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Abstract Material distribution topology optimization prob-
lems are generally ill-posed if no restriction or regulariza-
tion method is used. To deal with these issues, filtering
procedures are routinely applied. In a recent paper, we pre-
sented a framework that encompasses the vast majority of
currently available density filters. In this paper, we show
that these nonlinear filters ensure existence of solutions to a
continuous version of the minimum compliance problem. In
addition, we provide a detailed description on how to effi-
ciently compute sensitivities for the case when multiple of
these nonlinear filters are applied in sequence. Finally, we
present large-scale numerical experiments illustrating some
characteristics of these cascaded nonlinear filters.

Keywords Topology optimization · Regularization ·
Nonlinear filters · Existence of solutions · Large-scale
problems

1 Introduction

Since the seminal paper regarding topology optimization
of linearly elastic continuum structures by Bendsøe and
Kikuchi (1988), the field of topology optimization has

� Eddie Wadbro
eddie.wadbro@cs.umu.se

Linus Hägg
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been subject to intense research. Today, material distribu-
tion topology optimization is applied to a range of dif-
ferent disciplines, such as linear and nonlinear elasticity
(Clausen et al. 2015; Klarbring and Strömberg 2013; Park
and Sutradhar 2015), acoustics (Christiansen et al. 2015;
Kook et al. 2012; Wadbro 2014), electromagnetics (Elesin
et al. 2014; Erentok and Sigmund 2011; Hassan et al. 2014;
Wadbro and Engström 2015), and fluid–structure interaction
(Andreasen and Sigmund 2013; Yoon 2010). A compre-
hensive account on topology optimization and its various
applications can be found in the monograph by Bendsøe
and Sigmund (2003) as well as in the more recent reviews
by Sigmund and Maute (2013), and Deaton and Grandhi
(2014).

In material distribution topology optimization, a mate-
rial indicator function ρ : � ⊂ R

d → {0, 1} indicates
presence (ρ = 1) or absence (ρ = 0) of material within
the design domain � (Bendsøe and Sigmund 2003). To
numerically solve the topology optimization problem, the
domain � is typically discretized into n elements. The aim
of the optimization is to determine element values ρi ∈
{0, 1}, i ∈ {1, . . . , n}, that is, to determine if a given
element contains material or not. The resulting nonlinear
integer optimization problem is typically relaxed by allow-
ing ρi ∈ [0, 1], i ∈ {1, . . . , n}. This relaxation enables
the use of gradient based optimization algorithms that are
suitable for solving large-scale problems. In the continuum
setting, such relaxation is often necessary to guarantee exis-
tence of solutions. To promote binary designs, penalization
techniques are used. However, penalization typically makes
the solutions of the optimization problem mesh-dependent.
It is known that mesh dependency is sometimes due to lack
of existence of solutions to the corresponding continuous
problem. Several strategies have been proposed to resolve
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the issue of mesh-dependence and existence of solutions;
Borrvall (2001) presents a systematic investigation of sev-
eral common techniques.

Amongst the most popular techniques to achieve mesh-
independent designs is to use a filtering procedure. Filtering
procedures are commonly categorized as either sensitivity
filtering (Sigmund 1994) or density filtering (Bourdin 2001;
Bruns and Tortorelli 2001), where the derivatives of the
objective function are filtered or where the design variables
are filtered, respectively. When using a density filtering pro-
cedure, the design variables are no longer the “physical
density”, that is, the coefficients that enter the governing
equation. In a classic paper, Bourdin (2001) established
existence of solutions to a continuous version of the linearly
filtered penalized minimum compliance problem.

The primary drawback of the linear filter is that it
counteracts the penalization by producing physical designs
with relatively large areas of intermediate densities. More
recently, a range of nonlinear filters, aimed at reducing
the amount of intermediate densities while retaining mesh-
independence, has been presented (Guest et al. 2004, 2011;
Sigmund 2007; Svanberg and Svärd 2013). To harmonize
the use of filters, we have recently introduced the class of
generalized f W -mean filters that contains most filters used
for topology optimization. Apart from providing a common
framework for old as well as new filters, we also showed
that filters from this class may be applied with O(n) compu-
tational complexity (Wadbro and Hägg 2015). To the best of
our knowledge and perhaps due to the compelling numerical
evidence of mesh-independence that has been accumulated
over the years, the existence issue related to continuous
nonlinearly filtered topology optimization problems has
received little if any attention.

The main result of this paper is Theorem 1 of Section 2,
which is a generalization of the result of Bourdin (2001),
regarding the existence of solutions to an f W -mean fil-
tered penalized minimum compliance problem. Section 3
provides a short discussion regarding desirable properties of
a general filtering procedure in the discretized case, as well
as a short summary on the f W -mean filters. Section 4 dis-
cusses various aspects on fast evaluation of filtered densities
and their sensitivities. Finally, Section 5 presents large-scale
numerical experiments utilizing cascaded nonlinear filters.

2 Existence of solutions to the f W -mean filtered
continuous minimum compliance problem

In this section, we show that there exists a solution to
a continuous version of the f W -mean filtered penalized
minimum compliance problem.

Let � ⊂ R
d be a bounded and connected domain

in which we want to place our structure. The continuous
f W -mean filtered density is, for x ∈ �, given by

(
F(ρ)

)
(x) = f −1

⎛

⎜
⎝

1

|Nx |
∫

Nx

(f ◦ ρ)(y) dy

⎞

⎟
⎠ , (1)

where f is a smooth and invertible function f : [0, 1] →
[fmin, fmax] ⊂ R, Nx is the neighborhood of x, and |Nx | >

0 is the measure (area or volume) of Nx . We define the set
of admissible designs A ⊂ L∞(�) as

A =
⎧
⎨

⎩
ρ | 0 ≤ ρ ≤ 1 a.e. on �,

∫

�

F(ρ) ≤ V

⎫
⎬

⎭
. (2)

Remark 1 Throughout the article we do not explicitly spec-
ify the measure symbol (such as d�, for instance) in the
integrals, whenever there is no risk for confusion. The type
of measure will be clear from the domain of integration.

