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Abstract

Several filter approaches that introduce additive manufacturing-related overhang constraints in topology optimization exist.
However, a drawback of these is that exact satisfaction of overhang constraints produces sharp inward corners resulting in
stress singularities. The present paper therefore modifies such filter approaches by a penalty formulation, where the choice
of penalty factor regulates how closely the overhang constraint is satisfied. By appropriately choosing certain weight factors
in the penalty function, the cost of support structures is also reflected in the formulation in a simple and computationally
inexpensive way. The method is demonstrated by parameter studies using the classical MBB beam, using both structured

and unstructured meshes.

Keywords Topology optimization - Additive manufacturing - Support structure - Overhang penalty

1 Introduction

Topology optimization (TO) and additive manufacturing
(AM) constitute an unusually striking match of design
and manufacturing method, sharing the possibility of very
general shapes and forms (see Liu et al. (2018) for a
recent overview). However, certain constraints related to
the manufacturing method will still be present and need to
be explicitly taken into account by the TO formulation. In
particular, the overhang constraint, implying that the angle
a surface tangent makes to the AM build direction should
be below a certain value, is of prime importance. Several
methods and formulations that in various ways take such
a constraint into account have been suggested. A direct
strategy is to modify topology-optimized structures simply
from geometrical considerations (Leary et al. 2014; Hu
et al. 2015) without considering optimality of the modified
structure. A more complete approach is to include the
geometric overhang constraints in the TO problem. This has
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been done in two somewhat different, but related, ways:
Qian (2017), and also Garaigordobil et al. (2018), used an
average of the constrained angle in an explicit constraint,
whiley Langelaar (2016, 2017, 2018) and Gaynor and
Guest (2016) introduced filters that control the presence
of support material at each point of the optimal structure.
Another filter approach based on calculating arrival times
of a front propagating the design domain and whose speed
depends on the overhang was presented by van de Ven
et al. (2018). Moreover, Allaire et al. (2017) introduced
an implicit overhang constraint in the form of additional
elasticity problems that need to be solved for partly
manufactured designs, while they also presented numerical
test on the average geometric constraint in Qian (2017).
Mass and Amir (2017) imposed the overhang constraint
implicitly by making the optimized continuum model
adhere to a previously optimized truss structure satisfying
the constraint. The method described by Guo et al. (2017)
consists essentially of converting the TO problem into
a shape optimization problem with explicit control over
parameters describing the boundary, thus offering a way
to control the overhang directly via constraints on the
parameters.

However, all of these approaches have certain drawbacks:
The direct inclusion of the geometric constraints into the
TO formulation, as in Qian (2017) and Mezzadri et al.
(2018), gives unwanted shapes that show a “dripping
effect” (as named in Allaire 2017) and also seems to
produce formulations with many local optima. The physical
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constraints of Allaire et al. (2017) do not show the “dripping
effect,” but on the other hand, is very computationally
demanding (calculation times of weeks are reported), and
the method does not seem to eliminate all overhang. The
methods described by Mass and Amir (2017) and Guo
et al. (2017) put additional restrictions on the design
space besides the overhang. The two slightly different
filter approaches of Langelaar (2016, 2017) and Gaynor
and Guest (2016) also do not show the “dripping effect,”
but still produce designs that have a tendency to have
a rugged appearance with inward corners that in linear
elasticity will be associated with singular stress states.
Such inward corners are in Hoffarth et al. (2017) removed
by a post processing step where a smooth iso-surface
defines the structure. In Wang et al. (2018), inward corners
are smoothed algorithmically by accepting solutions as
convergent when slight violation of the overhang constraint
is present. The present contribution on the other hand
builds the smoothing into the actual formulation of the
optimization problem. Note that small rounded corners are
accepted in AM structures, even though a strict overhang
constraint is violated: AM design rules include expressions
for allowable short overhang regions (see, e.g., Adam and
Zimmer (2014), Kranz et al. (2015), and Mirzendehdel and
Suresh (2016)).

