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Abstract The trabecular bone adapts its form to mechan-
ical loads and is able to form structures that are both
lightweight but very stiff. In this sense, it is a problem
(for the Nature or living entities) similar to the struc-
tural optimization, especially the topology optimization.
The structural optimization system developed by the authors
previously was based directly on the bio-mechanical mod-
els. The paper aims to clarify the approach of using the
bio-mechanical models of the trabecular bone remodelling
phenomenon as a base for the structural optimization. The
justified algorithm for shape optimization mimics the nat-
ural phenomenon to satisfy the condition of constant value
of the strain energy density on the structural surface, issu-
ing from the considerations in the area of mechanics. The
main body of the paper contains the analysis of the stiffness
optimization problem in the framework of speed method
approach to shape optimization. The given numerical exam-
ple (cantilever beam in bending) includes the influence of
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the structural surface curvature on the optimization pro-
cedure. The presented in the paper approach can be used
as a method of structural optimization unrelated already to
trabecular bone remodelling phenomenon.

Keywords Biomimetic structural optimization · Topology
derivative · Trabecular bone remodelling

1 Introduction

The field of structural optimization is still a relatively new
field undergoing rapid changes in methods and focus. There
are exciting applications of the methods of structural opti-
mizations in the automotive, aerospace, civil engineering,
machine design and other engineering fields. As a result of
the growing pace of applications, research into structural
optimization methods is increasingly driven by real-life
problems. The major challenge faced by researchers in
structural optimization is to develop methods that are suit-
able for numerical solution of shape-topology optimization
problems. Another major challenge is the high computa-
tional cost associated with the analysis of many complex
real-life problems. In the paper we combine the method
inspired by bone evolution with the shape gradient frame-
work for minimization of the energy type functionals in 3D
elasticity. In this way the computational cost of the proposed
method becomes reasonable for 3D elastic structures.

The classical approach to structural optimization can be
found e.g., in monographs (Arora 2015; Haftka and Gürdal
1992). The mathematical analysis of the so-called veloc-
ity method in shape optimization is performed, e.g., in
Sokołowski and Zolesio (1992).

It is widely believed that the trabecular bone adapts its
form to mechanical loads, in accordance with the Wolff’s
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law (Wolff 1892). Healthy tissue of trabecular bone has a
very sophisticated structure. The tissue forms a network of
beams called trabeculae and this structure is capable of han-
dling a wide range of loads. The length of the trabecula can
be 100 or 200 μm, whereas its diameter is approximately
50 μm. This structure is continually rebuilt so that the whole
bone tissue is replaced during the course of few years. The
process is called trabecular bone adaptation or remodelling.

Wolff’s law is not indeed a mechanical law but rather
a hypothesis, that the trabecular bone is a self optimiz-
ing material. Also others researchers (Cowin et al. 1976;
Huiskes et al. 2000) suggested, that the trabecular tissue is
able to adapt its structural form in reaction to the external
load. In this sense, it is a problem similar to the struc-
tural optimization, especially the topology optimization.
The model of the bone remodelling process discussed in the
paper is based on the regulatory model of Huiskes. The main
idea of the model consists of a regulatory mechanism (on the
bone surface only) between bone resorption and formation.
Bone mass increases above a certain level of mechanical
stimulation (measured by the strain energy density on the
tissue surface) and decreases below the other certain energy
level. When the strain energy density on the structural sur-
face is between these two levels the bone mass is maintained
and this rate of bone mechanical stimulation is called adap-
tation or lazy zone, because then the bone does not react to
the changes in mechanical stimulation level. The processes
of resorption and formation are coupled in basic multicel-
lular units, regions smaller than the single trabecula where
the sequence of successive bone tissue resorption and for-
mation occurs and this is a local change. However, bone
formation depends on global mechanical stimulation of the
whole bone.

The strain energy density on the structural surface
appears also in the area of optimization research, distant
from bio-mechanical studies (Wasiutyński 1960; Pedersen
2003) where one can find the theorem, that for the stiffest
design the energy density along the shape to be designed
must be constant. The similarity between trabecular bone
remodelling and topology optimization is used in two oppo-
site directions.

Some researchers use the optimization methods to recre-
ate the real biological structural forms of bone. They use
a variety of approaches and methods. Sigmund (1999) dis-
cussed the problem if the trabecular bone structure has
optimal stiffness. He used SIMP method to recreate bone
structures and concluded, that the trabecular bone struc-
ture does not have optimal stiffness. Wu et al. (2017) used
also SIMP method to recreate bone like structures. The
modified optimization method has been used and the mod-
ification were local volume constraints. Also Jang and Kim
(2008) use topology optimization for the trabecular bone
structure prediction. Lee et al. (2015) expanded this model

