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Abstract
This work presents a method for the continuum-based topology optimization of structures whereby the structure is
represented by the union of supershapes. Supershapes are an extension of superellipses that can exhibit variable symmetry
as well as asymmetry and that can describe through a single equation, the so-called superformula, a wide variety of shapes,
including geometric primitives. As demonstrated by the author and his collaborators and by others in previous work, the
availability of a feature-based description of the geometry opens the possibility to impose geometric constraints that are
otherwise difficult to impose in density-based or level set-based approaches. Moreover, such description lends itself to direct
translation to computer aided design systems. This work is an extension of the author’s group previous work, where it was
desired for the discrete geometric elements that describe the structure to have a fixed shape (but variable dimensions) in order
to design structures made of stock material, such as bars and plates. The use of supershapes provides a more general geometry
description that, using a single formulation, can render a structure made exclusively of the union of geometric primitives.
It is also desirable to retain hallmark advantages of existing methods, namely the ability to employ a fixed grid for the
analysis to circumvent re-meshing and the availability of sensitivities to use robust and efficient gradient-based optimization
methods. The conduit between the geometric representation of the supershapes and the fixed analysis discretization is, as in
previous work, a differentiable geometry projection that maps the supershapes parameters onto a density field. The proposed
approach is demonstrated on classical problems of 2-dimensional compliance-based topology optimization.

Keywords Topology optimization · Geometry projection · Supershapes · Superformula

1 Introduction

Density-based and level set topology optimization meth-
ods have been employed with wide success to produce
organic, free-form designs across multiple application
realms. Despite this success, a withstanding challenge in
topology optimization is the ability to impose geomet-
ric considerations to render designs that are amenable to
production. As most industry practitioners of topology opti-
mization can attest to, a design obtained via topology opti-
mization is rarely produced as-is. Consequently, following
the topology optimization, design engineers create designs
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that try to capture as much as possible the material distri-
bution of the optimal topology, but incorporate necessary
aspects of the production process. This ‘interpreted’ design
often incurs in a significant detriment of the structural per-
formance. As a result, the engineer must spend a significant
amount of time performing design changes by trial and
error, which is not only a resource-intensive task, but one
that leads to a suboptimal design. This is arguably the pri-
mary reason why topology optimization has not yet earned a
permanent place in engineering workflows, despite the wide
availability of commercial software.

One aspect that has been investigated in topology
optimization (and is a focus of ongoing work) with regards
to the physical realization of topology optimization designs
is the incorporation of various ‘manufacturing constraints.’
Their purpose is to render designs that conform to certain
aspects of manufacturing processes. For example, one such
widely used constraint is the so-called ’casting draw’
constraint, which renders designs that do not exhibit
undercuts and thus require no cores for mold casting. The
reader is referred to the survey in Liu and Ma (2016)
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for a review of manufacturing considerations in topology
optimization.

In addition to ease of manufacturing, there are other
production considerations that necessitate consideration of
geometric requirements. These include, for example, the
availability of high-level geometric features that facili-
tate positioning in fixtures, assembly and inspection. In
many existing workflows for design of mechanical com-
ponents (that do not use topology optimization), a widely
used geometric representation that accommodates these
requirements is the combination of geometric primitives via
Boolean operations. Primitives have convenient datum enti-
ties (faces, edges, and vertices) that facilitate positioning
in manufacturing fixtures and assembly. They also make it
easier to specify dimensional tolerances, which is not only
useful to perform tolerance stackup analysis but also for
dimensional quality control and inspection. Thus, even if
an organic design obtained via topology optimization can
be manufactured by a given process, it still may be more
convenient to replace it with a design made of primitives
that accommodates the other aforementioned requirements.
It should be noted that, in fact, most computer aided design
systems for solid modeling work primarily by representing
designs via primitives.

Despite the effectiveness of the aforementioned manu-
facturing constraints to enforce certain geometric require-
ments, it remains difficult to introduce general geometric
constraints in the topology optimization. At the root of this
difficulty lies the way in which density-based and level
set-based topology optimization techniques represent the
structure, namely by means of a density field or the level set
of a function, respectively. These representations naturally
and easily accommodate topological and shape changes,
leading to organic designs. However, they make it difficult
to impose geometric considerations such as, for example,
obtaining a design with convenient datum entities for ease
of production. Therefore, it is desirable to have topology
optimization techniques that are endowed with a feature-
based geometric representation of the structure that allows
to impose these kinds of considerations, while retaining the
advantage of existing techniques of employing a fixed grid
for the analysis and optimization to circumvent remeshing.

Methods to incorporate geometric features with analyti-
cal geometry descriptions in topology optimization gener-
ally fall within two categories. First, there is a group of
methods that, through various means, combine free-form
topology optimization with embedded components or holes
shaped as geometric primitives (cf. Chen et al. 2007; Qian
and Ananthasuresh 2004; Xia et al. 2012; Zhang et al. 2011,
2015; Zhou and Wang 2013; Zhu et al. 2008). The sec-
ond group, to which this work belongs, includes methods
that represent the structure solely through a feature-based
representation. The precursor of these methods is, in fact,

one of the first topology optimization techniques: the bub-
ble method (Eschenauer et al. 1994), where splines are used
to represent the structural boundaries. This method requires
re-meshing upon design changes, which limits its use. More
recently, novel topology optimization techniques have been
advanced that, as their density-based and level set-based
counterparts, employ a fixed grid for the primal and sensitiv-
ity analyses, thereby circumventing the need for remeshing.
Table 1 provides a comparison of these methods. The
table includes only methods where the geometry is entirely
composed of geometric primitives (to describe either the
solid or the void regions).The geometric shapes listed for
each method are the ones reported in the cited works; this
does not imply these methods cannot potentially accommo-
date other geometric representations. Moreover, the analysis
technique reported in the table is the one demonstrated
in the references cited, however it can be argued that
sharp interface methods (such as the extended finite ele-
ment method) and ersatz material methods can be used
interchangeably.

Among the methods listed in Table 1, two methods repre-
sent the structure as the union of primitive-shaped geometric
components with fixed shape but variable dimensions and
position: the moving morphable components method (Guo
et al. 2014a, 2016; Zhang et al. 2016b; 2017b), and the
geometry projection method (Bell et al. 2012; Norato et al.
2015; Zhang et al. 2016a). The former method performs
the topology optimization of a) 2d-structures, by employ-
ing as geometric components rectangles, approximated via
superellipses, and quadrilateral shapes with two opposite
sides described by polynomial and trigonometric curves;
and b) 3d-structures, by using cuboids. The latter method
uses rectangles with straight or semicircular ends for the
design of 2d-structures, and plates with semicylindrical
edges for the design of 3d-structures. The use of fixed-
shape components facilitates the design of structures made
of stock material.

This work extends the geometry projection method
to incorporate supershapes as a more flexible geometric
representation to accommodate via a single formulation
both designs of similar complexity to those obtained with
free-form topology optimization, as well as designs made
exclusively of primitives. While the designs presented in
this work are still far from manufacturable as they do not
incorporate many important geometric considerations, ease
of production is the driving motivation, and our method
aims to be a step in that direction by advancing the
ability to represent primitive-only designs with a unified
formulation.