Remark 2 To be able to apply the filter F on any design,
we use a continuous bijective extension of f , f̂ : R̄ →
R̄, when evaluating expression (1). Assume (without loss
of generality) that f is increasing, then the continuous and
bijective extension f̂ : R̄ → R̄ may, for instance, be defined
as

f̂ (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−∞ if x = −∞,

f (0) + x if x ∈ (−∞, 0) ,

f (x) if x ∈ [0, 1] ,

f (1) + x − 1 if x ∈ (1, ∞) ,

∞ if x = ∞.

(3)

Furthermore, for any Lebesgue measurable function ρ :
� → R̄, the composition f̂ ◦ ρ is Lebesgue measurable. To
simplify the notation below, whenever we write f it should
be interpreted as a continuous and bijective extension of f .

We assume that the boundary ∂� is Lipschitz and that
the structure is fixed at a nonempty open boundary portion
�D ⊂ ∂�. The set of kinematically admissible displace-
ments of the structure is

U =
{
u ∈ H 1(�)d | u|�D

≡ 0
}

. (4)

The equilibrium displacement of the structure is the solution
to the following variational problem.

Find u ∈ U such that a(ρ; u, v) = �(v) ∀v ∈ U . (5)
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The energy bilinear form a and the load linear form � are
defined as

a(ρ; u, v) =
∫

�

ρ̃(ρ)Eε(u) : ε(v), (6)

�(v) =
∫

�

b · v +
∫

�L

t · v, (7)

where b ∈ L2(�)d and t ∈ L2(�L)d represent the internal
force in � and surface traction densities on the boundary
portion �L = ∂�\�D , respectively, ε(u) = (∇u+∇uT )/2
is the strain tensor (or the symmetrized gradient) of u, the
colon “:” denotes the scalar product of the two matrices, E

is a constant forth-order elasticity tensor, and ρ̃(ρ) is the
physical density. We define the physical density as

ρ̃(ρ) = ρ + (1 − ρ)P (F (ρ)), (8)

where ρ > 0 and P : [0, 1] → [0, 1] is a smooth and invert-
ible penalty function. The above formulation includes the
case when the problem is penalized using SIMP (Bendsøe
and Sigmund 2003), that is, to use P(x) = xp in (8) for
some p > 1. The addition of a minimum physical density
ρ > 0 ensures that the bilinear form a(·; ·, ·) is coercive.
That is, there exists a constant C > 0 such that

a(ρ; u, u) ≥ C‖u‖2
H 1(�)d

. (9)

Theorem 1 If |Nx | > 0 for all x ∈ �, then there
exists a solution to the following variation of the minimum
compliance problem.

Find u∗ ∈ U∗ such that �(u∗) = inf
u∈U∗ �(u), (10)

where

U∗ =
{
u ∈ U | ∃ρ ∈ A such that

a(ρ; u, v) = �(v) ∀v ∈ U

}
. (11)

Proof Let (um), um ∈ U∗ for all m ∈ N, be a minimiz-
ing sequence for �; without loss of generality, we stipulate
that (�(um)) is non-increasing. By the definition of U∗, there
exists a sequence of designs (ρm) such that, for each m ∈ N,
a(ρm; um, v) = �(v) for all v ∈ U . Since the bilinear form
(6) is coercive, we have from (9) that

C‖um‖2
H 1(�)d

≤ a(ρm; um, um) = �(um) ≤ �(u1). (12)

That is, (um) is uniformly bounded in H 1(�)d . Thus there
exists an element u∗ ∈ U and a subsequence, still denoted
(um), such that um converges weakly to u∗ in H 1(�)d as
m → ∞.

For each m ∈ N, we define τm = f ◦ ρm. By construc-
tion, we have that fmin ≤ τm ≤ fmax almost everywhere in
�. Since (τm) is bounded in L∞(�), we can according to

the sequential Banach–Alaoglu theorem find a subsequence,
still denoted (τm), and a limit element τ ∗ ∈ L∞(�) so that
τm converges weak* to τ ∗ in L∞(�) as m → ∞. As a direct
consequence of the weak star convergence, we have that for
all x ∈ �

1

|Nx |
∫

Nx

τm(y) dy = 1

|Nx |
∫

�

τm(y)1Nx
(y) dy

→ 1

|Nx |
∫

�

τ ∗(y)1Nx
(y) dy = 1

|Nx |
∫

Nx

τ ∗(y) dy (13)

as m → ∞, where 1Nx
∈ L1(�) is the characteristic

function of Nx .
The sequential Banach–Alaoglu theorem also guarantees

that fmin ≤ τ ∗ ≤ fmax almost everywhere in �. We can
thus define ρ∗ = f −1 ◦ τ ∗ and by construction 0 ≤ ρ∗ ≤ 1
almost everywhere in �. Since f −1 is continuous, we have
that

F(ρm)(x) = f −1

⎛

⎜
⎝

1

|Nx |
∫

Nx

τm(y) dy

⎞

⎟
⎠

→ f −1

⎛

⎜
⎝

1

|Nx |
∫

Nx

τ ∗(y) dy

⎞

⎟
⎠ = F(ρ∗)(x) (14)

as m → ∞. So, the physical design converges pointwise.
Moreover for all x ∈ �, we have that 0 ≤ F(ρ∗)(x) ≤ 1
and 0 ≤ F(ρm)(x) ≤ 1 for all m. Thus, by Lebesgue’s
dominated convergence theorem,
∫

�

F(ρ∗) = lim
m→∞

∫

�

F(ρm) ≤ V, (15)

or in words, the physical design obtained by filtering ρ∗
satisfies the volume constraint, so ρ∗ ∈ A. The pointwise
convergence of the physical (filtered) design implies that the
physical density converges pointwise and that for all x ∈ �,
it holds that ρ ≤ ρ̃(ρ∗)(x) ≤ 1 and ρ ≤ ρ̃(ρm)(x) ≤ 1 for
all m.