and developed homeostasis-based aging model for trabec-
ular changes. Marzban et al. (2015) uses the trajectorial
architecture theory of optimization to predict the remod-
elling of material microstructure and structural organisation
under mechanical loading. Goda et al. (2016) presented
combined bone internal and external remodelling model
relying on the viewpoint of configurational mechanics with
unified treatment of volumetric and surface growth, based
on Eshelby stress. Brampton et al. (2012) presented appli-
cation of level set topology optimization to predict the
trabecular bone architecture. There are also the variety of
reasearch concerning the multiscale approach to trabecular
bone remodelling. Coelho et al. (2011) presented two-scale
topology optimization procedure for simulation of trabecu-
lar bone remodelling phenomenon. Rodrigues et al. (1999)
and Fernandes et al. (1999) developed (using homogenisa-
tion theory) a global analytical parametric microstructural
model for the remodelling phenomenon. Makowski and Kuś
(2016) proposed the methodology of optimization patient-
specific trabecular bone scaffolds. The optimization is per-
formed on the basis of homogenized orthotropic elastic
properties of trabecular bone tissue and three-scale numeri-
cal model.

The opposite direction of using the similarity between
trabecular bone remodelling and topology optimization is
to apply the bio-mechanical observations and models to the
structural optimization issues. On such an assumption the
structural optimization system based on trabecular bone sur-
face adaptation was developed (Nowak 2006). The domain
independence, functional configurations during the process
of optimization and possibility to solve multiple load prob-
lems are the unique features of the biomimetic method,
useful in mechanical design. Additionally, such an approach
allows to comprise the optimization of size, shape and topol-
ogy in one numerical procedure, where the lazy zone con-
cept is an important component of the algorithm. Klarbring
and Torstenfelt (2012) discusses the connection between
apparent density-type bone remodelling theories and den-
sity formulations of topology optimization and involves a
lazy zone concept from bone remodelling theory to this opti-
mization approach. Nutu (2015) gives an interpretation of
bone remodelling models parameters, like the homeostatic
equilibrium threshold, during the process of topology opti-
mization. Florio (2015) developed the gradient-free shape
optimization method based on bone adaptation model. The
paper contains discussion of the different stress measures
as a base for the remodelling scenarios. Author concludes,
that use of different stress meassures does not influence
the trends in shape changes predicted by these models. The
similar discussion can be found even earlier in the paper
by Huiskes (2000). He used also the strain energy density
as a remodelling signal by a choice only and suggested,
that other mechanical variables could be used as well. In
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our work we will try to show, that Huiskes choice although
intuitive was appropriate.

The paper aims to clarify the approach of using the
bio-mechanical models of the trabecular bone remodelling
phenomenon directly as a base for the structural optimiza-
tion (Nowak 2010). In general the problem of stiffest design
(compliance minimization) has no solution. If the volume
of the object is increasing, the compliance is decreas-
ing. Thus, in the standard approach to the energy based
topology optimization the additional constraint has to be
added. Usually the volume of the material is limited. When
using the volume constraints the additional stress constraints
should be introduced. As a result the topology optimization
has to be separated from the shape and size optimiza-
tion within the numerical procedure (Krog et al. 2004). In
case of the biomimetic approach presented here, the role
of an additional constraint plays the strain energy density
on the structural surface (which is between two assumed
levels forming the lazy zone) and the volume or struc-
tural mass results from the optimization procedure. In the
standard SIMP topology optimization method the volume
constraint is used. Also in the stress-based topology opti-
mization approach (Bruggi 2008; Le et al. 2010) the volume
constraint is present. To start the optimization procedure
the volume constraint has to be imposed. In biomimetic
approach, instead of imposing volume constraint we param-
eterize shapes by the assumed energy density, which may
be quite accurately predicted from the yield criteria. In
the proposed numerical procedure the shape and topology
optimization is performed without volume constraints.

The plan of the paper is as follows. First we formulate the
problem and briefly describe the biomimetic algorithm used
in Nowak (2010). Then the very short description of the
speed method used in shape optimization is given, together
with demonstration that all ingredients of the resulting for-
mula for the shape derivative are significant. The shape
derivative allows to obtain a straightforward justification
of the well known necessary optimality condition for our
problem. Then we reformulate the biomimetic algorithm as
the shape optimization procedure and use speed method in
order to obtain the shape gradient of an appropriate domain
functional.

Finally, we use the part of the shape gradient containing
the curvature of the variable part of the boundary improving
the descent direction used in the gradient type method of
optimization.

It is known, that in order to assure the convergence
of optimization algorithm, the exact value of the steepest
descend direction is not required, but only the direction
of improvement. This is the case of purely biomimetic
approach, which works. However, we may expect that
using better approximation of the exact gradient should
improve the performance of the optimization procedure,

resulting in smoother trajectory in the design space and
faster convergence.

2 Problem setting

The goal is to maximize the stiffness of a structure, that is
minimization of the functional

J (Ω) =
∫

Γ1

t.u ds (1)

under constraints∫
Ω

dx − V0 = 0 (2)

and state equations

div σ (u) = 0 in Ω (3)

σ (u).n = t on Γ1 (4)

σ (u).n = 0 on Γv (5)

u = 0 on Γ0 (6)

Here, Ω represents domain of the elasticity system, u
the displacement, V0 = |Ω0| a given volume, Γ0 part of the
boundary with Dirichlet condition, Γ1 part of the boundary
loaded by traction forces.

