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Abstract
We propose a topology optimization method that includes high-cycle fatigue as a constraint. The fatigue model is based on
a continuous-time approach where the evolution of damage in each point of the design domain is governed by a system of
ordinary differential equations, which employs the concept of a moving endurance surface being a function of the stress and
back stress. Development of fatigue damage only occurs when the stress state lies outside the endurance surface. The fatigue
damage is integrated for a general loading history that may include non-proportional loading. Thus, the model avoids the use
of a cycle-counting algorithm. For the global high-cycle fatigue constraint, an aggregation function is implemented, which
approximates the maximum damage. We employ gradient-based optimization, and the fatigue sensitivities are determined
using adjoint sensitivity analysis. With the continuous-time fatigue model, the damage is load history dependent and thus
the adjoint variables are obtained by solving a terminal value problem. The capabilities of the presented approach are
tested on several numerical examples with both proportional and non-proportional loads. The optimization problems are to
minimize mass subject to a high-cycle fatigue constraint and to maximize the structural stiffness subject to a high-cycle
fatigue constraint and a limited mass.

Keywords Continuous-time approach · Endurance surface · High-cycle fatigue · Topology optimization ·
Adjoint sensitivity analysis · Aggregation function

1 Introduction

In mechanical components, fluctuating loads and stress
concentrations lead to fatigue and possible failure. Thus,
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fatigue phenomena often govern the overall life of the
component, quantified in terms of load cycles to failure.
Concerning topology optimization (TO), fatigue constraints
are either implemented as stress constraints (Holmberg
et al. 2014) or with cycle-counting techniques like in Jeong
et al. (2018), but these models are restricted to proportional
loading histories. To incorporate a fatigue model in a TO
problem that can handle a general loading history, we
propose to use an evolution-based fatigue model.

Examples of other structural optimization formulations
with fatigue constraints are found in Collet et al. (2017)
and Oest et al. (2017b), where the fatigue prediction is
done for a simplified damage model assuming a periodic
load. Other examples can be found in Gerzen et al.
(2017), where sizing optimization of shell structures is
done with fatigue constraints at the welded joints using
the commercial software SIMULIA Fe-safe, and Oest and
Lund (2017a), where the TO is formulated with finite-life
fatigue constraints. However, the fatigue is calculated using
a cycle-counting algorithm, specifically rainflow counting
(Amzallag et al. 1994), and this restricts the applicability
to scalar stress measures, like signed von Mises. However,
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in many industrial applications, fatigue due to both
proportional and non-proportional loads threaten the life
of components. A recent contribution (Zhang et al. 2019)
uses classical techniques, including rainflow counting,
mean stress correction, and Palmgren-Miner’s rule, initially
developed for unidirectionally loaded structures, to handle
non-proportional loading. This is done by using a signed
von Mises stress at each point of the structure as the single
stress measure affecting fatigue. However, certain modes of
stress reversal, including rotary stress states with constant
principal stresses, give a constant signed von Mises stress,
so that zero fatigue damage is predicted. This limitation
of the validity of the model is a concern in TO, since the
optimizer could exploit such weaknesses of the model. This
motivated us to extend our previous contribution (Suresh
et al. 2019), where we use a fatigue model that captures the
fatigue damage from non-proportional loads as a constraint
in TO problems.

The fatigue model follows a high-cycle (HC) evolution-
based model developed in Ottosen et al. (2008). This model
uses a continuous-time approach in the form of differential
equations governing the time evolution of fatigue damage
at each point in the design domain. Such evolution occurs
when the stress state lies outside a so-called endurance
surface, which moves in stress space depending on the
current stress and a back stress tensor. The model states
that the development of damage only occurs if the stress
state lies outside the endurance surface while this surface
evolves. The advantage of using such a model is that non-
proportional loading histories can be considered in the
prediction of fatigue damage. Further developments of the
model can be found in (Brighenti et al. 2012), where the
fatigue is assessed for complex multiaxial load histories,
in Holopainen et al. (2016), where the model is extended
to transversely isotropic materials, and in Ottosen et al.
(2018), where the multiaxial fatigue criterion considers the
stress gradient effects in critical regions like holes and
notches.

Fatigue is here included in TO as a constraint on the
maximum damage found in the design domain at the end of
a given load history. The maximum damage is approximated
by means of an aggregation function, namely the p-norm
(Kennedy and Hicken 2015). The assumption of HC fatigue,
in which the geometry and the material properties remain
constant until failure, implies that the finite element (FE)
stiffness matrix is constant throughout the load history for a
given design. Therefore, the stress history required to evolve
the damage can be computed at a reasonable cost. Once the
stress history is obtained, we solve the spatially uncoupled
ordinary differential equations for damage and back stress
to get the total accumulated damage in selected points in the
design domain (here the centroid of each FE) and compute
the approximate maximum value.

The TO problem is solved using a gradient-based method
with sensitivities of the approximated maximum fatigue
determined by adjoint analysis (Haftka and Adelman 1989;
Tortorelli and Michaleris 1994; van Keulen et al. 2005).
Since the damage is governed by an evolution problem,
computing these sensitivities requires the solution of a
terminal value problem for the adjoint variables. The
overall solution process is somewhat similar to that of e.g.,
Panagiotis et al. (1994) and Wang et al. (2017) for TO with
plasticity.