The present formulation uses a modification to unstruc-
tured meshes, indicated by Hoffarth et al. (2017), of the
filter approach of Langelaar (2016, 2017) to produce an
overhang free design, but this design is not the final phys-
ical design. Rather, the overhang free design is compared
to the physical design and a penalty term is added to the
objective function of the TO problem, which implies a cost
for deviation between the physical design and the overhang
free design. This takes away the sharp corners present in
original method of Langelaar, a feature that should be nec-
essary when, e.g., stress constraints are included in TO.
Depending on the value of the penalty parameter, differ-
ent length of overhang will typically remain in the optimal
design. Thus, at least for small values of this parameter, the
aim of the method is to limit the amount of support struc-
ture, not removal of all such additional structure. Methods
that somehow include the cost of support structure have
been presented in Langelaar (2018) and Mirzendehdel and
Suresh (2016). The present method implicitly includes such
cost. In particular, a certain choice of weight factors in the
penalty term makes overhang far from the base plates more
costly, thus less preferable in an optimal solution, than over-
hang close to the base plate. It should be noted, however,
that the method does not include a precise specification of,
e.g., what length of overhang is allowed or what rounding
is obtained at corners. Parameters of the formulation are
not directly connected to such precise features of an opti-
mal design. Therefore, as it is usual in TO, the suggested
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optimized designs should be seen as conceptual designs that
need refinement and further analysis.

2 General setting and sensitivity

An overhang free design produced by Laangelaar’s filter

is denoted p°f = (pl."f, el ,o,‘z’f)T and the physical design
is denoted p = (pi,..., o)T. As it is now standard in
density-based TO, the physical design is a function of the
optimization variable x = (x;, cox) T through the use

of a density filter, i.e., p = p(x), and a linear such filter
is used in this paper (Bourdin 2001). The usual setting
of one variable per finite element is used, so n represents
the number of such elements. For comparison to Langelaar
(2016, 2017), the physical variables are somewhat related to
what Langelaar calls blue-print variables, but a difference in
our approach is that these variables are used for calculating
stiffness and are taken as the actual physical design.
Moreover, Langelaar considers structured meshes only and
the calculation is done layer by layer. Here, we extend this
method to unstructured meshes, following Hoffarth et al.
(2017). The details are given in Section 3, while in this
section, we only need to realize that it means considering
implicit functions of the form

o =Li(p, o, i=1,...,n, )]

where the functions L; will eventually be formed from
smoothed max and min operators. These functions can in
principle be solved for p°', resulting in

0% = B(p), )

where B = (B;, ..., Bn)T is a vector-valued function.

The objective function will depend on the physical design
and is written f(0). A penalty term P representing the cost
of deviating from an AM-preferred overhang free design is
added to form an augmented objective

%, p° = f(p) + P(p — p°.

A general formulation of an optimization problem is then
(P) min f*(o(x), B(p(x))),
xeX

where X is a set defined by the standard volume and box
constrains of TO.

To calculate the sensitivity of the augmented objective
function, we introduce a Lagrangian-like function

L(p,}) = (0, B(0)) + ) _ %i(Li(p, B(p)) — Bi(p)),

i=1

where A = (Aq,..., A,,)T is a vector of Lagrangian
multipliers. Since the bracket in the second term is zero for
any Lagrangian multiplier, both the value and the sensitivity
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with respect to p are the same for £ and f¢. Proceeding
with a direct differentiation, omitting arguments, we get

n n

AL  aft f* OBy — AL, dL; 9B, 9B;
o~ f +Z f k+Z)"i < 1 +Z i k 1>.
i=1

dpj ;= apgt dpj dpj = opop;  dp;

Rearranging terms, we get

n n n

L afe dL; afa IL; By
— =) A+ Y [ - ) | 52,

- 1
dpj  Opj i O T i=1

where §;; is Kronecker’s delta. Thus, by letting

n

afe oL;
A= ——=+ Ai— 3)
8p,‘3f ; lap,?f
we obtain
df AL  Aft . OL;
fL_9L 9 +Y i 4)
d,Oj a,Oj 3,0j 3,0j

i=1

The final sensitivity with respect to the optimization
variable x is now obtained by the use of the chain rule.

Comparing the above formulation and sensitivity calcu-
lation with that of Langelaar (2016, 2017), we note that
the latter is retrieved from the above by letting p approach
0°F. The penalty term is then removed and the objective
function becomes f(B(p(x))). The above sensitivity for-
mulas (3) and (4) coincide with that of Langelaar (2016,
2017) if the term 9f“/dp; is removed. Thus, the present
method involves no extra computational effort compared to
the original AM filter in Langelaar (2016, 2017).

