Structural and Multidisciplinary Optimization (2019) 60:405-409
https://doi.org/10.1007/500158-019-02298-4

EDITORIAL

Replication of results

Raphael T. Haftka' ® - Ming Zhou? - Nestor V. Queipo?

®

Check for
updates

Received: 28 January 2019 /Revised: 18 April 2019 / Accepted: 30 April 2019 /Published online: 3 June 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

There is a growing movement to make scientific and engineer-
ing research more useful by making it easier for potential users
to access papers and to replicate their results. Structural and
Multidisciplinary Optimization (SMO) has joined this move-
ment by allowing authors to pay for open access of their pa-
pers and by recently requiring that papers have a section called
Replication of Results (RR) intended to facilitate the repro-
duction by readers of the presented results. The phrase RR
makes reference to the idea of providing a detailed enough
description of the proposed model/method so that the results
can be replicated to a degree consistent with the claims and
conclusions drawn in the paper (Plesser 2018). This editorial
has two objectives: (i) to outline the benefits to the community
and the authors of the RR section and (ii) to present options
available to authors to facilitate replication of results.

There is no consensus on terminology. As Plesser (2018)
notes, the alternative term is reproduction of results. Indeed,
when authors appear not to understand the purpose of this
section, the first author of this editorial often writes to them
that the section is intended to help readers reproduce the re-
sults presented in the paper.

Almost all the papers in SMO are about computational
algorithms, and so this editorial is about computational repli-
cation of results. There is substantial literature on tools and
techniques for this purpose, see a good review by Piccolo and
Frampton (2016). Some of the literature is focused on what is
needed for exact replication, and this is a major challenge
because readers may be implementing algorithms in different
computer languages on different computer architectures, and
also use different numerical libraries. Here, we also stress the

Responsible Editor: Hyunsun Alicia Kim

>< Raphael T. Haftka
haftka@ufl.edu

! University of Florida, Gainesville, FL, USA
2 Altair, Irvine, CA, USA

University of Zulia, Maracaibo, Venezuela

importance of authors to probe the variability of the algorithm,
so that readers will know how much their results may be
expected to vary from those published in the paper and yet
remain consistent.

1 Benefits

Benefits to the community The RR section should help good
stewardship of the research record and reduction of research
waste, with potentially better use of funding across the com-
munity. It will allow the quicker implementation of new meth-
odology because developers could readily benchmark against
original reference code by comparing results of examples pre-
sented in related papers. Similarly, the section could also ac-
celerate the development of better methods building on
existing work because it would help verification of and com-
parison with existing methods. It is our observation that many
papers tend to forgo details on the implementation of formu-
lations presented. This makes it very difficult for a reader to
attempt implementing methods presented in such papers,
let alone reproduce results. The requirement of the RR section
also implies that authors should reveal all details about trans-
ferring their theory into computer code.

Benefits to the authors and journal The success of researchers
and journals is greatly influenced by the impact of their papers
as measured by citations, downloads, and reads. From our
experience, papers that help the reader reproduce their content
are more likely to be read, cited and encourage implementa-
tion, and use of the proposed methods. Furthermore, the au-
thors themselves often need to continue research that they
documented in papers years before, and they benefit from their
own ability to reproduce the results of old papers. This is
particularly important as many of SMO’s papers are published
by authors from research groups that persist over decades.
Such research teams at universities are typically dynamic,
which renders it necessary for new members to carry on a
research code for continuing studies.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-019-02298-4&domain=pdf
http://orcid.org/0000-0003-0417-6911
mailto:haftka@ufl.edu

406

R. T. Haftka et al.

Another benefit of documenting all ingredients for re-
sults is that it reinforces the importance of developing
robust methods. The following process may look familiar
to many readers. Starting with the first example, it typi-
cally requires tens or even hundreds of experiments until
satisfactory results are obtained. This process typically
involves (1) fixing bugs in the code and (2) testing pa-
rameters within the formulation (e.g., penalty, minimum
density threshold for topology optimization) and parame-
ters for the iterative process (e.g., variable move limits,
convergence tolerance, or a number of maximum itera-
tions). The best result is selected at the end of the process.
The researcher then moves on to the second example.
Again, many results are produced until he/she is satisfied
with some results. This goes on until results are finalized
for all selected examples. There is nothing wrong with the
process if it was aimed at producing a bug-free code and
selecting a robust parameter setting. In other words, re-
sults selected for publication should be all produced with
the final version of the code, with as little changes of
default parameters as possible. Note that different param-
eters typically result in different results. The selection of
default parameters like convergence criteria aims at
obtaining reasonable results for typical problems. If the
method requires tuning of parameters for each example,
it would not be a viable method. The author would not be
able to miss such vulnerability of a method when detailed
settings for results need to be documented. Similarly, se-
lective reporting can be a serious problem for research
publications. However, such selective reporting is mitigat-
ed when it is easy for readers to try their own examples.