The heuristic algorithm (Nowak 2010) reads as follows:

– it is assumed that the energy density σ (u) : ε(u) has a
constant value λ on Γv;

– if at a given point on Γv this density is bigger than λ+ s

then the boundary in moved outside;
– if at a given point on Γv this density is smaller than λ−s

then the boundary in moved inside;
– these steps are repeated until equilibrium is achieved;
– the value of λ is modified if the final design is unsatis-

factory.

The developed finite element mesh generator was orig-
inally dedicated to mesh creation for biological entities.
The basic input to the optimization system is the geomet-
rical model of the structure. Since the visualization for the
biological entities is based on the digital images e.g. Com-
puted Tomography, the input to the system is also based on
the collection of the 2-dimensional images. The images are
obtained automatically by cutting a 3D CAD model, in a
predefined direction, into a flat intersections. After prelim-
inary graphical operations the images of slices are directly
used for building of the 3-dimensional finite element mesh.
The 2-dimensional image is first translated into the bitmap,
where “0” represents the void and “1” the object. On the
bitmap the initial step of discretization is executed. The aim
of this first step is to describe the areas with material. The
discretization procedure produces a 2-dimensional network
of tetragonal elements, according to the object image shape.
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The discretized 2-dimensional image is projected onto the
subsequent one. If there are areas containing material on
both images, the boxes are created. Each box is in turn
translated into 6 tetrahedral volume elements. We divide
hexahedral boxes into the 6 tetrahedral elements to be able
to perform smoothing of the finite element mesh. We intro-
duce additional tetrahedral elements using existing nodes in
such a way that the number of equations remains the same,
but the stress and strain distribution are more smooth. The
volumetric mesh is ready to be used in computations of the
distribution of the strain energy density. After the finite ele-
ment method computations, for each box the information
about the strain energy distribution is in turn associated with
the description of the structural surface position on the 2-
dimensional images. The details of the mesh generation are
depicted in Fig. 1.

In the biomimetic algorithm, if the strain energy den-
sity is less than the lower limit for the lazy zone, the small
amount of material is removed from the surface. If the strain
energy density is greater than the upper limit for the lazy
zone, the small amount of material is added on the sur-
face. The structural evolution is separated from the finite
element method computations and modeled with use of 2-
dimensional images. If there is the need to add material on
the surface, the additional layer of “1”’s, representing the
material is placed instead of “0”’s (case A’ in Fig. 2). If
there is the need to remove material from the surface, the
additional layer of “0”’s, representing the void is placed
instead of “1”’s (case A” in Fig. 2). In this way the structural
surface is moved in the virtual space and it is possible to
simulate structural evolution including separation or merg-
ing of the structural elements, without problems with finite
element computations.

Fig. 2 The modification of the structural surface position in the virtual
space according to the strain energy distribution

The range for lazy zone is needed if the algorithm is to
give satisfying results in case of multiple objectives (e.g.
several loadings (Nowak 2010)) and consecutive “alternate
cases” modification steps, as well as for ensuring the stop-
ping of the procedure. As we know, the exact solution
without tolerance zone usually does not exists. The heuristic
biomimetic procedure is based directly on the biomechani-
cal model of the trabecular bone remodelling phenomenon.
To compute the strain energy density on the structural sur-
face the Finite Element Method is used. To compare the
procedure to the standard topology optimization method,
the typical example i.e. the bending cantilever beam was
chosen. The biomimetic optimization system like it is in
the case of living entities is 3-dimensional, and the defi-
nition of the design domain is not needed. Moreover, also

Fig. 1 The mesh generation tool
- volumetric mesh generation
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the definition of the boundary conditions could be dif-
ferent for each step of the simulation. It is assumed for
the presented example of the cantilever beam in bending,
that all nodes of the one edge could be fixed (clamped
wall) and the bending force is applied to the middle of the
opposite edge. Material parameters were assumed as fol-
lows: Young’s modulus 2 · 1011 Pa, Poisson’s ratio 0.3. The
obtained results with the different starting configuration i.e.
full domain and just a stick connecting the clamped wall
(the potential surface, where the no displacement bound-
ary conditions could be defined) are presented in Figs. 3

Fig. 3 Optimization results of the cantilever beam bending using
of the biomimetic procedure, based on the trabecular bone surface
adaptation - standard topology optimization domain full of material

and 4 respectively. Obtained results are close to the well
known solution. The final configuration are not unique due
to existence of the insensitivity zone, different starting con-
figurations and the possibility of choosing the boundary
conditions position during the simulation based on the pre-
scribed area. If the position of the boundary condition is
fixed for the whole starting configuration the results have
the same form (Nowak 2006).