2 Continuous-time approach

Consider a linearly elastic body B undergoing small
deformations. The boundary is divided into two disjoint
parts, Γt and Γu, having prescribed surface loads and
displacements, respectively. The body is assumed to be in
quasi-static equilibrium for given time-dependent surface
loads t = t(t) and, thus, by the principle of virtual work,
we have

∫
B

σ (u) : ε(v)dV =
∫

Γt

tTvds ∀v ∈ V

u = u0 on Γu (1)

for all t ∈ [0, T ]. Here, σ : ε = tr(σε), where tr(*) is
the trace of a tensor. Using Hooke’s law, the stress tensor
σ (u) = Eε(u), where E is the constitutive tensor and ε is
the linearized strain tensor. The space V consists of suitably
smooth test functions that vanish on Γu.

In general, damage can affect both the material (via E)
and the geometry (via B). However, we are only concerned
with high-cycle fatigue, where these properties are assumed
to be unaffected by damage until failure. This means that we
will first solve (1) for all t , and then determine the fatigue-
development based on the computed stresses. Henceforth,
we therefore consider the stress σ = σ (t) as given and then
predict fatigue damage by the continuous-time approach
following Ottosen et al. (2008, 2018).

For a given load history in terms of the associated stress
history, we define an endurance surface {σ | β(σ , α) = 0},
where α is the back stress tensor, and β is the endurance
function. It is assumed that damage development only
occurs if the stress state lies outside this surface, and the
endurance function β increases, i.e.,

damage development i.f.f.

{
β(σ , α) > 0
β̇(σ , σ̇ , α, α̇) > 0

,

where a superposed dot indicates time derivative. Later, it
will be shown that the dependence of β̇ on α̇ is eliminated
for a certain choice of back stress evolution equation.
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The fatigue damage at a point is described by a
real-valued state variable D = D(t) that increases
monotonously with time from D = 0 (no damage) to
D = 1 (critical failure). In general form, the damage model
is represented by the evolution equations:

α̇ = J (β, β̇)Gα(σ , α)β̇, (2)

Ḋ = J (β, β̇)GD(β, D)β̇, (3)

where the functions Gα and GD > 0 if β > 0 are
instantiated later, and J is an indicator function defined as

J (β, β̇) =
{
1 if β > 0 and β̇ > 0
0 otherwise.

(4)

The fatigue damage is calculated by solving (2) and (3)
using a numerical scheme. With this model, the evolution of
back stress in (2) is independent of the damage. From (2),
(3), and (4), the rates-of-change of the back stress tensor α̇

and the damage Ḋ are governed by the indicator function
J (β, β̇). During the loading state, β > 0 and β̇ > 0, the
damage develops, i.e. Ḋ > 0 (Fig. 1b). However, for the
unloading state, β > 0 and β̇ < 0, there is no further
development of damage, i.e. Ḋ = 0 (Fig. 1c).

We use the endurance function from Ottosen et al.
(2008), defined as

β(σ , α) = 1

S0
[σ̄ + Atr(σ ) − S0] , (5)

where S0 > 0 is the endurance stress and A > 0 is a
dimensionless parameter. The effective stress σ̄ in (5) is
defined as

σ̄ =
[
3

2
(s − α) : (s − α)

] 1
2

, (6)

with s as the deviatoric stress tensor, i.e.,

s = σ − 1

3
tr(σ )I ,

where I is the second-order identity tensor. The endurance
surface defined in (5) evolves in different stress states, as
illustrated in Fig. 1. At the initial time, i.e., for a pristine
material before any loading is applied, we have a back stress
α = 0. Here, the endurance surface lies at the center of
the deviatoric plane (Fig. 1a). At the loading state, the back
stress evolves, i.e., α̇ �= 0. Because of this evolution, the
surface also moves with α in its center (Fig. 1b). During
unloading, we have α̇ = 0, which implies that the surface
does not move (Fig. 1c).

The relation between the rates-of-change of the back
stress α̇ and the endurance function β̇ is taken to be

α̇ = J (β, β̇)C(s − α)β̇, (7)

meaning that Gα(σ , α) = C(s − α) in (2), where C > 0
is a dimensionless material parameter. Equation (7) ensures
that α remains a deviatoric tensor (Ottosen et al. 2008) for
all t . Substituting (6) into (5) and taking the derivative with
respect to time gives

β̇(σ , σ̇ , α, α̇) = 1

S0

[
3

2

(s − α) : (ṡ − α̇)

σ̄
+ Atr(σ̇ )

]
.

Using (7), this expression can be written as

β̇(σ , σ̇ , α) = 1

S0 + J (β, β̇)Cσ̄

[
3

2

(s − α)

σ̄
: ṡ + Atr(σ̇ )

]
.

(8)

Since S0 + J (β, β̇)Cσ̄ > 0, the sign of β̇ only depends
on the factor in square parenthesis, where α̇ does not

β < 0

σ3σ2

σ1

α = 0

β > 0
β = 0

β = 0

α

s
α

s

(a) (b)
α ǂ 0

σ1

.

.

β > 0

β < 0 β = 0

α

s

s

(c)
α ǂ 0

σ1
.

β > 0

β < 0

σ3σ2 σ2
σ3

Fig. 1 Evolution of the endurance surface in a deviatoric plane: a initial state, b in loading state, Ḋ > 0 and α̇ �= 0 as β > 0 and β̇ > 0, and c in
unloading state, and Ḋ = 0 and α̇ = 0 as β > 0 and β̇ < 0
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occur. This implies that J (β, β̇) from (4) can be written as
J (σ , σ̇ , α). Thus, we conclude that β̇(σ , σ̇ , α) is given in
explicit form.

