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Abstract This paper presents a new approach to the topo-
logy optimization of columns exposed to a loss of stability.
The idea is to replace a conventional maximization of a
buckling load by a locally formulated topology optimization
problem based on compliance minimization. In order to do
this, the standard instability analysis of a compressed col-
umn is performed first and the buckling mode is determined.
Then the compressive loading is replaced by a transverse
one which is selected so as to generate a bending moment,
the distribution of which coincides with the one representing
the considered buckling mode. Minimization of compliance
is performed for the bent structure and optimal topology
is generated. Finally, the critical load for the optimal col-
umn is calculated. The selected numerical results obtained
with the use of the above technique, under the assumption
that the buckling load is unimodal, are presented. The above
approach allows generating optimal topologies using Cellu-
lar Automata (CA) method, which by nature requires local
formulation of the design problem.

Keywords Column buckling · Topology optimization ·
Cellular Automata

1 Introductory remarks

For a few decades topology optimization has been one of the
most important aspects of structural design. Since the early
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paper by Bendsoe and Kikuchi (1988) one can find in the
literature numerous approaches to generating optimal
topologies based both on optimality criteria and evolu-
tionary methods. A general overview as well as a broad
discussion on topology optimization concepts are provided
by many survey papers e.g. Rozvany (2001), Eschenauer
and Olhoff (2001), Bendsoe and Sigmund (2003), Arora and
Wang (2005) or Rozvany (2008). At the same time hun-
dreds of papers present numerous solutions including clas-
sic Michell examples as well as complicated spatial engi-
neering structures, implementing specific methods ranging
from gradient based approaches to biologically inspired
algorithms and level set method, e.g. Wang et al. (2003).

Topology optimization of structures exposed to a loss of
stability or vibrating rarely appears in the literature, hence
the number of publications dealing with this subject is rather
modest. One can point out early papers by Neves et al.
(1995) where an approach to introduce buckling load con-
trol into topology optimization model was presented, Ma
et al. (1994) in which topology optimization was applied
for obtaining desired eigenfrequencies, or Min and Kikuchi
(1997) devoted to optimal reinforcement design of struc-
tures under buckling load. Later on Cheng et al. (2000)
reported design of elastic structures for stability, Zhou
(2004) presented optimum designs of shell topological opti-
mization under linear buckling response, while Bian and Sui
(2009) studied topology optimization of plane elastic struc-
tures with buckling and displacement constraints. Recently
Lindgaard and Dahl (2013) discussed topology optimization
of static geometrically nonlinear structures experiencing
snap-through behaviour. As selected from among papers
discussing generation of optimal topologies for vibrating
elements Pedersen (2000) and Gong et al. (2012) opti-
mized free vibration eigenvalues whereas Du and Olhoff
(2007) also optimized frequency gaps. It is worth noting that
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buckling constraints more often appear in topology opti-
mization of truss structures. The papers by Birker (1996)
and Bojczuk and Mróz (1999) and Guo et al. (2005) may
serve here only as exemplary ones.

This paper presents a new approach to topology opti-
mization of columns exposed to a loss of stability. The
idea is to replace the conventional maximization of buckling
load by a locally formulated topology optimization problem
based on compliance minimization.