3 Speed method for 3D elasticity

In this section we shall sketch the idea of the speed method,
as used in shape optimization in 3D elasticity. The regu-
larity conditions concerning the objects appearing in the

Fig. 4 Optimization results of the cantilever beam bending using
of the biomimetic procedure, based on the trabecular bone surface
adaptation - empty domain
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presentation will not be discussed, we refer the reader to
the monograph by Sokołowski and Zolesio (1992). We refer
also to Delfour and Zolésio (2011) for further developments,
and to Plotnikov and Sokołowski (2012) for the case of non-
linear problems governed by compressible Navier-Stokes
equations. There are other approches like traction method
(Shimoda et al. 1998, 2012). However, the idea of traction
method is related to a specific approach to the parametriza-
tion of the variable domain by means of elastic deforma-
tion. Such a parametrization does not allow for topology
changes.

Let V(x) be a smooth vector field defined on IR3 and
Tt (x) a transformation defined by the formula

Tt (x) = x + tV(x), t ∈ [0, ε], ε > 0

that is

Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image
by means of Tt (•), that is Ωt = Tt (Ω0). Observe that
T0(Ω0) = Ω0. Next we take a function ut (x) defined on
Ωt (here ut (x) does not have to be a displacement) and
dependent on Ωt explicitly or for example by means of the
boundary value problem posed in Ωt .

Using this notation we define in Ω0 the shape derivative
of the function ut with respect to the (fixed) velocity field
V(x):

u′
0(x) = lim

t→0+
ut (x) − u0(x)

t
. (7)

The shape derivative can be evaluated by using an appro-
priate integral functional and it should be distinguished from
material derivative, not used in further presentation, which
is defined as

u̇0(x) = lim
t→0+

ut (Tt (x)) − u0(x)

t
. (8)

There is a relation between these two objects, namely

u′
0(x) = u̇0(x) − ∇u0(x).V(x),

which is not employed it the paper.
The shape derivative is used for analysing the behaviour

of domain functionals depending on both Ωt and ut . Let
us consider the shape functionals in the form of volume or
surface integrals

J1(Ωt ) =
∫

Ωt

F1(ut (x)) dx (9)

and, denoting by Γt = ∂Ωt ,

J2(Ωt ) =
∫

Γt

F2(ut (x)) ds. (10)

If we define shape derivatives of these functionals in the
direction of the field V(x) as

J ′
1(Ω0) = lim

t→0+
J1(Ωt ) − J1(Ω0)

t
. (11)

J ′
2(Ω0) = lim

t→0+
J2(Ωt ) − J2(Ω0)

t
. (12)

then it can be proved (Delfour and Zolésio 2011; Plotnikov
and Sokołowski 2012), that

J ′
1(Ω0) =

∫
Ω0

F ′(u0(x))u′
0(x) dx

+
∫

Γ0

F(u0(x))V(x).n(x) ds (13)

J ′
2(Ω0) =

∫
Γ0

[F ′(u0(x))u′
0(x) + ∂F (u0(x))

∂n
+κ(x)F (u0(x))V(x).n(x)] ds. (14)

Here κ(x) denotes an average curvature of the surface Γ0

at the point x, namely

κ(x) = 1

R1(x)
+ 1

R2(x)

where R1(x) and R2(x) are principal curvatures at this point.

Illustrative examples Let us take Ω0 = B(0, R) (open
ball), and the field V(x) = 1

R
x. Then

Tt (x) = x + t
1

R
x,

hence Ωt = B(0, R + t) and V(x).n(x) = 1 on Γ0. The
variable r denotes polar coordinate around 0. As function
depending on Ωt we take

ut (x) = r2

R + t
⇒ u0 = r2

R
⇒ u′

0 = − r2

R2
.

and as F1 and F2 the function F(u) = u3. Then it is easy to
compute

J1(Ωt ) =
∫

Ωt

r6

(R + t)3
dx = 4

9
π(R + t)6

and

J2(Ωt ) =
∫

Γt

r6

(R + t)3
ds = 4π(R + t)5.

Hence immediately

J ′
1(Ω0) = 24

9
πR5, J ′

2(Ω0) = 20πR4.

Now we shall use the derived formulas. After obvious
calculations

a1 =
∫

Ω0

F ′(u0(x))u′
0(x) dx =

∫
Ω0

3u2
0u

′
0 dx = −12

9
πR5,

b1 =
∫

Γ0

F(u0(x))V(x).n(x) ds =
∫

Γ0

u3 · 1 ds = 4πR5.



Justification of a certain algorithm for shape optimization in 3D elasticity 727

As a result the a1 + b1 = J ′
1, as expected. Similarly,

a2 =
∫

Γ0

F ′(u0(x))u′
0(x) ds =

∫
Γ0

3u2
0u

′
0 ds = −12πR4,

b2 =
∫

Γ0

∂F (u0(x))

∂n
ds =

∫
Γ0

3u2
0 · 2 ds = 24πR4,

c2 =
∫

Γ0

κ(x)F (u0(x))V(x).n(x) ds

=
∫

Γ0

2

R
u3

0 · 1 ds = 8πR4,

Again the result a2 + b2 + c2 = J ′
2 is in agreement with

appropriate formulas. What is important, we see that no part
of them can be neglected without causing discrepancy.

