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Abstract In this paper, we study the multiobjective co-
design problem of optimal valve placement and operation
in water distribution networks, addressing the minimiza-
tion of average pressure and pressure variability indices.
The presented formulation considers nodal pressures, pipe
flows and valve locations as decision variables, where
binary variables are used to model the placement of control
valves. The resulting optimization problem is a multiob-
jective mixed integer nonlinear optimization problem. As
conflicting objectives, average zone pressure and pressure
variability can not be simultaneously optimized. Therefore,
we present the concept of Pareto optima sets to investigate
the trade-offs between the two conflicting objectives and
evaluate the best compromise. We focus on the approxi-
mation of the Pareto front, the image of the Pareto optima
set through the objective functions, using the weighted
sum, normal boundary intersection and normalized normal
constraint scalarization techniques. Each of the three meth-
ods relies on the solution of a series of single-objective
optimization problems, which are mixed integer nonlin-
ear programs (MINLPs) in our case. For the solution of
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each single-objective optimization problem, we implement
a relaxation method that solves a sequence of nonlinear
programs (NLPs) whose stationary points converge to a sta-
tionary point of the original MINLP. The relaxed NLPs
have a sparse structure that come from the sparse water
network graph constraints. In solving the large number of
relaxed NLPs, sparsity is exploited by tailored techniques
to improve the performance of the algorithms further and
render the approaches scalable for large scale networks.
The features of the proposed scalarization approaches are
evaluated using a published benchmarking network model.
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1 Introduction

The optimal operation of water distribution networks
(WDNs) requires the satisfaction of multiple criteria, some
of which may be conflicting, in order to deliver increas-
ing water demand cost-efficiently (Newman et al. 2014).
Some objectives include the reduction of leakage, improve-
ments in network resilience, optimization of water quality,
and an efficient use of energy in pumping. The optimal
management of pressure is one of the most effective meth-
ods to reduce leakage; a small decrease in average zone
pressure has been shown to result in significant reductions
in leakage (Lambert 2001). The sectorization of water dis-
tribution systems has also provided some benefit in this
respect. Networks are subdivided into smaller sectors, called
District Metered Areas (DMAs), so that flow into and out
of each DMA is continuously monitored, improving the
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management of pressure and leakage (Farley and Trow
2003). On the other hand, this has severely reduced network
redundancy, affecting resilience and water quality nega-
tively. In particular, the action of valves to sectorize the
network and reduce average zone pressure can generate high
diurnal pressure variability across the nodes (Wright et al.
2014; Wright et al. 2015). Over the past few years, various
studies have established the influence of pressure variability
on pipe failures (Lambert and Thornton 2011). Moreover,
the recent studies Martı́nez-Codina et al. (2015); Hoskins
and Stoianov (2015); Rezaei et al. (2015) have highlighted
the influence of different pressure variability indicators on the
probability of occurrence of pipes’ failures. As a consequence,
an effective pressure management has to consider both the
minimization of average zone pressure and pressure variability.

As standard in WDN management, here we consider
pressure management that is actuated by controlling pres-
sure reducing valves (PRVs), which regulate the pressure
at their downstream node, and boundary valves, which can
allow a range of pressure differentials across a pipe as their
setting is varied between fully open, closed or anything in
between the two. In standard approaches, these valves are
optimally controlled once engineers have installed them at
locations chosen using practical knowledge.

In this paper, we depart from the standard practice and
consider the problem of optimizing the location of the
actuator (i.e. boundary valves and PRVs), and the opti-
mal pressure settings simultaneously – what is referred to
as a co-design optimization problem. Although such an
approach generally offers better performance, the mathe-
matical formulation for the simultaneous optimal design
and operation problem presents significant challenges; it
requires the solution of a difficult nonlinear optimization
problem with both continuous and discrete variables. In the
present study we consider nodal pressures, pipe flows and
valve locations as decision variables, where binary variables
are needed to model the placement of valves. In addition,
the inclusion of hydraulic conservation laws results in non-
convex, nonlinear constraints. In this work, we investigate
the co-design problem with respect to two objectives, i.e. the
minimization of average zone pressure and pressure vari-
ability via the optimal placement and control of valves.
Therefore, a multi-objective optimization problem is formu-
lated to establish the trade-offs between these two criteria.
The resulting problem is a multiobjective mixed integer
nonlinear program (MINLP).

Due to their underlying complex structure, multiobjec-
tive co-design optimization problems for water distribution
networks are commonly studied using evolutionary algo-
rithms (EAs), which can be easy to implement by coupling
them with simulation software (Maier et al. 2014). However,
EAs have some disadvantages. Firstly, they do not guaran-
tee optimality of the solutions, not even local optimality.

Secondly, a large number of function evaluations and sim-
ulations of the hydraulic model are required in order to
generate useful solutions, which do not scale well with the
size of the search space. Unlike mathematical optimiza-
tion approaches, evolutionary methods do not explicitly or
accurately handle nonlinear constraints.

Since optimal control profiles for pressure management
need to satisfy strict physical, quality and economic con-
straints, we seek a method that guarantees an accurate
handling of constraints. Moreover, we aim to propose a scal-
able approach for large scale water systems, exploiting the
particular sparse structure of water distribution networks.
Therefore, in the present work we propose the applica-
tion of state-of-the-art optimization methods for the solution
of multiobjective co-design problems for water distribution
networks.

Although the natural aspiration is to find a feasible opti-
mal configuration for all the objectives, typically no single
solution that simultaneously optimises all conflicting objec-
tives exists. Therefore, the mathematical notion of Pareto
optimality is adopted to characterise the best compromises
between conflicting objectives.

A feasible point for a multiobjective optimization prob-
lem is a global Pareto optimum if there is no other feasible
point that improves one or more of the objectives without
making another worse (Miettinen 1998). A decision vec-
tor is called a local Pareto optimum if it is a global Pareto
optimum only when the optimization is restricted to its
neighbourhood. However, for non-convex problems all the
deterministic gradient-based methods for the generation of
Pareto optima guarantee convergence only to local optima.
Since in the present work we consider a non-convex multi-
objective optimization problem, we will refer to local Pareto
optima simply as Pareto optima, unless otherwise stated.

