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1 Introduction

Strains and stresses are mechanical quantities intrinsically
present in a load carrying structure. Although directly
related, strains and stresses can have different functional-
ities. In a statically loaded structure, low stress levels are
generally preferred. On the other hand, higher stress or
strain can be beneficial in certain microdevices or energy
harvesters and in design for failure.

Stress isolation aims to minimize the stress levels in
prescribed regions of a structure. This can be achieved
by redirecting and attenuating the propagation of stresses
from a base-structure �S to a sub-structure �+ with the
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use of different materials or adding holes or cuts, see
Fig. 1. In this sense, typical applications are in the design
of sensors that are largely sensitive to mechanical stress,
such as acceleration sensors (Tsuchiya and Funabashi 2004;
Hsieh et al. 2011). Another example is the structural design
for welding stress isolation, as patented by Gorard et al.
(2011). In this case, the source of stress is in the sub-
structure and the aim is to eliminate stress propagation to
the base-structure.

The optimization of stress-based problems has long
been a challenge for shape and topology optimization
(Duysinx and Bendsøe 1998; Duysinx et al. 2008; Le
et al. 2010). To the best of our knowledge, Li and Wang
(2014) were the first authors to conduct stress isolation
via shape and topology optimization by applying a level
set method. In their work, different stress limits are
imposed in the base and sub-structure, with the stress
allowance in the sub-structure much smaller than the
base one. Recently, Luo et al. (2017) used a similar
idea but a density-based method and nonlinear finite
elements to design stress-isolated hyperelastic composite
structures. Both of these works, however, do not account for
strain.

Strain control can be useful for a variety of applications.
For example, piezoelectric vibration energy harvesters can
obtain higher electrical charges by maximizing their strain
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Fig. 1 Scheme of a stress and strain control problem

(Lin et al. 2011; Kiyono et al. 2016; Thein and Liu
2017). One way of maximizing the strain in a piezoelectric
component is to optimize the layout of the component
itself (Silva et al. 1997; Silva 2003; Xia et al. 2013). The
other approach can be the maximization of the mechanical
strain of a base-structure where the piezoelectric device is
attached. In this way, the applications can be broadened to
other strain-based sensors.

The deformation of the structure can also be used to
preserve the shape of a certain region of the structure,
as showed by Zhu et al. (2016). The authors explored
the minimization of the warping deformation to achieve
a shape preserving effect. The same idea was applied
to control the directional deformation behavior of the
prescribed base-structure by Li et al. (2017). Very recently,
Castro et al. (2018) carried out shape preserving design
to minimized local deformation of vibrating structures.
In other cases, prescribed displacements, deformation or
motion are desired, such as in compliant mechanisms
(Stanford and Beran 2012; Kim and Kim 2014; Zuo and Xie
2014). These works are all carried out under a density-based
topology optimization approach.

This paper aims to develop a methodology to manipulate
stresses and strains via level set topology optimization
(LSTO). The shape of the structural boundaries are
described via an implicit signed distance function and a
fixed grid finite element analysis is used to evaluate the
structural displacement field. A local von Mises stress
measure can be used to minimize or maximize stresses in
a prescribed sub-structure. The minimization of stress is
applied as a stress isolation technique and its maximization
as a design for failure procedure. A strain integral is
introduced in order to maximize or minimize strains in a
prescribed direction. A shape sensitivity analysis valid for
both stress optimization and strain control is presented.
We extend our previous work on stress-based topology
optimization to achieve this (Picelli et al. 2018).

The remainder of the paper is organized as follows.
Section 2 presents the structural description via a level set
function and the finite element method. Section 3 describes
the optimization formulation applied to stress and strain
control. Section 4 briefly presents the level set topology
optimization method. Section 5 shows numerical results and
discussions and Section 6 concludes the paper.