Let v be an arbitrary function in U , then

a(ρm; um, v)︸ ︷︷ ︸
�(v)

−a(ρ∗; u∗, v)

=
∫

�

(
ρ̃(ρm) − ρ̃(ρ∗)

)
Eε(um) : ε(v)

+
∫

�

ρ̃(ρ∗)E
(
ε(um) − ε(u∗)

) : ε(v). (16)

We have that ρ̃(ρ∗)ε(v) ∈ L2(�)d×d . In addition, since um

converges weakly to u∗ in H 1(�)d as m → ∞, we have that
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ε(um) converges weakly to ε(u∗) in L2(�)d×d as m → ∞.
Thus, the second term on the right hand side of expression
(16) tends to 0 as m → ∞. The absolute value of the first
term on the right hand side of expression (16) is bounded by
∑

i,j,k,l

∫

�

∣∣(ρ̃(ρm) − ρ̃(ρ∗)
)
Eijklεij (um)εkl(v)

∣∣ . (17)

Let Aijkl denote an arbitrary term in expression (17). We
note that for a fixed v ∈ H 1(�)d , we have that L2(�) �
|ρ̃(ρm) − ρ̃(ρ∗)||εkl(v)| → 0 almost everywhere on �

when m → ∞ since |εkl(v)| is finite almost everywhere on
�. Moreover, |ρ̃(ρm) − ρ̃(ρ∗)||εkl(v)| ≤ |εkl(v)|. Hence,
by using Cauchy–Schwartz’s inequality and Lebesgue’s
dominated convergence theorem, we find that

A2
ijkl ≤ |Eijkl |2‖εij (um)‖2

L2(�)

·
∫

�

|ρ̃(ρm) − ρ̃(ρ∗)|2|εkl(v)|2 → 0 (18)

as m → ∞. Thus, a(ρ∗; u∗, v) = �(v) ∀v ∈ U so u∗ ∈ U∗.
Moreover, because um converges weakly to u∗ in H 1(�)d

as m → ∞ and � is a bounded linear functional on H 1(�)d ,
we have that �(um) → �(u∗) as m → ∞. Since um is a
minimizing sequence for �(·), we have that

�(u∗) = inf
u∈U∗ �(u). (19)

That is, u∗ solves problem (10).

Remark 3 All steps in the above proof also hold true if we
replace the function f −1 in definition (1) by another smooth
function g : [fmin, fmax] → [0, 1]. In particular, this holds
if we replace f −1 in definition (1) by a projected version
h ◦ f −1 provided that h : [0, 1] → [0, 1] is smooth.

Remark 4 The proof also holds in the case with normal-
ized but non-uniform weights within the neighborhoods.
The only change required is to replace 1Nx

(y)/|Nx | in Eq.
(13) by an L1(�) function that describes the non-uniform
weights.

Remark 5 Analogous reasoning may be used for prov-
ing existence of solutions to problems that are similar to
the minimum compliance problem, for instance, the heat
compliance problem described in Section 5.2.

Formulation (10) of the minimum compliance problem
might at first seem obscure. However, as we now illus-
trate, formulation (10) is much related to the following more
direct formulation of the minimum compliance problem.

Find ρ∗ ∈ A and u∗ ∈ U such that

�(u∗) ≤ �(u) ∀u ∈ U∗,
a(ρ∗; u∗, v) = �(v) ∀v ∈ U . (20)

Note that if ρ∗ and u∗ solve problem (20), then u∗ solves
problem (10). On the other hand, if u∗ solves problem (10),
then there exists ρ∗ ∈ A such that ρ∗ and u∗ solve problem
(20). Thus, existence of solutions to (20) implies existence
of solutions to (10), and vice versa.

3 Filtering in the discretized case

3.1 Requirements on filters and their implications

The discussion below treats the discretized case, where the
design domain � is partitioned into n elements and the aim
of the optimization is to determine the design vector ρ =
(ρ1, . . . , ρn)

T ∈ [0, 1]n. A general filter is any function F :
[0, 1]n → [0, 1]n and the physical (filtered) design is F (ρ).
Below, we discuss typical requirements on such filters.

The first requirement is already included in the defini-
tion of F , namely that we require that the range must be
conforming, that is

F (ρ) ∈ [0, 1]n. (21)

In addition, we also require that the function F is
coordinate- and component-wise nondecreasing. That is, for
any i, j and any δ ≥ 0, we require that

Fi(ρ + δej ) ≥ Fi(ρ), (22)

where ej denotes the j th basis vector of Rn. Condition (22)
stems from the idea that increasing a design variable should
not decrease any value in the physical design. We note that,
conditions (21) and (22) imply that

Fi(0n) ≤ Fi(ρ) ≤ Fi(1n), (23)

where 0n = (0, . . . , 0)T ∈ R
n and 1n = (1, . . . , 1)T ∈ R

n.
Expression (23) shows that if we want each element in the
physical design to be able to attain the values 0 or 1, then
we must require that

F (0n) = 0n,

F (1n) = 1n. (24)

It is natural to require that the filtered density in element
i is strictly increasing with the density in that element. A
weaker assumption is to require that for each ρ ∈ [0, 1)n

there exists an i and a j such that Fi(ρ) is strictly increasing
in ρj in the vicinity of ρ. That is, there exists ε > 0 such
that