For a generic nonlinear optimization problem with m

objectives, the set of Pareto optima is uncountable and very
complex; it is a stratified set, a pairwise disjoint union of
differentiable manifolds of dimension (m − 1) with bound-
aries and corners of lower dimensions (Wan 1978; Smale
1976). For instance, the Pareto set is a pairwise disjoint
union of segments of curves for the case of 2 objectives.
Continuation methods (Hillermeier 2001) try to track the
local structure of the Pareto optimal manifolds near some
initial solutions. However, only few continuation methods
can deal with the non-differentiable breakpoints introduced
by inequality constraints (Martin et al. 2014) and handle
non-convex and nonlinear problems, where the Pareto set is
disconnected (Hartikainen and Lovison 2014). Moreover, in
the case of multiobjective mixed integer nonlinear optimiza-
tion problems, as considered in the present work, discrete
decision variables introduce additional complexities – the
Pareto set may be composed of disconnected segments of
curves and isolated points (Das 2000). Since in general
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the differential composite structure of the Pareto set is not
explicitly known, algorithmic mathematical methods focus
on the space of the objective functions rather than the deci-
sion variable space; for an exhaustive survey see Miettinen
(1998), Marler and Arora (2004) and Andersson (2000).

In the present work, we are interested in techniques
which approximate the image of the Pareto set through the
objective functions, called Pareto front. The aim is to pro-
vide a wide and uniform distribution of points of the front
so that the decision maker can choose the Pareto optimal
solution which better fits its needs. This is called an a pos-
teriori approach since the articulation of the preferences
by the decision maker is made after the generation of the
approximated Pareto front (Marler and Arora 2004). Com-
mon a posteriori approaches include scalarization methods
(Marler and Arora 2004; Das and Dennis 1998; Messac
et al. 2003; Kim and De Weck 2005), which parametrize
the multiobjective problem into a series of single-objective
optimization problems that can be solved using standard
nonlinear programming techniques. A popular scalarization
method is the weighted sum (WS) of the objectives (Marler
and Arora 2004). Despite its simplicity, some disadvan-
tages of the WS approach include its inability to generate
Pareto points in the non-convex parts of the Pareto front
and the fact that an even spread of weights may not cor-
respond an uniform distribution of points of the front (Das
and Dennis 1997). In the past 20 years new methods have
been proposed to deal with these drawbacks, in particu-
lar, the Normal Boundary Intersection (NBI) method (Das
and Dennis 1998) and the Normalized Normal Constraint
(NNC) method (Messac et al. 2003). These techniques can
be combined with efficient gradient-based algorithms to find
optimal solutions even for large-scale and highly constrained
optimization problems, see for example (Logist et al. 2010).

However, these methods have been developed for con-
tinuous problems and their effectiveness for mixed integer
problems is not (well) studied. The non-connectivity of
the Pareto sets and the presence of isolated Pareto optimal
points can cause severe problems for the NBI method. On
the other hand, WS and NNC methods are less likely to
suffer from the disconnected nature of the Pareto set. In
fact, we will show this to be the case in Section 5, where
disconnected Pareto branches in Fig. 6 are discussed.

The application of the scalarization methods to multiob-
jective MIPs considered in this article relies on the solution
of a series of single-objective non-convex optimization
problems belonging to the class of mixed integer nonlin-
ear programming (MINLP). The solution of these problems
requires handling non-convex nonlinear constraints in a dis-
crete framework and hence it is particularly challenging, for
a general surveys on MINLP see Lee and Leyffer (2012).
A possible approach for non-convex MINLP is the appli-
cation of a branch and bound algorithm to find at least

local solutions (D’Ambrosio and Lodi 2013). However,
in our case this would result in infeasible computational
time for large scale water distribution networks, since it
is necessary to solve a series of MINLPs to generate the
Pareto front. Since the integer variables involved in our opti-
mization problem are binaries, they can be reformulated
as complementarity constraints, enforcing the variables to
take only one of the two complementary values 0 and 1.
Nonetheless, the complementarity constraints result is a spe-
cial feasible set which violates standard requirements for
the application of gradient-based solution algorithms and
specialized approaches are needed to solve these problems
(Scheel and Scholtes 2000; Leyffer 2006; Raghunathan
and Biegler 2005; Ralph and Wright 2004; Hu and Ralph
2004). In particular we focus on relaxation methods: the
MPPC is converted into a series of nonlinear programs
with relaxed feasible sets which satisfy standard regularity
assumptions for the application of state-of-the-art nonlinear
programming (NLP) solvers. The sequence of solutions of
the relaxed NLP sub-problems will converge to a solution
for the original MPCC, see Herty and Steffensen (2012),
Leyffer et al. (2006) and Scholtes (2001).

In this article, in order to solve the difficult multiobjec-
tive mixed-integer nonlinear problems, we propose coupling
a relaxation approach for solving MIPs with state-of-the-art
scalarization methods for generating Pareto fronts. More-
over, sparse techniques are used within the NLP solvers to
improve the performance of relaxation methods since the
large scale mixed integer nonlinear programs that arise in
the framework of optimal co-design for water distribution
networks have sparse constraints. The Jacobians and Hes-
sians of the relaxed NLPs retain this sparsity, which we take
advantage of.

In the following section, we motivate and formulate
the multiobjective optimization problem for the minimiza-
tion of average zone pressure and pressure variability. In
Section 3, three different scalarization schemes, weighted
sum, normal boundary intersection and normalized normal
constraint methods are studied. We then outline the relax-
ation approach for the solution of mixed integer nonlinear
programs in Section 4. Finally, in the last section we apply
the presented methods to approximate the Pareto front of
our multiobjective optimization problem using a selected
benchmarking network as case study.