The Cellular Automata method is used in this paper as
optimal topology generator. The first application of CA to
optimal structural design, and to topology optimization in
particular, was proposed by Inou et al. (1994) and Inou et al.
(1997). In these papers the design domain was divided into
cells, the states of which were represented by the Young
moduli of the material as design variables. By applying iter-
atively the local CA rules the values of the elastic moduli
for all cells were updated based on the difference between
current and target stress values. The cells with low values
of elastic moduli were removed. The idea of implementa-
tion of CA to optimal design was described also by Kita
and Toyoda (2000), Haleja and Kim (2001), and by Tatting
and Gurdal (2000), where the authors proposed a new
scheme for CA, in which analysis and design were per-
formed simultaneously - simultaneous analysis and design.
This technique has been modified and extended, for exam-
ple by Cortes et al. (2005), Setoodeh et al. (2006), Canyurt
and Haleja (2007). During the last two decades implemen-
tation of CA in structural design has been under permanent
development, and numerous papers related to application
of CA to topology optimization, see e.g. Missoum et al.
(2005), Abdalla et al. (2006), Hassani and Tavakkoli (2007),
Penninger et al. (2009), Sanaei and Babaei (2011),
Bochenek and Tajs-Zielińska (2012, 2013) or Du et al.
(2013), have been published. In addition, the series of papers
by Tovar and co-workers should be mentioned: Tovar et
al. (2004a, b), Tovar et al. (2006), Penninger et al. (2011),
in which a new CA technique inspired by a process of
functional adaptation taking place in bones has been imple-
mented.

It is worth noting that CA approach to structural opti-
mization requires a local formulation of the design problem
by nature, and therefore applying it to the maximization
of a structure buckling load, which is a global quantity, is
not straightforward. Fortunately one can observe that for
the optimal column, for which critical load has been maxi-
mized, the maximal bending stress is uniformly distributed
along column axis. Taking that into account it is possible
to replace conventional maximization of buckling load by a
problem formulated as the fully stressed design. This con-
cept was presented by Bochenek and Tajs-Zielińska (2012),
where the locally formulated problem of optimal sizing of
columns prone to instability was considered. In fact while

conducting research on CA application to structural design
under stability constraints the mentioned above new idea has
come out. The detailed description of the proposed concept,
namely how to generate topologies for the maximal buck-
ling load of columns by adapting for this purpose a typical
compliance minimization problem, is given in the following
section.

2 A concept of generating compliance based topologies
for maximal buckling load

2.1 Basic idea

As the basic problem, the standard maximization of the
buckling load of a column subject to a given total volume,
is considered. If a cross-section area A(x) of the column is
chosen as the design function, and its relation to moment
of inertia complies with I (x) = cA2(x), then the optimal
solution for the problem, takes the following form e.g.
Seyranian and Privalova (2003):

A(x) = c1M
2/3
g (x) (1)

It has been assumed that the optimal solution is represented
by only a single buckling mode, which is described by the
bending moment function Mg(x). The quantity c1 is a con-
stant, the value of which can be selected so as to fulfill the
volume constraint.

If as an alternative the optimization problem is posed as
minimization of compliance of a column/beam of length L

under transverse loading with respect to the constant volume
constraint:∫ L

0

M2
g(x)

EI
dx + λ

∫ L

0
A(x)dx. (2)

where λ stands for the Lagrange multiplier, then the opti-
mality condition applied to (2) results in:

A(x) = c2M
2/3
g (x). (3)

One can observe that the above relation is analogous to (1).
This observation leads to the following conclusion. It is pos-
sible to replace a conventional maximization of buckling
load by the optimization problem based on compliance min-
imization. The implementation of this idea is a main goal of
the present paper.

The concept of the implementation is as follows. First
the standard instability analysis of a compressed column
is performed and the buckling mode is determined. Then
the compressive loading is replaced by a transverse one
which is selected so as to generate the bending moment,
the distribution of which coincides with the one represent-
ing particular buckling mode. In order to do that a number
of forces distributed along column axis is specified and then
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Fig. 1 A spatial model of a simply supported column

their values are sought for with a view to get expected dis-
tribution of bending moment in several nodal points. For
the bent structure minimization of compliance is performed,
and optimal topology is generated. Finally the critical load
for the optimal column topology is calculated.

2.2 Illustrative example

In order to illustrate this methodology the following exam-
ple which makes use of the above idea is presented. A
simply supported column of rectangular cross-section, pre-
sented in Fig. 1 has been chosen. The transverse loading
is applied in one plane which stands also for the buckling
one (Fig. 2). The well known solution of the Euler buck-
ling problem leads to instability mode described by a sine
function. This refers to both the deflection and the bending
moment.