The effect of curvature may be illustrated in the even
more straightforward way. Let us assume, that we have the
integral over the sphere S(R) = {x | ‖x‖ = R}
A(R) =

∫
S(R)

ds = 4πR2

Then, assuming that we want to increase radius, V.n =
δR,

A(R)′ =
∫

S(R)

κV.n = 4πR2κ · δR.

On the other hand,

δ(4πR2) = 8πR · δR = 4πR2 · 2

R
· δR

Hence

κ = 1

R1
+ 1

R2

and it is indeed the average curvature, if 1/R1, 1/R2 denote
principal curvatures at the point on the sphere.

4 Justification of assumption about constant
energy density

Let us define the Lagrangian for the problem under consid-
erations

L(Ωt , λ) =
∫

Γ1

t.ut ds + λ

[∫
Ωt

dx − V0

]
(15)

and rewrite the state equation in the weak form

−
∫

Ωt

σ (ut ) : ε(ϕ) dx +
∫

Γ1

t.ϕ ds = 0 (16)

Here ut , ϕ ∈ H1
Γ0

(Ωt ) and Ωt = Tt (Ω). For fixed
field V(x) which vanishes on all the boundary of ∂Ω with
the exception of Γv , the Lagrange function depends only on
two scalar variables (t, λ). Then we take shape derivative of
both Lagrange function and weak state equation using speed

method. At the local minimum this first derivative should
vanish. The shape derivative is denoted here by (•)′.

[L(Ω, λ)]′ =
∫

Γ1

t.u′ ds + λ

∫
Γv

V.n ds = 0 (17)

−
∫

Ω

σ (u′) : ε(ϕ) dx −
∫

Γv

σ (u) : ε(ϕ)V.n ds = 0 (18)

After substituting ϕ := u′ in the weak state equation and
ϕ := u in it’s shape derivative we get∫

Γ1

t.u′ ds = −
∫

Γv

σ (u) : ε(u)V.n ds (19)

Using this result in the derivative of Lagrange function
gives∫

Γv

[λ − σ (u) : ε(u)]V.n ds = 0 (20)

Since at the stationary point this should hold for any
vector field V(x) on Γv , then

σ (u) : ε(u) = λ = const. (21)

Of course we do not know the value of λ. Similar results
were obtained previously by others researchers (Pedersen
2003). Presented here result is based on the shape derivative
concept and does not need any additional assumptions.

The assumed value of the strain energy density on the
part of the boundary subject to modification could be related
to the material properties. Change in the assumed value of
the strain energy density results in change of the structural
form - topology and volume. In this way, the final structural
volume results from the optimization procedure. Instead of
imposing volume constraint we parameterize shapes by the
assumed energy density, which may be quite accurately pre-
dicted from the yield criteria. Although the presented result
shows the similarity between trabecular bone remodelling
and structural optimization, the results has no biological
background and has been rigidly proven mechanically and
mathematically.

5 Shape modification using shape derivative

Let us define the function F(z) penalizing the deviation of
z from λ and taking into account the insensitivity zone

F(z) =
⎧⎨
⎩

z < −s : (z + s)2

−s ≥ z ≤ s : 0
z > s : (z − s)2

(22)

Using this function we replace the heuristic biomimetic
strategy by equivalent minimization of the functional

Jλ(Ω) =
∫

Γv

F (σ (u) : ε(u) − λ) ds. (23)
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After taking shape derivative of this functional (observe
that F ′ = dF/dz) we have

Jλ(Ω)′ =
∫

Γv

F ′(σ (u) : ε(u) − λ)σ (u′) : ε(u) ds

+
∫

Γv

[∂F

∂n
+ κF ]V.n ds. (24)

Here κ is an average curvature at the given point on Γv

and

∂F

∂n
= F ′(σ (u) : ε(u) − λ)

∂

∂n
(σ (u) : ε(u)). (25)

In order to get rid of u′ we introduce an adjoint equation
for p in the weak form

−
∫

Ω

σ (p) : ε(ϕ) dx +

−
∫

Γv

F ′(σ (u) : ε(u) − λ)σ (u) : ε(ϕ) ds = 0 (26)

where p, ϕ ∈ H1
Γ0

(Ω). Then substituting again ϕ := p in
the shape derivative of the weak state equation and ϕ := u′
in the adjoint equation we obtain

∫
Γv

F ′(σ (u) : ε(u) − λ)σ (u) : ε(u′) ds

=
∫

Γv

σ (u) : ε(p)V.n ds. (27)

As a result

Jλ(Ω)′ =
∫

Γv

[σ (u) : ε(p) + ∂F

∂n
+ κF ]V.n ds. (28)

When the expression in square brackets is negative, then
we should add material (V.n > 0), otherwise remove mate-
rial (V.n < 0). This formula is in complete agreement
with intuition: the first term in brackets represents non-
local influence of boundary modification, the second term
describes the change of integral due to spatial variability of
F , and the third takes into account the increase or decrease
of the area of the surface itself. It is easy to notice, that
if energy density lies in the insensitivity zone everywhere,
then p ≡ 0 and Jλ(Ω)′ = 0, as expected. The notable differ-
ence to the heuristic algorithm is contained in the non-local
term: changing the boundary at a certain point changes the
energy density everywhere.