2 Structuring research so that it is easily
reproduced

The first step in helping oneself and readers to reproduce
results should be taken in the way the research is implement-
ed. This has received much attention in the biological com-
munity, see Markowetz’s Five Selfish Reasons to Work
Reproducibly (Markowetz 2015). Consider the following
issues:

Application examples Sometimes research is motivated by
complex real-life applications, which would be difficult to
replicate even if the authors were free to share all the needed
data and codes. In that case, it is desirable to look for simpler
examples with similar characteristics. For example,
Barthelemy and Haftka (1990) became aware of the accuracy
problems of the semi-analytical method for shape sensitivity
of static response when calculating derivatives of car finite
element models. They looked for a simple problem that would
illustrate the difficulty and found that it could be reproduced

@ Springer

with a cantilever beam. Simple examples are also useful for
the authors to validate their own analysis code, by replicating
their results on widely available commercial codes that may
have a free version with model size limitation.

An alternative approach is to create examples based on a
surrogate fit to simulations from proprietary codes. For exam-
ple, Guo et al. (2018) became aware of difficulties with choos-
ing between single- and multi-fidelity surrogates for a turbine
problem. They found that they could replicate the difficulties
by replacing the turbine efficiency response by a cubic poly-
nomial in terms of the two geometry design variables, and
they provided the polynomial in the publication.

Randomness Many research endeavors require manipulations
of random numbers. Papers on reliability calculations and de-
sign under uncertainty often require Monte Carlo simulations.
Many global search algorithms such as simulated annealing or
genetic algorithms have multiple calls to random number gen-
erators. Surrogate fitting is often performed with Latin hyper-
cube sampling that leads to somewhat random designs of
experiments.

Iterative processes with convergence criteria are often a
source of randomness because on one computer system, the
criterion may be barely satisfied and on another barely missed.
Optimization algorithms typically have such convergence
criteria. For example, Kim et al. (2001) report on variability
created by optimization algorithms and propose a technique to
detect poorly converged runs. Distributed computing is also
often a source of randomness.

Fixing the random numbers can be done by selecting a
particular seed for the random number generator, as with the
rng function in Matlab and the random.seed function in
Python. This has the extra benefit for debugging the research
code because results become repeatable.

There are technological solutions to overcome random-
ness generated by changes in computers or their operating
systems. These require more than simply documenting the
data and software used. Specifications of the operating
system and computer configuration, and how to install
the necessary software dependencies should also be pro-
vided. Virtual machines, for example, can help address
this issue by encapsulating an entire operating system
and all scripts, code, and data necessary to execute a
computational analysis. A virtual machine (constructed
with tools such as VirtualBox or VMWare) can be execut-
ed on practically any desktop, laptop, or server, irrespec-
tive of the host operating system. A lighter alternative to
virtual machines is the so-called software containers (e.g.,
open source Docker.com utility). While these containers
are specific to a given type of operating system and may
be more vulnerable to security breaches, they have less
computational overhead than VM and can be set up more
quickly.

http://docker.com

Replication of results

407

1 Example of fitting support vector regression (SVR) to the

Branin-Hoo function

In [1]: %matplotlib inline

conda install -c conda-forge pydoe (should be executed from the Anaconda command prompt)

from matplotlib import cm
import matplotlib.pyplot as plt

import numpy as np
from pyDOE import lhs

from mpl_toolkits.mplot3d import Axes3D

from sklearn.metrics import mean_squared_error
from sklearn.model_selection import GridSearchCV

from sklearn.svm import SVR

12 # Random seed initialization
13 np.random.seed(1)

1.1 Test function

in [2]): # Defining the Branin Hoo function

BH = lambda X: (X[:,1] - 5.1/4%(X[:,0]/np.pi)**2 + 5*X[:,0]/np.pi - 6)**2 + \

16*(1-np.pi/8)*np.cos(X[:,08])+10

1.2 Sample generation

in [3]1:
X = (15*1lhs(2,samples=28)) - [5, @]
y = BH(X)

Generating 206 Lhs samples for testing
Xtest = (15*1lhs(2,samples=208)) - [5, @]

ytest = BH(Xtest)
CST = {'case’:

1.3 Grid search

In [4]: # Parameters for GridSearchCV

2 PARS = {'C': [55.0, 110.0, 220.0], 'epsilon’:

“Branin-Hoo", 'X': X, 'y': y, ‘Xtest': Xtest, 'ytest':

Generating 20 Lhs samples for training in x1 [-5,18], x2 [6,15]

ytest }

[6.1, ©.2, ©.3], 'gamma’': [@.01, 0.1, 0.2]}

4 MOD = GridSearchCV(estimator=SVR(kernel='rbf'), param_grid=PARS, cv=5, refit=True)

MOD.fit(CST['X'], CST['y'])

Out[4]: GridSearchCV(cv=5, error_score='raise’,

estimator=SVR(C=1.8, cache_size=20@, coef@=0.0, degree=3, epsilon=0.1, gamma='auto’,
kernel="rbf', max_iter=-1, shrinking=True, tol=06.001, verbose=False),

fit_params=None, iid=True, n_jobs=1,

param_grid={'C': [55.@, 110.0, 220.0], 'epsilon’: [@.1, ©.2, ©.3], 'gamma’': [@.81, @.1, 0.2]},
pre_dispatch="'2*n_jobs"', refit=True, return_train_score="warn’,

scoring=None, verbose=0)

Fig. 1 Jupyter notebook example

Exploring variability and robustness Papers proposing new
or improved algorithms and papers reporting on experi-
ence with existing algorithms are most useful when their
conclusions are robust with respect to whatever source of
randomness. So authors should make repeated runs in
order to determine the scatter in the results due to the
randomness in the process. If the paper is developing an
improved method and the answer is random, comparison
with competing techniques would depend on the mean or
median of the results as well as their variability. In such
scenarios, whenever possible, statistical significance tests
should be conducted on the differences observed indicat-
ing p values, e.g., Mood’s median statistical test.

The randomness associated with operating systems may
often be imitated by small perturbation in loading, finite

element meshes, or material properties. This is due to the fact
that all of these will operate on randomness associated with
convergence criteria of iterative processes.

3 Options for providing useful information

Source code Providing the reader with the source code used in
the paper is the best option. If it is short, it can be included in
an appendix, otherwise as supplementary material or a link for
downloading the code. Another alternative is to store them in a
public repository using a version control system and to share it
via web-based services like GitHub.com or Bitbucket.org.
Then, readers can see the full version history, reuse the code,
and contribute revisions to the code (if applicable). When

@ Springer

http://github.com
http://bitbucket.org

408

R. T. Haftka et al.

v 1.4 Performance indicators

In [5]: results = dict()

2 results['R2"] = MOD.score(CST['X"], CST['y'])

3 results['MSEtr'] = mean_squared_error(CST['y'], MOD.predict(CST['X']))

4 results['MSEte'] = mean_squared_error(CST['ytest'], MOD.predict(CST['Xtest']))

5 print(“"%25s\t%10s\t¥%10s\t%10s" % ("Surrogate”, "R2", "MSE(train)", "MSE(test)"))

Surrogate R2
SVR 9.954
Best parameters {'c":

1.5 Plots

In [6]: 1 # Grid for visualization

print("%25s\t%10.3f\t%10.3f\t%1e.3f" % ('SVR', results['R2'], results['MSEtr'], results['MSEte’']))
print("%25s\t%s" % ("Best parameters”, MOD.best_params_))

MSE(train)
148.688

MSE(test)
204.199

220.9, ‘epsilon’: 8.1, 'gamma': .01}

2 X1,X2 = np.meshgrid(np.arange(-5.0, 18.0, ©.5), np.arange(8.0, 15.0, ©.5))

XX1 = X1.flatten(); XX2 = X2.flatten()

SVR prediction
YY = MOD.predict(np.c_[XX1, XX2])
Y = YY.reshape(X1.shape)

Plotting training points and SVR prediction surface on grid
16 fig = plt.figure(figsize=plt.figaspect(8.35))
11 ax = fig.add_subplot(1, 2, 1, projection='3d")
12 ax.plot_surface(X1, X2, Y, cmap=cm.coolwarm, alpha=0.75, rstride=1, cstride=1)
13 | ax.scatter(CST['X']1[:,@], CST['X"1[:,1], CST['y"], c="r’, s=50@)
14 plt.xlabel('X1'); plt.ylabel('X2'); plt.title('SVR prediction surface')

16 ax.view_init(3e,-130)

18 # Real function evaluation on grid
19 YY_real = BH(np.c_[XX1, XX2])