The remainder of the paper is organized as follows. In
Section 2, we introduce the supershapes. Section 3 describes
the projection of the supershapes onto a density field for
the analysis. The computation of the signed distance to
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the boundary of a supershape, which is required for the
geometry projection, is described in Section 2. Sections 5
and 6 describe the optimization problem and details of the
computer implementation respectively. Several examples
that demonstrate the proposed method are presented in
Section 7. Finally, Section 8 draws conclusions of this work.

2 Supershapes

Supershapes (also called Gielis curves, Gielis 2017) are
a generalization of superellipses that can exhibit variable
symmetry as well as asymmetry and can describe through a
single equation, the so-called superformula, a wide variety
of shapes, including geometric primitives (Gielis 2003). The
appeal of supershapes is their ability to express through
a single equation a wide range of primitives and organic
shapes. The superformula is given by

r(θ) :=
[(∣∣∣∣1a cos

(
mθ

4

)∣∣∣∣
)n2

+
(∣∣∣∣1b sin

(
mθ

4

)∣∣∣∣
)n3

]− 1
n1

(1)

Figure 1 shows some examples of supershapes. When
m = 4 and n1 = n2 = n3 = n, this expression reduces to
the equation for a superellipse (also known as a Lamé oval,
Gridgeman 1970). Unlike superellipses, supershapes need
not be symmetric; the parameter m controls the rotational
symmetry. The values of a and b control the size, and the
exponents n1, n2 and n3 control the curvature of the sides.
The superformula can produce a wide range of shapes,
including many shapes found in nature; the reader is referred
to Gielis (2003; 2017) for more examples.

For the purpose of this work, two modifications are made
to the superformula of (1). First, the absolute value function
is not differentiable at zero, which would preclude the use of
efficient gradient-based optimization methods. Therefore,

we replace it with the approximation

|x| ≈
√

ε + x2, 0 < ε � 1 (2)

Second, use of the power reduction formulas 2 cos2 x =
1 + cos 2x and 2 sin2 x = 1 − cos 2x provides a simplifica-
tion both for computation and for the sensitivity analysis of
the square trigonometric functions that result after replac-
ing the absolute value with the above approximation. The
modified superformula is given by

r̃(θ) :=
[
x̃(θ)

n2
2 + ỹ(θ)

n3
2

]− 1
n1 (3)

where

x̃(θ) :=
(

ε + 1

2a

[
1 + cos

(
mθ

2

)])
(4)

ỹ(θ) :=
(

ε + 1

2b

[
1 − cos

(
mθ

2

)])
(5)

A Mathematica script to interactively plot a supershape
with the foregoing expressions while modifying its param-
eters is presented in Appendix A. An important note about
(4) and (5) is that the angle θ must be in the range [−π, π ],
as otherwise the supershape will not be closed. Therefore, if
an angle is passed to these formulas, it must be appropriately
wrapped around this range.

In addition to the foregoing parameters that define the
size and shape of the supershape, we also wish to control
its scale, location and orientation in space. Therefore, we
introduce a scale factor s, the position xc of the origin of the
coordinate system e′

1 − e′
2 on which (3) is applied, and the

rotation φ = e′
1 · e1 of this coordinate system with respect

to a global coordinate system e1 − e2 as additional design
parameters, as shown in Fig. 2. We note that θ in (3) is

(a) (b) (c)

Fig. 1 Examples of supershapes. a From top to bottom: subellipse,
circle, ellipse and superellipse (all shapes with m = 4, n1 = n2 =
n3 = n). b Shapes with different rotational symmetry (all shapes with

a = b = 1, n1 = n2 = n3 = 30). c Shapes with different side
curvature (all shapes with m = 5, a = b = 1, n1 = n2 = n3 = n)
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Fig. 2 Location and orientation of supershape

defined with respect to e′
1. With this notation, a point on the

boundary of the shape is given by

x(θ, φ, xc, m, a, b, n1, n2, n3) = xc+sr̃(θ)Rφ

{
cos θ

sin θ

}
(6)

= xc+sr̃(θ)Rφ+θe1 (7)

where

Rt :=
[
cos t − sin t

sin t cos t

]
(8)

3 Geometry projection

To perform the analysis on a fixed grid, we use an ersatz
material, whereby the elasticity tensor at a point is modified
as a function of a density variable to reflect a fully
or partially solid material, or void. This strategy is the
same used by all density-based and many level set-based
topology optimization methods. The design variables in our
method, however, are the supershape parameters described
in the preceding section. Therefore, we need a mapping
between the supershape parameters and the aforementioned
density. This mapping must be differentiable so that
we can obtain design sensitivities with respect to the
supershape parameters and employ efficient gradient-based
optimization methods. To this end, we use the geometry
projection method (Norato et al. 2004; Bell et al. 2012;
Norato et al. 2015; Zhang et al. 2016a). The idea of the
geometry projection is simple: the density at a point p in

space is the fraction of the volume of the ball Br
p of radius r

centered at p that intersects the solid geometry, i.e.:

ρ(p, r) := |Br
p ∩ ω|
|Br

p|
, (9)

where ω denotes the region of space occupied by the
structure and | · | is a measure of the volume (or area). If we
make the assumption that r is small enough that the portion
of the solid boundary that intersects the ball, ∂ω ∩ Br

p, can
be approximated by a straight line, then the density of (9)
can be readily computed as a function of the signed distance
d between p and ∂ω. As depicted in Fig. 3, in 2-d the
density under this simplifying assumption corresponds to
the fraction of the solid circular segment area to the area of
the ball Br

p, giving

ρ(d(p, z), r) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if d > r
1

πr2

[
r2 arccos

(
d
r

) −
d
√

r2 − d2
]

if − r ≤ d ≤ r

1 if d < −r,

(10)

where the arguments of φ have been omitted on the right-
hand side of the equation for conciseness. Since r is
fixed in the proposed method, it will be omitted as an
argument hereafter. The vector of design parameters z for
the entire structure is the aggregation of the vectors zi of
design parameters for each of the supershapes, i.e. z =
[zT

1 zT
2 . . . zT

Ns
]T , where Ns is the number of supershapes.

The signed distance d is positive if p is outside the shape,
zero if p lies on its boundary, and negative if it lies inside.
The computation of the signed distance is discussed in
Section 4.

In addition to the design parameters that dictate the
shape, scale, position and orientation of a supershape, we
also ascribe a size variable α to each supershape. A unique
feature of the method presented in Bell et al. (2012),
Norato et al. (2015), and Zhang et al. (2016a) is that in the
ersatz material this variable is penalized as in density-based

Fig. 3 Geometry projection
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topology optimization. Therefore, the elasticity tensor at a
point p is given by

C(p, z) := ρ̂(p, z)C0 (11)

ρ̂(p, z) := αqρ(d(p, z)) (12)

where C is the ersatz elasticity tensor, C0 is the elasticity
tensor of the fully solid material, ρ̂ is an effective density and
q is a penalization power. The size variable αi of supershape
i is part of its vector of design variables, i.e.,

zi := [mi, ai, bi, n1i , n2i , n3i , xT
c , φi, si , αi]T (13)

This penalized size variable is an important ingredient of our
formulation, as it allows the optimizer to entirely remove
a geometric component from the design when the size
variable becomes zero.