The tendency to decrease the area of the variable bound-
ary Γv may be deleterious, since we only demand, that
energy density on it should be constant. Therefore it is
advisable to modify the functional by averaging it over the
variable surface. The modified functional has the form

Ĵλ(Ω) =
∫
Γv

F (σ (u) : ε(u) − λ) ds∫
Γv

ds
. (29)

It’s shape derivative is obtained immediately from the
same adjoint equation. Let us denote by F̄ the average value
of F on Γv ,

F̄ =
∫
Γv

F ds∫
Γv

ds

Then

Ĵλ(Ω)′ = 1

|Γv|
∫

Γv

[σ (u) : ε(p)

+∂F

∂n
+ κ(F − F̄ )]V.n ds (30)

which again is in perfect agreement with engineering intu-
ition for the specific shape optimization problem.

Such derivative may be used for modification of the
variable boundary. Namely, if we take

V = −t[σ (u) : ε(p) + ∂F

∂n
+ κ(F − F̄ )]n (31)

where t denotes the step length, then

Ĵλ(Ω)′ = −t
1

|Γv|
∫

Γv

[σ (u) : ε(p)

+∂F

∂n
+ κ(F − F̄ )]2 ds < 0 (32)

which means that the step was taken in the descent direction.

Implementation remarks Sometimes, due to the method
used in parametrization of the domain, it is impossible to
move the nodes in the direction perpendicular to the surface
Γv . In such a situation helps the observation that we do not
need the steepest descend of the functional. It is enough to
ensure only it’s decrease.

Let us assume for example that the nodes of discretiza-
tion can move only on certain parallel planes (slices of the
domain), and that m1, m2 are basis vectors on these planes,
‖m1‖ = 1, ‖m2‖ = 1. Furthermore we assume that Γv

is never parallel to these planes, which means that never
m1.n(x) = 0 and m2.n(x) = 0 hold simultaneously. Then
we take the vector field in the form

V = t1m1 + t2m2

and denote the integrand in (30) as

H(x) = 1

|Γv| [σ (u) : ε(p) + ∂F

∂n
+ κ(F − F̄ )]

The following possibilities for t1 and t2 guarantee the
decrease of the functional.

– The first choice:

t1(x) = −tsign(H(x)m1.n(x) ),

t2(x) = −tsign(H(x)m2.n(x) )
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which gives for the step-length t > 0

Ĵλ(Ω)′ = −t

∫
Γv

(|H(x)m1.n(x)|
+|H(x)m2.n(x)|) ds < 0.

– The second choice:

t1(x) = ∗ − t (H(x)m1.n(x)),

t2(x) = ∗ − t (H(x)m2.n(x))

which gives again negative result

Ĵλ(Ω)′ = −t

∫
Γv

((H(x)m1.n(x))2

+(H(x)m2.n(x))2) ds < 0.

When is the construction valid? Let us assume that
∂Ω, Γ0, Γv, Γ1 consist of smooth patches and data are
smooth on Γ1. Let us denote also by M the space curve con-
sisting of all the common edges between these patches, and
by B̄(0, r) a closed ball around origin.

Then all the constructions described above have meaning
if the variable part of the boundary (subset of Γv) is con-
tained in Γv \ (M + B(0, r)) for some fixed r > 0. This
requirement is needed in order to give meaning to the deriva-
tives of energy density. In addition, higher Sobolev norms
of u over Ω \ (M + B(0, r)) may be bounded by appropri-
ate norms of data over Γ1, see Nazarov and Plamenevsky
(1994).

6 Approximation of external normal and curvature

Computation of the normal Let us assume, that ∂Ω is
approximated by triangular patches with vertices in points
pi = [xi

1, x
i
2, x

i
3]T . Denote also by S1(x) = x/‖x‖ the

normalization operation.
Next we select certain vertex p0 and find all other vertices

pk , k = 1 . . . K connected to p0 by edges. In this way we
obtain also the triangles T k

T 1 = {p1, p2, p0}, . . . T K = {pK, p1, p0}
surrounding p0. Each triangle has an internal normal n(T k).

We approximate the internal normal to the surface ∂Ω by
the normalized sum

n0 = S1

(
k=K∑
k=1

n(T k)

)
.