It remains to instantiate the damage evolution (3) by
defining GD(β, D). In previous publications, this has been
done by selecting a particular expression for damage
(Ottosen et al. 2008, 2018; Holopainen et al. 2016). Here,
we consider a whole family of functions on the form of
GD(β, D) = g(β)/f (D), with g(β) ≥ 0 and f (D) > 0
when β ≥ 0 and D ∈ [0, 1), where the previous choices of
GD emerge as special cases. Now (3) takes the form

f (D)Ḋ = J (σ , σ̇ , α)g(β)β̇. (9)

Substituting D̂ = F(D), where

F(D) =
∫ D

0
f (D′)dD′,

into (9) gives

˙̂
D = J (σ , σ̇ , α)g(β)β̇, (10)

with D = F−1(D̂). The solution to the reformulated
damage evolution in (10) also yields solutions to a range
of evolution equations with different functions f (D). For
instance, we consider the damage model from Holopainen
et al. (2016), where GD(β, D) = K(1 − D)−κ exp(Lβ)

with K and L as material parameters and κ a model
parameter, giving

Ḋ = J (σ , σ̇ , α)
K

(1 − D)κ
exp(Lβ)β̇.

This equation is rewritten into the form of (10) by setting
f (D) = (1 − D)κ and g(β) = K exp(Lβ), giving

˙̂
D = J (σ , σ̇ , α)K exp(Lβ)β̇, (11)

where D̂ = F(D) = (κ + 1)−1(1 − (1 − D)κ+1).
Critical failure thus occurs when D̂ = F(D = 1) =
(κ + 1)−1. The damage D is calculated by inverting the
function F(D), i.e., D = F−1(D̂) = 1 − (1 − (κ +
1)D̂)(1+κ)−1

. Understanding that there is seldom any reason
to investigate more elaborate damage evolution equations
than (10), we henceforth concentrate our investigation to the
damage evolution (11). For simplicity, we use the notation
D = D̂ below.

The continuous-time fatigue problem is summarized in
the box below.

3 Numerical implementation of the fatigue
model

The fatigue problem is solved numerically by dividing the
time domain [0, T ] into a finite number of time steps of
equal length �t , i.e., ti = i�t with i = 0, 1, 2, ..., N . The
ordinary differential equations (ODEs) in (7) and (11) are
approximated using a forward Euler scheme. The stresses
at the time steps are σ i = σ (i�t), s

∣∣
i = s(σ i ) and

αi = α(i�t), where
∣∣
i represents function evaluation at

time step i.
The increment of the endurance function in (8) during

time step i is approximated as

�β
∣∣
i = �tβ̇

(
σ i−1,

σ i − σ i−1

�t
, αi−1

)

= 1

S0 + J
∣∣
i Cσ̄

∣∣
i−1

[
3

2

(s
∣∣
i−1 − αi−1)

σ̄
∣∣
i−1

: �s
∣∣
i

+AI : �σ
∣∣
i

]
, (12)

with stress increments �s
∣∣
i = s

∣∣
i − s

∣∣
i−1 and

�σ
∣∣
i = σ i − σ i−1, indicator function J

∣∣
i =

J
(
σ i−1,

σ i−σ i−1
�t

, αi−1

)
, and the effective stress σ̄

∣∣
i =

σ̄ (σ i , αi ). The discrete versions of (7) and (11) become

αi − αi−1 = J
∣∣
i C(s

∣∣
i−1 − αi−1)�β

∣∣
i (13)

Di − Di−1 = J
∣∣
i K exp(Lβ

∣∣
i−1 )�β

∣∣
i , (14)

where β
∣∣
i = β(σ i , αi ).

The numerical implementation of the model is summa-
rized in the box below.
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Note that in this time discretization, we have replaced the
time derivatives of the stress tensor by an approximate finite
difference expression. However, in many applications, even
treated in this paper, such time derivatives will be explicitly
known. The discretization could then be simplified, but to
keep the method and presentation general, we have not
explicitly treated this as a special case.

4 Optimization problem formulations

We obtain a spatially discretized model by using the FE
method. The design variables collected in x are scale
factors of elemental properties without any direct physical
interpretation. Each design variable is associated with a
single FE. In TO, one strives for the so-called black-
and-white designs, where ideally the design variables only
take the values 0 or 1. Such designs are promoted by
introducing penalization of intermediate design variable
values (Bendsoe and Sigmund 2004; Christensen and
Klarbring 2009). A design variable filter (Bruns and
Tortorelli 2001) is then applied to avoid mesh dependency
and checkerboard patterns. This filter gives a relation

between the design variables x and the variables ρ =
[ρ1, ρ2, ..., ρne ]T, with ne as the total number of elements.
The variables ρ = ρ(x) are called physical design variables
as they are used to define the structural stiffness and the
mass. The filtered variable for element e is given by

ρe(x) =

ne∑
k=1

wk,exk

ne∑
k=1

wk,e

, (15)

where the weight wk,e is defined as

wk,e = max{0, r0 − ‖xk − xe‖},
where ‖xk − xe‖ is the Euclidean distance between the
centroids of elements e and k, and r0 is the filter radius.
In order to avoid singular stiffness matrices, a small lower
bound ε > 0 is used for the design variables, i.e., xe ≥ ε. It
then follows from (15) that ρe(x) ≥ ε.