Equation (10) is used for the calculation of the density
with respect to a single geometric component. More
generally, we consider a structure made by the union of
multiple shapes. Here, this union is made through the
maximum function, which corresponds to the Boolean
union of implicit functions (Shapiro 2007). Specifically, at
a point p, a composite density is defined as

ρ̃(p, z) := max
i

ρ̂i (p, zi ) (14)

where ρ̂i and zi denote the effective density and design
parameters for supershape i respectively.

Since the maximum function is not differentiable, we
replace it with a lower-bound Kreisselmeier-Steinhauser
(KS) approximation (as in Zhang et al. 2017a):

max
i

ρ̂i (p, zi )≈KSmax(ρ̂i(p, zi )) := 1

k
ln

(
1

Ns

Ns∑
i

ekρ̂i (p,zi )

)

(15)

where k is a specified parameter and Ns is the total number
of shapes. Besides other benefits (described in Zhang et
al. 2017a), this approximation has the advantage that it
approximates the true maximum from below. This helps
the method produce designs with less gaps between shapes
in the optimal designs. These gaps occur because points
in the gap regions obtain some stiffness from the nearby
shapes through the geometry projection and thus have a
stiffness that is appreciably larger than that of void regions
away from the shapes. This phenomenon is exacerbated
by the use of other aggregation functions (such as the p-
norm) that approximate the maximum from above, as they
consequently increase the effective stiffness of these gap
regions. In our numerical experiments, the lower-bound
KS function does a much better job of rendering designs
without gaps.

We note that if every ρ̂i for every supershape i is zero at
a point p, the composite density will be consequently zero
and the analysis will be ill-posed. Therefore, as is customary

in ersatz material methods, a small lower bound ρmin must
be imposed on the composite density. We achieve this via

ρ̃(p, z) := ρmin + (1 − ρmin)KSmax(ρ̂i(p, zi )) (16)

where 0 < ρmin � 1.
Finally, the ersatz material is modeled using the

composite density as

C(p, z) := ρ̃(p, z)C0 (17)

In our method, we use the finite element method to solve
the analysis problem. A composite density is computed
at each finite element, with p above corresponding to the
element centroid.

4 Signed distance calculation

Even though supershapes are given in polar coordinates, the
computation of the signed distance is not as straightforward
as in the case of the geometric representations used
in our previous works, whereby the discrete geometric
components are determined by a medial axis (in the case
of approximately cylindrical bars, Norato et al. 2015) or a
medial surface (in the case of plates, Zhang et al. 2016a). In
these geometric representations, which in effect are implicit,
distance-constrained offset surfaces (Bloomenthal 1990),
the signed distance can be readily computed in closed
form as the distance to the medial axis (or surface) minus
the offset (e.g., the half-width of bars or half-thickness of
plates). Due to the form of (1), however, it is not possible
to obtain a closed-form expression for the signed distance
from any point to the supershape boundary, and therefore
it must be obtained numerically. It is worth noting that (6)
constitutes an explicit representation, since this expression
constitutes a rule to generate points on the boundary of the
supershape, as opposed to implicit representations, whereby
a rule determines whether a point is outside or inside the
solid (Shapiro 2002).

Given a supershape with parameters zi , the distance from
a point p to its boundary is given by

|d(p, zi )| := ‖p − c(zi )‖ (18)

where c, the point on the boundary of the supershape closest
to p (cf. Fig. 2), is given from (6) by

c(zi ) := x(θ∗(zi ), zi ) (19)

where θ∗ is the solution to the problem

θ∗(zi ) = argmin
θ

f (θ) := ‖p − x(θ, zi )‖22 (20)

The foregoing problem can be solved numerically using
root-finding methods to solve the first-order optimality
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condition f ′(θ) = 0. We employ a damped Newton method
to solve this problem, with θ at iteration I given by:

θ(I) ← θ(I−1) − β(I) f ′(θ)

f ′′(θ)
(21)

where the damping parameter is given by

β(I) =

⎧⎪⎨
⎪⎩

β(0) If I = 1
min

(
1, 2β(I−1)

)
If I > 1 and f (I) < f (I−1)

max
(
βmin,

1
2β

(I−1)
)
Otherwise

(22)

The Newton update is repeated until |f ′| falls under
a specified tolerance restol. The derivative f ′ can be
analytically computed from 3) and (6) (cf. (48)). To compute
f ′′, we use forward finite differences. The Newton update
can fail if f ′′(θ) = 0, i.e. at an inflection point of the
squared distance. However, we did not observe this situation
in our numerical experiments. While a more sophisticated,
robust and efficient solution strategy could be used to
solve the shortest distance calculation (for example, a trust-
region method), the above iteration is easy to vectorize for
multithreading and works well in our examples.

A good initial guess θ0 for the Newton iteration
corresponds to the point c0 where the line betwen p and
xc intersects the boundary (shown in Fig. 2), which can be
readily computed by

θ0 = arctan

(
p2 − xc2

p1 − xc1

)
− φ (23)

A four-quadrant version of the arctan function must be
employed and, as discussed in Section 2, the resulting angle
must be wrapped to the interval [−π, π ].

The sign of the signed distance can be computed, for
instance, as

sgn(d(p, zi )) = sgn((p − c) · (c − xc)) (24)

Since we compute one composite density per element,
a signed distance calculation to the element centroid is
required for every element in the mesh. This calculation is
evidently more expensive than the one used in our previous
works, where a closed-form expression in terms of the
design parameters is available. This cost is alleviated by
the fact that these calculations are embarrassingly parallel,
hence we can use parallel computing to speed up the
computation. The computational cost of one signed distance
calculation for the entire mesh is O(Nel × Ns), where Nel

is the number of elements in the mesh. We note that this
cost is linear in Nel , whereas the cost of the finite element
analysis is O(N

q
eq), where Neq > Nel is the number of

equations and q > 1. Therefore, as the number of elements
grows, the finite element analysis dominates the cost of the
optimization as usual. Finally, it is possible (but not done
in this work) to use efficient spatial partitioning techniques

such as kD-trees to further reduce the cost of the signed
distance calculation.