3 Overhang filter

For construction of the overhang free design p°f, we
use a slightly extended version of the filter developed
in Langelaar (2016, 2017). One of the limitations of the
original formulation is that it is only defined for a structured
mesh with equal sized elements, but this limitation can be
lifted by introducing a mesh independent control volume in
the form of a cone (denoted ®; below) as shown in Hoffarth
et al. (2017). In the following, we give details of such
an extension to unstructured meshes. To avoid the original
method’s use of layers of elements, each element is given a
height, &;, by projecting the centroid of the element onto the
build direction, i.e.,

h,-:xi~n,

R * *

—_ > *

*
*
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3
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*
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Fig.1 Illustration of the AM filter. R is the filter radius of the standard
linear density filter. Other variables are defined in the text. The dots
indicate the centroids of the elements

where x; is the centroid of element i and » is a unit vector in
the build direction. A filtering application sequence is then
determined by ordering the elements, and thereby the design
variables, from lowest to highest in terms of ;.

The cone control volume for element i is

n-v;;

@);:{je{l,l..,n}‘—
[vijl

< €OS Ppax ,0 < Ivijl = H},

where v;; = X — X;, Payx is the largest allowed overhang
angle and H is the maximum distance to a supporting
element. An illustration is given in Fig. 1, where the filter
radius R of the linear density filter is also shown. With
an appropriately chosen radius (H slightly larger than
R), the linear density filter prevents the appearance of
pathological situations where an element is not supported
immediately below but only further down in the filter
cone. Note that the discrete nature of the setting means
that ¢4, is an upper bound for the overhang angle, and
as ¢max changes this actual overhang angle will change
stepwise at certain values that depends on H. For the setting
shown in Fig. 1 such steps will occur at tan~! 0.5, tan=! 1
and tan~!3. For unstructured coarse meshes, the actual
angle will vary over the structure, depending on the local
discretization. However, keeping R and H fixed, refining
the mesh will improve the accuracy of the approximation
of ¢max. Moreover, for a given mesh, one way to improve
the approximation is to include additional points besides the
centroids in the definition of ®;; cf. Johnson and Gaynor
(2018).
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As a first step in calculating an overhang free design,

we calculate what support exists in ®;; i.e., we calculate a
tentative overhang free design as
A = max .
Note that due to the ordering of elements, j € ©; is always
less than i, which means that the right hand side is known
if the calculation is done in the order of the numbering.
Next, the possibility of filling an element with material, if
indicated as a possibility by ﬁlf’f = 1, is utilized only if the
physical design allows this; i.e., the overhang free design for
element i is taken as

p" = min{p;, 5. (5)
However, since the min and max operators are non-
differentiable, smoothed versions of these need to be used,
denoted smin and smax. That is, the functions L; in (1) are

defined as
Li(p. p™) = smin{p;, smax{p'|j € ©i}}. i=1....n.
(6)

Here, we use the approximations

[
smax{pj'|j € ©;} = (Z(p;’fw) ,

j€0;

. R 1 N . 3
smin(p;, p") = 2 <,0i + 2t — ((Pi -5 + 6)2 +ﬁ) .

The parameters P,, Q, and € determine the accuracy of
the approximations and therefore the performance of the
overhang filter. Based on the recommendations in Langelaar
(2016), we use

1
e=10" P,=40, Q=P,+ 2"
log po
where p9 = 0.5 and n, = max{|®1],...,|0,[}. Other

values were not tested in the present work but finding the

best performance in this respect is likely coupled to finite

element refinement and parameters of the penalty function.
Note that for the functions L; in (6) it holds that

aL; £0 onlyif i > j

— only if i > j,
of

8pj

dL; e .

— #0 onlyif i =,

9pj

which means that the sensitivity formulas (3) and (4) read

n

afa IL;
MZLJF > oh—

£ i of
oS5 oy

df* _ oL _af* dL;

dp;  dp;  dp; T op;
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Therefore, the calculation of the multipliers can be done
sequentially in the reversed order, from large number to low
number.