Discretizing (1) in space using the FE method gives the
equations:

K(ρ(x))u(t) = F (t), ∀ t ∈ [0, T ],
with K(ρ(x)) as the global stiffness matrix, u(t) as the

displacement vector, and F (t) =
ne∧

e=1

∫

e∩
t

NT
e t(t)ds, in

which
∧

is an assembly operator, Ne is the shape function
matrix for element e, and 
e is the boundary of element e.
Therefore, at each time step ti = i�t , we have

K(ρ(x))ui = F i , (16)

where F i = F (ti), and the solution for a given i is denoted
by ui (x).

To promote black-and-white designs, the SIMP approach
is used to penalize the global stiffness matrix, i.e.,

K(ρ(x)) =
ne∧

e=1

(ρe(x))qKe, (17)

where Ke are elemental stiffness matrices and q > 1 is a
penalization parameter.

For a given ui (x), the stress vector at an integration point
is calculated as

σ̂ i (x) = σ̂ i (x, ui (x)) = EBui (x), (18)

where E is the constitutive tensor in Voigt form and B is the
strain displacement matrix. The stress used to compute the
fatigue response is given by

σ i (x) =
(

ρe(x) − ε

1 − ε

)r

σ̂ i (x), (19)

where r < q is a parameter introduced to avoid the stress
singularity phenomenon, (Bruggi 2008; Holmberg et al.
2013). The penalization factor gives exactly zero stress in
voids, where ρe(x) = ε. Hence, no artificial damage is
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developed in such regions. It also gives σ i = σ̂ i when
ρe(x) = 1 as desired. The discretized evolution (13) and
(14) are solved by using these penalized stresses to estimate
the fatigue damage.

We consider two optimization problem formulations: The
first formulation is to minimize the mass of the structure,
and the second formulation is to maximize structural
stiffness. The stiffness at each time step is quantified
inversely in the form of compliance, i.e., F T

i ui (x). A
possible objective function or a constraint function in the
TO problem would then be

max
i=1,2,...,N

F T
i ui (x).

However, for simplicity, we only consider the compliance
for one load F , which represents a static load case of
interest. These objective functions are combined with a
fatigue constraint. Assuming one integration point per
element, for each element e we calculate the total
accumulated damage DN,e at the final time step T = tN =
N�t for a given load history. The fatigue constraints can be
defined as

DN,e(x) ≤ D̄e, e = 1, 2, ..., ne, (20)

where D̄e is the maximum allowable damage for element e.
A key issue with (20) is that often a large number of

fatigue constraints needs to be considered. Thus, the effort
in solving this optimization problem is high. To minimize
this effort, the ne fatigue constraints are replaced by a single
bound:

max
e=1,2,...,ne

DN,e(x) ≤ D̄, (21)

with D̄ as the maximum allowable damage. Since the max-
function is non-differentiable, (21) is approximated using a
smooth aggregation function (Kennedy and Hicken 2015),
here the p-norm:

DPN(x) =
[

ne∑
e=1

(DN,e(x))P

] 1
P

(22)

with P > 1, where DPN is the approximated maximum
damage. It holds that DPN(x) → maxe DN,e(x) when
P → ∞, but too large values for P can cause numerical
problems.

The mass minimization problem is formulated using
(22), as

(P1)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
x

ne∑
e=1

meρe(x)

s.t.

⎧⎨
⎩

FTu(x) ≤ C̄,

DPN(x) ≤ D̄

ε ≤ xe ≤ 1, e = 1, 2, ..., ne

where me is the elemental mass and C̄ is the maximum
structural compliance. The abbreviation s.t. stands for

“subject to.” The compliance constraint is included to avoid
all-void solutions, see remark below.

The stiffness-based TO problem is written as

(P2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
x

F T u(x)

s.t.

⎧⎪⎪⎨
⎪⎪⎩

ne∑
e=1

meρe(x) ≤ M̄

DPN(x) ≤ D̄,

ε ≤ xe ≤ 1, e = 1, 2, ..., ne

where M̄ is the maximum allowable mass.

Remark The problem related to (P1) of minimizing
mass subject to a fatigue (or stress) constraint, without
a constraint on the compliance, has been previously
considered in the literature (Holmberg et al. 2013, 2014;
Jeong et al. 2018; Oest and Lund 2017a; Zhang et al.
2019). As shown in Appendix B, also for our fatigue
model, gradient-based solution methods frequently show
convergence to realistic structures without inclusion of
a compliance constraint. However, note that the globally
optimal solution to (P1) without compliance constraint is
actually xe = ε for all e. This is seen by noting that xe = ε

for all e gives zero fatigue, because of the scaling in (19),
while obviously minimizing the mass. Therefore, while the
solution shown in Appendix B looks plausible from an
engineering point of view, it actually represents (at best)
a local optimum. It makes intuitive sense that the optimal
solution is a domain-spanning void; if one’s only desire is
to minimize weight and avoid fatigue, then the best solution
is to not create any structure in the first place. By including
the compliance constraint in (P1), the solution xe = ε for
all e is no longer feasible (provided C is small enough). By
choosing C̄ such that the compliance constraint is not active
at the solution, we can solve the problem of minimizing
mass subject to a fatigue constraint without running the
risk of obtaining a solution which is degenerate from an
engineering perspective.