5 Optimization problem

In this work, we consider the classical topology optimiza-
tion problem of minimizing compliance subject to a volume
fraction constraint:

minz C(u(z)) := ∫
�t
u(z) · t ds

subject to
V (z)
|�| − v∗

f ≤ 0
a(u(z), v) = l(v), ∀v ∈ U�; u ∈ U�

zlow ≤ zj ≤ zupp j = 1, . . . , 10Ns

(25)

In the above problem, C denotes the structural com-
pliance. While we consider compliance minimization for
simplicity in this work, we note that stress considerations
can be incorporated in geometry projection methods (Zhang
et al. 2017a). The set � denotes the design envelope, i.e. the
region of space where material can be distributed. We
assume the tractions t are design-independent, and they are
applied on a fixed portion of ∂�, which we denote by �t .
The volumes of the structure and the design envelope are
denoted by V and |�| respectively, and v∗

f is the constraint
limit on the volume fraction. The volume of the structure is
computed via

V (z) =
∫

�

ρ̃(p, z) dv (26)

Equilibrium of the structure is enforced for any design
produced by the optimizer via the second constraint in (25),
where a and l are the energy bilinear and load linear forms
respectively, given by

a(u, v) :=
∫

�

∇v · C(p, z)u dv (27)

l(v) :=
∫

�t

v · t da (28)

and U� := {u ∈ H 1(�) : u = 0 on �u} is the
set of admissible displacements. The portion of ∂� on
which homogeneous displacement boundary conditions are
applied is denoted by �u, and we assume this boundary to
also be design-independent. The effective elasticity tensor
C in (27) is computed from (17). Finally, in the above we
have also assumed that there are no body loads applied on
the structure. An important note is due here: for the SIMP
penalization on the supershape size variables to be effective,
the elasticity tensor C in (27) must be computed using a
value of q in (12) larger than the value used to compute the
volume in (26). Here, we use q = 3 for the former and
q = 1 for the latter.
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The last line in the problem of (25) corresponds to
bounds on the design variables. The purpose of these bounds
is discussed in detail in the following section. Since the
problem is highly nonlinear, we impose move limits on
the design variables so that only limited design steps are
taken by the optimizer at each iteration, thus avoiding early
overshooting to a poor design from which the optimization
cannot recover. Since different variables represent different
quantities and have different bound ranges, it is easier
to impose move limits if we first scale all of the design
variables to the range [0, 1], for example via ẑi := (zi −
zlow)/(zupp − zlow), and then impose the same move limit
on all of the variables. For a move limit 0 < M ≤ 1, we
then replace the last line in (25) at iteration I with

max(0, ẑ(I−1)
i − M) ≤ ẑ

(I )
i ≤ min(1, ẑ(I−1)

i + M) (29)

The sensitivities are accordingly scaled by ∂ẑi/∂zi =
1/(zupp − zlow). Appendix B sumarizes the sensitivities of
the functions in (25).

6 Computer implementation

We start the description of our computer implementation by
providing an algorithm for our method, shown in Fig. 4. Our
method is implemented in MATLAB. The finite element
analysis is performed on a regular grid ofNel square bilinear
elements of size h. Each of the outer repeat iterations
corresponds to a design update in the optimization, which is
executed until the norm of the Karush-Kuhn-Tucker (KKT)
condition or the relative change in the compliance between
consecutive iterations fall below specified tolerances.

6.1 Signed distance and projected density
calculation

We compute one projected density (10) per element, for
which we compute the signed distance from the centroid
of the element to each of the supershapes. This calculation
corresponds to the first double for loop inside the repeat
loop. This distance is computed by using the damped
Newton iteration described in Section 4. The step size of
the finite difference approximation of f ′′ (20) is 1E-6. The
initial damping parameter is β(0) =1E-3, and βmin =1E-6.
The stopping criterion is restol =1E-8.

By using Nel-vector representations of the angles in
(20) and (23) and of the distance in (18) and (20), we
take advantage of MATLAB’s automatic multithreading of
vector operations to parallelize the inner for loop. While
this incurs in some redundant computation for elements for
which the iteration converges faster than others, this strategy
is still much more efficient than the alternative sequential
solution. The computation of the sign of (24) is similarly

Fig. 4 Algorithm for topology optimization with supershapes

vectorized. We note that while in our implementation
we use multithreading, the signed distance calculation is
embarrassingly parallel and can be readily implemented in
distributed memory programming.

For the calculation of the projected density, we employ
a sample window radius of r = 2.5h in (10). In previous
implementations of the geometry projection method we
have used r = √

2h/2, i.e., the sampling window
circumscribes the element. However, in the numerical
experiments performed in this work we found that a larger
radius promotes faster convergence, particularly in early
iterations. The calculation of the projected density of (10)
is also done using efficient vector operations. An array of
projected densities per element and per supershape is stored
for subsequent calculations.

6.2 Finite element primal and sensitivity analyses

With theprojecteddensity for eachelement/supershapeavailable,
we proceed to solve the finite element analysis (corresponding to
the second constraint in (25). To compute the stiffness
matrix Kj of element j , we compute the ersatz elasticity
tensor of (17), which requires the calculation of the com-
posite density ρ̃ of (16). As mentioned before, we use q = 3
in the calculation of the effective density of (12) to penalize
intermediate values of the size variable αi of supershape i.

The lower bound ρmin in (16) is set to 1E-4 in all presented
results. Lower values increase the ill-conditioning of the stiff-
ness matrix, and thus decrease the accuracy of the primal
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solution and, consequently, of the sensitivities. As ρmin

decreases, the disagreement between the analytical sensitivities
of the compliance and those approximated via finite differences
increases. Inaccurate sensitivities hinder the convergence
and efficacy of the gradient-based optimization. On the
other hand, too high a ρmin leads to unrealistically stiff void
regions. The foregoing value seems to consistently work
well in our experiments, and is used throughout this work.

Finally, we use a value of k = 32 for the calculation of
the lower KS function of (16).

The solution u to the primal analysis is used to compute
the compliance C of (25). The computation of the volume
of (26), on the other hand, is performed with q = 1 in (12).
Finally, sensitivities of the compliance and volume fraction
are computed following the expressions in Appendix B.

6.3 Optimization

Before taking the design step, we impose move limits
on the design by modifying the lower and upper bounds
on the scaled design variables as per (29). To perform
the design update, we employ the method of moving
asymptotes (MMA) (Svanberg 1987). Specifically, we
use the MATLAB implementation corresponding to the
version of MMA presented in Svanberg (2007). All MMA
parameters are set to the default values suggested in
Svanberg (2007) for the standard problem formulation,
namely a0 = 1, and al = 0, cl = 1, 000 and dl = 1 for every
constraint l in the optimization. The asymptote increase and
decrease factors are set to the default values of 1.2 and 0.7
respectively. The reader is referred to Svanberg (2007) for
a detailed explanation of these terms, and here we provide
them solely for the purpose of reproducibility of our results.

6.4 Design variables bounds

An important aspect of our method that we discuss in this
section is the need for appropriate bounds on the various
design parameters. This need arises from considerations on
1) accuracy of the geometry projection, 2) robustness of the
sensitivities calculation, and 3) physical realization.

With regards to accuracy of the geometry projection, we
recall that the definition of the projected density of (10)
rests on the assumption that the portion of the supershape
boundary intersecting the sample window, ∂ω ∩ Br

p, can be
approximated as a single straight line. Therefore, we want
to avoid shape boundaries that are too curvy in relation to
the element size, as well as thin slivers that would lead
to disjoint intersections. Loosely speaking, we want the
element size h to be small in relation to the supershape. This
is much easier to control in the offset surfaces reported in
our previous work, as they accommodate (by design) very
little shape variation.