20 Y_real = YY_real.reshape(X1.shape)

22 # Plotting real function surface

15 ax.set_zlabel('Y'); ax.axis('equal’'); ax.axis('tight'); ax.set_zlim(e,300)

23 ax2 = fig.add_subplot(1, 2, 2, projection='3d")
24 ax2.plot_surface(X1, X2, Y_real, cmap=cm.coolwarm, alpha=8.75, rstride=1, cstride=1)

25 plt.xlabel('X1'); plt.ylabel('X2'); plt.title('Real function surface')

ax2.set_zlabel('Y'); ax2.axis('equal'); ax2.axis('tight'); ax2.set_zlim(®,300)

27 ax2.view_init(3e,-130)

29 plt.show()

SVR prediction surface

Fig. 1 (continued)

submitting a manuscript, the authors may “tag” a specific
version of the repository that was used for the final analysis
described in the manuscript and assign to it as permanent
digital object identifiers (DOI), through, for example,
Zenodo.org or figshare.com.

It helps the reader if the code is heavily commented, even if
this increases its length. Literate programming (e.g., Piccolo
and Frampton 2016) pushes documentation to a high level. It
produces notebooks that allow to create and share documents
that contain live code, equations, visualizations, and narrative
text; Jupyter and knitr are popular examples of this new

@ Springer

Real function surface

computing paradigm. Cloud services where these notebooks
can be run without any setup are increasingly available, e.g.,
Jupyter notebooks in Colaboratory by Google. An example of
a code that fits the Branin-Hoo functions by support vector
regression in Fig. 1. As can be seen, the example not only has
the commented code, but it also shows the numerical and
graphical results.

Also, it helps to put all the tuning or convergence parameters
at the beginning of the code or to color the statements that in-
clude them. Consider, for example, what may be the most heavi-
ly used code ever provided in SMO, Sigmund’s 99 line Matlab

http://zenodo.org
http://figshare.com

Replication of results

409

topology optimization code (Sigmund 2001). Lines 39 and 40 of
the code read

11=0;12=100,000; move=0.2;
while (12-11 > 1e-4).

The three numbers selected by the author (100,000, 0.2,
and le-4) have been changed for some problems in the first
author’s classes. With a 99 line code, it is very easy to spot
such choices of convergence or tuning parameters, but with a
much longer code, this may be a problem.

Executable code When the source code cannot be provided, as
for example, due to institutional constraints, an executable
version of the code may still be useful. For replication of
results, users can benefit from an executable code if there is
a flag that can be tripped to provide intermediate results that
would help a reader debug their own code for the algorithm
proposed in the paper. Such executable code would also be
useful for a reader that may want to test the method for the
solution of other problems.

Pseudocode Pseudocodes for the algorithms can be very use-
ful, especially if they also mention all tuning and convergence
parameters.

Input files and scripts for commercial codes When the results
are generated using commercial codes, the input files and
scripts used with these codes should be provided if
possible.

Digital data for plots Often results are presented in plots, and
readers who want to compare to their results need to recreate
these plots. It is useful then to provide, as supplementary ma-
terial, the numerical data used to create the plots.

Detailed intermediate results For iterative algorithms, such as
optimization, providing details on design data at every iteration
is an example of details that may help readers debug their repli-
cation of the results. Such information often does not belong in
the paper itself but is natural for supplementary material.

4 Replication of results

The only results presented in this editorial are in Fig. 1. The
source code is part of that figure.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Barthelemy B, Haftka RT (1990) Accuracy analysis of the semi-analytical
method for shape sensitivity calculation. Mech Struct Mach 18(3):
407432

Guo Z, Song L, Park C, Li J, Haftka RT (2018) Analysis of dataset
selection for multi-fidelity surrogates for a turbine problem. Struct
Multidiscip Optim 57(6):2127-2142

Kim H, Papila M, Mason WH, Haftka RT, Watson LT, Grossman B
(2001) Detection and repair of poorly converged optimization runs.
ATAA J 39(12):2242-2249

Markowetz F (2015) Five selfish reasons to work reproducibly. Genome
Biol 16:274

Piccolo SR, Frampton MB (2016) Tools and techniques for computation-
al reproducibility. GigaScience 5(1):30

Plesser HE (2018) Reproducibility vs. replicability: a brief history of a
confused terminology. Front Neuroinform 11:76

Sigmund O (2001) A 99 line topology optimization code written in
Matlab. Struct Multidisc Optim 21:120

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

	Replication of results
	Benefits
	Structuring research so that it is easily reproduced
	Options for providing useful information
	Replication of results
	References