Fi(ρ + δej ) > Fi(ρ) ∀ 0 < δ < ε. (25)

The reason to include a requirement of this type is to guar-
antee that the physical design is sensitive to changes in the
design.
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If we want to use gradient based optimization algorithms,
then we need to require that F is differentiable. In this case,
requirement (22) translates to

∂Fi

∂ρj

≥ 0. (26)

Requirement (25) may be replaced by the more restrictive
condition that for each ρ, there exists an i and a j such that

∂Fi

∂ρj

(ρ) > 0. (27)

Another desirable property that often is mentioned is
volume preservation. A filter is volume-preserving if

1T
n F (ρ) = 1T

n ρ ∀ρ ∈ [0, 1]n. (28)

The obvious benefit of using a volume-preserving filter is
that the volume constraint can be applied directly to the
design vector ρ.

For a linear filter F (ρ) = Aρ, where A = [aij ] ∈ R
n×n,

conditions (21) and (24) are equivalent to

aij ≥ 0 ∀i, j and A1n = 1n. (29)

Furthermore, we find that volume preservation is equivalent
to

1T
n A = 1T

n . (30)

Thus, a linear filter is both volume-preserving and has a
conforming range if and only if A is a so-called doubly
stochastic matrix.

3.2 f W -mean filters

Next, we present a short summary on f W -mean filters
(Wadbro and Hägg 2015). For a given smooth and invert-
ible function f : [0, 1] → R with nonzero derivative, the
f W -mean filter of a vector ρ ∈ [0, 1]n is defined as

F (ρ) = f −1 (Wf (ρ)) , (31)

in which f (ρ) = (f (ρ1), f (ρ2), . . . , f (ρn))
T ∈ R

n and
W = [wij ] ∈ R

n×n is a weight matrix with non-negative
entries such that W1n = 1n.

We note that since

wij > 0 ⇐⇒ j ∈ Ni , (32)

the neighborhood Ni ⊂ {1, . . . , n} of element i is implicitly
defined by the weight matrix W . In topology optimization, it
is common to use a neighborhood shape N ⊂ R

d to define
the neighborhoods

Ni = {
j : xj − xi ∈ N

}
, i ∈ {1, . . . , n}, (33)

where xi ∈ R
d , i ∈ {1, . . . , n} are the element centroids.

When equal weights are used within neighborhoods, W =
D−1G, where D = diag(|N1|, . . . , |Nn|)T and G is the

neighborhood matrix with entries gij = 1 if and only if
j ∈ Ni and gij = 0 otherwise.

All f W -mean filters map a vector with equal entries to
itself, that is, if c ∈ [0, 1], then F (c1n) = c1n. Hence,
the f W -mean filters satisfy conditions (24). However, the
f W -mean filters are generally not volume-preserving, that
is

∃ρ ∈ [0, 1]n such that 1T
n F (ρ) �= 1T

n ρ. (34)

The ij entry of the Jacobian ∇F of the f W -mean filter is
given by

∂Fi

∂ρj

= wij

f ′(ρj )

f ′ (Fi(ρ))
≥ 0, (35)

where the inequality is strict provided wij > 0, that is, when
j is in the neighborhood of i.

The f W -mean filter framework contains many filter
types, such as the linear filters (Bruns and Tortorelli
2001), the morphology based filters introduced by Sigmund
(2007), and the pythagoran mean based filters introduced
by Svanberg and Svärd (2013), but not all. For example,
the projection based filters (Guest et al. 2004; Wang et al.
2011) are not covered in the f W -mean filter framework.
However, these filters can be fitted into the generalized
f W -mean filter framework (Wadbro and Hägg 2015), in
which the function f −1, used in definition (31), is replaced
by a smooth function g : f ([0, 1]) → [0, 1] satisfying
g(f (0)) = 0 and g(f (1)) = 1. That is, the generalized
f W -mean filters are of the form

F̃ (ρ) = g (Wf (ρ)) . (36)

4 Aspects of fast evaluation of filtered densities
and sensitivities

4.1 On the computational complexity

In our previous paper (Wadbro and Hägg 2015), we showed
that if the computational domain is discretized into n ele-
ments in a regular grid, the neighborhood shape is a poly-
tope, and equal weighting within each neighborhood is used,
then the f W -mean filter can be applied with computational
complexity O(n). The O(n) algorithm is based on recur-
sively adding and subtracting moving sums. Moreover, the
computational complexity can be bounded independent of
the size of the neighborhoods.

Non-equal weighting within neighborhoods can be
achieved by sequentially applying the same equally
weighted f W -mean filter twice (or more). More precisely,
when applying an equally-weighted f W -mean filter twice,
we have that

F (F (ρ)) = f −1
(
W 2f (ρ)

)
. (37)
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The weight matrix W 2 has, in general and for each neigh-
borhood, weights that decay from the neighborhood cen-
ter. Figure 1 illustrates the weights corresponding to the
first three powers of W = D−1G, from top to bot-
tom W , W 2, and W 3, for an octagonal (left column) and
a rectangular neighborhood (right column). If the neigh-
borhood shape is a convex polytope P ⊂ R

d , then it
can be shown that a neighborhood shape corresponding to
W 2 is 2P .

We remark that, in general, evaluating the sums Gf (ρ)

accounts for a significant portion of the computational cost
of the filter application. Moreover, the computational effort
required to evaluate these sums grows with the complex-
ity of the neighborhood polytope. Thus, if one wishes to
apply a filter with weights that decay with the distance
from the neighborhood center, particularly in three space
dimensions, one could save a great portion of the com-
putational time by selecting a simple neighborhood. For
example, the computational complexity for filtering over a
box shaped neighborhood is approximately 10 times lower
than the complexity for filtering over the significantly more
complex rhombicuboctahedron (a polytope with 26 faces—
twelve rectangular, six square, and eight triangular faces)
neighborhood (Wadbro and Hägg 2015).