To control the supershape proportions in relation to the ele-
ment size h, we impose various bounds on its parameters. We
set lower bounds on a and b to avoid shapes that resemble
thin slivers. We also impose upper bounds on these parame-
ters, since slivers can also develop for extreme a/b ratios if,
for example, the exponents n1, n2 and n3 are such that con-
vex sides form. With the same motivation, we impose lower
bounds on these exponents to avoid highly convex sides,
and, in some examples, we also set n1 = n2 = n3. In gen-
eral, we aim to attain an adequate range for the aspect ratio
of the shape. We note that it is difficult to strictly enforce
the requirement that the intersection between the boundary
of a shape and an element is approximately straight, since
supershapes can develop corners. Nevertheless, this did not
seem to be a problem in our numerical experiments given
the applied bounds.

The second consideration as to why parameter bounds are
needed pertains the calculation of sensitivities. As discussed in
our previous work (cf., Norato et al. 2015; Zhang et al.
2016a), when the closest point on the boundary of the super-
shape is not unique, the sensitivities are not defined. In the
case of offset surfaces, this occurs when the signed distance
is evaluated at a point lying on the medial axis (in 2-d) or
medial surface (in 3-d), and the sample window size is equal
or greater to the bar width or plate thickness. In that case, it
is easy to prevent this situation by requiring that the sample
window size (and hence the element size) are sufficiently
small with regards to these dimensions. In the case of super-
shapes, on the other hand, it is more difficult to prevent
this situation, given the wide variation of shapes that can be
accommodated. As before, controlling the aspect ratio of the
supershape via bounds on the aforementioned parameters
seems to effectively avoid this situation in practice.

Non-uniqueness of the signed distance can also arise from
sharp corners in the supershapes. However, the substitution of
the absolute value in the supershape formula with the approxi-
mation of (2) rounds the corners.We use ε = 1E-3 in (2) for all
of our examples. We also place upper bounds on the expo-
nents n1, n2 and n3 to avoid increasing the non-linearity
of the signed distance in the supershape parameters, and
consequently of the optimization problem functions.

The third and final consideration to put bounds on the
supershape parameters is simply physical realization. In
particular, we want to avoid shapes so small that they could
not be fabricated. The most natural parameters to control
the shape size are a and b along with the scaling factor s.
In general, however, enforcement of a strict minimum size
in the structure is not straightforward.1 Convex sides can
render a supershape size smaller than a and b. Moreover,

1The minimum size of a supershape can be defined as its minimum
width. The width of a closed planar curve is the distance between two
parallel supporting lines bounding the curve (Struik 2012).
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Fig. 5 Short cantilever beam problem

the intersection of supershapes can be smaller than the
minimum size of the intersecting supershapes. A strategy to
enforce a minimum size in geometry projection methods is
described in Hoang and Jang (2016). We defer investigation
of this issue to future work.

In summary, an important aspect of using supershapes,
given the wide freedom of shapes they can represent, is
the imposition of bounds on the parameters to ensure
robust behavior of the proposed method. The values of the
bounds presented in our examples seemed to consistently
work well. However, a more in-depth understanding of the
various interplays between supershape parameters would
render a more systematic strategy to control the resulting
supershapes. Such a study is deferred to future work.

7 Results

In this section we present numerical examples to demon-
strate the proposed method. In all examples, we consider an

isotropic elastic material with Young’s modulus E = 1E5
and Poisson’s ratio of ν = 0.3 (since minimum-compliance
designs depend only on the volume fraction and not on the
magnitude of the applied load or the material’s modulus,
we henceforth omit units for brevity). The magnitude of the
applied load in all examples is F = 10. All supershapes
have a thickness of t = 1, and in all of the initial designs
we assign αq = 0.5 to all the shapes. Unless noted, in all
examples, we use a move limit of m = 0.05.

7.1 Short cantilever beam

We first design a short, cantilever beam (cf. Fig. 5) with a
volume fraction constraint of v∗

f = 0.5. A 40 × 40 grid
is used for the analysis, i.e., h = 0.05. In this example,
we use a single component, with the intention of showing
the flexibility of supershapes. Therefore, this constitutes a
shape optimization example. Geometry projection methods
have been used for shape optimization in Norato et al.
(2004; Wein and Stingl 2018).

The bounds for this problem are a, b ∈ [0.1, 2], m ∈
[2, 6], n1, n2, n3 ∈ [1, 10], s ∈ [1, 2], xci

∈ [0, 2], i =
1, 2, and φ ∈ [−π, π ]. The convergence tolerances are
kktol = 1E-3 and objtol = 1E-3. The initial design, shown
in Fig. 6a, is a circle placed at the center of the design region,
and has a = b = 0.5, m = 2, n1 = n2 = n3 = 2, s = 1.0,
and φ = 0.

Designs corresponding to several iterations in the
optimization are shown in Fig. 6. The optimization
converges in 122 iterations. The optimal design is m =
3.566, a = 1.196, b = 0.443, n1 = 1, n2 = 1, n3 = 1.115,
xc = [0.128 0.997]T , φ = −0.005, s = 1.835 and α = 1.
Its compliance is C = 0.025484, and its volume fraction is
vf = 0.499996.

The supershape plot is clipped to the design region �,
since this is the only portion of the supershape that has an
effect in the compliance and the volume (correspondingly,
the fabrication of the structure should cut material outside

(a) Initial design (b) Iteration 10 (c) Iteration 30 (d) Iteration 70 (e) Iteration 122

Fig. 6 Design iterates for short cantilever beam problem. The color denotes the size variable α. In this and subsequent figures, the arrow originates
at the center xc, its size is 0.5max(a, b), and its orientation is that of the supershape. Only the portion of the supershape inside the design region
� is shown



Topology optimization with supershapes 425

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 7 Composite density ρ̃ for optimal short cantilever beam

the design region). The composite density ρ̃ for the optimal
design is shown in Fig. 7; note that in this case the composite
density is the same as the effective density ρ̂, since there is
only one shape in the design.

The optimal design is also shown in Fig. 8 without
clipping to �. In the same figure, we compare the optimal
supershape design to the shape corresponding to uniform
energy density along the boundary, and with volume
fraction of 0.5. For an elastic structure with a single design-
independent loading, and as long as the design region allows
it, the minimum compliance optimal shape has uniform
strain energy density along the boundary (Pedersen 2000).
Moreover, under the same conditions, the stiffest design is
also the strongest design. Thus, the uniform-energy shape
is the same as the uniform-strength shape, which Galileo
found to be parabolic for a cantilever beam (Timoshenko
1953). Using Euler beam theory, it can be readily shown that

Fig. 8 Optimal supershape for short cantilever beam design (continu-
ous line), without clipping to design region�. Dashed line corresponds
to the uniform-energy boundary for 0.5 volume fraction

the uniform-energy shape for this design region and for a
volume fraction of 0.5 is given by

y = ±3

4

√
1 − x

2
(30)

The above expression is based on an origin (x, y) =
(0, 0) at the midpoint of the left side of the design region.
As seen in Fig. 8, there is good agreement with the uniform-
energy shape.