2 Problem formulation

Consider a water distribution networks with n0 fixed head
nodes (e.g. water sources), nn demand nodes and np pipes.
This can be modeled as a direct graph G = (V , E) where
V is the set of nodes (|V | = nn + n0) and E the set of
links. Since the direction of flow in each pipe is itself an
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unknown, we associate two directed flows with each pipe.
The bi-directional flows are included by introducing, for
each physical pipe j, the two links j and j + np and so
the graph representation has that |E| = 2np. In this work,
the optimization is performed by considering the network
operation over an extended time horizon – we consider nl

different time steps in a diurnal operation and associated
demand conditions.

Let k ∈ {1, . . . , nl} be a time step. Then we have that
heads at water sources hk

0 ∈ R
n0 (expressed in meters),

demands at nodes dk ∈ R
nn ( measured in m3

s
), nodal

elevations e ∈ R
nn (in meters) are assumed known data.

The unknown vector pk ∈ R
nn represents pressure heads

at each demand node, expressed in meters. Data for the
set of links include the vectors of lengths L ∈ R

2np ,
diameters D ∈ R

2np (both measured in meters) and the
non-dimensional Hazen-Williams coefficients C ∈ R

2np .
Moreover, qk ∈ R

2np represents the unknown flow through

the links, expressed in m3

s
. The friction head loss across

each link j can be represented using the semi-empirical
Hazen-Williams (HW) formula: HWf (qk

j ) = rj (q
k
j )1.852,

where the resistance of the pipe rj = 10.670Lj

C1.852
j D4.871

j

. Since

the HW formula is non-smooth, it is difficult to handle for
most nonlinear programming solvers. Therefore we define
an accurate polynomial approximation. Given a generic link
with length L, diameter D and HW coefficient C we model
the head loss using the function hf (q) = a∗q2 + b∗q with
a∗ and b∗ determined by the minimization of the integral of
square errors J (a, b) = ∫

(aq2 + bq − rq1.852)2dq. Once
for each link the quadratic approximation coefficients are
computed and we can define the friction head loss function
as hf (qk) := (hf (qk)1, . . . , hf (qk)2np

) with

hf (qk)
j

:= a∗
j (qk

j )2 + b∗
j q

k
j , ∀j = 1, . . . , 2np.

Finally, since we aim to solve a co-design problem for
optimal valve placement and control we introduce the vector
of unknown binary variable v ∈ {0, 1}2np with

vj =
{

1, if there is a valve on link j

0, otherwise.

In conclusion, the unknowns of the optimization prob-
lem can be represented by the vector x = [p1, q1, . . . ,

pnl , qnl , v]T ∈ R
N with N = nl(nn + 2np) + 2np. Note

that B = {nl(nn + 2np)+ 1, . . . nl(nn + 2np)+ 2np} is the
index set of the components of x ∈ R

N which correspond
to binary variables.

The first objective that we are interested to minimize is
average zone pressure (AZP), which is expressed in meters
using the weighted sum:

μ1(x) := 1

W

nl∑

k=1

nn∑

i=1

wip
k
i (1)

where wi = ∑
j∈I (i) Lj /2 and I (i) is the set of indices for

links incident at node i, counted only once. The normaliza-
tion factor W = ∑nn

i=1 wi is is chosen so that, for each time
step, 1

W

∑nn

i=1 wip
k
i is a convex combination of pressures.

We aim to investigate the trade-offs between AZP and
pressure variability (PV), the latter of which can be can be
expressed in meters as:

μV (x) :=
nn∑

i=1

(p1
i − p

nl

i )2 +
nl∑

k=2

nn∑

i=1

(pk
i − pk−1

i )2. (2)

Note that μV encodes the pressure variability indicators
that in Martı́nez-Codina et al. (2015) are linked with pipe
failures. The function in (2) is a quadratic form and can
be written as xT Ax, with A ∈ R

N×N symmetric posi-
tive semidefinite. Moreover, since the quadratic form only
depends on pressure head values, we have that xT Ax =
pT App with p = [p1, . . . , pk]T and Ap ∈ R

nlnn×nlnn

symmetric positive semidefinite. A preliminary numerical
analysis on the considered optimization problem has shown
that gradient-based nonlinear programming solvers perform
better if at least matrix Ap is positive defined, hence we
add a small regularization term δ > 0 to the diagonal ele-
ments of Ap so that it becomes diagonal dominant and then
positive defined. Let Ãp := Ap + δInlnn and Ã the matrix
such that xT Ãx = pT Ãpp. If the perturbation term δ is
sufficiently small it will not significantly affect the opti-
mization process. This is a standard regularization scheme,
see Nocedal and Wright (2006). Finally, we define the
second objective function as μ2(x) := xT Ãx.

The optimization problem is primarily subject to the
hydraulic constraints:

AT
12q

k = dk, (3a)

Q(qk)(−A12p
k − A12e − A10h

k
0 − hf (qk)) ≥ 0, (3b)

−A12p
k − A12e − A10h

k
0 − hf (qk) − Mkv ≤ 0, (3c)

for each k = 1, . . . , nl . (3a) represents the conservation
of mass at each junction node, where A12 ∈ R

2np×nn is
the branch-node incidence matrix for the unknown pres-
sure head nodes. Inequalities (3b) and (3c) enforce the
conservation of energy across each link. Matrix A10 ∈
R

2np×n0 is the branch-node incidence matrix for fixed head
nodes. Moreover, Q(qk) = diag(qk

1 , .., qk
2np

) and Mk =
diag(Mk

1 , ..,Mk
2np

) are two diagonal matrices in R
2np×2np .