In this way we also get the approximation of the plane
tangent to the surface ∂Ω at p0:

H(p0) = {x | (x − p0).n0 = 0 }
Close to p0 the surface ∂Ω may be represented by

the function of two variables connected with H(p0). We

introduce the local coordinate system with origin at p0 and
axes

z along n0, ξ1 along b1, ξ2 along b2

where b1 is any unit vector perpendicular to n0 and b2 =
n0 × b1. Then such function has at pk values

ξk
1 = (pk − p0).b1,

ξ k
2 = (pk − p0).b2,

z(ξk
1 , ξk

2 ) = (pk − p0).n0.

Computation of curvatures It well known, that if the sur-
face is in the neighbourhood of origin represented by the
graph of the function z = f (x1, x2) and we denote p =
f/1(0, 0), q = f/2(0, 0), r = f/11(0, 0), s = f/12(0, 0),
t = f/22(0, 0), then the average curvature may be computed
from formula

κ = (1 + p2)t + (1 + q2)r − 2pqs

(1 + p2 + q2)3/2
. (33)

If the plane {x1, x2} is tangent to this graph, that is p =
q = 0, then the principal curvatures coincide with eigenval-
ues of H(f )(0, 0). Here H(f )(0, 0) is the Hessian matrix
of f : H = [f/ij ]i,j=1,2 That means that λi = 1/Ri . As a
result

κ = 1

R1
+ 1

R2
= λ1 + λ2 = tr (H) = t + r. (34)

Under this tangency assumptions, the function z(ξk
1 , ξk

2 )

may be approximated by

z(ξk
1 , ξk

2 ) = 1

2
ξ .H(z)(0, 0).ξ (35)

The problem is thus reduced to finding Hessian at the ori-
gin. It may be done using least square method. Let us define

ξ̂ = [ξ2
1 , ξ2

2 , ξ1ξ2]T , Ĥ = [f/11, f/22, 2f/12]T ,

X = [ξ̂1
, . . . , ξ̂

K ], Z = [z(ξ1), . . . , z(ξK)]T .

Then we have

Z = 1

2
Ĥ .X =⇒ Ĥ = 2(XXT )−1XZ (36)

This gives directly the approximation of κ:

κ ≈ Ĥ1 + Ĥ2. (37)

Testing the approximation In order to test the robustness
of the above approximation, we generate two 2 × 2 matri-
ces A1 and A2 with entries distributed according to uniform
density over interval [-1,1] and a vector [c1, c2] with the
same property. Then we use the symmetric matrix

A = K(A1A
T
1 − A2A

T
2 )

for constructing the function

z(x) = 1

2
x.A.x + K(c1x1 + c2x2)
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Fig. 5 On the left the view of the surface approximated on the grid (axis labels - coordinate system x, y, z). On the right the contour plot of the
typical surface (axis labels - coordinate system x1, x2). The polygon marks a projection of the triangular surface mesh on the plane, δ = 0.31

over the plane {x1, x2}. The graph of this function is not
tangent to the plane at the origin and it may have positive or
negative average curvature. Here K denotes the range of the
curvatures used in numerical experiment.

The next step is to introduce a 3-dimensional grid with
spacing δ in all directions. Then we create a typical neigh-
bourhood of triangles around origin with x1, x2 coordinates
of vertices on the sides of the square [−1, 1] × [−1, 1].
Finally, the xi values are snapped to the grid, resulting
in x

g
i = δ · round(xi/δ). The third coordinate of ver-

tices is similarly snapped to the vertical grid, zg(xg) =
δ · round(z(xg)/δ). The size of these triangles is in typi-
cal relation to the variability of z, as encountered in real
examples of surface approximation. In Fig. 5 we see two
types of surfaces and the triangles. During the experiment
real values of curvature were obtained using exact values

and formula (33). In the numerical computation of curva-
ture there where two sources of errors. The values of zg(xg)

are only approximate, due to the snapping to the grid, and
their accuracy depends on the grid size δ. The second source
of error comes from the approximation of n(0), so the
rotated coordinates b1, b2 are only approximately tangent
to the surface. Thus the formula (34) is only approximately
true.

We have performed two experiments with different grid
sizes, corresponding to different ranges of grid points used
for identifying the curvature. In Fig. 6 we see scatter plots
of real κ against its values computed according to the pro-
cedure outlined above. In order to depict the situation more
intuitively, we may imagine the surface supported on the
pile of cubes with edges of length δ. It turns out that the
method is quite robust and insensitive to the parameter δ, if

Fig. 6 The scatter plots of 300 experiments with random A (axis labels - horizontal: real values of curvature, vertical: aproximated values of
curvature). On the left δ = 0.31, on the right δ = 0.15
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it is smaller than 1/3. The vector n(0) is also approximated
quite accurately.

7 Numerical example

In this section, numerical examples of structural optimiza-
tion using both the formulation with and without surface
curvature measuring term are shown. The typical topology
optimization problem – the cantilever beam in bending with
the one edge fixed and bending force applied to the mid-
dle of the opposite edge was analysed. Material parameters
were assumed as follows: Young’s modulus 2 · 1011 Pa,
Poisson’s ratio 0.3.