On the other hand, if one wishes to use one of the
nonlinear filters that are designed to mimic min or max

operators over the neighborhood, then the neighborhood
shape is important. In this latter case, one cannot use the
weighted version with a square or box shaped neighbor-
hood to approximate a circular or spherical neighborhood,
since the nonlinearity of the filtering process will essen-
tially pick out the maximum/minimum of the element values
in each neighborhood. However, by using neighborhoods
of different but still relatively simple shapes, such as two
square shaped neighborhoods (with a relative rotation of
45 degrees), one can get a filtering procedure where the
neighborhood around each element is an octagon. A similar
approach can also be used for the three dimensional case,
where one can use four cubic neighborhoods (the scaled
unit cube plus three other cubes, rotated 45 degrees in the
x1x2, x1x3, and x2x3 planes, respectively) to approximate a
sphere. The use of a sequence of filters with simple neigh-
borhood shapes streamlines the implementation. Moreover,
the resulting memory access pattern can be made very regu-
lar, which paves the way for future highly efficient parallel
implementations.

If the neighborhood shape and the weighting (possi-
bly nonuniform) within each neighborhood is the same for
all neighborhoods, then Wf (ρ) corresponds to a convo-
lution. In this case f W -mean filters may be efficiently
applied using an FFT based algorithm (Lazarov et al.
2016). The main idea behind FFT based filtering is that the

Fig. 1 Illustration of the first
three powers (from top to
bottom) of the weight matrix,
W = D−1G, W 2, W 3, for an
octagonal and a rectangular
neighborhood (left and right
column, respectively)
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convolution between the density and the filter kernel corre-
sponds to elementwise multiplication in frequency domain.
The application of an f W -mean filter can be performed as

F (ρ) = f −1
(
F−1{F{w} � F{f (ρ)}}

)
, (38)

where F and F−1 represent the d-dimensional FFT and
inverse FFT transform, respectively, � denotes the element-
wise product, and w is a vector that represents the filter
kernel. The asymptotic computational complexity of FFT
based filters is O(n log n) independent of the complexity
of the neighborhood shape. For filtering using any given
polygonal neighborhood, the FFT-based filters are hence
asymptotically slower than the O(n) algorithm based on
recursively adding and subtracting moving sums. For large-
scale problems, with 105–109 elements, the FFT based
algorithm is 1.3–6.5 times slower than the moving sums
based algorithm on a standard desktop equipped with an
Intel Xeon E5-1650 v3 CPU. The FFT algorithm is poten-
tially sensitive to round-off errors, similarly as the O(n)

moving sums based algorithm (Wadbro and Hägg 2015). In
many fields the FFT method is standard and there exists
many highly optimized and parallel FFT routines, thus the
FFT-based filters are a competitive alternative.

4.2 Sensitivity evaluation

The impact of the filter on the sensitivities is found by com-
puting vT ∇F (ρ) for some vector v ∈ R

n. In practice, v is
the gradient of the objective or a constraint function with
respect to the filtered densities. By using expression (35),
we find that

n∑

i=1

vi

∂Fi(ρ)

∂ρj

=
n∑

i=1

viwij

f ′(ρj )

f ′ (Fi(ρ))

= f ′(ρj )

n∑

i=1

wij

vi

f ′ (Fi(ρ))
, (39)

that is, to modify sensitivities we need to carry out matrix
multiplication by W T . In the special case of equal weight-
ing within neighborhoods, multiplication by W T translates
to multiplication by GT ; or expressed differently, to perform
summation over the transposed neighborhoods N T

i = {j :
i ∈ Nj } = {j : gji = 1}. If the neighborhoods are symmet-
ric, then GT = G and the same summation algorithm can
be used for both filtering and sensitivity calculation, which
facilitates the implementation.

Assume that the neighborhoods are defined by a neigh-
borhood shape N so that Ni = {j : xj − xi ∈ N }, where
xi and xj denote the centroid of elements i and j , respec-
tively. For each element j ∈ N T

i , we have that i ∈ Nj and
by definition xi −xj ∈ N ; that is, there exists y ∈ N so that

xi − xj = y or equivalently xj − xi = −y. Since all steps
above are bidirectional, we have that N T

i = {j : xj − xi ∈
−N }; hence a neighborhood shape which defines the trans-
posed neighborhoods is found by inversion of N in the
origin. Since P and −P are essentially the same polytope,
this means that implementing the fast summation algorithm
over −P requires the same amount of work as implementing
it over P .

If we work with a Cartesian grid and the design vari-
ables are stored using a standard slice/fiberwise numbering
(row- or column-wise in the two dimensional case), then we
can use that GT = PGP , where P is the flip or exchange
matrix. That is, P is the matrix with ones along the anti-
diagonal and zeros elsewhere. Hence, the same summation
algorithm may be used both for filtering and sensitivity
evaluation.

4.3 Cascaded f W -mean filters

It has already been established that sequential application of
filters is a means to arrive at filters with desirable proper-
ties, see for instance the open and close filters introduced in
topology optimization by Sigmund (2007).

Assume that we are given a family of N f W -mean
filters,

F (K)(ρ) = f −1
K

(
W (K)f K(ρ)

)
, K ∈ {1, . . . , N}. (40)

For each K ∈ {1, . . . , N}, we define the cascaded filter
function of order K , C(K) : [0, 1]n → [0, 1]n, to be the
composition

C(K) = F (K) ◦ F (K−1) ◦ . . . ◦ F (1), (41)

and we define

ρ(K) = C(K)(ρ). (42)

The cascaded filter is naturally applied sequentially

ρ(K) = F (K)
(
C(K−1)(ρ)

)
= F (K)

(
ρ(K−1)

)
, (43)

where we set ρ(0) = ρ. If the prerequisites of the algo-
rithm presented in Wadbro and Hägg (2015) are met for
all N f W -mean filters in the cascade (41), then sequential
application of the cascaded filter requires O(Nn) opera-
tions.