The positive constants Mk
j are fixed for each time step k

and link j and have to be sufficiently large in the following

sense. Assume that a link i1
j−→ i2 connects two junction

nodes (the case of a link connected to a water source is
analogous). Then the two inequalities (3b) and (3c) yield:

qk
j (hk

i1
− hk

i2
− hf (qk

j )) ≥ 0

hk
i1

− hk
i2

− hf (qk
j ) − Mk

j vj ≤ 0
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If qk
j > 0 and vj = 0 then the two inequalities are equiv-

alent to the standard Bernoulli equation. But when a valve
is placed on the link j and vj = 1, provided that Mk

j is big
enough, the second inequality is inactive (always satisfied)
and this couple of constraints is equivalent to qk

j (hk
i1

−hk
i2

−
hf (qk

j )) ≥ 0. This means that the head loss across the link j

is larger than just the friction loss: the action of the valve is
increasing the head loss and reducing pressure at the down-
stream node. When qk

j = 0 and vj = 0, the inequalities
imply hi1 ≤ h12 and if vj = 1 then both constraints are
always satisfied. Using this analysis, it is possible to show
that a solution where flows in both direction i1 → i2 and
i2 → i1 are positive is infeasible. In view of the above dis-
cussion, we select Mk

j equal to the maximum possible head
loss across link j at time step k.

Additional physical, economic and quality requirements
are enforced using the optimization constraints:

vj + vj+np ≤ 1, ∀j = 1, . . . , np, (4a)

2np∑

j=1

vj = nv, (4b)

pk
min ≤ pk ≤ pk

max, ∀k = 1, . . . , nl, (4c)

0 ≤ qk ≤ qmax, ∀k = 1, . . . , nl (4d)

v ∈ {0, 1}2np , (4e)

where the maximum number of valves nv is a surrogate for
economic constraints, and demand needs to be supplied with
minimum pressure constraints. Note that the presented set
of constraints consider the placement of a pressure reduc-
ing valve (PRV) or a boundary valve (BV) within the same
mathematical formulation. For example, the placement of a
valve on a link with zero flow leaves the pressure head dif-
ference across the same link to be a free variable, which
coincides with the placement of a closed boundary valve.
On the other hand, the placement of a valve on a link with
non-zero flow models the placement of a PRV: the optimal
setting of the valve determines the pressure at its down-
stream node. Therefore, the co-design optimization process
allows to identify which physical actuator should be used
and, at the same time, addresses its optimal placement and
operation.

The problem of simultaneously minimizing the two
objectives μ1 and μ2, subject to the constraints (3a) and
(4a), defines a multiobjective mixed integer nonlinear pro-
gram, which can be written in a compact form as

min
x∈RN

μ(x) := (μ1(x), μ2(x)) (5a)

subject to: g(x) ≤ 0, (5b)

h(x) = 0, (5c)

xj ∈ {0, 1}, ∀j ∈ B. (5d)

For each x ∈ R
N , we have set g(x) := (gi(x))i∈I

and h(x) := (hi(x))i∈E , the vectors corresponding to the
rows of inequality constraints (3b), (3c), (4a), (4c), (4d)
and equality constraints (3a), (4b), respectively. Therefore,
g : RN → R

|I | is a polynomial non-convex function, while
h : RN → R

|E| is affine.

3 Mathematical methods for the solution
of multiobjective optimization problems

Problem (5a) aims to investigate the trade-offs between
minimization of pressure variability (PV) and average zone
pressure (AZP) in a water distribution network, by the opti-
mal placement and control nv control valves. In Fig. 1,
we present the average zone pressure profile corresponding
to solutions of single objective minimization problems for
AZP and PV, with nv = 3. It is clear that the configuration
which minimizes pressure variability does not correspond to
minimization of average zone pressure.

Therefore, it is necessary to search for optimal compro-
mises between these two objectives. Let’s define the feasible
set of Problem (5a) as T := {x ∈ R

N | g(x) ≥ 0, h(x) =
0, xj ∈ {0, 1} ∀j ∈ B}. Then, we present some technical
definitions that characterise these trade-offs as follows:

Definition 1 (Miettinen 1998, Section 2.2) A point x ∈ T
is said dominated by y ∈ T if μj (y) ≤ μj (x) ∀j ∈ {1, 2}
and μ(y) �= μ(x).

Definition 2 (Miettinen 1998, Section 2.2) A point x∗ ∈ T
is called global Pareto optimum for Problem (5a) if it is not
dominated by any point in T .

A point x∗ is called local Pareto optimum if there exists
a neighbourhood U(x∗) such that x∗ it is not dominated
by any point in T ∩ U(x∗) (Miettinen 1998, Section 2.2).
Since our problem is non-convex, gradient-based methods

00.00 06.00 12.00 18.00 24.00
30

31

32

33
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36

Fig. 1 Average zone pressure corresponding to individual optimal
solutions for the minimization of μ1 (AZP) and μ2 (PV)
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will find only local Pareto optima. Therefore, we will gener-
ically call these points Pareto optima. Let θ ⊂ T be the
set of all the Pareto optima in the space of decision vari-
ables. Then the subset of the objectives space μ(θ) is called
Pareto front. In the following, we present three approxima-
tion methods that allow us to generate the Pareto front of
Problem (5a). We will first define some terms that are useful
in the mathematical formulation of the three scalarization
methods.

– x∗
i is minimizer of objective μi . The point μi(x

∗
i ) is

called the i-th Anchor Point

– μu := (μ1(x
∗
1 ), μ2(x

∗
2 ))T is the utopia point, a point in

the objective function space that is in general infeasible,

– utopia line is the line joining the points μ(x∗
1 ) and

μ(x∗
2 ),

– the pay-off matrix

� :=
[

0 μ1(x
∗
2 ) − μ1(x

∗
1 )

μ2(x
∗
1 ) − μ2(x

∗
2 ) 0

]

,

– e := (1, 1)T ∈ R
2.

3.1 Weighted Sum Method

For ω ∈ [0, 1] consider the MINLPWS(ω)

min
x∈RN

(1 − ω)μ̄1(x) + ωμ̄2(x) (6a)

subject to: g(x) ≤ 0, (6b)

h(x) = 0, (6c)

xj ∈ {0, 1}, ∀j ∈ B, (6d)

where the objective functions are normalized using the
utopia point as:

μ̄1(x) := μ1(x) − μ1(x
∗
1 )

μ1(x
∗
2 ) − μ1(x

∗
1 )

, μ̄2(x) := μ2(x) − μ2(x
∗
2 )

μ2(x
∗
1 )∗ − μ2(x

∗
2 )

.