5 Sensitivity analysis

Sensitivity analyses deal with finding derivatives of the
objective function and constraints with respect to the design
variables x. This forms the core of any gradient-based
optimization method. We use adjoint sensitivity analysis for
computational efficiency. Similar to elasto-plastic models,
the predicted damage has history dependence, which is
reflected in the sensitivity analysis (Panagiotis et al. 1994).
The expression for the sensitivity of the compliance in both
the TO problems is well known (Christensen and Klarbring
2009), while the sensitivity of the fatigue constraint is
elaborated upon in the following.
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5.1 Aggregation function sensitivity

The derivative of (22) with respect to the design variable xj

is

dDPN(x)

dxj

= 1

P

[
ne∑

e=1

(DN,e(x))P

]( 1
P

−1)

·
[

ne∑
e=1

P(DN,e(x))(P−1) dDN,e(x)

dxj

]
, (23)

where
dDN,e(x)

dxj

is calculated using adjoint analysis as

described below.

5.2 Adjoint sensitivity analysis

For brevity, a new state variable vi that comprises the back
stress and damage is introduced for each time step, i.e.,

vi = [
vi,1, vi,2, ..., vi,ne

]T
, i = 0, 1, 2, ..., N,

vi,e =
[

αi,e

Di,e

]
. (24)

A general system response, Ge, at the final time step tN =
N�t can be expressed as a function of the design variables
x and the field variables uN and vN , i.e.,

Ge(x) = Ge(x, uN(x), vN(x)). (25)

The sensitivity of Ge(x) with respect to a design variable xj

is

dGe(x)

dxj

= ∂Ge

∂xj

+ ∂Ge

∂uN

T duN

dxj

+ ∂Ge

∂vN

T dvN

dxj

. (26)

The residuals, R
∣∣
i of the equilibrium (16) and H

∣∣
i of the

evolution (13) and (14) are expressed as

R(x)
∣∣
i = R(x, ui (x)) = 0, (27)

H (x)
∣∣
i = H (x, ui (x), ui−1(x), vi (x), vi−1(x)) = 0,

(28)

for i = 1, 2, ..., N . Taking the derivative of R(x)
∣∣
i with

respect to design variable xj , we get

dR(x)

dxj

∣∣
i = ∂1R

∣∣
i + ∂2R

∣∣
i

dui

dxj

, (29)

where, ∂a denotes partial differentiation with respect to the
ath argument. Similarly, the derivative of H (x)

∣∣
i with

respect to design variable xj is

dH (x)

dxj

∣∣
i = ∂1H

∣∣
i + ∂2H

∣∣
i

dui

dxj

+ ∂3H
∣∣
i

dui−1

dxj

+∂4H
∣∣
i

dvi

dxj

+ ∂5H
∣∣
i

dvi−1

dxj

. (30)

As any system response should preserve structural
residuum, (27) and (28), we multiply these equations by

Lagrange multipliers λi and γ i , referred to as adjoint vari-
ables, to obtain the following augmented version of (25):

Ge(x) = Ge(x) −
N∑

i=1

λiR(x)
∣∣
i −

N∑
i=1

γ iH (x)
∣∣
i . (31)

Substituting (26), (29), and (30) into the derivative of (31)
with respect to design variable xj , we get

dGe(x)

dxj

= ∂Ge

∂xj

+ ∂Ge

∂uN

T duN

dxj

+ ∂Ge

∂vN

T dvN

dxj

−
N∑

i=1

λT
i

[
∂1R

∣∣
i + ∂2R

∣∣
i

dui

dxj

]

−
N∑

i=1

γ T
i

[
∂1H

∣∣
i + ∂2H

∣∣
i

dui

dxj

+ ∂3H
∣∣
i

dui−1

dxj

+ ∂4H
∣∣
i

dvi

dxj

+ ∂5H
∣∣
i

dvi−1

dxj

]
.

Rearranging the terms, we get

dGe(x)

dxj

= ∂Ge

∂xj

−
N∑

i=1

λT
i ∂1R

∣∣
i −

N∑
i=1

γ T
i ∂1H

∣∣
i

−
[
λT

N∂2R
∣∣
N + γ T

N∂2H
∣∣
N − ∂Ge

∂uN

T
]

︸ ︷︷ ︸
=0

duN

dxj

−
[
γ T

N∂4H
∣∣
N − ∂Ge

∂vN

T
]

︸ ︷︷ ︸
=0

dvN

dxj

−
N∑

i=2

[
λT

i−1∂2R
∣∣
i−1 + γ T

i−1∂2H
∣∣
i−1 + γ T

i ∂3H
∣∣
i

]
︸ ︷︷ ︸

=0

dui−1

dxj

−
N∑

i=2

[
γ T

i−1∂4H
∣∣
i−1 + γ T

i ∂5H
∣∣
i

]
︸ ︷︷ ︸

=0

dvi−1

dxj

−γ T
1 ∂3H

∣∣1︸ ︷︷ ︸
=0

du0

dxj

− γ T
1 ∂5H

∣∣1︸ ︷︷ ︸
=0

dv0

dxj

,

where the zero terms are obtained by requiring that the
arbitrary adjoint variables satisfy the following discrete
terminal value problems:

⎡
⎢⎣

∂2R
∣∣
N ∂2H

∣∣
N

T

0 ∂4H
∣∣
N

T

⎤
⎥⎦
⎡
⎣ λN

γ N

⎤
⎦ =

⎡
⎢⎢⎢⎣

∂Ge

∂uN

∂Ge

∂vN

⎤
⎥⎥⎥⎦ , (32)

⎡
⎢⎣

∂2R
∣∣
i−1 ∂2H

∣∣
i−1

T

0 ∂4H
∣∣
i−1

T

⎤
⎥⎦
⎡
⎣ λi−1

γ i−1

⎤
⎦ = −

⎡
⎢⎣

∂3H
∣∣
i
T

∂5H
∣∣
i
T

⎤
⎥⎦ γ i ,

(33)

where i = N, N − 1, ..., 2.