We proceed to show how to modify sensitivities in the
case of a cascade of N f W -mean filters. That is, given
a vector v ∈ R

n, we want to compute vT ∇C(N)(ρ). To
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this end, we assume that N ≥ 2, let v(N) = v, combine
expressions (42) and (43), and apply the chain rule

n∑

i=1

v
(N)
i

∂

∂ρj

C
(N)
i (ρ)

=
n∑

i=1

v
(N)
i

∂

∂ρj

(
F

(N)
i

(
C(N−1)(ρ)

))

=
n∑

i=1

v
(N)
i

n∑

k=1

∂F
(N)
i

∂ρk

∣∣∣∣
ρ(N−1)

∂

∂ρj

C
(N−1)
k (ρ)

=
n∑

k=1

(
n∑

i=1

v
(N)
i

∂F
(N)
i

∂ρk

∣∣∣∣
ρ(N−1)

)
∂

∂ρj

C
(N−1)
k (ρ)

=
n∑

k=1

v
(N−1)
k

∂

∂ρj

C
(N−1)
k (ρ), (44)

where we in the last step have defined

v
(N−1)
k =

n∑

i=1

v
(N)
i

∂F
(N)
i

∂ρk

∣∣∣∣
ρ(N−1)

. (45)

The first and last lines of expression (44) are similar in
form. However, the order of the cascade in the last line is
one less than that in the first line. The steps in expression
(44) may be repeated until the order of the cascade in the
last line is 1, that is, the cascade consists of just one fil-
ter. We conclude that evaluating vT ∇C(N)(ρ) corresponds
to sequentially computing the vectors v(K−1)

v
(K−1)
k =

n∑

i=1

v
(K)
i

∂F
(K)
i

∂ρk

∣∣∣∣
ρ(K−1)

, (46)

for K = N, N−1, . . . , 1 and where as before v(N) = v. The
sum on the right hand side of expression (46) is precisely of
the form (39).

Hence, if we store the intermediate designs ρ(K), K ∈
{1, . . . , N} when sequentially applying the filter and if the
prerequisites of the fast summation algorithm are fulfilled
for all filters in the cascade, then modification of sensi-
tivities requires O(Nn) operations. The low computational
complexity for modifying sensitivities comes at the cost of
O((N −1)n) memory used to store the intermediate designs
ρ(K), K ∈ {1, . . . , N − 1}.

Remark 6 Existence of solutions to the continuous penal-
ized minimum compliance problem in the case when a
cascade of f W -mean filters is applied can be proven by
following the same reasoning as in the proof in Section 2.

4.4 Implementation of cascaded f W -mean filters

In the following section, we present numerical experiments
performed in Matlab. For the cantilever beam experiments,

we use a modified version of the 2D multigrid-CG topol-
ogy optimization code by Amir et al. (2014). Below, we
describe the major changes done to the code. First, we intro-
duce a filter struct filterParam to hold all information
needed to perform filtering and sensitivity modification,
see Table 1. In the code excerpts, we have suppressed
the struct name filterParam to increase the readabil-
ity. For instance, we simply write N instead of writing
filterParam.N. Listings 1–3 contain the new parts of
code that needs to be included in order to use a filtering
procedure composed of a cascade of generalized f W -mean
filters. The Matlab code in Listing 1 computes the neighbor-
hood sizes. The Matlab code in Listing 2 filters the vector
rho by using the filterParam struct and the proce-
dure outlined in Section 4.3. The observant reader notices
that in fact it is not ρ(K) that is saved in the filtering, but
(D(K))−1G(K)f K(ρ(K−1)) since this enables the use of
generalized f W -mean filters where gK �= f −1

K . The Mat-
lab code in Listing 3 computes vT ∇C(N)(ρ), as outlined in
Section 4.3. We remark that filtering of densities must be
moved inside the optimality criteria update whenever a non
volume-preserving filter is used.

5 Numerical experiments

5.1 Cantilever beam

As a first test problem, we consider the minimzation of com-
pliance for the cantilever beam illustrated in Fig. 2. The
beam is held fast at its left hand side, the boundary portion
denoted �D in the figure and subject to a downward verti-
cal force that is uniformly distributed over �F , the middle
10 % of the beam’s right side. We solve variational problem
(5) by using bilinear finite elements, use the minimum phys-
ical density ρ = 10−9, and use SIMP as our penalization
approach; that is, P(x) = xp in (8) with p = 3. To mini-
mize the compliance we use the optimality criteria method
with damping parameter η = 1/2.

Table 1 The fields in the filterParam struct. Note that field N and
index k corresponds to the variables N and K , respectively

Field Explanation

N Number of individual filters N , K ∈ {1, . . . , N}
f{k} Function handle to compute f K(ρ)

g{k} Function handle to compute gK(ρ) (= f −1
K (ρ))

df{k} Function handle to compute f ′
K(ρ)

dg{k} Function handle to compute g′
K(ρ)

G{k} Function handle to compute G(K)ρ

GT{k} Function handle to compute (G(K))T ρ
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Listing 1 Matlab code that computes the neighborhood sizes

Here, we use an open–close (open followed by close)
filtering strategy over octagonal shaped neighborhoods as
suggested by Sigmund (2007). However, instead of using
exponential averaging, we use harmonic averaging as intro-
duced in topology optimization by Svanberg and Svärd
(2013). More precisely, the harmonic open–close filter is
a cascade of four f W -mean filters defined by f1(x) =
f4(x) = (x + α)−1, f2(x) = f3(x) = f1(1 − x), and
gK = f −1

K for K = 1, . . . , 4. In our experiment, we used
the fixed parameter α = 10−4. Figure 3 shows the final
physical design (not post processed nor sharpened!) from
the optimization of the cantilever beam. The volume frac-
tion used was 0.5 and the final measure of non discreteness
(of the physical design) is 0.3 %.