It is easy to prove that a minimum of Problem (6a) is a
Pareto optimal point for Problem (5a), see Miettinen (1998).

The WS method solves MINLPWS(ω) for a given dis-
tribution of weights in order to generate various Pareto
optimal points and approximate the Pareto front. However,
as pointed out before, this method has some drawbacks: it
is not possible to generate points on the non-convex part of
the Pareto Front and in most cases the distribution of points
is not uniform.

3.2 Normal boundary intersection method

The Normal Boundary Intersection method was developed
in order to deal with the disadvantages of the weighted sum

method. Again, the approximation of the Pareto front is
obtained solving a sequence of single-objective problems:
for ω ∈ [0, 1] consider MINLPNBI(ω)

max
(x,τ )∈RN×R

τ (7a)

subject to: g(x) ≤ 0, (7b)

h(x) = 0, (7c)

μu + �

(
1 − ω

ω

)

− τ�e = μ(x), (7d)

xj ∈ {0, 1}, ∀j ∈ B. (7e)

Note that μu + �

(
1 − ω

ω

)

is a point belonging to the

utopia line. Moreover, −�e is the quasi-normal direction to
the utopia line, pointing towards μu.

This approach generates a uniform spread of Pareto
points given an even distribution of ω ∈ [0, 1] and also
points belonging to the non-convex part of the Pareto front
can be generated, see Fig. 2. However, the NBI method is
dependent on the anchor points μi(x

∗
i ), different local min-

ima x∗
1 , x∗

2 of the individual minimizations of μ1 and μ2

may result in the generation of different local Pareto points.
Moreover, it is well known that the method can generate non
Pareto points (Das and Dennis 1998; Logist and Van Impe
2012; Marler and Arora 2004).

3.3 Normalized normal constraint method

Using the same notation as for the NBI it is possible
to formulate another approach for the generation of the
Pareto front. The Normalized Normal Constraint (NNC)

μ1

μ2

μ(x2*)

μ(x1*)

Fig. 2 NBI method: searches the intersection between the quasi-
normal line passing through a point on the utopia line and the boundary
of the feasible set
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method relies on the solution of a sequence of sub-problems
MINLPNNC(ω) defined by:

min
x∈RN

μ̄2(x) (8a)

subject to: g(x) ≤ 0, (8b)

h(x) = 0, (8c)

N̄ · (μ̄(x) − �̄ω) ≤ 0, (8d)

xj ∈ {0, 1}, ∀j ∈ B. (8e)

where the normalization of (μ1, μ2) in the objective space
is defined by:

μ̄1(x) := μ1(x) − μ1(x
∗
1 )

μ1(x
∗
2 ) − μ1(x

∗
1 )

, μ̄2(x) := μ2(x) − μ2(x
∗
2 )

μ2(x
∗
1 ) − μ2(x

∗
2 )

,

and N̄ := μ̄(x∗
2 ) − μ̄(x∗

1 ) is the direction of the utopia line,
pointing towards μ̄(x∗

2 ), while �̄ is the normalized pay-off
matrix and �̄ω represents a point of the normalized utopia
line. MINLPNNC(ω) performs a minimization of μ̄2 on the
half-space defined by the normal plane to the utopia line as
shown in Fig. 3.

Although NBI and NNC have similarities in the way they
use normal directions, NNC has been observed to be less
likely to generate non-Pareto points (Logist and Van Impe
2012; Messac et al. 2003). The example in Fig. 4a illustrates
a situation in which NBI will generate non Pareto points,
while NNC will not. In fact, the segments [μ(x∗

1 ), A] and
[B, C] are Pareto optimal (at least locally), while [A, B] is
not. Every NBI sub-problems started from a point belonging
to [A′, B ′] will generate non Pareto points, while the solu-
tions of the correspondent NNC sub-problems will be the
Pareto point A. Moreover, NNC can be reformulated con-
sidering the minimization of μ̄1 and the set of the Pareto
points generated can depend on this choice (Logist and
Van Impe 2012). For example, observe that in Fig. 4a the
minimization of μ̄1 by the NNC sub-problem can generate
non-Pareto points that are avoided by the minimization of

μ1

μ2

μ(x2*)

μ(x1*)

Minimize 
μ

2 

Fig. 3 NNC method solves a sequence of sub-problems minimizing
μ2 over a restricted feasible space (filled in grey)

μ(x1*)

μ(x2*)

A

B
C

A'

B'

μ1

μ2

(a) Comparison between NBI and NNC

A
B

C D

μ(x1*)

μ(x2*)

E

(b) Folded case

Fig. 4 a NNC is more robust than NBI here since it can avoid the
generation of some non-Pareto points; b however, in highly non-
convex problem μ(T ) can be significantly folded and the Pareto front
disconnected

μ̄2. Since there are no general a priori criteria for the choice
of the objective to be minimized, it is suggested to test both
options (Logist and Van Impe 2012).

The additional equality constraints of NBI are partic-
ularly stringent since they restrict the search in μ(T ) to
a line. As pointed out in Das (2000), this is expected to
generate complications specifically in the case of a mul-
tiobjective mixed integer nonlinear optimization problem.
In fact, the discrete decision variables result in a Pareto
front with disconnected branches and isolated points, where
the intersection between the quasi-normal direction and the
Pareto front can be empty. On the other hand, the weighted
sum method does not suffer from the disconnected nature of
the Pareto front. Das and Dennis (1997) presented the fol-
lowing geometric interpretation of the WS method: a weight
ω ∈ [0, 1] defines a particular line in the space of the
objective functions and solving problem MINLPWS(ω) cor-
responds to translating that line along its orthogonal direc-
tion and choosing the first intersection point with μ(T ). As
a result, the WS method does not experience the difficulties
associated with disconnected Pareto fronts. Likewise, the
NNC method is not expected to preclude the convergence
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to Pareto points which are isolated or belong to discon-
nected branches because its additional inequality constraint
enforces a minimization over half-spaces, which is less strict
than the equality constraints used in NBI.