2 Level set description and finite element
method

Let� be a bounded design domain in IRn (n = 2, 3) occupied
by a linear elastic isotropic structure defined by the domain
�S . The structure is composed by a smooth boundary ∂�S

= �D ∪�N ∪�H . Dirichlet boundary conditions are applied
in �D , while homogeneous Neumann conditions are applied
in �N . The free boundaries are defined as �H . Herein, �H is
divided in two different sets, the outer boundaries �H0 and
the inner boundaries �∗

H0
from the holes of the structures,

see Fig. 2a. If the set of boundaries �∗
H0

is allowed to change
whilst keeping �H0 fixed, only the inner holes are subjected
to optimization.

In level set topology optimization, the structural bound-
aries are represented by an implicit function as

⎧
⎨

⎩

�(x) > 0 x ∈ �S

� (x) = 0 x ∈ ∂�S

� (x) < 0 x /∈ �S

, (1)

where � is the level set function, x is the point inside the
design domain � and �S ⊂ � (Allaire et al. 2004). In this
work, the level set is defined as a signed distance function,
as seen in Fig. 2b.

The analysis is conducted by the fixed grid finite element
method with equivalent Ersatz material. In this approach,
the domain �S is projected onto a fixed grid that covers
� and the boundary �H is discretized into a set of points
coincident with the elements edges, as illustrated in Fig. 3.
Cut elements are assigned with volume fractions between 0
and 1, according to the ratio of volume of solid material and
the total volume of the element (Dunning et al. 2011).

The structure � is in equilibrium when a displacement
field u satisfies the equation,

a (u, v) = l (v) , (2)

where the linear operators a (·, ·) and l (·) represent the
virtual work of internal and external forces, respectively,

a (u, v) =
∫

�

σ (u) · ε (v) d�, l (v) =
∫

�N

t · vd�N , (3)

where σ (u) and ε (v) are the stress and strain vectors,
respectively, t is a constant and non-zero traction on �N

and v is the field of virtual variations. No body forces are
considered.
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Fig. 2 a generic structure with a
hole and b its description via an
implicit level set function > 0

< 0

= 0

3 Problem formulation and sensitivity
analysis

The stress objective and strain objective functions are
defined, respectively, as

f + (u; x) =
∫

�+
σvmd�+, f + (u; x) =

∫

�+
α·ε (u) d�+,

(4)

where σvm is the von Mises stress of the structure, ε (u)

is the strain with all components εxx , εyy and εxy and
α is a vector to select the strain direction, when desired.
For example, for the strain in the xx direction, εxx =
α ·ε (u) = (1, 0, 0)T ·ε (u). Both stress and strain functions
are integrals over the sub-structure control region �+.

The level set topology optimization requires the com-
putation of shape sensitivities at the boundary points from
Fig. 3a in order to update the implicit level set function. The
shape sensitivity of a general function f (�) can be derived
using the adjoint method. This technique is advantageous
when using a large number of design variables, the typi-
cal case of topology optimization. An augmented integral
function can be expressed with the aid of the equilibrium
equation

L = f (�) + a (u, λ) − l (λ) , (5)

where λ is the adjoint variable. The material derivative
method is applied here (Wang and Li 2013; Choi and Kim

2005) and the derivative of the augmented functional L can
be expressed as

L′ = f ′ (�) + a′ (u, λ) − l′ (λ) , (6)

where,

f ′ (�) =
∫

�

∂f (u)

∂u
· u′d� +

∫

�

f (u) Vnd�, (7)

a′ (u, λ) =
∫

�

σ
(
u′) · ε (λ) d� +

∫

�

σ (u) · ε
(
λ′) d�

+
∫

�

σ (u) · ε (λ)Vnd�, (8)

l′ (λ) =
∫

�N

t · λ′d�N , (9)

in which Vn is the normal velocity component of a boundary
� and ′ indicates the derivative with respect to this boundary.