1017



S. Suresh et al.

The final sensitivity expression is

dGe(x)

dxj

= ∂Ge

∂xj

−
N∑

i=1

λT
i ∂1R

∣∣
i −

N∑
i=1

γ T
i ∂1H

∣∣
i

= ∂Ge

∂xj

−
N∑

i=1

λT
i

∂R

∂xj

∣∣
i −

N∑
i=1

γ T
i

∂H

∂xj

∣∣
i . (34)

5.3 Fatigue sensitivity

The general function Ge is now specialized to damage, i.e.,

Ge(x, uN(x), vN(x)) = DN,e(x). (35)

The partial terms in the sensitivity expression (26) is

∂Ge

∂xj

= 0,
∂Ge

∂uN

= 0,
∂Ge

∂vN

=
[
0, ...,

∂Ge

∂vN,e

, ..., 0
]T

,

∂Ge

∂vN,e

=
[
0
1

]
. (36)

The residual (27) is expressed as

R(x)
∣∣
i = R(x, ui (x)) = K(ρ(x))ui (x) − F i . (37)

Recalling (13) and (14), we can write the residual in (28) as

H (x)
∣∣
i = [

H (x)
∣∣
i,1 , H (x)

∣∣
i,2 , ..., H (x)

∣∣
i,ne

]T
, (38)

where H (x)
∣∣
i,e is the residual restricted to element e

defined as

H (x)
∣∣
i,e =

[
αi−1,e+J

∣∣
i,e C(s

∣∣
i−1,e −αi−1,e)�β

∣∣
i,e −αi,e

Di−1,e+J
∣∣
i,e K exp(Lβ

∣∣
i−1,e )�β

∣∣
i,e −Di,e

]
.

(39)

With help of (36), (37), (38), and (39), the adjoint variables,
λi and γ i are solved using (32) and (33).

The final sensitivity expression, (34), specialized for
fatigue is

dDN,e(x)

dxj

= −
N∑

i=1

λT
i

∂R

∂xj

∣∣
i −

N∑
i=1

γ T
i

∂H

∂xj

∣∣
i . (40)

These fatigue sensitivities are verified against sensitivities
calculated using forward finite difference for a plate with a
hole geometry in Appendix A.

6 Numerical examples

The proposed method is implemented in the in-house
finite element program TRINITAS (Torstenfelt 2012). We
consider an isotropic material, namely AISI-SAE 4340
alloy steel with Young’s modulus 210 GPa and Poisson’s

ratio 0.33. As mentioned in Section 2, the damage D

increases from D = 0 to D = Dcrit = F(1) and
using these conditions, the fatigue model parameters are
calibrated against the Wöhler curves for different mean
stresses following the fitting procedure shown in Ottosen
et al. (2008). The fitted material properties for AISI-SAE
4340 alloy steel are as follows: S0 = 490 MPa, A = 0.225,
C = 1.25, K = 2.65 · 10−5 and L = 14.5.

The optimization problems (P1) and (P2) are solved by
the method of moving asymptotes (MMA) (Svanberg 1987)
on a desktop computer with an Intel(R) Core(TM) i7-7500U
CPU @ 2.70 GHz with 24 GB of RAM. Several examples
are tested, all discretized by bi-linear quadrilateral plane
stress elements having a thickness of 1 mm. We take the
values of the penalization parameters as q = 3 in (17) and
r = 0.5 in (19). The initial design variables are taken as
xe = 0.7 and the lower bound of the design variables as
ε = 0.001. The problems are solved with the exponent of
the p-norm as P = 12 along with the filter radius r0 as
1.5 times the element size. The stopping criterion for the
optimization is given by

∣∣∣∣∣
f 0

k+1 − f 0
k

f 0
k+1

∣∣∣∣∣ < tol,

where f 0
k is the objective value at the kth iteration. The

tolerance is set to tol = 0.1E − 5.

6.1 L-shaped beamwith periodic load history

For the first example, we consider an L-shaped beam with a
proportional periodic load history. The dimensions used for
this geometry are shown in Fig. 2, where L1 = 100 mm.
The design domain is discretized by 3600 elements with the
top edge of the beam clamped. Two load cases are created:
the first load case includes a static load Q1 = 1500 N,
distributed over 4 nodes, applied for compliance; the second
load case consists of a periodic load of 10 cycles, i.e.,
σ (t) = σ (Q1) sin(2πt) with t = 0, 0.05, ..., 10, for fatigue
estimation. The stress σ (Q1) for the load Q1 is calculated
using (18) and (19).

Since the applied load history has a constant amplitude
with a zero mean stress, and also the estimated damage is
a function of stresses, we expect a similar topology when
solving the optimization problem with fatigue constraints
as when solving with stress constraints. To demonstrate
this, we compare the solution of the mass minimization TO
problem with fatigue constraint (P1) to the solution of the
stress-constrained TO problem, as treated in Holmberg et al.
(2013).

For the problem (P1), we set the maximum fatigue dam-
age D̄ = 0.4 along with compliance bound C̄ = 0.4E − 2
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Q

0.6L

0.6L

0.4L

0.4L1 1

1

1

1

Fig. 2 Geometry of the L-shaped beam

Nmm. The maximum stress obtained after solving this prob-
lem is used as the stress limit in the stress-constrained
problem.