4 Specification of optimization problem (P)

Assuming static linear elasticity, the equilibrium equation
reads

where the symmetric positive definite stiffness matrix K (p)
depends on the physical design p. Here, u is the vector
of nodal displacements and F is the corresponding force
vector. Using the SIMP-method (Bendsge and Sigmund
2002; Christensen and Klarbring 2009) to enforce black-
and-white solutions, the explicit form of the stiffness matrix
is

K(p) =) riKi. @®)
i=1

where K; is an element stiffness matrix for a unit value of
the design variable p; and » > 1 is the SIMP exponent, here
set to 3. The feasible set of the general problem (PP) is

n
X={x eR"| Y aipix) <V, e <xi < li=1,...,n},
i=1
where ¢ > 0 is a small value that, by being non-zero,
has the effect of making K(p) non-singular assuming
appropriate supports, a; are positive constants, representing
volumes of elements, and V is a specified volume bound.
As an objective function, we take the standard compliance
objective

1 T
f(p)=§F u(p),

where u(p) is the solution of (7). The penalty function P is
given by the following general form:
n 0
PE) =y (Zs,-”w,) : ©)
i=1
where w; > 0 are weight factors, y > 0 is a penalty
factor, p and ¢ are positive constants that need to be chosen
appropriately, and £ is a vector with components & =
pi — pl.of. The case p = ¢ gives a p-norm that approaches
the max-function as p approaches infinity. In the numerical
calculations, we use a weak such approximation by taking
p = 2. We also use the values p = 1 and g = 0.5, which
gives a less localized penalty. These values give a proper
penalty term since, by (5), plf’f < pi, implying & > 0 in
(9), i.e., P(§) = 0 implies & = 0. The weights w; can be
chosen to further achieve special features of the design. For
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Fig.2 The MBB beam used as test example, modeled using symmetry

instance, the heights /; can be used to the define the weights
as

w; = (hj — Amin)/(Bmax — Amin), (10)

where hpin and hpax are the smallest and largest height
values. With this choice of weight functions, elements
far from the base plate, where h; is near to hpa, are
penalized to comply more closely to the overhang free
design than elements closer to the base plate. This reflects
the cost of support structure in a simple and computationally
inexpensive way. In (10), the weights vary linearly with
distance from the base plate, but obviously other variations
could be considered.

5 Examples

The method is implemented in the program TRINITAS
(Torstenfelt 2019) and tested for the classical MBB beam
problem shown in Fig. 2. Using symmetry, half of the
beam is modelled. The numerical value of L is 0.2.! An
isotropic material with Poisson’s ratio 0.3 and Young’s
modulus 205 - 10° is used. The applied force F is 10%.
Note that magnitudes for Young’s modulus and the force
does not effect the optimal topology in standard stiffness
optimization, but since a penalty term is added in our
method the value of the penalty coefficient y needs to
be compared to these values. The density filter radius is
R = L/30, and the AM filter height is H = 1.2R.
The volume bound V is 40% of the volume of the design
domain. The problems are solved using MMA (Svanberg
1987) with default parameters and starting from a uniform
density p; = 0.25.

5.1 Structured mesh

In this section, we use a structured mesh consisting of
10,800 (60 x 180) equally sized 4-node quadrilateral

IStandard SI units can be inserted for lengths, forces and material
constants, but these are not relevant for the conclusions.

Fig.3 Reference case without AM filtering, structured mesh, C = 1

elements, implying that R = 2/, where [ is the side length of
an element. Calculations are run for for 650 iterations with
no other stopping criteria. Run times are around 2 min on a
standard PC.