Substituting (7), (8) and (9) into (6) and collecting all the
terms that contain λ′, the weak form of the state equation
is recovered, whose total sum is zero. By collecting all the
terms that depend on u

′
and letting their sum be zero, the

following adjoint equation is obtained
∫

�

σ
(
u′) · ε (λ)d� = −

∫

�

∂f (u)

∂u
· u′d�, (10)

where the right-hand side of (10) indicates the adjoint
pseudo-load. Finally, collecting all the remaining terms, the

Fig. 3 a projection of �S onto a
fixed grid and discretization of
the boundary and b Ersatz
material approximation

Structure: Grid node: Boundary point: 
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shape derivative of the augmented functional with respect to
the boundary points on � can be written as

L′ =
∫

�

f (u) Vnd� +
∫

�

σ (u) · ε (λ)Vnd�. (11)

For the stress objective, the pseudo-load from (10) can be
expressed as
∫

�

∂f (u)

∂u
d� =

∫

�+

∂σvm

∂u
d�+ = H (x)

∫

�

∂σvm

∂u
d�, (12)

where H (x) is the Heaviside function

H (x) =
{
1 if x ∈ �+
0 if x /∈ �+ . (13)

By using the Heaviside function, the pseudo-load is in the
form of the general shape derivative and can be used to solve
the adjoint problem from (10) and obtain λ. For the strain
objective, the pseudo-load is written as

∫

�

∂f (u)

∂u
d� =

∫

�+
α·∂ε (u)

∂u
d�+ = H (x)

∫

�

α·∂ε (u)

∂u
d�.

(14)

Substituting the objective function f + (u; x) in (11), one
can rewrite it in terms of the boundary �∗

H0
to be optimized

L′ =
∫

�H

f + (u; x) Vnd�H +
∫

�H

σ (u) · ε (λ)Vnd�H . (15)

Both stress and strain objectives are defined within the space
of �+. In this work, �+ is considered as a non-design
domain to represent the sub-structure location of a sensor,
thus, zero velocities are assigned in those points. Therefore,
the first term of (15) is null and the shape sensitivities at the
boundary points can be computed as

L′ =
∫

�H

σ (u) · ε (λ)Vnd�H , (16)

For stress isolation, λ is obtained by solving the adjoint
problem from (10) with the pseudo-load from (12), while
for strain control the pseudo-load is computed as (14).
The derivatives in both integrals from (12) and (14) are
computed with respect to the displacement field.

As the results of our previous stress-based work suggest
(Picelli et al. 2018), no regularization techniques (e.g.
length scale or perimeter control) are needed in order
to obtain smooth structural boundaries. However, in this
work, a perimeter constraint is used in order to ensure
the problem is well-posed, since volume is not constrained
here. Differently from stress, the perimeter sensitivities are

computed here via finite differences. One can efficiently
compute perimeter sensitivities by locally checking the
differences in the length of each point segment with
a small perturbation of each boundary point coordinate
in the normal direction. Our computational experience
showed that the time for computing perimeter sensitivities
is negligible if compared to solving the FEA equation using
our open source code available at http://m2do.ucsd.edu/
software/.

3.1 Computational procedure

In the finite element discretization, the shape sensitivity
function from (16) is computed first at all Gauss integration
points p’s in the finite element mesh as

df

dx
= (CBu)Tp (Bλ)p , (17)

where B is the strain-displacement matrix. The adjoint
displacements vector λ is obtained for the stress objective
by solving the equation

K A
1

CB V CBu , (18)

where K is the global stiffness matrix, V is the Voigt matrix

V =
⎡

⎣
1 −0.5 0

−0.5 1 0
0 0 3

⎤

⎦ , (19)

for 2D cases, and the operator A is the finite element
assembly of the load vector integral on the sub-structure
�+, discretized into ne+ elements with domain �e+
(Helnwein 2001; Zienkiewicz and Taylor 2005). The right
hand side of (18) is the discretized pseudo-load, which
expression is the result of the derivative of the objective
functional with respect to the displacement field given in
(12). For strain control, the adjoint equation is