The optimal topology has been generated for refe-
rence column which consists of 14× 14× 200 cells
(1 cm× 1 cm× 1 cm). The Young modulus of the column
material is E= 200GPa and the volume fraction of the final
topology is set to 0.5. The minimal compliance column is
given in Fig. 3. For the obtained topology the critical load
12592 kN has been calculated numerically using finite ele-
ment system. The buckling mode is presented in Fig. 4. It
is worth noting that the critical load calculated for prismatic
column of the same volume is 3790 kN.

While considering the possibility of buckling in both
planes the above solution found for only one plane taken
into account may not be correct if the critical load referring
to out-of-plane buckling has a lower value. Indeed for the
considered example out-of-plane buckling load is 5521 kN.

Fig. 2 Column under transverse loading, one buckling plane

Fig. 3 One buckling plane. Critical load 12592 kN

In order to eliminate this drawback the formulation of
topology optimization problem is extended so as to take into
consideration the loadings applied in both planes, see Fig. 5.
As the result the topology shown in Fig. 6 has been gene-
rated, for which critical load value is 11701 kN. To make
details of the final topology better recognized, a section
view is added in Fig. 7, together with a magnified view of a
part of generated topology shown in Fig. 8.

It is worth noting that assumption of doubly symmetrical
column cross-section implies that instability considerations
are limited to buckling in principal planes.

The above presented introductory example shows that
it is possible to achieve the effect of buckling load maxi-
mization via minimization of compliance performed for a
specially matched loading scheme. It has been assumed for
the above that the buckling load is unimodal.

At the same time it is worth pointing out that for
clamped-clamped column the unimodal formulation of the
problem may be not sufficient to obtain optimal solution. If
such situation occurs the modified - bimodal formulation of
the problem has to be implemented.

In order to generate optimal topologies the efficient algo-
rithm is needed. The one used in this paper is based on
Cellular Automata rules. The rules of Cellular Automata are
briefly described in the next section.

3 A Cellular Automata based topology generator

As it has been mentioned earlier in this paper the problem of
topology optimization is formulated in a manner allowing to
solve it with Cellular Automata method. The performance
of CA algorithms, reported in literature, is based mostly
on heuristic local rules. Similarly, in the present paper the
efficient heuristic algorithm, introduced by Bochenek and
Tajs-Zielińska (2012) has been implemented.

The power law approach defining solid isotropic material
with penalization (SIMP) with design variables being rela-
tive densities of a material has been utilized. The elastic
modulus of each cell element is modelled as a function of

Fig. 4 The in-plane buckling mode
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Fig. 5 Column under transverse loading, two buckling planes

relative density di using power law, according to (4). This
power p penalizes intermediate densities and drives design
to a solid/void structure.

Ei = d
p
i E0, dmin ≤ di ≤ 1 (4)

The local update rule applied to design variables di asso-
ciated with central cells is now constructed based on the
information gathered from adjacent cells forming the Moore
or von Neumann type neighborhood. It is set up as linear
combination of design variables corrections with coeffi-
cients, the values of which are influenced by the states of
the neighborhood surrounding each cell, as presented in (5):

d
(t+1)
i = d

(t)
i + δdi, δdi =

(
α0 +

N∑
k=1

ακ

)
m = α̃m (5)

The compliance values calculated for central cell Ui and
N neighboring cells Uik are compared to a selected thresh-
old value U∗, e.g. a global average for whole structure in
every iteration. Depending on whether Ui and Uik are larger
or smaller than the selected U∗ positive or negative coef-
ficients Cα0 for central cell and Cα for surrounding cells
are chosen and transferred to the design variable update, as
given by (6) and (7):

α0 =
⎧⎨
⎩

−Cα0 if Ui ≤ U∗

Cα0 if Ui > U∗
(6)