Figure 3 shows a reference case where no AM filter or
penalty is used. In the following, we will compare optimal
compliances to this reference case and relative optimal
compliance C will be specified. By definition, C = 1 for
the design in Fig. 3. In Fig. 4, the same beam is optimized
using Langelaar’s AM filter. The build direction is in the
positive y-direction and the maximum overhang angle is set
to 46° (which in practice means 45° due to the structured
grid). The relative optimal compliance of the beam in Fig. 4
is C = 1.11. No boundaries with overhang exist in Fig. 4,
but an unavoidable result of complete satisfaction of such
a constraint is that sharp inward corners, where linear
elasticity predicts stress singularities, are produced. The
penalty approach makes it possible to obtain a compromise
between the design in Fig. 3 and the overhang free design
in Fig. 4. Figure 5 shows the result of this approach
using a penalty term with p = ¢ = 2, w; = 1 and
four values of y. In principle, when y changes from zero
to infinity, we interpolate between, on the one hand, a
standard stiffness optimization problem where we do not
take overhang constraints into account and, on the other
hand, a strict satisfaction of overhang constraints. However,
the actual visual change of topology and geometry seems
to take place for a rather small range of values. Presently,
we find this range simply by manual interval halving. In
practical applications, an engineer would likely want to
generate a range of different designs with different y to
find an acceptable compromise between AM printability
and performance.

TR
X

Fig.4 The MBB beam using Langelaar’s AM filter, C = 1.11. Note
the sharp corners where overhang constrained boundaries meet
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XA

Fig. 5 The MBB beam using the penalty approach with p = g = 2,
w; = 1 and y equal 0.005, 0.01, 0.015, and 0.02 from top to bottom.
Corresponding relative optimal compliances C are 1.03, 1.09, 1.12,
and 1.14. In the upper picture, sections that violate the 45° constraint
are shown in red

The beam in the top picture in Fig. 5 has extensive
overhang, that need support structure if manufactured by
AM, but the penalization has produced more structural
members in the print direction than the reference beam in
Fig. 3. More specifically, the horizontal upper member has
large unsupported spans, while the inclined members, with
some exceptions, satisfy the 45° constraint. Portions of the
design where the constraint is not satisfied are indicated
in red. As we move downwards in Fig. 5, the penalty
term increases printability of design at the cost of stiffness
performance. In the lower three figures, some rounding of
sharp corners can be seen but no extensive overhang exists
and inclined members closely satisfy the 45° constraint,
as can be verified by use of an angle hook. Clearly, the
rounding varies not only as we move downwards, increasing
the penalty, in Fig. 5, but also with position within each plot.
This is because the penalty term only measures the average
deviation between an overhang free design and the physical
design. The fact that the relative optimal compliance is
slightly higher in the designs at the bottom of Fig. 5 than in
Fig. 4 is likely a result of local optimality. However, starting
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Fig.6 The same problem as in the lower picture of Fig. 5, except that
the maximum overhang angle is changed from 46° to 30°. The relative
optimal compliance C = 1.13

the calculation from a different initial design may induce
small changes in topologies and compliance values.

In Fig. 6, we solve a problem with the same setting as
in the lower picture of Fig. 5, except that the maximum
overhang angle is set to 30°. We have also tested the angle
60°, but in accordance with the discussion in Section 3, the
actual angle and solution then becomes the same as in Fig. 5.

A similar sequence of designs as in Fig. 5 but for p = 1
and ¢ = 0.5 is shown in Fig. 7. As indicated in Section 4,
this choice of parameters gives a penalty which is less local
than the p-norm and corners are somewhat more rounded,
even though a rather sharp corner to the right in the lower
picture is observed.

In Fig. 8, we have solved the MBB beam using penalty
and the weights defined in (10) with p = 1, g = 0.5,
and y = 107>, The effect seen here is that some structural

Fig. 7 The MBB beam using the penalty approach with p = 1,
q = 0.5, w; =1, and y equal to 1077,5-10"7, and 10~5 from top to
bottom. Corresponding relative optimal compliances C are 1.03, 1.07,
and 1.08
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Fig. 8 The MBB beam using the penalty approach with p = 1,
g =05,y =107 and weights defined in (10). The build direction
is shown by an arrow. The corresponding relative optimal compliance
Cc =110

members close to the base are allowed a large angle,
reflecting that the cost of support structure is smaller than
for overhang with larger distance to the base plate.

Finally, in Fig. 9, we have plotted the overhang free
design p°f in the upper picture and the corresponding
physical design p in the lower picture. The penalty
parameter y is chosen as 0.004 to give a low penalization,
resulting in a clearly distinguishable difference between the
two designs. Note that since the physical design p is the one
used for calculating the stiffness matrix, there is no incentive
for p°f to define a stiff structure. This is clearly seen in the
plot of p°f, where the overhang constraint is satisfied at the
expense of removing material at critical positions.