7.2 MBB beam

Our next example corresponds to the Messerschmitt-
Bölkow-Blohm (MBB) beam, extensively studied in topol-
ogy optimization. The problem setup is shown in Fig. 9.
The volume fraction constraint for this problem v∗

f =
0.4. A 160 × 40 grid is used for the analysis, i.e., h =
0.125. Taking advantage of the symmetry of the problem,
we perform the analysis and design on half of the design
region.

The bounds for this problem are a, b ∈ [0.4, 5], m ∈
[2, 6], s ∈ [1, 2], xcx ∈ [0, 20], xcy ∈ [0, 5] and
φ ∈ [−π, π ]. In these examples, we assign n1 = n2 =
n3 = 10 and fix these parameters in the optimization to
avoid unfavorable, high aspect ratio and/or highly concave
shapes that could cause the geometry projection to fail. The
convergence tolerances are kktol = 1E-3 and objtol =
1E-5. We solve the topology optimization using different
initial designs with supershapes arranged in anNx×Ny grid,
with positions xcx and xcy evenly spaced by 20/(Nx + 1)
and 5/(Ny + 1) respectively. The remaining parameters for
the shapes in the initial design are a = b = 0.5, m = 4,
s = 1.0, and φ = 0.

Figure 10 shows the initial and optimal designs for
beams with 5 × 2, 10 × 2 and 10 × 4 supershapes. The
optimization converges in 148, 131 and 152 iterations, and
the compliance values of the optimal designs are 0.5938,
0.5439, and 0.5006 respectively. The volume fraction of
the optimal design in all cases is less than 1E-3 from
the imposed limit of 0.4. We first observe that the
optimal designs are reminiscent of known density-based
optimal topologies for the MBB beam. Although there
are differences in the designs obtained, the bounds on the
supershape parameters clearly impose a minimum size on
the design because we do not see thinner members in

F

20

5

CL

Fig. 9 MBB beam problem
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one design than in the others. We note that the optimizer
removes some shapes in the 10 × 2 and 10 × 4 designs.

This example illustrates one aspect of our formulation,
and that is that in some cases there are gaps between the
shapes. As discussed in Section 3, this owes primarily to the
fact that these gaps are much stiffer than void regions that
are away from the shapes. Since the composite density in
these gaps is in general closer to unity than it is to zero as a
result of the geometry projection with respect to the nearby
shapes, and since this composite density is reflected in the
analysis via (17), it is not unreasonable to close these gaps

in the actual design. This can be easily done by modifying
the primitives around the gap.

We also use this example to discuss the effect of mesh
size on the results. As discussed in Section 6.4, we require
the element size to be smaller than the minimum size
of the shape to ensure well-defined sensitivities. Beyond
this requirement, the mesh can be subsequently refined.
To illustrate the effect of mesh refinement, we perform
the optimization for the MBB beam with 5 × 2 shapes
(with initial design shown in Fig. 10, top/left) and with
finite element meshes of 80 × 20, 160 × 40 and 200 ×

Fig. 11 Designs (left) and composite density (right) of MBB problems
for meshes of 80× 20 (top), 160× 40 (middle) and 200× 50 (bottom)
elements. The color of the shapes denotes their size variable α. The

color scale is the same for the shapes size variables and the composite
density. Supershapes are clipped to the design region �

Fig. 10 Initial (left) and optimal (center) designs, and composite density (left) for MBB problems. The color of the shapes denotes their size
variable α. The color scale is the same for the shapes size variables and the composite density. Supershapes are clipped to the design region �
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Fig. 12 Cantilever beam problem

50 elements (the second result is the same one shown
in Fig. 10, top). The results are shown in Fig. 11. The
optimization converges in 250, 148 and 201 iterations, and
the compliance values of the optimal designs are 0.5283,
0.5439, and 0.5714 respectively.

Two observations are worth making. First, a minimum
length scale is in general satisfied, and this is dictated by
the fixed number of shapes, and by the lower bounds on
their dimensions. That is, regardless of the mesh size, we
expect to obtain designs of similar complexity if we use the
same design representation (number of shapes and bounds
on shape parameters). Second, as we expect, a finer mesh
provides a better resolution of the shapes upon projection,
and therefore it provides better control over the shape
boundaries than coarser meshes. The compliance values

actually increase when refining the mesh, but part (if not all)
of that increase is due to the fact that the finer mesh is more
compliant, since it has a larger number of analysis degrees
of freedom.

7.3 Long cantilever beam

The designs obtained in the preceding section are reminis-
cent of MBB beam designs obtained with free-form topol-
ogy optimization methods. This is an indication that the
proposed method obtains expected results. However, these
designs can be more easily and more efficiently obtained
using, for example, density-based topology optimization.
Furthermore, one could post-process the optimal free-form
design and ’fit’ a set of supershapes to it, as it has been done
in the past using, e.g., splines (cf. Bendsøe and Sigmund
2003 and the extensive references therein).

Where supershapes provide interesting possibilities is in
producing designs made of geometric primitives such as,
for example, rectangles, ellipses and triangles. As explained
in Section 1, the availability of datum geometric entities
helps designs with primitives facilitate certain aspects of the
production of mechanical components that are not available
in free-form designs.

Fig. 13 Initial (left) and optimal (right) designs for cantilever beam
problem using triangles, ellipses, rectangles, and a combination of
ellipses and rectangles, from top to bottom respectively. The color of

the shapes (corresponding to the horizontal color bar) denotes their
size variable α. Supershapes are clipped to the design region �
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(a) Initial design (b) Iteration 10

(c) Iteration 20 (d) Iteration 30

(e) Iteration 40 (f) Iteration 50

(g) Iteration 60 (h) Iteration 70

(i) Iteration 80 (j) Iteration 168

Fig. 14 Design iterates for cantilever beam problem using shapes that morph into ellipses or rectangles. The initial design has n = n1 = n2 = n3 =
4. The color of the shapes (corresponding to the horizontal color bar) denotes their size variable α. Supershapes are clipped to the design region �

To demonstrate the design of structures made of
primitives with our method, in this section we design a
long cantilever beam with the same dimensions and analysis
mesh as the beam of the preceding section, but with the
load and boundary conditions shown in Fig. 12. The volume
fraction constraint for this problem is again v∗

f = 0.4. All
examples employ a 5 × 2 grid of supershapes in the initial
design, and the convergence tolerances are kktol = 1E-3
and objtol = 1E-4. In all examples, a = b = 0.5, φ = 0,
s = 1 and α = 0.5 for all supershapes in the initial design.
Likewise, the bounds φ ∈ [−π, π ], s ∈ [1, 3], xcx ∈ [0, 20]
and xcy ∈ [0, 5] are applied to all examples.