To the best of our knowledge, previously no contribu-
tion has used an open–close or close–open filtering strategy
to solve problems with more than a few tens of thousands
degrees of freedom. Here, we capitalize on our fast filter-
ing strategy (Wadbro and Hägg 2015) and solve a design
problem with 7.96 million degrees of freedom. The size of
the filter neighborhoods is 4,405 elements for the open step
and 301 elements for the close step. The solution process
required 111 iterations and took fourteen hours, the filtering
and modification of sensitivities consumed about a quarter
of this time, on a standard desktop equipped with an Intel
Xeon E5-1650 v3 CPU. It should be noted that the fast
summation algorithm was executed almost 24,000 times.

Recently, Schevenels and Sigmund (2016) demonstrated
that an open–close filtering strategy in general does not
guarantee minimum size control on both structure and void
regions. Nevertheless, our numerical experiments suggest
that for minimum compliance problems such a filtering
strategy in combination with a gradient based optimization
method results in physical designs that exhibit size con-
trol on both structure and void regions. By examination of
Fig. 3, we note that the shape of the filter neighborhood is

Listing 2 Matlab code that filters the design variables by using a
cascade of generalized f W -mean filters

Listing 3 Matlab code that modifies the sensitivities with respect to
the physical design following the description in Section 4.3

clearly visible in some of the corners of the internal void
regions. More precisely, the resulting physical designs could
be manufactured by using either a deposition tool or a punch
in the shape of the neighborhood used in the open or close
step, respectively. To illustrate that the bounds on the min-
imum sizes are dictated by the size of the neighborhoods
used in the harmonic open–close filter, we present in Figs. 4
and 5 a series of cantilever beams optimized using different
neighborhood sizes. In each sub-figure, the neighborhoods
used in the filtering process are shown in the top right cor-
ner; the upper neighborhood corresponds to the open step
that should impose a minimum size on the material regions
and the lower neighborhood corresponds to the close step
that should impose a minimum size on the void regions.
The upper-right cantilever beam in Fig. 4 is a “coarse” ver-
sion of the cantilever beam in Fig. 3 included to illustrate
mesh-independence.

5.2 Minimum heat compliance

The second model problem that we consider is to minimize
the heat compliance of a square plate that occupies the com-
putational domain �, illustrated in Fig. 6, and is subject to
uniform heating. The plate is held at zero temperature along
the boundary portion �D and is insulated along the rest of
the boundary �N . At thermal equilibrium, the temperature
field u, satisfies the variational problem

Fig. 2 Geometry for the cantilever beam problem
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Fig. 3 Filtered densities for a cantilever beam optimized by using
3456 × 2304 elements and a harmonic open filter over a “large”
octagonal neighborhood followed by a harmonic close filter over a
“small” octagonal neighborhood. The neighborhoods are indicated in
the upper-right corner

Find u ∈ V such that
∫

�

ρ̃(ρ)∇u · ∇v =
∫

�

v ∀v ∈ V, (47)

where ρ̃(ρ) represents the physical heat conductivity that
is inhomogeneous but isotropic and V = {u ∈ H 1(�) |
u|�D

≡ 0}. The physical conductivity is defined according
to expression (8) with ρ = 10−3 and using SIMP for the
penalization. The material distribution problem that we are
interested in solving can be written as

min
ρ∈A

∫

�

u, (48)

where A is defined in expression (2) with V = |�|/2.
Variational problem (47) is solved by using bilinear finite

elements. We use SIMP as our penalization approach, that is
P(x) = xp in (8), and solve optimization problem (48) by
using the optimality criteria method with damping param-
eter η = 1/8 coupled with a continuation approach for
the penalty parameter. That is, we solve the problem for an

Fig. 4 Cantilever beams optimized by using 1536×1024 elements and
different harmonic open–close filters. The octagonal neighborhoods
are indicated in the upper-right corner of each sub-figure. Here, the
relative ratio between the filter radii used in the open and close step is
4 for all experiments

Fig. 5 Cantilever beams optimized by using 1536×1024 elements and
different harmonic open–close filters. The octagonal neighborhoods
are indicated in the upper-right corner of each sub-figure. Here, the
relative ratio between the filter radii used in the open and closed step is
1 and 1/4 for the left and right beam respectively. Results with a ratio
of 4 between the filter radii used in the open and close step are shown
in Fig. 4

increasing sequence of penalty levels p = 1, 1.1, . . . , 20.
For the first penalty level we use a uniform initial guess
and for the later levels, we use the final filtered conduc-
tivity from the previous level as starting guess. We remark
that, similarly as observed by Lazarov et al. (2016) that
using a single penalty level p = 3 for the SIMP parameter
and damping parameter η = 1/2 in the optimality criteria
update produces optimized designs with large regions with
intermediate conductivities.

As in the cantilever beam examples in the previous
section, we use a harmonic open–close filter over octag-
onal neighborhoods with different sizes for the open and
the close steps. Figure 7 shows optimized physical designs
for the heat compliance problem. The combination of the
harmonic open–close filter and the proposed penalization
scheme results in crisp physical designs with MNDs ranging
between 0.2 % and 0.7 %. The lower left physical design,
which contains a region of intermediate densities that is not
located entirely on the boundary between the two materials,
has the largest MND. Such a region of intermediate den-
sities serves as an indication of insufficient penalization.