K A
1

B . (20)

We employ isoparametric bilinear quadrilateral elements
and stress is computed at four Gauss points per element.
Although these elements present only one superconvergent
point (the central one), the convergence properties of
the integration points are still suggested to be used for

http://m2do.ucsd.edu/software/
http://m2do.ucsd.edu/software/
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sampling when the isoparametric element is not distorted
(Zienkiewicz and Taylor 2005), which is the case of this
paper. Based on the stress field at the Gauss points, the
stresses at the boundary points are interpolated using the
least squares method. This approach has been demonstrated
in the context of both stress minimization and stress
constrained level set topology optimization in our previous
publication (Picelli et al. 2018).

4 Level set topology optimization

The level set topology optimization method used follows
Picelli et al. (2018) and it is briefly described here for
completeness. The structural boundary is optimized by
updating the implicit level set function via an advection
equation combined with the velocity field of motion. The
discretized version of such equation can be expressed as

φk+1
j = φk

j − �t |∇φk
j |Vn,j , (21)

where k is the iteration number, j is a discrete boundary
point, �t is the time step and Vn is the velocity at point j ,
considered as an advection velocity of the type dx/dt = Vn·
∇φ(x) (Osher and Fedkiw 2003). The velocities required
for the level set update at every k-th iteration are obtained
by solving the following discretized optimization problem:

minimize
βk,λk

�tSk
f · Vk

n(β
k, λk)

subject to �tSk
i · Vk

n(β
k, λk) ≤ −ḡk

i

Vk
n,min ≤ Vk

n ≤ Vk
n,max

(22)

where ḡk
i is a relaxed change in the constraint function at

every iteration and the velocities Vk
n are described in terms

of a search direction d normal to the boundary and the actual
distance β > 0, as

Vn�t = βd. (23)

The Lagrangian function related to the problem given in
(22) is expressed as

L(βk,dk, λk,μk) = βkSk
f ·dk+

ni∑

i=1

λk
i (β

kSk
i ·dk+ḡk

i )+μk((d)T dk−1),

(24)

where λk is a Lagrange multiplier and Sk
f and Sk

i are vectors
containing integral coefficients computed with the shape
sensitivities at the boundary points as

∂f

∂�
·�� = �t

∫

�

sf Vnd� ≈
nb∑

j=1

�tVnj sf,j lj = Sf ·Vn�t ,

(25)

∂gi

∂�
·��=�t

∫

�

sgiVnd�≈
nb∑

j=1

�tVnj sgi,j lj =Sgi ·Vn�t ,

(26)

for linearized objective f and i-th constraint functions gi .
The terms sf and sgi

are the shape sensitivity functions for
the objective and constraint functions, respectively, and lj is
the discrete length of the boundary associated with point j .

The optimization problem from (22) is solved at every
iteration k. The optimal velocities are then substituted into
(21) to update the level-set boundaries. The process is
repeated until the objective function stops changing during
five consecutive iterations under a certain relative tolerance
of 10−3.

5 Numerical results

In this section numerical results and discussions are
presented. First, the investigation of both stress and strain

+Ω

200

2
0

0

(b)(a)

Fig. 4 Square domain considered for optimization with a 20×20 sub-structure �+ in: a uni-directional in-plane tension and b bi-directional
in-plane tension
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Fig. 5 Uni-directional in-plane
tension optimization: a initial
holes configuration and b
corresponding von Mises stress
field

Fig. 6 Topology optimization
steps of the uni-directional
in-plane tension for stress
isolation, with final solution at
iteration 304
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Fig. 7 Corresponding (a) von Mises stress field and convergence history of (b) stress and c perimeter of the solution from Fig. 6
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Fig. 8 Solutions (upper left
quadrant) for the same stress
isolation example from Fig. 6
with different initial holes and
mesh sizes using perimeter
constraint of 200

objectives is carried out for a square plane domain and
optimization of the inner boundaries �∗

H0
. The method is

then applied to stress isolation and stress maximization

in a cantilever beam and directional strain control. In all
examples, the structural perimeter is the only constraint
applied.