Figure 13 shows the initial and optimal designs for a
beam whose initial design is made of triangles, ellipses,
rectangles, and a combination of ellipses and rectangles. For
triangles, we fix m = 3, n1 = 4, and n2 = n3 = 8;
for ellipses, we fix m = 4, n1 = n2 = n3 = 2; and for
rectangles, we fix m = 4, n1 = n2 = n3 = 8 (note that
rectangles are effectively modeled using superellipses). We
note that in the case of combined ellipses and rectangles,
the foregoing parameters for each supershape are fixed
throughout the optimization, i.e. a supershape that is an
ellipse or a rectangle in the initial design remains an ellipse
or rectangle throughout the optimization. In all cases except
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(a) n(0) = 2 (b) n(0) = 3

(c) n(0) = 4 (d) n(0) = 5

(e) n(0) = 6 (f) n(0) = 7

(g) n(0) = 8

Fig. 15 Optimal designs for cantilever beam problem using shapes that
morph into ellipses or rectangles with different initial values of the
parameter n = n1 = n2 = n3. The color of the shapes (corresponding

to the horizontal color bar) denotes their size variable α. Supershapes
are clipped to the design region �

the triangles, we impose the bounds a, b ∈ [0.4, 5]. In
the case of triangles, it is more difficult to capture a non-
equilateral triangle with the supershapes, and larger a/b

aspect ratios tend to render shapes that look more like water
drops, and so we impose a smaller range of a, b ∈ [0.4, 4].
Also in the case of triangles, we fix the value of b = 0.4,
because for b < a one obtains ’bowtie’ shapes. Note that
we can still get triangles with size larger than 0.4 thanks to
the scale factor s.

From top to bottom in Fig. 13, the compliance values
for the optimal designs are C = 0.5759, 0.5263, 0.566 and
0.5348. These designs are attained in 150, 127, 129 and
141 iterations respectively. All designs satisfy the volume
fraction constraint within 1E-3. Clearly, the design that
performs the worst is the one with triangles. We posit this is
because the geometry of the better designs cannot easily be
captured with ten triangles.

An even more interesting possibility is to let shapes
morph into a selected set of primitives.2 We illustrate this
idea by repeating the cantilever beam design, while forcing
shapes to morph into either rectangles or ellipses. Both
shapes have the same symmetry (m = 4), but different
exponents (n = 2 for ellipses, n = 8 for rectangles,
n1 = n2 = n3 = n). In the optimization, we fix m,
but we let n vary within [2, 8]. To steer shapes towards
becoming ellipses or rectangles, we add the following
‘shape’ constraint to the optimization problem of (25):

gs(z) := 1

81Ns

Ns∑
i

(ni − 2)2(ni − 8)2 − g∗
s ≤ 0 (31)

In the above expression, ni is the value of n for shape
i. Clearly, if ni = 2 or ni = 8, the contribution of shape

2A similar strategy to produce primitive-shaped holes that are interpo-
lated between several primitives is discussed in Mei et al. (2008).
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Table 2 Optimization results for long cantilever designs of Fig. 15

n(0) C It. Nrectangles Nellipses

2 0.556 137 2 (ni ≥ 7.999) 8 (ni ≤ 2.039)

3 0.569 92 1 (ni = 7.998) 9 (ni ≤ 2.117)

4 0.509 168 2 (ni ≥ 7.999) 8 (ni ≤ 2.124)

5 0.575 121 10 (ni ≥ 7.848) 0

6 0.503 239 10 (ni ≥ 7.863) 0

7 0.590 119 10 (ni ≥ 7.898) 0

8 0.582 214 10 (ni ≥ 7.854) 0

i to the sum is zero. The number 81 in the denominator
ensures that the value in the sum is at most 1.0 (which occurs
when ni = 5). The factor outside the sum helps ensure
that gs ∈ [0, 1], hence the choice of the constraint limit g∗

s

can be made independent of the number of shapes. In the
following examples, we use g∗

s =1E-3. To avoid the shapes
from ‘locking’ prematurely into the desired primitives, we
use a continuation strategy, whereby we set g∗

s = 1 in the
first iteration, and then decrease it by 2E-3 in each iteration
until we reach the desired value of g∗

s =1E-3 (that is, it takes
at least 50 iterations to attain the desired constraint limit).
In addition to this continuation strategy, for this example
we employ a tighter move limit of M = 0.025. Figure 14
shows several design iterates using a starting design with
n = n1 = n2 = n3 = 4. The optimal design is made of
two rectangles (n ≥ 7.99) and six ellipses (n ≤ 2.124).
The figure shows how the shapes morph into one of the two
primitives as the optimization progresses.

This example also serves to illustrate a characteristic of the
proposedmethod, namely that it is more prone to converging
to unfavorable local minima than free-form topology
optimization methods. This is a trait of geometry projection
methods we have observed before (Norato et al. 2015;
Zhang et al. 2017a), and it is likely due to the more
restrictive representation of possible geometries imposed
by the discrete geometric components. To illustrate this
dependency, we show in Fig. 15 the results of the same
optimization problem with different initial values of n.
Table 2 lists results for the corresponding optimal designs,
including compliance values, number of iterations to
convergence, and number of rectangles (n ≈ 8) and ellipses
(n ≈ 2) with their respective ranges for ni . All designs
satisfy the volume fraction and shape constraints tightly.

8 Conclusions

This paper demonstrates a method to perform topology
optimization using supershapes. The numerical examples
show the method effectively produces designs similar
to those obtained with free-form topology optimization

techniques. The appealing feature of the proposed method
is the ability to produce designs made exclusively of
various geometric primitives that are all modeled with
a single representation, the superformula. The fact that
different primitives can be represented via a single equation
also allows to produce designs whereby shapes morph
into specified types of primitives. We demonstrated this
capability by introducing a shape constraint that steers
the shapes into becoming one of two types of primitives
(rectangles and ellipses).

To fulfill its final purpose, which is to produce designs
made of primitives that are amenable to production, the
proposed method requires further advancement. The exten-
sion to 3-dimensional problems is the most immediate
one. The strict imposition of minimum size constraints,
which in this work are loosely enforced by imposing
bounds on the supershape parameters, is also an important
need. A deeper understanding of the interactions between
supershape parameters is needed in order to facilitate the
imposition of manufacturing-driven geometric constraints.
Finally, strategies to circumvent convergence to an unde-
sired local minimum are necessary. These strategies are not
only important from the point of view of how good the opti-
mal design is, but also to free the designer from having to
try different initial designs. These research directions are a
matter of ongoing and future work.
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Appendix A: Interactive script for plotting
supershapes

The following is a Mathematica script to generate a
supershape plot that can be interactively manipulated. The
equations correspond to the modified superformula of (3).
The shape center position xc in (6) is not part of the
equation, but the shape orientation φ and scaling factor s

are. As noted in Section 2, the angle in the superformula
has to be wrapped to the range [−π, π ], as otherwise the
shape may not be closed. For this reason, we cannot use
the PolarPlot function in Mathematica, because if the
angle used for plotting is θ + φ, the argument for (3) will
be outside of the foregoing range for a range of values