Fig. 6 Geometry for the minimum heat compliance problem
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Fig. 7 Optimized results for the heat compliance problem using a res-
olution of 1024 × 1024 and 2048 × 2048 elements for the results in
the top and bottom row, respectively. The octagonal neighborhoods
are indicated in the upper-right corner of each sub-figure; the ratio
between the filter radii in the open and close step was 3:2 for all results.
The filter radii used for the results in the left column are twice as large
as those used to obtain the results in the right column

(Since the filter is smooth some transitional region is always
expected at an interface between high conductivity and low
conductivity material.)

In all experiments the ratio between the filter radii of the
open and close steps was 3:2. To illustrate the effect of the
size of the filter neighborhoods the radii of the neighbor-
hoods in the left column of Fig. 7 are twice as large as those
in the right column. The results obtained using smaller fil-
ter radii exhibit finer details than those obtained with twice
as large radii. Moreover, as is expected, the physical designs
could be manufactured by using a deposition tool in shape of
the larger neighborhood followed by a punch in the shape of
the smaller neighborhood. We note that the same guarantee
of manufacturability holds when replacing (in the open–
close filter over different sized neighborhoods) the open by
a dilate and the close by an erode filter (Svärd 2015). One
reason to use the more complicated open and close filters
is that these are closer to being volume-preserving than the
dilate and erode filters (Sigmund 2007). Strictly speaking,
the mentioned type of manufacturability can only be guar-
anteed for binary designs, and when the dilate and erode
filters corresponds to max and min operators, respectively.

The bottom row of Fig. 7 shows designs optimized using
twice the number of elements in each coordinate direction
compared to those in the top row. Although the designs
obtained for different mesh sizes are not identical, they are
similar and share the same main features.

6 Concluding summary

In this paper, we have proven the existence of solutions
to a continuous f W -mean filtered penalized minimum
compliance problem. The existence of solutions is in accor-
dance with previous experimental experience on mesh-
independence gained by using nonlinear filters (Sigmund
2007; Svanberg and Svärd 2013). As was pointed out by
Svanberg and Svärd (2013), the use of a different filter
may give rise to a different solution. To facilitate switching
between different filters, we recommend using a data struc-
ture similar to that found in Table 1. We have performed
large-scale topology optimization in two space dimensions.
The nonlinear nature of the filter together with a penaliza-
tion technique results in physical designs that are almost
black and white. A key to enable solutions of large-scale
problems is our fast filtering algorithm (Wadbro and Hägg
2015), which enables us to filter densities and modify sensi-
tivities with a computational cost proportional to the number
of design variables. Filtering over complex neighborhood
shapes can be achieved by cascading filters over simple
neighborhood shapes, and doing so might considerably sim-
plify the implementation of the filtering procedure. We have
argued that uniform weighting within neighborhoods is the
preferred choice when using filters designed to mimic max
or min operators. It is important to keep in mind that using
a nonlinear filter does not by itself ensure that the final
designs are black–white; the filter must be paired with a
properly chosen penalization strategy.

Acknowledgments This work is financially supported by the
Swedish Foundation for Strategic Research (No. AM13-0029) and by
the Swedish Research Council (No. 621-3706). The authors thank
Martin Berggren, Department of Computing Science, Umeå Univer-
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1028 L. Hägg, E. Wadbro

Bendsøe MP, Sigmund O (2003) Topology optimization. Theory,
methods, and applications. Springer, Berlin

Borrvall T (2001) Topology optimization of elastic continua
using restriction. Arch Comput Meth Eng 8(4):351–385.
doi:10.1007/BF02743737

Bourdin B (2001) Filters in topology optimization. Int J Numer
Methods Eng 50:2143–2158. doi:10.1002/nme.116

Bruns TE, Tortorelli DA (2001) Topology optimization of
non-linear elastic structures and compliant mechanisms.
Comput Methods Appl Mech Eng 190:3443–3459. doi:10.1016/
S0045-7825(00)00278-4

Christiansen RE, Lazarov BS, Jensen JS, Sigmund O (2015) Creating
geometrically robust designs for highly sensitive problems using
topology optimization: acoustic cavity design. Struct Multidiscip
Optim 52(4):737–754. doi:10.1007/s00158-015-1265-5

Clausen A, Aage N, Sigmund O (2015) Topology optimization
of coated structures and material interface problems. Com-
put Methods Appl Mech Eng 290:524–541. doi:10.1016/j.cma.
2015.02.011

Deaton JD, Grandhi RV (2014) A survey of structural and multi-
disciplinary continuum topology optimization: post 2000. Struct
Multidiscip Optim 49(1):1–38. doi:10.1007/s00158-013-0956-z

Elesin Y, Lazarov BS, Jensen JS, Sigmund O (2014) Time
domain topology optimization of 3d nanophotonic devices.
Photonics Nanostruct Fundam Appl 12(1):23–33. doi:10.1016/
j.photonics.2013.07.008

Erentok A, Sigmund O (2011) Topology optimization of sub-
wavelength antennas. IEEE Trans Antennas Propag 59(1):58–69.
doi:10.1109/TAP.2010.2090451

Guest JK, Provost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design variables
and projection functions. Int J Numer Methods Eng 61(2):238–
254. doi:10.1002/nme.1064

Guest JK, Asadpoure A, Ha SH (2011) Eliminating beta-continuation
from heaviside projection and density filter algorithms. Struct Mul-
tidiscip Optim 44(4):443–453. doi:10.1007/s00158-011-0676-1

Hassan E, Wadbro E, Berggren M (2014) Topology optimization of
metallic antennas. IEEE Trans Antennas Propag 63(5):2488–2500.
doi:10.1109/TAP.2014.2309112
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