However, when the image of the feasible set is folded,
both the NBI and NNC methods will generate different
local Pareto optima (or even non Pareto points) when dif-
ferent initial conditions are used for the corresponding
sub-problems (Messac et al. 2003). In Fig. 4b, we illus-
trate this situation; the segments of curve [μ(x∗

2 ), A] and
[E,μ(x∗

1 )] constitute the global Pareto front, while the
branches [B, C] and [D, E] are only locally Pareto opti-
mal. Note that although is some examples the Pareto front
does not have such complex structures (Logist et al. 2010),
many engineering problems have a highly nonlinear, non-
convex structures that result in a disconnected Pareto front.
Furthermore, even when the global Pareto front is con-
nected, it could be made up from different locally optimal
branches that are cut and glued together, corresponding
to separate regions in the space of the decision variables
(Hartikainen and Lovison 2014) (see also Fig. 6d and the
discussions on it). Despite some differences, NBI and NNC
are intrinsically related. The work by Logist and Van Impe
(2012) shows that, given a weight ω, any stationary point
of a NBI-subproblem is also a stationary point for the
NNC-subproblem, provided that the additional inequality
constraint of NNC is active. However, as pointed out also
by the same authors, the front generated by NBI and NNC
could be different in practice, due to the non-convexity of
the scalarization optimization sub-problems.

4 Solution of single-objective MINLPs:
a continuous relaxation

All the methods for the generation of the Pareto front
for Problem (5a) involve the solution of single objective
MINLP problems whose structure can be generically repre-
sented as:

min
x∈RN

f (x) (9a)

subject to: cI (x) ≤ 0, (9b)

cE(x) = 0, (9c)

xj ∈ {0, 1}, ∀j ∈ B. (9d)

Since its integer constraints are binary, Problem (9a)
can also be reformulated as a mathematical program with
complementarity constraints (MPCC):

minx∈RN f (x)

subject to cI (x) ≤ 0,

cE(x) = 0,

0 ≤ xj ⊥ 1 − xj ≥ 0, ∀j ∈ B.

(10)

The feasible set of a mathematical program with comple-
mentarity constraints has a special structure which results
in the violation of standard constraints qualification. There-
fore, it is necessary to introduce constraints qualifications
tailored for MPCCs (Scheel and Scholtes 2000), without
which standard nonlinear programming solvers will face
convergence issues when applied directly to Problem (10).
Various reformulations based on constraint relaxations and
penalty methods have been proposed in order to deal with
this pathological characteristic. For a general discussion we
refer the reader to Leyffer et al. (2006), Leyffer (2006),
Raghunathan and Biegler (2005), Ralph and Wright (2004),
Scheel and Scholtes (2000), Herty and Steffensen (2012),
Scholtes (2001) and the references therein.

Here, we will focus on the relaxation scheme based on
the Fischer-Burmeister function (Leyffer 2006; Herty and
Steffensen 2012): φFB(a) := 1 − √

1 + 2a2 − 2a. Clearly,
φFB(a) = 0 ⇔ a = 0 or a = 1, and so we can substitute
for (9d), the constraint φFB(xj ) = 0, ∀j ∈ B. The MPCC
in (10) can then be approximated by the relaxed problem
REL(t):

minx∈RN f (x)

subject to: cI (x) ≤ 0,

cE(x) = 0,

0 ≤ xj ≤ 1, ∀j ∈ B,

φFB(xj ) ≤ t, ∀j ∈ B,

(11)

where t > 0. Most nonlinear programming (NLP) solvers
are designed to find only stationary points, particularly in
the non-convex case. The following result relates the sta-
tionary points of REL(t) to the stationary points of Problem
(10).

Theorem 1 Assume that (xk)k∈N is sequence of station-

ary points for REL(tk). Let xk k→+∞−−−−→ x̄ as tk
k→+∞−−−−→

0. Finally, assume that x̄ satisfies a suitable constraints
qualification for MPCCs. Then x̄ is a stationary point for
Problem (10).

Proof The proof follows as in (Herty and Steffensen 2012,
Theorem 2.3) after the introduction of a slack variable w :=
1 − x.

As shown in Ralph and Wright (2004), if Problem
(10) satisfies a linear independence constraints qualification
tailored for programs with complementarity constraints,
then the relaxed problems (11) satisfy the standard lin-
ear independence constraints qualification (LICQ) for non-
linear programs - see also (Nocedal and Wright 2006,
Ch. 12) Such a tailored constraints qualification is denoted
by MPCC-LICQ.
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Moreover, as discussed in Scholtes and Stȯhr (2001),
MPCC-LICQ is a generic condition for mathematical pro-
grams with complementarity constraints. This means that
even if a particular MPCC violates the constraints qualifica-
tion, an arbitrary small perturbation of the constraints will
result in the satisfaction of MPCC-LICQ. It is possible to
prove that Problem (10) satisfies MPCC-LICQ, once a small
perturbation is applied - for the sake of brevity, we do not
include the proof here.

Moreover, it can be shown that the gradients of the equal-
ity constraints of Problem (11) are linearly independent,
while rank deficiencies occur for some of the inequality
constraints. Nonetheless, as reported in Section 5, no numer-
ical difficulty was encountered when the interior point
solver IPOPT (Waechter and Biegler 2006) was applied.
In fact, only the linear dependence of equality constraints
has a negative impact on interior point methods, while the
gradients of inequality constraints cannot cause any rank
deficiency of the matrices involved into these algorithms -
see (Nocedal and Wright 2006, pp. 573–574).

According to Theorem 1, it is possible to find station-
ary points of single-objective MPCC problems solving a
sequence of relaxed nonlinear programs, for decreasing val-
ues of the relaxation parameter t . In the present work, every
single-objective MPCC within the scalarization methods
(6a), (7a) and (8a) is solved using Algorithm 1, which is
based on Theorem 1. The procedure stops when the comple-
mentarity violation Vio(x) := maxj∈B

(
min (xj , 1 − xj )

)

is below a given tolerance.

