (55) are valid design orientations when
(S2

12 − X2
t )(σ1p − σ2p) �= 0, and non-complex when:

−1 < QXt < 1. (57)

By using similar arguments as in Sections 3.1 and 3.2,
it can be shown that the conditions in (57) are related to
the second-order sufficient conditions for solutions β∗

Xt1 to
β∗

Xt4, in view of (41), as commented on Table 6.

The fibre compressive failure criterion has β∗
Xc2 = π/2

as another stationary solution which is relevant in terms
of material orientation, except the β∗

Xc1 = 0 shown in
Section 3.4.

Appendix B: Summary of Pedersen’s
optimality criteria for compliance

According to Pedersen (1989, 1990), local material
orientations can be evaluated for their influence on
compliance optimal values of structures, based on a material
parameter α3 and an optimisation parameter γ .

The material parameter α3 is defined by:

α3 = 1+(E2/E1)(1−2ν12)−4(G12/E1)(1−ν12ν21). (58)
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Based on (58), a particular material is classified as weak
in shear if α3 > 0. From material properties in Table 1, the
carbon-nylon 3DCF has α3 = 0.966, the carbon-epoxy CF
has α3 = 0.877 and the glass-epoxy GF has α3 = 0.722.
Therefore, they are all weak in shear.

The optimisation parameter γ is defined as:

γ =
[

(C11 − C22)

(C11 + C22) − 2(C12 − 2C66)

] (
1 + ε2p/ε1p

1 − ε2p/ε1p

)
.

(59)

In (59), the C11, ..., C66 for a single-layered orthotropic
material are given by:

C11 = E1

1 − ν12ν21
, C12 = ν12E2

1 − ν12ν21
,

C22 = E2

1 − ν12ν21
, C66 = G12, (60)

and ε1p, ε2p are in-plane principal strains where |ε1p| >

|ε2p|. It is here defined φ as the angle from principal strain
I -direction to the local material 1-direction.

Following Pedersen (1989, 1990), when α3 > 0 and
0 < γ < 1, for compliance:

φ = 0◦ is a global minimum,

φ = ±90◦ is a local minimum,

cos 2φ = −γ is a local maximum. (61)

Moreover, when α3 > 0 and γ > 1, for compliance:

φ = 0◦ is a global minimum and

φ = ±90◦ is a global maximum. (62)

These are the conditions evaluated to compose Table 3 in
Section 5.1.
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