Fig. 9 Stress maximization
in �+ for: a-b uni-directional
in-plane tension optimal
holes and stress field and
c-d bi-directional in-plane
tension optimal holes and
stress field



2044 R. Picelli et al.

Fig. 10 Distributions of the mechanical strains (a) εxx , b εyy and c εxy of the initial solution

Fig. 11 εxx minimization in the uni-directional in-plane tension scenario: a optimal shapes and plots of b εxx and c εyy
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Fig. 12 εyy maximization in the uni-directional in-plane tension scenario: a optimal shape, b εyy field plot and c convergence history
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Fig. 13 Solutions under
uni-directional in-plane tension
for shear strain εxy a–b
minimization and c–d
maximization

Fig. 14 εxx + εyy minimization
in the uni-directional in-plane
tension scenario: a optimal
shape, b convergence history and
plots of c εxx and d εyy fields
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Table 1 Compilation of four different cases of strain control optimization

In-plane loading case Objective function (OF) Initial OF Final OF No of iterations to converge Optimum solution

uni-directional min. εxx + εyy + εxy 4.894×10−7 -2.249×10−6 178

uni-directional max. εxx + εyy + εxy 4.894×10−7 2.001×10−5 537

bi-directional max. εxx 1.118×10−7 5.966×10−7 467

bi-directional max. εxx + εyy 2.798×10−7 4.382×10−7 287

5.1 Plane domain

A 200×200 nondimensional square domain as depicted
in Fig. 4 is considered for optimization. A 20×20 square
region �+ at the center is considered as the sub-structure
for stress isolation and strain control. Plane stress condition
is assumed. The Young’s modulus E of the solid material is
considered to be 200×109 and the Poisson’s ratio μ = 0.3.
The Young’s modulus of the void material is 10−9.

The domain is discretized with 200×200 finite elements
and two loading scenarios are considered, namely an uni-
directional in-plane tension, Fig. 4a, and a bi-directional
in-plane tension, Fig. 4b. The distributed force is 100. In
this example, only the inner boundaries �∗

H0
are subject to

optimization.

5.1.1 Stress isolation

For the uni-directional in-plane tension scenario, stress
minimization is applied to the integral of the von Mises
stress inside the sub-structure region �+ (first expression
in (4)). Figure 5 presents the initial hole configuration and
the corresponding von Mises stress field. The black region
in Fig. 5a indicates solid material and the gray region the
initial holes with void material.

Figure 6 presents the snapshots of the optimization
iterations for the stress isolation of the uni-directional in-
plane tension. The perimeter is constrained to 200. Stress
flux is deviated from the sub-structure �+ with the changes
in the hole shapes. Figure 7a–b presents the optimal hole
configuration and its corresponding von Mises stress field,
whilst Fig. 7c shows the convergence history of the stress
minimization. The initial integral of the von Mises stress
in �+ was 39374.24 and the final 4509.19, a reduction of

F
100

8
0

20

2
0

Fig. 15 Model considered for stress isolation and design for failure
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Fig. 16 Structural example for
stress isolation and design for
failure: a initial solution and b
stress field

almost 89%. The perimeter constraint is satisfied in the end
of the optimization, as seen in Fig. 7c. Figure 8 presents
the upper left quadrant of the same stress isolation solutions
but starting with different initial holes and mesh sizes and
all cases using the perimeter constraint of 200. The final
topologies are similar, showing the perimeter control aids
in reducing mesh dependency. The bi-directional in-plane
tension case has a trivial solution when it comes to stress
isolation, a circular hole around �+ which disconnects the
base and sub-structure, case omitted herein.