After solving the fatigue-constrained problem (P1) and
the stress-constrained problem, the optimized results are
shown in Table 1. Here, the optimized designs of both
problems are similar. The profiles obtained, particularly
at the re-entrant corner, have a low stress concentration.
However, there is a significant difference in the damage
plots. In the stress-constrained TO problem, the maximum
damage is localized at the re-entrant corner, whereas in the
fatigue-constrained problem, we have a more uniform distri-
bution of fatigue damage. The white line, which overlaps
the damage plots, indicates the outline of the density plots.

With the computed results from problem (P1), we set
up the compliance problem (P2). The final mass that is
obtained from (P1) is set as a mass constraint in (P2). The
optimized results of these problems are shown in Table 2.
The convergence behavior of the objective function and the
fatigue constraint is seen in this table along with their final
values after 586 and 474 iterations. The computation time
required to solve these problems is around 6 h and 8 h,
respectively. Most time is spent in the sensitivity analysis
(approx. 80% of the total computation time), which depend,
not only on the total number of elements but also on the size
of the time steps. For problem (P1), we notice two peaks in
the fatigue convergence plot. At these peaks, the compliance

Table 1 Fatigue constraint vs stress constraint: mass minimization problem with fatigue constraint (P1) and stress constraint

Topology Stress Damage

Fatigue
constraint

σmax = 615 MPa Dmax = 0.31

Stress constraint

σmax = 616 MPa Dmax = 0.36

The white line in the damage plots represent the contour of the design
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Table 2 Optimization results of the L-shaped beam with periodic load history

Topology Objective function Fatigue constraint

(P1)

Mass = 22.6 × 10−3 kg DPN = 0.39

(P2)

Compliance = 0.33E−2 Nmm DPN = 0.5

constraint becomes active. However, at the other regions,
this constraint remains inactive and the convergence is
eventually smooth.

6.2 L-shaped beamwith non-periodic load history

For the next example, we again use the L-shaped beam
shown in Fig. 2. However, for the second load case, a

0 50 100
-1.2

-0.6

0

0.6

1.2

Fig. 3 Non-periodic load history

non-periodic load history, σ (t) = σ (Q1)Sf (t), t =
0, 0.1, ..., 100, is used for fatigue estimation. Here Sf (t) is
a pseudorandom function depicted in Fig. 3.

For problem (P1), the fatigue and compliance bounds are
set to D̄ = 0.5 and C̄ = 0.40E − 2 Nmm, respectively.
Similar to the previous example, the mass obtained from
problem (P1) is set as a mass limit in problem (P2).

The optimized results are shown in Table 3. The
evolution of the objective function and the fatigue constraint
for both problems are also seen along with the final
objective and constraint values after 700 iterations. The
computation time to solve these problems are around 10 h
and 13 h, respectively. We notice that the profiles of both
the optimized models have a smooth radius at the re-entrant
corner, thereby reducing high stress concentrations and
thus prolonging life. A final damage plot of (P1) reveals
that damage is distributed across the structure, and that no
damage is accumulated in the voids (see Fig. 4).

6.3 MBB beamwith out-of-phase load history

For this example, we take an MBB beam discretized by
4800 elements and subject to a out-of-phase biaxial loading.
To account for such a load history, we create two load cases
as shown in Fig. 5. The first load case consists of two static
loads Fy = 1500 N and Fx = 1500 N, which are used for
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Table 3 Optimization results of the L-shaped beam with non-periodic load history

Topology Objective function Fatigue constraint

(P1)

Mass = 21 × 10−3 kg DPN = 0.501

(P2)

Compliance = 0.42E−2 Nmm DPN = 0.62

compliance calculation. The second load case is used for
fatigue estimation and consists of load histories defined as
Fy(t) = Fy sin(2πt) and Fx(t) = Fx sin(2πt − φ) with
t = 0, 0.05, ..., 10 and phase angle φ.

Problem (P2) is solved for three different phase angles
φ = 0◦, 45◦, and 90◦ and fatigue bounds D̄ = 0.35, 0.35,
and 0.50, respectively. The reason for setting a higher
fatigue bound for φ = 90◦ is that, with out-of-phase

0.33

0.18

0.0

Fig. 4 Damage DN,e from (P1) with Mass = 21 × 10−3 kg and
DPN = 0.501. The white line represent the contour of the density plot
in Table 3

loading history, the model predicts that the fatigue strength
increases, i.e., fatigue damage decreases, with the phase
difference; thereafter, a decrease of the fatigue limit is
predicted, i.e., fatigue damage increases. This tendency is in
accordance with experimental data (Liu and Zenner 2003).

Table 4 shows the optimized MBB beam for different
phase angles along with the evolution of the objective
function and fatigue constraint. Different compliance values
are obtained for each of the optimized models and also
different designs are obtained in trying to adapt for the phase
change in the loading histories.

7 Conclusion and outlook

A new gradient-based TO formulation with fatigue con-
straint based on a continuous-time approach for fatigue
calculation was proposed. As the fatigue damage is inte-
grated for the whole stress history, cycle-counting tech-
niques like rainflow counting were not used. The presented
model can handle a general load history, that also includes
non-proportional loads.