This approach offers a scalable method for the solution of
design problems for WDNs, since the relaxed problems can
take advantage of sparsity in the constraints using tailored
NLP solvers. Therefore, the relaxation approach is particu-
larly convenient for application to multiobjective problems,
where in order to generate a uniform and detailed Pareto
front, it may be necessary to solve a large number of single-
objective MINLPs. In this case, the application of standard
branch and bound techniques for MINLPs would require
infeasible computational time, particularly when dealing
with large-scale water networks (see for example the com-
putational experience reported in D’Ambrosio and Lodi
(2013)).

5 Case study

The outlined methods were implemented for the solution of
the bi-objective optimization problem (5a) using an exam-
ple network model. The selected benchmarking network has
22 nodes, 37 pipes and 3 reservoirs, see Fig. 5. Details on
pipes’ characteristics and nodal demands can be found in
Jowitt and Xu (1990) and Araujo et al. (2006), respectively.
The resulting MINLP has 2304 continuous variables, 74
binary variables, 566 linear constraints and 3552 nonlinear
constraints.

At each iteration of WS, NBI or NNC methods, the cor-
responding single-objective sub-problem was solved using
the continuous smooth relaxation illustrated in Algorithm 1,
generating a sequence of stationary points for relaxed sub-
problems; each of these nonlinear programs was solved
using the interior-point solver for large scale optimization
problems IPOPT (Waechter and Biegler 2006). An interior-
point solver was preferred to an active-set method because
of the highly constrained structure of the optimization prob-
lem: an active-set approach needs to keep track of changes
in the active-set of constraints and bounds, requiring addi-
tional computational resources (Nocedal and Wright 2006).
In our implementation, IPOPT options mu strategy and
mu oracle were set to “adaptive” and “LOQO”, respectively
- see also Kawajir et al. (2015). Moreover, a warm-start
technique was applied in both the relaxation algorithm
(inner iteration) and scalarization methods (outer iteration)
using the solution of a sub-problem (and the correspond-
ing Lagrangian multipliers) as initial condition for the next
iteration.

Since the optimization problem is sparse, we have exploit-
ed the corresponding sparse structure of the Jacobian of the
constraints through IPOPT. We have tested the behaviour
of the solver with exact sparse Hessians and approxima-
tions computed by a limited-memory quasi-Newton method

Fig. 5 25 nodes selected benchmarking network model
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(L-BFGS), available within IPOPT (Kawajir et al. 2015).
It was noted that better performances were obtained using
L-BFGS approximation, both in terms of number of itera-
tions and quality of solutions; therefore, the L-BFGS Hes-
sian approximation was used in our implementation. The
linear systems within IPOPT were solved using the package
MA57 (Duff 2004), which is well suited for solving sparse
linear systems. After preliminary simulations, we selected
the perturbation value δ = 10−4 for the regularization fac-
tor in Ã (see Section 2); in practice, this choice is shown
not to significantly perturb the optimization problem. All
computations were performed within MATLAB 2015a for
Windows, installed on a 2.50GHz Intel� Xeon(R) CPU
E5 − 26400 with 18 Cores.

We applied the weighted-sum, normal boundary inter-
section and normalized normal constraint methods in the
optimal placement of 1 to 4 control valves, addressing the
minimization of average zone pressure (AZP) and pressure
variability (PV) simultaneously. The resulting Pareto fronts
are reported in Figs. 6 and 7.

These Pareto fronts are effective tools for the analysis of
the trade-offs between AZP and PV. For example, consider
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Fig. 6 Pareto fronts for the optimal valve placement of 1 and 2
valves: the non-dominated solutions are circled. Each method was set
to generate 20 points
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Fig. 7 Pareto fronts for the optimal valve placement of 3 and 4
valves: the non-dominated solutions are circled. Each method was set
to generate 20 points

the problem for the optimal placement of 3 valves, discussed
also in Section 3. The selection of a point on the front dif-
ferent from the two individual minima results in the average
zone pressure profile reported in Fig. 8, representing a com-
promise between the minimization of AZP and the need to
maintain low pressure variability.

In Section 3, we argued that the Pareto set for a multi-
objective mixed integer nonlinear optimization problem is
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30
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34
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Fig. 8 Example of trade-off between our two objectives. The selected
Pareto optimum results in a satisfactory average zone pressure, main-
taining a low variability
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generally disconnected and may be composed of many iso-
lated points. As Figs. 6 and 7 show, in this particular case
study, the efficient trade-offs between the two objectives
are distributed along continuous and possibly disconnected
branches but they are not represented by isolated points.

As expected, the proposed methods have generated a
number of local Pareto optima, some of which dominated,
due to the non-convexity of the single-objective sub-prob-
lems. Therefore, the Pareto filter proposed in Messac et al.
(2003) was used to identify the non-dominated Pareto con-
figurations obtained in each instance. As anticipated in
Section 3, the weighted sum method has not suffered from
the disconnected nature of the Pareto set and has generated
good approximations of the front. However, as expected,
the Pareto points are not uniformly distributed along the
front. On the other hand, the application of the NBI method
resulted in uniform Pareto fronts for the case of 1 and 4
valves. Nonetheless, a number of non-Pareto points were
obtained in all instances and the fronts for 2 and 3 valves are
not well captured by the NBI method. As stated in Section 3,
this behaviour is predictable since NBI is known to generate
non Pareto points when disconnected local Pareto branches
are present– see also the folded case in Fig. 4b.