As discussed in the introduction of this paper, stress
maximization of the integral in �+ can also be applied

to concentrate stress flux in certain applications. This is
limited to cases that do not violate the hypothesis of
linear elastic behavior. Figure 9 presents the optimization
results for both uni-directional and bi-directional loading
cases, subject to perimeter constraint of 320. The stress
flux is increased inside the sub-structure. The initial
values of the integral of stress in �+ were 39374.24 and
56926.88 for the uni-directional and bi-directional tension
scenarios, respectively. The final values were 89139.84,
in the uni-directional tension, and 75987.4, in the bi-
directional tension, representing an increase of 126% and
33%, respectively.

Fig. 17 Solutions and stress
fields for a–b stress isolation
and c–d stress maximization
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5.1.2 Strain control

We consider the same initial holes configuration from
Fig. 5a and the uni-directional in-plane tension scenario.
The corresponding field of mechanical strains ε =
(
εxx, εyy, εxy

)T is plotted in Fig. 10. It is observed that the
strain εxx is predominant and positive due to the axial load
applied. In these examples the perimeter is constrained to
600.

The mechanical strain objective function can be either
positive or negative, as seen in Fig. 10. The sub-structure
�+ is initially under tension, with a positive strain value εxx

= 1.971×10−7. The minimization of εxx leads to a mostly
compressive strain field with only a few outer elements
with positive xx strain, being the total integral valued εxx

= -1.147×10−7. The solution is presented in Fig. 11a. It
can be seen that the application of the tension load in the
optimized structure induces compression in �+ region, see
Fig. 11b. Consequently, the sub-structure becomes under
tension in the yy direction and εyy becomes positive, as seen
in Fig. 11c. Similar effects are seen in the uni-directional in-
plane tension case of which the optimum solution is when
εyy is maximized, presented in Fig. 12.

In the case of shear strain εxy , the initial integral of the
shear strain in the sub-structure is zero due to its symmetry.
Figure 13 presents the results for both minimization and
maximization of the shear strain where the shapes are
antisymmetric because of the opposite shear strain sign. The
integral objectives are the same for both cases and their
absolute value is 1.856×10−5.

Optimization of strain in multiple directions is straight-
forward. For example, the objective for minimization of
εxx + εyy can be defined as ε = α · ε (u) = (1, 1, 0)T ·
ε (u) and its solution is presented in Fig. 14. The objec-
tive function decreased from 1.223×10−7 to -1.967×10−7,
implying that the sub-structure �+ becomes mostly under
compression, predominantly in yy direction.

The same phenomena from all the previous examples
are valid for other cases. Table 1 compiles four other
different examples. Cases like minimization of εyy under bi-
directional in-plane tension is omitted because it yields the
same solution as minimization of εxx but rotated by 90o.

5.2 Shape preserving and design for failure

This example shows the application of the proposed stress
objective function to shape preserving and to design for
failure. The minimization of deformation preserves the
shape of a prescribed sub-structure �+ under the loading
condition. For instance, Zhu et al. (2016) used a square
measure of the strain in order to minimize the deformation
energy in the sub-structure. In this work, this is achieved
by stress isolation. The case of design for failure is

Fig. 18 Deformed sub-structure �+ for: a initial solution, b stress
isolation and c stress maximization. The outline represents the initial
position of the unloaded structure

the opposite. In such case, the stress in �+ should be
maximized in order to ensure the structure will fail in the
prescribed region, preserving the integrity of other parts.

The cantilever beam model from Fig. 15 is used to
carry out stress minimization of its sub-structure region �+
subject to a perimeter constraint of 400. The applied load is
F = 1000, Young’s modulus E = 200×109 and the Poisson’s
ratio μ = 0.3. Figure 16 shows the initial stress field and the
initial solution used in the level set optimization problem.

Figure 17a shows the solution for stress isolation of
the sub-structure �+ in the cantilever beam and Fig. 17b
presents its stress field. The final stress integral in �+ is
1462.15, a decrease of ≈ 70% if compared with the value
in the initial structure (4779.12). Figure 17c–d presents
the solution for stress integral maximization in �+. The
maximum stress point inside �+ ensures structural failure
in that region or in its vicinity. The final integral on �+ for
stress maximization is 97964.10, an increase of ≈ 1950%.