5.2 Unstructured mesh

We have also tested the method with unstructured meshes. A
rather more fine mesh than for structured meshes turned out
to be necessary for good satisfaction of the overhang angle.
We use 102,808 3-node linear triangular elements, while
other values such as filter radii are the same. The number of
iterations was also raised to 3000, again without any other
convergence criteria.

AOA%

Fig.9 Comparison of the overhang free design p°f in the upper picture
and the corresponding physical design p in the lower picture

Fig. 10 Reference case for the unstructured mesh without AM
filtering, C =1

Figure 10 shows a reference case without AM filter. The
relative optimal compliance for the reference case is again
C = 1. Figure 11 shows the MBB beam using Langelaar’s
filtering for the unstructured mesh. The overhang angle is
specified to 45.5°. The relative compliance is C = 1.176.
Note the overall relatively large difference in appearance
from Fig. 4, which turns out to be less using the penalty
modification. A sequence of designs, gradually changing y,
similar to those in Fig. 5, is shown for the unstructured mesh
in Fig. 12.

5.3 Stress calculation

We consider stiffness optimization in this paper and stresses
are not explicitly involved in the problem formulation.
However, since a motivation for developing the penalty
approach is to avoid optimal geometrical shapes that are
unfavorable from a stress point of view, we present in this
section a typical stress distribution for an optimal solution.
However, some issues first have to be clarified. Firstly,
it is a matter of what is the correct stress in a region
of the design where the physical density is less than the
maximum value 1. We then refer to the classical paper by
Duysinx and Bendsge (1998), where it is indicated that,
in case of SIMP penalization, the natural choice of local
stress is obtained by scaling the standard stress by the same
factor as the elasticity modulus, i.e., by ,ol.r ,r = 3, where
the standard stress is calculated from the displacements
without considering density scaling. From this local stress,
we calculate the von Mises scalar stress. Secondly, a

A4 N

Fig. 11 The MBB beam using Langelaar’s AM filter, unstructured
mesh, C = 1.18
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Fig. 12 The MBB beam for an unstructured mesh using the penalty
approach with p = ¢ = 2, w; = 1 and y equal 0.003, 0.0035,
0.004, and 0.005 from top to bottom. Corresponding relative optimal
compliances C are 1.096, 1.118, 1.122 and 1.131

comparison between a solution using Langelaar’s filter and
the present approach is not useful, since we expect the
former to have sharp inward corners where theoretically the
stress is infinity but in practice is a function of the mesh
refinement. This being clarified, we show the von Mises
stress distribution for a solution using a structured mesh that
is denser than in Section 5.1. We use four times the number
of elements used in Section 5.1, i.e., 43,200 elements. The
penalty coefficient is y = 0.005 and the penalty function
coefficients are p = g = 2. The optimal topology is shown
in the upper picture of Fig. 13 and the stress levels are
plotted in the lower picture. Note that since the stress levels
are less than 10% of the maximum stress in some parts of
the optimal structure these parts are not seen in the stress
plot. Note also that the two largest stress peaks occur at the
application of the force in the lower right hand corner and
due to the boundary conditions at the upper left corner, both
of which are not related to the overhang filter.

@ Springer

Fig. 13 Upper picture: an optimal topology obtained using 43,200 4-
node quadrilateral elements, y = 0.005 and p = g = 2. Lower
picture: von Mises stress distribution. Missing parts corresponds to
stress less than 10% of maximum stress

6 Conclusions and discussion

Strict satisfaction of overhang constraints that emanate
from additive manufacturing results in topology optimized
designs that have sharp inward corners. Linear elasticity
dictates stress singularities at such corners, meaning
unwanted bad strength and fatigue properties. In order
to relieve this problem, we suggest an approach where a
penalty function, representing cost for designs that deviate
from an overhang free design, is added. By changing
a penalty parameter, families of solutions gradually
approaching satisfaction of the overhang constraint can be
generated. It is also possible to choose certain weight factors
to reflect the cost of support structure needed when the
overhang constraint is not fully satisfied.

The method is demonstrated for standard stiffness-based
optimization, but can be used together with any objective
or constraint functions. In particular, the removal of inward
corners should be essential when stress is introduced as such
functions.
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