The fatigue sensitivities were derived using an adjoint
method. Since this approach has history dependence, the
adjoint variables are obtained by solving a discrete terminal
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Fig. 5 Loading conditions of
MBB beam considering out of
phase load history

Fy

Fx
value problem. The validity of the fatigue sensitivities
derived by the adjoint method were verified by comparing
against a finite difference calculation. The proposed method
was tested on several numerical examples, namely, the
L-shaped beam with periodic and non-periodic loads,
and the MBB beam geometry with out-of-phase loading.
Although we have numerically solved only 2-D models,
the theoretical presentation is not restricted to these cases.
However, the high computational cost we experience makes
it presently difficult to treat 3-D models in practice.

An important extension of the work is, therefore, to
develop acceleration techniques that can improve the
overall performance and shorten the computational time.
One possibility is to discretize the time domain using
a higher order scheme, which could enable us to use
larger time steps. However the sensitivity analysis becomes
more elaborate, increasing the number of floating-point
operations needed for each time step. Thus, it is difficult
to make an a priori prediction of the relative efficiency of
different order implementations.

Table 4 Optimization results of MBB beam with different phase angles for the problem (P2)

φ = 0◦ φ = 45◦ φ = 90◦

Optimized results

Objective function

Fatigue constraint

Compliance 0.1E-1 Nmm 0.86E-2 Nmm 0.68E-2 Nmm
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8 Replication of results

To reproduce the above optimized results, a first step
is to implement the fatigue model following the box in
Section 3. The optimization problems (P1) and (P2) can be
solved using the MMA method from Svanberg (1987). The
sensitivities are derived in Section 5 and the verification
study is shown in Appendix A. Relevant parameters are
given in Section 6.
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Appendix A: Verification of fatigue
sensitivities

We verify the fatigue sensitivities for a plate with hole
geometry. The design variable of a single element is

L

R

L Q

1 2 3 4 5 6 7 8

Fig. 6 Model used for verifying sensitivities

Table 5 Sensitivity comparison with Δρ = 1E−4

Eid DPN
d (E − 4) Sd

e Sa
e |εe|(%)

1 5.0313 − 1.348E− 2 − 1.350E− 2 0.16

2 5.0479 3.124E− 3 3.125E− 4 0.02

3 5.0470 2.220E− 3 2.220E− 3 0.01

4 5.0462 1.431E− 3 1.431E− 3 0.02

5 5.0457 9.267E− 4 9.269E− 4 0.02

6 5.0454 6.034E− 4 6.035E− 4 0.03

7 5.0451 3.943E− 4 3.944E− 4 0.03

8 5.0450 2.524E− 4 2.525E− 4 0.03

perturbed to get a perturbed damage value. Then, the
sensitivities are calculated using a forward finite difference
scheme, which are subsequently compared against the
adjoint method.

We use AISI-SAE 4340 alloy steel with the fitted
fatigue material parameters in Section 6. The plate with
a hole, shown in Fig. 6, is used for verifying the fatigue
sensitivities. The dimensions of the model are L = 1 m
and R = 0.4L. Using symmetry, only a quarter of the
geometry is modeled using 160 bi-linear quadrilateral plane
stress elements with a thickness of 0.01 m. At the left and
bottom edges, symmetry boundary conditions are applied,
with a fatigue load. A uniformly distributed peak load Q =
160 N is applied on the right edge, along with a sinusoidally
varying factor that is applied for 10 cycles, give the stress
variation σ (t) = σ (Q) sin(2πt), t = 0, 0.05, ..., 10. The
stress tensor σ (Q) is calculated from the static load Q using
(18) and (19).

Figure 6 also shows the elements around the hole
that are crucial for fatigue analysis as the highest stress
concentrations are expected at these elements. We verify the
fatigue sensitivities, i.e., dDPN(x)/dxe, for these elements
by taking the initial design variables as 1. In addition, the
exponent value of the p-norm function is set to P = 12.

The relative error εe used for sensitivity verification is
given by

εe = Sa
e − Sd

e

Sd
e

,

where Sa
e is the adjoint fatigue sensitivities and Sd

e is the
sensitivities calculated by finite difference for element e.
Different design variable perturbation values Δρ ranging
from 1E-02 to 1E-10, are considered |εe| decreases with
decreasing Δρ and levels out at Δρ = 1E − 4. Using this
value, Sd

e is calculated for the elements around the hole
shown in Fig. 6. It is found that sensitivities calculated by
the adjoint method are almost same as those calculated by
finite differences. For the considered numerical example,
the maximum damage using p-norm DPN = 5.045E − 4.
Table 5 shows the sensitivity comparison for these elements
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along with the perturbed damage values DPN
d , where the

absolute of the relative error |εe| is less than 1%.

Appendix B: Mass minimization problem
subjected to only a fatigue constraint

As indicated in the remark of Section 4, removing the
stiffness constraint from (P1) results in a problem with an
obvious global solution xe = ε. However, a gradient-based
method, as developed in this paper, may still converge to a
realistic structure, which if the stiffness constraint is non-
active can be considered a solution to the full problem
(P1).

As an example, we solve (P1) without the compliance
constraint for the L-shaped beam in Fig. 2 with the non-
periodic load history shown in Fig. 3. We use AISI-
SAE 4340 alloy steel along with the fitted material and
optimization parameters as defined in Section 6.

1.00

0.001

Fig. 7 Optimized model with mass = 24 · 10−3 kg

For the mass minimization problem, we set the maximum
fatigue damage bound D̄ = 0.40. The optimized model after
400 iterations is shown in Fig. 7.
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