αk =
⎧⎨
⎩

−Cα if Uik ≤ U∗

Cα if Uik > U∗
(7)

Fig. 6 Two buckling planes. Critical load 11701 kN

Fig. 7 A section view of generated topology

Practical implementation of proposed local rules requires
specification of introduced parameters. The values of Cα0

and Cα are selected so as to provide that their sum for
all cells within the neighborhood equals one. Based on
numerical tests performed for von Neumann type neigh-
borhood all coefficients equal to 0.2 for plane problems
seems to be a good choice. The move limit m (m =
0.2 is proposed) implemented in the above algorithm
controls the allowable changes of the design variables
values.

The numerical algorithm has been build in order to
implement the above proposed design rule. As to the
optimization procedure the sequential approach, has been
adapted, meaning that for each iteration, the structural ana-
lysis performed for the optimized element is fol-
lowed by the local updating process. Simultaneously
a global volume constraint can be applied for speci-
fied volume fraction. If so the generated optimal topol-
ogy preserves a specified volume fraction of a solid
material.

Below, pseudo code of the algorithm build for generation
of compliance based topologies is presented:

The above rules have been already successfully applied
to the generation of plane and spatial topologies of elastic
structures, and numerous results are presented and discussed
in Bochenek and Tajs-Zielińska (2012, 2013).
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Fig. 8 A magnified part of the topology

4 Generation of column topologies for maximal
buckling load

Following the preliminary example of Section 2 selected
column topologies for various boundary conditions are gen-
erated.

4.1 A simply supported column

The simply supported column of Section 2 is taken into
account once again. This time calculations are performed
for the value of the volume fraction set to 0.35. The result
is given in Fig. 9. For the obtained topology the criti-
cal load 10083 kN has been calculated. Concurrently the
out-of-plane buckling load of 2328 kN has been found.

Considering two buckling planes leads to topology pre-
sented in Fig. 10, for which the critical load value is
8760 kN. To make details of the final topology more visible,
a section view is given in Fig. 11.

It has to be pointed out that the critical load calculated
for prismatic column of the same volume is 1910 kN, which
shows a significant buckling load increase.

The above calculations are now repeated for a slen-
derer column 14× 14× 400 cells (1 cm× 1 cm× 1 cm).
The resulting topology for volume fraction 0.5 is given
in Fig. 12. For the obtained topology the critical load
3367 kN has been calculated. For the considered example
out-of-plane buckling load is 2109 kN.

Taking into account two buckling planes proceeds to
topology presented as a section view in Fig. 13, for which
the critical load value is 3122 kN. Supplementary to that a
magnified view of a part of generated topology is shown in

Fig. 9 One buckling plane. Critical load 10083 kN

Fig. 10 Two buckling planes. Critical load 8760 kN

Fig. 14. The critical load calculated for a prismatic column
of the same volume is 987 kN.

4.2 A clamped-simply supported column

The next example regards a clamped-simply supported col-
umn, see Fig. 15.

The optimal topology has been generated for a refe-
rence column which consists of 20× 20× 200 cells
(1 cm× 1 cm× 1 cm). The volume fraction of the final
topology is set to 0.5. The result is given in Fig. 16, for
which the critical load 89595 kN has been calculated. For
out-of-plane buckling critical load is 53687 kN.

For two buckling planes considered, generation of opti-
mal topology conducts to the result presented in Fig. 17. The
critical load is 85327 kN. A section view is shown in Fig. 18,
whereas a magnified view of a part of generated topology is
presented in Fig. 19.

The critical load calculated for a prismatic column of the
same volume is 33650 kN.

4.3 A clamped-clamped column

The optimal topology has been generated for a refe-
rence column which consists of 20× 20× 200 cells
(1 cm× 1 cm× 1 cm). The volume fraction of the final
topology is set to 0.5. The result of topology generation for
in-plane buckling is given in Fig. 20. For the final topology
the critical load is 149814 kN. Simultaneously critical load
for out-of-plane buckling is 98330 kN.