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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of φ. To cirumvent this, one would have to make the
plotting range a function of φ. An easier solution is to
use the ParametricPlot function. The entire script is
as follows, which produces an interactive plot like the one
shown in Fig. 16.

r[t_, m_, a_, b_, n1_, n2_, n3_, s_, eps_]:=

s ((eps+(1/(2 aˆ2)) (1+Cos[m t/2]))ˆ(n2/2)+

(eps+(1/(2 bˆ2))(1-os[m t/2]))ˆ(n3/2))ˆ

(-1/n1)

x[t_,m_,a_,b_,n1_,n2_,n3_, eps_, phi_, s_]:=

r[t, m, a, b, n1, n2, n3, s, eps] Cos[t+phi]

y[t_,m_,a_,b_,n1_,n2_,n3_, eps_, phi_, s_]:=

r[t, m, a, b, n1, n2, n3, s, eps] Sin[t+phi]

Manipulate

[ ParametricPlot[{x[t, m, a, b, n1, n2,n3,e,

phi,s],y[t, m, a, b, n1, n2, n3, e, phi,s]},

{t, -Pi, Pi}, PlotStyle -> Color],{m, 2, 6},

{a, 0.1, 2},{b, 0.1,2},{n1,1,10},{n2,1, 10},

{n3, 1, 10},{e, 0.001, 0.1}, {phi, -Pi, Pi},

{s, 1, 2}, {Color, Blue}]

Figure 16 shows the parameter values for the optimal
design of the example in Section 7.1. The plotting range
can be adjusted for each one of the parameters in the last
statement of the script. If, say, n = n1, n2, n3, then the last
statement should change to
Manipulate[

ParametricPlot[{x[t,m,a,b,n,n,n, e, phi, s],

y[t, m, a, b, n1, n2, n3, e, phi, s]},

{t, -Pi, Pi}, PlotStyle -> Color], {m, 2,6},

{a, 0.1, 2}, {b, 0.1, 2}, {n, 1,

10}, {e, 0.001, 0.1},

{phi, -Pi, Pi}, {s, 1, 2}, {Color, Blue}]

Appendix B: Sensitivity analysis

In this Appendix, we list the expressions necessary to
obtain design sensitivities necessary for the gradient-
based optimization. For brevity, we do not derive these
expressions; however, they can be readily obtained. We
start by stating the sensitivities for the geometry projection
and the signed distance, and then state sensitivities for the
optimization functions.

Fig. 16 Interactive Mathematica
plot of supershape



432 J. A. Norato

B.1 Composite density

The derivative of the composite density of (16) with respect
to a design variable z is given by

Dzρ̃(p, z)= 1 − ρmin

Ns

exp

(
k
ρmin−ρ̃

1−ρmin

) Ns∑
i=1

ekρ̂i Dzρ̂i (32)

where we recall that ρ̂i is the effective density for
supershape i.

Here and henceforth the arguments are removed from the
right-hand side of expressions for brevity. From (12), the
design sensitivity of the effective density is

Dzρ̂i(p, z) =
⎧⎨
⎩
0 if z ∈ zj , j �= i

qα
q−1
i ρi if z ≡ αi

Dzρi otherwise
(33)

where we recall from (13) that zj is the vector of design
parameters for supershape j . From (10), the sensitivity of
the projected density ρi is in turn given by

Dzρi(d(p, z))=
{
0 if d > r or d < −r

− 2
πr2

√
r2−d2 Dzd otherwise

(34)

In the expression above and in the following section, it
is understood that z ∈ zi , since the projected density for
supershape i depends only on its parameters, and hence the
sensitivity with respect to z ∈ zj , j �= i is zero.

B.2 Signed distance

Following (18) and (20), we rewrite the squared distance as

d2(p, zi ) = (p − c)T (p − c) (35)

with c = x(θ∗(zi ), zi ). Differentiating both sides with
respect to a design parameter z ∈ zi , and rearranging, we
find

Dzd(p, zi ) = − 1

d
(p − c)T Dzx (36)

We note that when p = c, this derivative is undefined
since p − x = 0 and d = 0. Although possible, we did
not observe this situation in our numerical examples. Since
we ignore the case when d is exactly zero, we note the
design derivatives of the sign of (24) is zero, hence we make
d in the denominator Dzd of (36) the signed distance (as
opposed to the positive root of d2). Using the chain rule, we
get

Dzx(θ∗(zi ), zi ) = ∂θx Dzθ
∗ + ∂zx (37)

The first-order optimality condition of the problem of
(20) dictates that Dzθ

∗ must be zero, therefore

Dzx(θ∗(zi ), zi ) = ∂zx (38)

The sensitivities ∂zx with respect to each of the super-
shape’s parameters can be readily derived from (3–6), and
are given by:

∂ax =
[

sr̃n1+1n2

2a3n1
x̃

n2
2 −1

(
1+cos

(
mθ

2

))]
Rθ+φe1 (39)

∂bx =
[

sr̃n1+1n3

2b3n1
ỹ

n3
2 −1

(
1−cos

(
mθ

2

))]
Rθ+φe1 (40)

∂mx = − sr̃n1+1θ

8n1
sin

(
mθ

2

) [n2

a2
x̃

n2
2 −1− n3

b2
ỹ

n3
2 −1

]
Rθ+φe1 (41)

∂n1x = sr̃

n21

ln(r̃−n1 )Rθ+φe1 (42)

∂n2x = − sr̃n1+1

2n1
x̃

n2
2 ln(x̃)Rθ+φe1 (43)

∂n3x = − sr̃n1+1

2n1
ỹ

n3
2 ln(ỹ)Rθ+φe1 (44)

∂xcx = I (45)

∂φx = sr̃Rθ+φ+π/2e1 (46)

∂sx = r̃Rθ+φe1 (47)

The derivative ∂θd
2 corresponding to f ′(θ) in (20) and

required to solve the minimum squared distance problem is
given by

∂θ d
2 = −2s(p − c)T

[
mr̃n1+1

8n1
sin

(
mθ

2

)(n2

a2
x̃

n
2 −1 − n3

b2
ỹ

n
3 −1

)
Rθ+

r̃Rθ+π/2
]
Rφe1 (48)

The sensitivity expressions in this section were verified
using Mathematica.

B.3 Optimization functions

The sensitivity of the compliance of (25) can be readily
obtained using adjoint analysis (see, for example, Bendsøe
and Sigmund 2003) as:

DzC(z) = −
∫

�

∇u · DzC(p, z)∇u dv (49)

where DzC can be obtained by differentiating (17) as

DzC(p, z) = Dzρ̃ C0 (50)

The sensitivity of the composite density can be computed
using the expressions in the previous two sections. Using
the finite element discretization, and since we use a uniform
composite density per element, the compliance sensitivity
can be computed as

DzC = −
Nel∑
j=1

Dzρ̃jUT
j Kj0Uj (51)
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