Figures 6 and 7 show that the NNC method is fairly
robust: it has generated uniform and well-spread Pareto
fronts with fewer dominated points, in all shown instances.
Note that, in many practical situations, the global Pareto
front can be very complex; for example, in Fig. 6f it is com-
posed of the union of separate local branches. In this case,
the visual analysis of the front is not sufficient to determine
whether the two Pareto curves are disconnected or intersect
each other. It is known that nonlinear maps can project a set
of disconnected domains into a connected image, or a dis-
connected one. Both cases are frequently encountered in the
solution of nonlinear multiobjective optimization problems.
An example of a disconnected Pareto front is discussed in
Section 3 - see also Fig. 4. On the other hand, some multi-
objective problems can give rise to connected Pareto fronts,
composed of the non-dominated set of the union of multi-
ple local branches that intersect and correspond to separate
regions of the domain, see also Hartikainen and Lovison
(2014).

This situation is also particularly interesting from the
hydraulic application point of view. In fact, for the consid-
ered optimization problem, the jump from one local branch
to another represents a change in the locations of the control
valves. On the other hand, when moving along the continu-
ous local Pareto curves, the locations are fixed and only the
valve settings are modified. As can be observed in Fig. 6f, if
we fix the valve locations in order to individually minimize
PV (i.e. we are on the Pareto front on the right) and change
the operational settings trying to decrease AZP, we can
not obtain significant reductions in average zone pressure.

However, we note that smaller values in AZP, with similar
PV, can be achieved on the Pareto curve on the left that
corresponds to a different valve location, which is the loca-
tion that minimizes the individual objective of average zone
pressure. Therefore, we can conclude that the solution of
the purely operational problem (where the locations of the
control valves are fixed) can lead to suboptimal pressure
management when considering the two objectives.

In the present work we have only considered trade-offs
between 2 conflicting criteria. Nonetheless, other objectives
can be included in a straightforward fashion, the optimiza-
tion of water quality or resilience for example. The gener-
alization and application of the weighted sum and normal
boundary intersection methods to optimization problems
with more than 2 objectives is straightforward (Marler and
Arora 2004; Das and Dennis 1998). On the other hand, the
normalized normal constraint method has to be modified
in order to properly handle more than 2 objectives and the
enhanced normalized normal constraint method of Sanchis
et al. (2008) can be used.

In Table 1 we report the average number of IPOPT itera-
tions and CPU time needed to compute a point of the Pareto
front, for each scalarization method and number of valves
considered here. Note that in our practical experience, the
procedure described in Algorithm 1 produces a solution of
the original single-objective MINLP after 3 iterations.

Moreover, note that we are considering an off-line co-
design problem, aiming to compute optimal valves’ loca-
tions and pressure settings. Once the optimization process is
complete, it is possible to define for each installed valve a
feedback rule based on the optimization results, see Ulanicki
et al. (2000). Therefore, valves can ultimately be operated
through an on-line feedback control system. Nonetheless,
the application of standard techniques for non-convex mixed
integer programs would be impractical (D’Ambrosio and
Lodi 2013), especially when considering large scale water
networks. On the other hand, the reported computational
experience is promising and suggests that the proposed

Table 1 Average computational time and number of IPOPT itera-
tions needed to compute one point of the Pareto front, with each
scalarization method considered in the present study

NNC NBI WS

Iter CPU Iter CPU Iter CPU

nv = 1 580 25 s 322 16 s 304 15 s

nv = 2 1224 55 s 1369 64 s 536 24 s

nv = 3 684 28 s 890 37 s 519 24 s

nv = 4 722 28 s 1120 45 s 674 29 s

The number of functions, Jacobians and gradients evaluations was
similar to the number of iterations
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methods can be successfully applied to large scale problems
related to optimal valves’ placement and operation in water
distribution networks. Finally, all computations were exe-
cuted in series on a single workstation; however, scalariza-
tion methods can be easily parallelized - i.e. different Pareto
points can be computed in parallel.

6 Conclusions

We have presented a multiobjective co-design optimization
problem for optimal valve placement and operation in water
distribution networks, addressing the minimization of aver-
age zone pressure and pressure variability. By modelling
boundary valves and pressure reducing valves within the
same framework, the optimization allows to identify which
physical actuator should be used and, at the same time, it
provides optimal location and pressure settings. The consid-
ered formulation results in a multiobjective mixed integer
nonlinear optimization problem. Because of the conflict
among the two objectives we have adopted the notion of
Pareto optimality to provide a mathematical characteriza-
tion of the best compromises between conflicting criteria.
We have focused on the objectives space and we have inves-
tigated the application of scalarization methods for the gen-
eration of the image through the objective functions of the
set of Pareto optima, the so called Pareto front. We have de-
scribed weighted sum, normal boundary intersection and nor-
malized normal constraint methods, discussing their strengths
and limitations. It was shown that each scalarization method
relies on the solution of a series of single-objective sparse
mixed integer nonlinear programs (MINLPs).

Since the integer variables considered are binary, they
allow a reformulation as a mathematical program with com-
plementarity constraints (MPCC) whose solution can be
obtained as limit point of a sequence of stationary points
of sparse nonlinear programs - a relaxation method. The
application of scalarization and relaxation methods for the
solution of multiobjective mixed integer nonlinear problems
is, to the authors knowledge, novel. Furthermore, the itera-
tive solution of sparse NLPs provides a scalable approach
for large scale water distribution networks, since sparse
techniques can be coupled with state-of-the-art NLP solvers
to efficiently find (at least local) solutions.

Finally, we have applied the presented methods to solve
a bi-objective optimization problem for a published bench-
mark network model, considering a varying level of actu-
ation (i.e. number of valves). Our numerical simulations
have shown that the normal boundary intersection method
is most affected by the disconnected nature of the Pareto
fronts. On the other hand, the weighted sum and normalized
normal constraint methods have generated good approxi-
mations of the Pareto fronts. In line with expectations, the

fronts obtained by the weighted sum method are not as
uniform as the ones produced by the normalized normal
constraint approach. Moreover, the normalized normal con-
straint method has been shown to be robust, since it has
avoided most of the non-Pareto points found by the others
approaches. The results from the case study are promis-
ing and suggest that the presented scalarization approaches
for the Pareto front generation, coupled with the relaxation
method, can be applied to other multiobjective co-design
optimization problems for large scale water distribution
networks, even for problems with more than 2 objectives.
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