To compare optimization results with, and without cur-
vature measuring term results for three different sizes of the
lazy zone was computed, and are depicted: - wide size of
the insensitivity zone 40–100 MPa in Fig. 7, - middle size of
the insensitivity zone 45–100 MPa in Fig. 8, - narrow size
of the insensitivity zone 50–100 MPa in Fig. 9.

The curvature is incorporated into the procedure in the
following way. The surface value of the strain energy den-
sity is treated in the algorithm as a mean value for the
thin layer (one layer of the solid finite elements) forming
the structural surface. The computed averaged strain energy
density for surface elements in this area are identified with
the first two terms in brackets in the formula (30), including
the impact of both of them. The last term is identified with
the influence of the surface curvature. The improvement of
descend direction should come from the partially heuristic
modification.

– If κ > 0 and F > F̄ , then after biomimetic modifi-
cation the boundary is additionally moved inside Ω by
50% of the biomimetic step.

– If κ < 0 and F > F̄ , then after biomimetic modifica-
tion the boundary is additionally moved outside Ω by
50% of the biomimetic step.

Thus the curvature term locally enhances or diminishes
the purely biomimetic modification of the structure. The
numerical experiments seem to confirm this claim and speed
method furnishes better descent direction compared to the
previous results already published.

The optimal configurations are presented in Fig. 10. The
left column presents the optimization results without the
curvature measuring term, when the right column presents
the optimization results when taking into account the cur-
vature of the evolving structural surface. The rows presents
results for different insensitivity zone size. The pictures
presented from the top to the bottom illustrate results for
the narrowing of the insensitivity zone. The upper level of
the insensitivity zone remains the same, while the lower
level approaches the upper one. Results still tend to the

Fig. 7 Bending of the cantilever beam - the optimization steps and
compliance change for the wide size of the insensitivity zone. Left:
optimization results without the curvature measuring term. Right:
optimization results with the curvature measuring term
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Fig. 8 Bending of the cantilever beam - the optimization steps and
compliance change for the middle size of the insensitivity zone. Left:
optimization results without the curvature measuring term. Right:
optimization results with the curvature measuring term

Fig. 9 Bending of the cantilever beam - the optimization steps and
compliance change for the narrow size of the insensitivity zone. Left:
optimization results without the curvature measuring term. Right:
optimization results with the curvature measuring term
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Fig. 10 Bending of the cantilever beam - final optimal configurations
for the different insensitivity zone size (the upper level remains the
same while the lower level approaches the upper one). Left: optimiza-
tion results without the curvature measuring term. Right: optimization
results with the curvature measuring term

well known solution. Including the surface curvature mea-
sure term helps the numerical procedure to find better the
geometrical features during the structural optimization and
decrease the number of necessary modification steps.

8 Conclusions

In the paper the new formulation of the biomimetic opti-
mization based on the trabecular bone phenomenon was
presented. The stiffest design is obtained by adding or
removal material on the structural surface in the virtual
space. The three terms completed the formula to steer the
material adding or removal: non-local influence of boundary
modification, the spatial variability of the function penal-
izing the deviation from the assumed strain energy density
on the structural surface and measuring of the increase or
decrease of the area of the surface itself, by measuring the
surface curvature. The notable difference to the heuristic
algorithm is contained in the non-local term. Thus, changing

the boundary at a certain point changes the energy density
everywhere. The structural evolution is based on the shape
gradient approximation by the speed method and is sep-
arated from the finite element method computations and
modeled with use of 2-dimensional images. Finite element
method is used to compute the distribution of the strain
energy density only.

The assumed value of the strain energy density on the
part of the boundary subject to modification could be related
to the material properties. Change in the assumed value of
the strain energy density results in change of the structural
form - topology and volume. In this way, the final structural
volume results from the optimization procedure. Instead of
imposing volume constraint we parameterize shapes by the
assumed energy density, which may be quite accurately pre-
dicted from the yield criteria. The remodelling phenomenon
with the lazy zone and strain energy density equalization on
the trabecular bone surface assumptions could be described
from the stiffness point of view. We proved with use of
shape derivative (21), that the maximization of a structure
stiffness needs the structural form, having on the part of the
boundary subject to modification constant value of the strain
energy density.

The functional configurations during the process of opti-
mization allows to include size, shape and topology opti-
mization in one numerical procedure. Presented results are
the justification that it is possible to use a different approach
to the problem of structural optimization. Instead of the
assumption of a constant volume, the assumption of a con-
stant strain energy density on the surface of the structure
is used and the volume or structural mass results from the
optimization procedure. Therefore, presented in the paper
approach can be used as a method of structural optimiza-
tion unrelated already to trabecular bone remodelling phe-
nomenon. This does not change the fact, that studies of the
phenomenon of bone remodelling may contribute to achiev-
ing better results also in the field of structural optimization.
A “lazy zone” concept is here a good example. This inter-
disciplinary approach can be very fruitful for all disciplines,
enabling the flow of concepts from biology to engineering
and vice versa.
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