Considering two buckling planes results in the topology
presented in Fig. 21. The critical load is 148230 kN.

To show the details of the final topology, a section view
is given in Fig. 22, together with a magnified view of a part
of a generated topology shown in Fig. 23.

The critical load calculated for a prismatic column of the
same volume is 65691 kN.

Fig. 11 A section view of generated topology
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Fig. 12 One buckling plane. Critical load 3367 kN. A half of the
column

Fig. 13 Two buckling planes. Critical load 3122 kN. A half of the
column

Fig. 14 A magnified part of the topology

Fig. 15 A spatial model of a clamped-simply supported column under
transverse load

Fig. 16 One buckling plane. Critical load 89595 kN

Fig. 17 Two buckling planes. Critical load 85327 kN

Fig. 18 A section view of generated topology

Fig. 19 A magnified part of the topology

Fig. 20 One buckling plane. Critical load 149814 kN

Fig. 21 Two buckling planes. Critical load 148230 kN
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Fig. 22 A section view of generated topology

Fig. 23 A magnified detail of the topology

Fig. 24 The symmetric buckling mode in each of the buckling planes
for the column in Fig. 21

Fig. 25 The antisymmetric buckling mode in each of the buckling
planes for the column in Fig. 21

The above topologies have been obtained for the fun-
damental, symmetric buckling mode of the column (see
Fig. 24). It is known, however, that for this type of clamp-
ing the buckling mode which is fundamental for a prismatic
column not necessarily remains the first one for optimized
structure. This problem was pointed out already by Olhoff
and Rasmussen (1977) for optimal sizing of clamped-
clamped column. Having this in mind critical loads for the
first two buckling modes in each of the buckling planes
of the column in Fig. 21 have been evaluated. It occurred
indeed that critical load 127528 kN obtained for an anti-
symmetric second buckling mode (see Fig. 25) is smaller
than the load 148230 kN calculated for the symmetric buck-
ling mode shown in Fig. 24. This means that the column
in Fig. 21 is not optimal for the problem under study,
and indicates the necessity of bimodal formulation of an

Fig. 26 The bimodal solution, volume fraction 0.67

optimization problem to be introduced for the considered
case.

With a view to resolve the above case, the following
problem can be formulated. Let us search for a volume frac-
tion for which both critical loads would have equal values.
Solving the above formulated problem leads to the volume
fraction 0.67, for which bimodal critical load equals 190513
kN. The topology of this bimodal column is presented in
Fig. 26.

5 Concluding remarks

The new approach to topology optimization of columns
against instability has been introduced, and some results
of its application to generation of column topologies for
various boundary conditions have been presented.

The critical loads for generated topologies are signifi-
cantly higher as compared to prismatic columns of the same
volume. It should be also stressed that critical loads obtained
for columns of optimal topology are also higher than the
ones found for columns for which the standard approach of
optimal sizing against buckling has been applied.

While building a computational model of the column
prone to buckling, within the approach proposed in this
paper, compressive loading is replaced by a distributed
transverse one. Distribution of this transverse loading along
column axis, requires a number of forces to be chosen.
It is worth noting that for different numbers of forces the
final topologies may slightly differ from each other. On
the other hand, values of critical loads, evaluated for vari-
ous intensities of transverse loading, practically do not vary.
To confirm that a comparison has been made for clamped-
simply supported column discussed in Section 4.2. The
numbers of transverse forces are selected in sequence as
3, 5, 9, 19 and 39, for which values of buckling loads
85465 kN, 86500 kN, 85672 kN, 85327 kN and 84915 kN
are obtained, respectively.

It was shown in Section 4.3 that for a clamped-clamped
column unimodal formulation of optimization problem may
be not sufficient. In such a case the bimodal approach which
allows generating topologies for which both critical loads
have the same value is necessary. The exemplary result of
such an approach has been presented in the paper.
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