The shape preserving effect can be observed by plotting
the deformation of the sub-structure �+, as shown in
Fig. 18a–c. It can be noticed that the warping deformation
for the stress isolation solution is practically negligible
if compared to its rigid body motion. The plotted
displacements are scaled by 108.

F

100

8
0

20

2
0

1
0

Fig. 19 Model considered for directional strain control
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Fig. 20 Solutions for: a εxx

minimization and b εyy

minimization

5.3 Directional strain control

In Li et al. (2017), the directional strain behavior is
controled by introducing artificial weak elements and a
particular elastic matrix, where the diagonal of the direction
of interest is assigned with a small positive value and the
rest of the matrix is 0. The authors used a square measure
of the strain. In this work we apply the stress isolation
sensitivities with the particular elastic matrix with values
depending on α, previously defined for strain control. The
elasticity matrix becomes

C =
⎡

⎣
α1 0 0
0 α2 0
0 0 α3

⎤

⎦ (27)

with α being 1 for the direction of interest and 0 for the other
values.

Figure 19 presents the model used for directional strain
control. The applied load is F = 1000, with Young’s modulus
E = 200×109 and the Poisson’s ratioμ = 0.3. The perimeter
is constrained to 500. Figure 20 shows the solutions for
εxx and εyy minimization, i.e., using α = {1, 0, 0} and
α = {0, 1, 0}, respectively. Notice that we are solving a
stress isolation case, but with an unity value in the elasticity
matrix to select the strain direction of interest. The same
initial solution from Fig. 16a is used for this example.

Figure 21 presents the εxx and εyy strain fields. Under
the axial load, the domain �+ is initially stretched in
the x direction and compressed in the y direction. The
minimization of stress using α to select a prescribed
direction leads to the minimization of deformation in that
direction. Figure 22 presents the deformed �+ in the initial
structure and for εxx and εyy minimization. The plotted
displacements are scaled by 108.

Fig. 21 Initial strain field εxx ,
(a), and final strain fields, εxx in
(b), εyy in (c), for εxx

minimization. Initial strain field
εyy in (d), and final strain fields,
εxx in (e), εyy in (f), for εyy

minimization
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Fig. 22 Deformed sub-structure �+ for: a initial solution, b εxx

minimization and c εyy minimization. The outline represents the initial
position of the unloaded structure

6 Conclusions

This paper presented a level set optimization method for
stress and strain manipulation. The shape and topology
modification of a base-structure �S allowed the control of
stress flux inside a sub-structure �+. A general integral
objective function was proposed and the sensitivities were
derived. For stress isolation, the von Mises measure was
used. Numerical results show that stresses in �+ can
be efficiently isolated in the presented examples via the
optimization of the hole shapes in the base-structure,
achieving the drastic reduction as much as 89% from the
initial stress integral. The increase in the stress flux on the
base-structure was also achieved by maximization of the
stress integral. This may be applied when a failure needs
to be designed in for prognosis. An increase of 126% was
achieved in the bi-directional in-plane tension case.

It was shown that the solutions for strain control can
be considerably different from those obtained for stress
optimization. A strain objective function was proposed
based on a vector α able to select the strain component
of interest. It was found that optimization explores the
directionality of strain in the optimum solution, e.g.,
minimization of strain achieves a negative strain integral
starting from a positive initial value (tension). A few other
examples were briefly compiled.

The stress objective showed that it can also be used for
shape preserving design and directional strain control. This
paper therefore presents a level set optimization method
that can manipulate stress and/or strain in a specified
sub-structure. This can be used for stress isolation of
highly sensitive non strain-based sensors, design for failure,
maximization of mechanical strain, strain direction control
and shape preserving design.
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